1
|
Ebrahimi F, Omidvar-Mehrabadi A, Shahbazi M, Mohammadnia-Afrouzi M. Innate and adaptive immune dysregulation in women with recurrent implantation failure. J Reprod Immunol 2024; 164:104262. [PMID: 38823361 DOI: 10.1016/j.jri.2024.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Recurrent implantation failure (RIF) is a condition where a woman fails to obtain pregnancy after multiple embryo transfer cycles, even with superior-quality blastocysts. There are various factors that can contribute to RIF, including immunologic disturbances. The immune system is extremely important during pregnancy. Immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages (MQ) are present in the female reproductive tract and are accountable for regulating the immune response to invading pathogens and maintaining tissue homeostasis. Dysregulation of these immune cells can lead to inflammation, which can impair fertility. One of the most common immunological disturbances observed in RIF is an altered Th1/Th2 ratio, along with changes in NK cell and macrophage numbers. In addition, the presence of some antibodies, such as anti-ovarian antibodies, can also contribute to RIF. Interleukins have been implicated in the development of an inflammatory response that can interfere with successful embryo implantation. As a result, a comprehensive understanding of immunological compartments in RIF women could assist us in determining the immunological origins of this disease. We will discuss immunological factors that might contribute to RIF etiology, including cellular and molecular components.
Collapse
Affiliation(s)
- Fateme Ebrahimi
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Mehdi Shahbazi
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | |
Collapse
|
2
|
Hoffmann O, Wormland S, Bittner AK, Hölzenbein J, Schwich E, Schramm S, Rohn H, Horn PA, Kimmig R, Kasimir-Bauer S, Rebmann V. Elevated sHLA-G plasma levels post chemotherapy combined with ILT-2 rs10416697C allele status of the sHLA-G-related receptor predict poorest disease outcome in early triple-negative breast cancer patients. Front Immunol 2023; 14:1188030. [PMID: 37283737 PMCID: PMC10239857 DOI: 10.3389/fimmu.2023.1188030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Triple negative breast cancer (TNBC) shows an aggressive growing and spreading behavior and has limited treatment options, often leading to inferior disease outcome. Therefore, surrogate markers are urgently needed to identify patients at high risk of recurrence and more importantly, to identify additional therapeutic targets enabling further treatment options. Based on the key role of the non-classical human leukocyte antigen G (HLA-G) and its related receptor immunoglobulin-like transcript receptor-2 (ILT-2) in immune evasion mechanisms of tumors, members of this ligand-receptor axis appear to be promising tool for both, defining risk groups and potential therapeutic targets. Materials and methods To follow this, sHLA-G levels before and after chemotherapy (CT), HLA-G 3' UTR haplotypes, and allele variations rs10416697 at the distal gene promoter region of ILT-2 were defined in healthy female controls and early TNBC patients. The results obtained were associated with clinical status, presence of circulating tumor cell (CTC) subtypes, and disease outcome of patients in terms of progression-free or overall survival. Results sHLA-G plasma levels were increased in TNBC patients post-CT compared to levels of patients pre-CT or controls. High post-CT sHLA-G levels were associated with the development of distant metastases, the presence of ERCC1 or PIK3CA-CTC subtypes post-CT, and poorer disease outcome in uni- or multivariate analysis. HLA-G 3' UTR genotypes did not influence disease outcome but ILT-2 rs10416697C allele was associated with AURKA-positive CTC and with adverse disease outcome by uni- and multivariate analysis. The prognostic value of the combined risk factors (high sHLA-G levels post-CT and ILT-2 rs10416697C allele carrier status) was an even better independent indicator for disease outcome in TNBC than the lymph nodal status pre-CT. This combination allowed the identification of patients with high risk of early progression/death with positive nodal status pre-CT or with non-pathological complete therapy response. Conclusion The results of this study highlight for the first time that the combination of high levels of sHLA-G post-CT with ILT-2 rs10416697C allele receptor status is a promising tool for the risk assessment of TNBC patients and support the concept to use HLA-G/ILT-2 ligand-receptor axis as therapeutic targets.
Collapse
Affiliation(s)
- Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Sebastian Wormland
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Julian Hölzenbein
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Sabine Schramm
- National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Hana Rohn
- Department of Infection Diseases, West German Centre of Infection Diseases, University Hospital of Essen, Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT West, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
3
|
Campbell KA, Colacino JA, Puttabyatappa M, Dou JF, Elkin ER, Hammoud SS, Domino SE, Dolinoy DC, Goodrich JM, Loch-Caruso R, Padmanabhan V, Bakulski KM. Placental cell type deconvolution reveals that cell proportions drive preeclampsia gene expression differences. Commun Biol 2023; 6:264. [PMID: 36914823 PMCID: PMC10011423 DOI: 10.1038/s42003-023-04623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell types from placental villous tissue (n = 9 biological replicates) at term (n = 40,494 cells). We deconvoluted eight published microarray case-control studies of preeclampsia (n = 173 controls, 157 cases). Preeclampsia was associated with excess extravillous trophoblasts and fewer mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced preeclampsia-associated differentially expressed genes (log2 fold-change cutoff = 0.1, FDR < 0.05) from 1154 to 0, whereas downregulation of mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to cell type adjustment, suggesting direct changes to these pathways. Cellular composition mediated a substantial proportion of the association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our findings indicate substantial placental cellular heterogeneity in preeclampsia contributes to previously observed bulk gene expression differences. This deconvolution reference lays the groundwork for cellular heterogeneity-aware investigation into placental dysfunction and adverse birth outcomes.
Collapse
Affiliation(s)
- Kyle A Campbell
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - John F Dou
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elana R Elkin
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven E Domino
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kelly M Bakulski
- Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Bonney EA. A Framework for Understanding Maternal Immunity. Immunol Allergy Clin North Am 2023; 43:e1-e20. [PMID: 37179052 PMCID: PMC10484232 DOI: 10.1016/j.iac.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This is an alternative and controversial framing of the data relevant to maternal immunity. It argues for a departure from classical theory to view, interrogate and interpret existing data.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Robert Larner College of Medicine, Given Building, Room C246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
5
|
Hu L, He D, Zeng H. Association of parental HLA-G polymorphisms with soluble HLA-G expressions and their roles on recurrent implantation failure: A systematic review and meta-analysis. Front Immunol 2022; 13:988370. [PMID: 36532068 PMCID: PMC9751038 DOI: 10.3389/fimmu.2022.988370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction HLA-G plays a central role in immune tolerance at the maternal-fetal interface. The HLA-G gene is characterized by low allelic polymorphism and restricted tissue expression compared with classical HLA genes. HLA-G polymorphism is associated with HLA-G expression and linked to pregnancy complications. However, the association of parental HLA-G polymorphisms with soluble HLA-G (sHLA-G) expression and their roles in recurrent implantation failure (RIF) is unclear. The study aims to systematically review the association of HLA-G polymorphisms with RIF, the association of sHLA-G expression with RIF, and the association of HLA-G polymorphisms with sHLA-G expressions in patients attending in-vitro fertilization (IVF) treatment. Methods Studies that evaluated the association of HLA-G polymorphisms with RIF, the association between sHLA-G expression with RIF, and the association between HLA-G polymorphisms with sHLA-G expressions in patients attending IVF treatment were included. Meta-analysis was performed by random-effect models. Sensitivity analysis was performed by excluding one study each time. Subgroup analysis was performed based on ethnicity. Results HLA-G 14bp ins variant is associated with a lower expression of sHLA-G in seminal or blood plasma of couples attending IVF treatment. The maternal HLA-G*010101 and paternal HLA-G*010102 alleles are associated with RIF risk compared to other alleles. However, single maternal HLA-G 14bp ins/del polymorphism, HLA-G -725 C>G/T polymorphism, or circulating sHLA-G concentration was not significantly associated with RIF in the general population. HLA-G 14bp ins/ins homozygous genotype or ins variant was associated with a higher risk of RIF in the Caucasian population. Discussion Specific HLA-G alleles or HLA-G polymorphisms are associated with sHLA-G expression in couples attending IVF treatment. Several HLA-G polymorphisms may be related to RIF, considering different ethnic backgrounds. A combined genetic effect should be considered in future studies to confirm the association of HLA-G polymorphisms and sHLA-G expressions in relation to RIF.
Collapse
Affiliation(s)
- Lian Hu
- Department of Gynecology and Obstetrics, The Fourth Changsha Hospital, Changsha, China
| | - Dongmei He
- Department of Gynecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong Zeng
- Department of Reproductive Medicine Center, Foshan Maternal and Child Health Care Hospital, Southern Medical University, Guangzhou, China,Department of Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Hong Zeng,
| |
Collapse
|
6
|
Effect of HLA-G5 Immune Checkpoint Molecule on the Expression of ILT-2, CD27, and CD38 in Splenic B cells. J Immunol Res 2022; 2022:4829227. [PMID: 35600048 PMCID: PMC9119744 DOI: 10.1155/2022/4829227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/23/2022] [Indexed: 11/18/2022] Open
Abstract
The human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with a complex network of interactions with several inhibitory receptors. Although the effect of HLA-G on T cells and NK cells is well studied, the effect of HLA-G on B cells is still largely elusive. B cells are of particular interest in the context of the HLA-G-ILT-2 interaction because the ILT-2 receptor is constitutively expressed on most B cells, whereas it is only present on some subsets of T and NK cells. To characterize the effect of HLA-G5 molecules on B cells, we studied splenic B cells derived from cytomegalovirus (CMV) sero-positive donors after CMV stimulation with antigens in the presence and absence of soluble HLA-G5. In the presence of HLA-G5, increased expression of the ITIM-bearing Ig-like transcript (ILT-2) was observed on B cells, but its expression was not affected by stimulation with CMV antigens. Moreover, it became evident that HLA-G5 exposure resulted in a decreased expression of CD27 and CD38 and, accordingly, in lower proportions of CD19+CD27+CD38+ and higher proportions of CD19+CD27-CD38- B cells. Taken together, our in vitro findings demonstrate that soluble HLA-G5 suppresses markers of B cell activation, suggesting that HLA-G5 has an impact on splenic B cell differentiation and activation. Based on these results, further investigation regarding the role of HLA-G as a prognostic factor and a potential therapeutic agent with respect to B cell function appears reasonable.
Collapse
|
7
|
Zoehler B, Fracaro L, Boldrini-Leite LM, da Silva JS, Travers PJ, Brofman PRS, Bicalho MDG, Senegaglia AC. HLA-G and CD152 Expression Levels Encourage the Use of Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells as an Alternative for Immunosuppressive Therapy. Cells 2022; 11:cells11081339. [PMID: 35456019 PMCID: PMC9032010 DOI: 10.3390/cells11081339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been used in immunosuppressive therapy due to their therapeutic effects, with the HLA-G molecule seeming to play a fundamental role. This work evaluated alternative MSC sources to bone marrow (BM), namely, umbilical cord tissue (UC), adipose tissue (AD) and dental pulp tissue (DP), and the influence of interferon-γ (IFN-γ) and hypoxia on the cultivation of these cells for use in immunosuppression therapies. Expression of costimulatory markers CD40, CD80 and CD86 and immunosuppressive molecules CD152 and HLA-G was analyzed. Lymphocyte inhibition assays were also performed. Sequencing of the HLA-G gene from exons 1 to 5 was performed using next-generation sequencing to determine the presence of alleles. UC-derived MSCs (UCMSCs) expressed higher CD152 and HLA-G1 under standard cultivation. UCMSCs and DP-derived MSCs (DPSCs) secreted similar levels of HLA-G5. All MSC sources inhibited the proliferation of peripheral blood mononuclear cells (PBMCs); growth under regular versus hypoxic conditions resulted in similar levels of inhibition. When IFN-γ was added, PBMC growth was inhibited to a lesser extent by UCMSCs. The HLA-G*01:04:01:01 allele appears to generate a more efficient MSC response in inhibiting lymphocyte proliferation. However, the strength of this conclusion was limited by the small sample size. UCMSCs are an excellent alternative to BM in immunosuppressive therapy: they express high concentrations of inhibitory molecules and can be cultivated without stimuli, which minimizes cost.
Collapse
Affiliation(s)
- Bernardo Zoehler
- Immunogenetics and Histocompatibility Laboratory, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba 81530-001, PR, Brazil; (J.S.d.S.); (M.d.G.B.)
- Correspondence: (B.Z.); (A.C.S.)
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80910-215, PR, Brazil; (L.F.); (L.M.B.-L.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-902, RJ, Brazil
| | - Lidiane Maria Boldrini-Leite
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80910-215, PR, Brazil; (L.F.); (L.M.B.-L.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-902, RJ, Brazil
| | - José Samuel da Silva
- Immunogenetics and Histocompatibility Laboratory, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba 81530-001, PR, Brazil; (J.S.d.S.); (M.d.G.B.)
| | - Paul J. Travers
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80910-215, PR, Brazil; (L.F.); (L.M.B.-L.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-902, RJ, Brazil
| | - Maria da Graça Bicalho
- Immunogenetics and Histocompatibility Laboratory, Department of Genetics, Universidade Federal do Paraná (UFPR), Curitiba 81530-001, PR, Brazil; (J.S.d.S.); (M.d.G.B.)
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80910-215, PR, Brazil; (L.F.); (L.M.B.-L.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (B.Z.); (A.C.S.)
| |
Collapse
|
8
|
Castelli EC, de Almeida BS, Muniz YCN, Silva NSB, Passos MRS, Souza AS, Page AE, Dyble M, Smith D, Aguileta G, Bertranpetit J, Migliano AB, Duarte YAO, Scliar MO, Wang J, Passos-Bueno MR, Naslavsky MS, Zatz M, Mendes-Junior CT, Donadi EA. HLA-G genetic diversity and evolutive aspects in worldwide populations. Sci Rep 2021; 11:23070. [PMID: 34845256 PMCID: PMC8629979 DOI: 10.1038/s41598-021-02106-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
HLA-G is a promiscuous immune checkpoint molecule. The HLA-G gene presents substantial nucleotide variability in its regulatory regions. However, it encodes a limited number of proteins compared to classical HLA class I genes. We characterized the HLA-G genetic variability in 4640 individuals from 88 different population samples across the globe by using a state-of-the-art method to characterize polymorphisms and haplotypes from high-coverage next-generation sequencing data. We also provide insights regarding the HLA-G genetic diversity and a resource for future studies evaluating HLA-G polymorphisms in different populations and association studies. Despite the great haplotype variability, we demonstrated that: (1) most of the HLA-G polymorphisms are in introns and regulatory sequences, and these are the sites with evidence of balancing selection, (2) linkage disequilibrium is high throughout the gene, extending up to HLA-A, (3) there are few proteins frequently observed in worldwide populations, with lack of variation in residues associated with major HLA-G biological properties (dimer formation, interaction with leukocyte receptors). These observations corroborate the role of HLA-G as an immune checkpoint molecule rather than as an antigen-presenting molecule. Understanding HLA-G variability across populations is relevant for disease association and functional studies.
Collapse
Affiliation(s)
- Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil.
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, CEP: 18618970, Brazil.
| | - Bibiana S de Almeida
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, CEP: 14049-900, Brazil
- Laboratório Multiusuário de Estudos em Biologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Yara C N Muniz
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Nayane S B Silva
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil
| | - Marília R S Passos
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil
| | - Andreia S Souza
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil
| | - Abigail E Page
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark Dyble
- Departament of Anthropology, University College London (UCL), London, UK
| | - Daniel Smith
- Bristol Medical School (PHS), University of Bristol, Bristol, UK
| | - Gabriela Aguileta
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Bertranpetit
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrea B Migliano
- Departament of Anthropology, Unversity of Zurich, Zurich, Switzerland
| | - Yeda A O Duarte
- Escola de Enfermagem e Faculdade de Saúde Pública, Universidade de São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Marília O Scliar
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Jaqueline Wang
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Michel S Naslavsky
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, State of São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, CEP: 14049-900, Brazil.
| |
Collapse
|
9
|
Qamar AY, Hussain T, Rafique MK, Bang S, Tanga BM, Seong G, Fang X, Saadeldin IM, Cho J. The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility. Cells 2021; 10:2460. [PMID: 34572109 PMCID: PMC8468931 DOI: 10.3390/cells10092460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Infertility is a globally recognized issue caused by different reproductive disorders. To date, various therapeutic approaches to restore fertility have been attempted including etiology-specific medication, hormonal therapies, surgical excisions, and assisted reproductive technologies. Although these approaches produce results, however, fertility restoration is not achieved in all cases. Advances in using stem cell (SC) therapy hold a great promise for treating infertile patients due to their abilities to self-renew, differentiate, and produce different paracrine factors to regenerate the damaged or injured cells and replenish the affected germ cells. Furthermore, SCs secrete extracellular vesicles (EVs) containing biologically active molecules including nucleic acids, lipids, and proteins. EVs are involved in various physiological and pathological processes and show promising non-cellular therapeutic uses to combat infertility. Several studies have indicated that SCs and/or their derived EVs transplantation plays a crucial role in the regeneration of different segments of the reproductive system, oocyte production, and initiation of sperm production. However, available evidence triggers the need to testify the efficacy of SC transplantation or EVs injection in resolving the infertility issues of the human population. In this review, we highlight the recent literature covering the issues of infertility in females and males, with a special focus on the possible treatments by stem cells or their derived EVs.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tariq Hussain
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Kamran Rafique
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Faculty of Veterinary Medicine, Hawassa University, Hawassa 05, Ethiopia
| | - Gyeonghwan Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
10
|
Rao JS, Hosny N, Kumbha R, Naqvi RA, Singh A, Swanson Z, Levy H, Matson AW, Steinhoff M, Forneris N, Walters E, Hering BJ, Burlak C. HLA-G1 + Expression in GGTA1KO Pigs Suppresses Human and Monkey Anti-Pig T, B and NK Cell Responses. Front Immunol 2021; 12:730545. [PMID: 34566993 PMCID: PMC8459615 DOI: 10.3389/fimmu.2021.730545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
The human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1-/HLAG1+ pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system. GTKO/HLAG1+ pigs showing immune inhibitory functions were generated through somatic cell nuclear transfer (SCNT). The presence of HLA-G1 at the ROSA26 locus and the deletion of GGTA1 were confirmed by next generation sequencing (NGS) and Sanger's sequencing. Fibroblasts from piglets, biopsies from transplantable organs, and islets were positive for HLA-G1 expression by confocal microscopy, flow cytometry, or q-PCR. The expression of cell surface HLA-G1 molecule associated with endogenous β2-microglobulin (β2m) was confirmed by staining genetically engineered cells with fluorescently labeled recombinant ILT2 protein. Fibroblasts obtained from GTKO/HLAG1+ pigs were shown to modulate the immune response by lowering IFN-γ production by T cells and proliferation of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells, as well as by augmenting phosphorylation of Src homology region 2 domain-containing phosphatase-2 (SHP-2), which plays a central role in immune suppression. Islets isolated from GTKO/HLA-G1+ genetically engineered pigs and transplanted into streptozotocin-diabetic nude mice restored normoglycemia, suggesting that the expression of HLA-G1 did not interfere with their ability to reverse diabetes. The findings presented here suggest that the HLA-G1+ transgene can be stably expressed from the ROSA26 locus of non-fetal maternal tissue at the cell surface. By providing an immunomodulatory signal, expression of HLA-G1+ may extend survival of porcine pancreatic islet and organ xenografts.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Nora Hosny
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Medical Biochemistry and Molecular Biology Department, Suez Canal University, Faculty of Medicine, Ismailia, Egypt
| | - Ramesh Kumbha
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Raza Ali Naqvi
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Zachary Swanson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Heather Levy
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Anders W. Matson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Magie Steinhoff
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Nicole Forneris
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Eric Walters
- Independent Consultant, Centralia, MO, United States
| | - Bernhard J. Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Jongsma MLM, de Waard AA, Raaben M, Zhang T, Cabukusta B, Platzer R, Blomen VA, Xagara A, Verkerk T, Bliss S, Kong X, Gerke C, Janssen L, Stickel E, Holst S, Plomp R, Mulder A, Ferrone S, Claas FHJ, Heemskerk MHM, Griffioen M, Halenius A, Overkleeft H, Huppa JB, Wuhrer M, Brummelkamp TR, Neefjes J, Spaapen RM. The SPPL3-Defined Glycosphingolipid Repertoire Orchestrates HLA Class I-Mediated Immune Responses. Immunity 2021; 54:132-150.e9. [PMID: 33271119 PMCID: PMC8722104 DOI: 10.1016/j.immuni.2020.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Matthijs Raaben
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Birol Cabukusta
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - René Platzer
- Institut für Hygiene und Angewandte Immunologie, Vienna, Austria
| | - Vincent A Blomen
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anastasia Xagara
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tamara Verkerk
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sophie Bliss
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Xiangrui Kong
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Carolin Gerke
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lennert Janssen
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Elmer Stickel
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Rosina Plomp
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Arend Mulder
- Department of Immunology, LUMC, Leiden, the Netherlands
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hermen Overkleeft
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Johannes B Huppa
- Institut für Hygiene und Angewandte Immunologie, Vienna, Austria
| | - Manfred Wuhrer
- Center for Proteomics and Metabolics, LUMC, Leiden, the Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, the Netherlands; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Cancer Genomics Center, Amsterdam, the Netherlands
| | - Jacques Neefjes
- Oncode Institute and Department of Cell and Chemical Biology, LUMC, Leiden, the Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Qiu C, Ge Z, Cui W, Yu L, Li J. Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. Int J Mol Sci 2020; 21:ijms21207730. [PMID: 33086620 PMCID: PMC7594030 DOI: 10.3390/ijms21207730] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal stem cells have been regarded as an attractive and available cell source for medical research and clinical trials in recent years. Multiple stem cell types have been identified in the human placenta. Recent advances in knowledge on placental stem cells have revealed that human amniotic epithelial stem cells (hAESCs) have obvious advantages and can be used as a novel potential cell source for cellular therapy and clinical application. hAESCs are known to possess stem-cell-like plasticity, immune-privilege, and paracrine properties. In addition, non-tumorigenicity and a lack of ethical concerns are two major advantages compared with embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). All of the characteristics mentioned above and other additional advantages, including easy accessibility and a non-invasive application procedure, make hAESCs a potential ideal cell type for use in both research and regenerative medicine in the near future. This review article summarizes current knowledge on the characteristics, therapeutic potential, clinical advances and future challenges of hAESCs in detail.
Collapse
Affiliation(s)
- Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Zhen Ge
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China;
| | - Wenyu Cui
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| |
Collapse
|
13
|
Goldman-Wohl D, Greenfield C, Eisenberg-Loebl I, Denichenko P, Jbara A, Karni R, Ariel I, Yagel S. Trophoblast lineage specific expression of the alternative splicing factor RBFOX2 suggests a role in placental development. Placenta 2020; 100:142-149. [PMID: 32762877 DOI: 10.1016/j.placenta.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION RBFOX2, an RNA-binding protein, controls tissue-specific alternative splicing of exons in diverse processes of development. The progenitor cytotrophoblast of the human placenta differentiates into either the syncytiotrophoblast, formed via cell fusion, or the invasive extravillous trophoblast lineage. The placenta affords a singular system where a role for RBFOX2 in both cell invasion and cell fusion may be studied. We investigated a role for RBFOX2 in trophoblast cell differentiation, as a foundation for investigations of RBFOX2 in embryo implantation and placental development. METHODS Immunohistochemistry of RBFOX2 was performed on placental tissue sections from three trimesters of pregnancy and from pathological pregnancies. Primary trophoblast cell culture and immunofluorescence were employed to determine RBFOX2 expression upon cell fusion. Knockdown of RBFOX2 expression was performed with βhCG and syncytin-1 as molecular indicators of fusion. RESULTS In both normal and pathological placentas, RBFOX2 expression was confined to the cytotrophoblast and the extravillous trophoblast, but absent from the syncytiotrophoblast. Additionally, we showed that primary trophoblasts that spontaneously fused in cell culture downregulated RBFOX2 expression. In functional experiments, knockdown expression of RBFOX2 significantly upregulated βhCG, while the upregulation of syncytin-1 did not reach statistical significance. DISCUSSION RBFOX2, by conferring mRNA diversity, may act as a regulator switch in trophoblast differentiation to either the fusion or invasive pathways. By studying alternative splicing we further our understanding of placental development, yielding possible insights into preeclampsia, where expression of antiangiogenic isoforms produced through alternative splicing play a critical role in disease development and severity.
Collapse
Affiliation(s)
- Debra Goldman-Wohl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Caryn Greenfield
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Iris Eisenberg-Loebl
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Denichenko
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Amina Jbara
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Rotem Karni
- IMRIC Hadassah-Hebrew University School of Medicine, Jerusalem, Israel
| | - Ilana Ariel
- Department of Pathology Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Simcha Yagel
- The Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
14
|
Concordance between peripheral and decidual NK cell subsets and killer immunoglobulin-like receptors in women with recurrent spontaneous miscarriages. J Reprod Immunol 2020; 140:103130. [PMID: 32330774 DOI: 10.1016/j.jri.2020.103130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The role of decidual natural killer (dNK) cells in normal and complicated pregnancy and their relation with peripheral NK (pNK) cells remains unclear. The study aim was phenotypic analysis of pNK and dNK cells at time of miscarriage in recurrent spontaneous miscarriage (RSM) patients to assess whether measuring levels of pNK cell populations can reflect changes in dNK cells or not. METHODS This study included 40 middle aged pregnant women in the 1st trimester subjected to evacuation because of a current miscarriage. They had a history of previous ≥ two unexplained miscarriages. Frequencies of pNK and dNK cells, based on the expression of CD56, CD16, inhibitory (CD158b) and activating (CD161) Killer immunoglobulin-like receptors (KIRs), were detected by flow cytometry. RESULTS Percentages of CD56+ NK cells in peripheral blood and decidua were 17.5 % and 17.3 %, respectively. In both blood and decidua, CD56dim NK cells were exceeding CD56bright NK cells. The CD56dim CD16- NK cells were the predominating subset of NK cells, followed by CD56dim CD16dim. No substantial differences were detected in the levels of KIRs expression by the different NK subsets between blood and decidua. Abnormal up-regulation of both CD161 and CD158b on NK cells was observed in blood and decidua. CONCLUSION At the time of miscarriage, patients with RSM have an extremely active immune system and an increased number of toxic NK cells both in blood and decidua. The pNK cells reflect dNK cell changes during miscarriage and may be a useful non-invasive predicting tool in reproductive failure setting.
Collapse
|
15
|
Chaikeawkaew D, Everts V, Pavasant P. TLR3 activation modulates immunomodulatory properties of human periodontal ligament cells. J Periodontol 2020; 91:1225-1236. [PMID: 31981371 DOI: 10.1002/jper.19-0551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Toll-like receptors (TLR) are a group of receptors that play roles in the innate immune system. Human periodontal ligament cells (hPDL cells) express several TLRs, including TLR3, a nucleotide sensing receptor that recognizes double-stranded RNA from viral infection. However, its role in hPDL cells is unclear. The aim of this study was to investigate the responses of hPDL cells in terms of immunomodulation after TLR3 engagement. METHODS HPDL cells were treated with various doses of poly I:C, a TLR3 activator. The expression of interferon-gamma (IFNγ), indoleamine 2,3 dioxygenase (IDO), and human leukocyte antigen G (HLA-G) was determined. Chemical inhibitors and small interfering RNA (siRNA) were used to confirm the role of TLR3. Coculture with human peripheral blood mononuclear cells (PBMCs) with poly I:C-activated hPDL cells was performed. RESULTS Endosomal TLR3 in hPDL cells was observed by immunocytochemistry. Addition of poly I:C significantly enhanced the expression and secretion of IFNγ, IDO, and HLA-G. Knockdown of TLR3 using siRNA decreased the poly I:C-induced expression of these three molecules. Bafilomycin-A, an inhibitor of auto-phagosome and lysosome fusion, inhibited poly I:C-induced IDO and HLA-G expression, whereas cycloheximide and a TLR3-neutralizing antibody had no effect. In co-culture experiments, poly I:C-activated hPDL cells inhibited PBMCs proliferation and increased mRNA expression of forkhead box P3 (FOXP3), a transcription factor which is a marker of regulatory T cells. CONCLUSION Our findings indicated that TLR3 engagement of hPDL cells induced immunosuppressive properties of these cells. Because immunosuppressive properties play an important role in tissue healing and regeneration, activation of TLR3 may help to attenuate tissue destruction by limiting the inflammatory process and perhaps initiate the healing and regeneration process of the periodontium.
Collapse
Affiliation(s)
- Daneeya Chaikeawkaew
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Oral Biology Graduate Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Center of Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Engineering universal cells that evade immune detection. Nat Rev Immunol 2019; 19:723-733. [DOI: 10.1038/s41577-019-0200-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/15/2022]
|
17
|
Schumacher A, Sharkey DJ, Robertson SA, Zenclussen AC. Immune Cells at the Fetomaternal Interface: How the Microenvironment Modulates Immune Cells To Foster Fetal Development. THE JOURNAL OF IMMUNOLOGY 2019; 201:325-334. [PMID: 29987001 DOI: 10.4049/jimmunol.1800058] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Immune cells adapt their phenotypic and functional characteristics in response to the tissue microenvironment within which they traffic and reside. The fetomaternal interface, consisting of placental trophoblasts and the maternal decidua, is a highly specialized tissue with a unique and time-limited function: to nourish and support development of the semiallogeneic fetus and protect it from inflammatory or immune-mediated injury. It is therefore important to understand how immune cells within these tissues are educated and adapt to fulfill their biological functions. This review article focuses on the local regulatory mechanisms ensuring that both innate and adaptive immune cells appropriately support the early events of implantation and placental development through direct involvement in promoting immune tolerance of fetal alloantigens, suppressing inflammation, and remodeling of maternal uterine vessels to facilitate optimal placental function and fetal growth.
Collapse
Affiliation(s)
- Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg 39108, Germany; and
| | - David J Sharkey
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, South Australia 5005, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, South Australia 5005, Australia
| | - Ana C Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg 39108, Germany; and
| |
Collapse
|
18
|
Mosaferi E, Alizadeh Gharamaleki N, Farzadi L, Majidi J, Babaloo Z, Kazemi T, Ramezani M, Tabatabaei M, Ahmadi H, Aghebati Maleki L, Baradaran B. The Study of HLA-G Gene and Protein Expression in Patients with Recurrent Miscarriage. Adv Pharm Bull 2019; 9:70-75. [PMID: 31011560 PMCID: PMC6468217 DOI: 10.15171/apb.2019.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/26/2018] [Accepted: 09/29/2018] [Indexed: 12/02/2022] Open
Abstract
Purpose: Although it has been frequently confirmed that HLA-G plays an important role in the
reproduction and pregnancy, the pattern of HLA-G gene and its protein expression are rarely
addressed in studies. Therefore we conducted this study in regard to evaluate the HLA-G gene
and its protein expression in the women’s placenta with recurrent miscarriage.
Methods: Placental samples were obtained from the women who were admitted for delivery
or abortion in Al Zahra and Taleghani hospitals, Tabriz, Iran. HLA-G gene expression was
determined by real-time polymerase chain reaction (PCR) and HLA-G protein expression was
assessed by western blotting and immunofluorescence staining in the tissue samples.
Results: The results showed a significant decrease in the expression of gene and proteins of
HLA-G in the women with recurrent miscarriage compared to the control placental tissues.
Conclusion: According to the obtained results, it was concluded that the decrement of HLA-G
gene and protein expressions are associated with recurrent miscarriage. Since there are
conflicting results from other studies, it is suggested to conduct a more comprehensive similar
study with greater sample size.
Collapse
Affiliation(s)
- Elnaz Mosaferi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Laya Farzadi
- Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrnoosh Ramezani
- Department of Biochemistry, school of Medicine, Ardabil University of Medical Science, Ardabil Iran
| | - Meraj Tabatabaei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Edri A, Shemesh A, Iraqi M, Matalon O, Brusilovsky M, Hadad U, Radinsky O, Gershoni-Yahalom O, Dye JM, Mandelboim O, Barda-Saad M, Lobel L, Porgador A. The Ebola-Glycoprotein Modulates the Function of Natural Killer Cells. Front Immunol 2018; 9:1428. [PMID: 30013549 PMCID: PMC6036185 DOI: 10.3389/fimmu.2018.01428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022] Open
Abstract
The Ebola virus (EBOV) uses evasion mechanisms that directly interfere with host T-cell antiviral responses. By steric shielding of human leukocyte antigen class-1, the Ebola glycoprotein (GP) blocks interaction with T-cell receptors (TCRs), thus rendering T cells unable to attack virus-infected cells. It is likely that this mechanism could promote increased natural killer (NK) cell activity against GP-expressing cells by preventing the engagement of NK inhibitory receptors; however, we found that primary human NK cells were less reactive to GP-expressing HEK293T cells. This was manifested as reduced cytokine secretion, a reduction in NK degranulation, and decreased lysis of GP-expressing target cells. We also demonstrated reduced recognition of GP-expressing cells by recombinant NKG2D and NKp30 receptors. In accordance, we showed a reduced monoclonal antibody-based staining of NKG2D and NKp30 ligands on GP-expressing target cells. Trypsin digestion of the membrane-associated GP led to a recovery of the recognition of membrane-associated NKG2D and NKp30 ligands. We further showed that membrane-associated GP did not shield recognition by KIR2DL receptors; in accordance, GP expression by target cells significantly perturbed signal transduction through activating, but not through inhibitory, receptors. Our results suggest a novel evasion mechanism employed by the EBOV to specifically avoid the NK cell immune response.
Collapse
Affiliation(s)
- Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Muhammed Iraqi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael Brusilovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Olga Radinsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine (IMRIC), The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Leslie Lobel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Emerging and Reemerging Diseases and Special Pathogens Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
20
|
Miki T. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells. Am J Reprod Immunol 2018; 80:e13003. [PMID: 29956869 DOI: 10.1111/aji.13003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Multiple stem cell types can be isolated from the human placenta. Recent advances in stem cell biology have revealed that human amniotic epithelial cells (hAECs) are one of the perinatal stem cells which possess embryonic stem cell-like differentiation capability and adult stem cell-like immunomodulatory properties. Unlike other types of placental stem cells, hAECs are derived from pluripotent epiblasts and maintain multilineage differentiation potential throughout gestation. Similar to mesenchymal stem cells, hAECs are also able to modulate the local immune response. These, and other properties, make hAECs attractive for cellular therapy. This review article summarizes current knowledge of stem cell characteristics and immunomodulatory properties of amniotic epithelial cells and aims to advance our understanding towards the goal of novel therapy development.
Collapse
Affiliation(s)
- Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
HLA-G+3027 polymorphism is associated with tumor relapse in pediatric Hodgkin's lymphoma. Oncotarget 2017; 8:105957-105970. [PMID: 29285306 PMCID: PMC5739693 DOI: 10.18632/oncotarget.22515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/28/2017] [Indexed: 12/16/2022] Open
Abstract
In this study, we tested whether polymorphisms in human leukocyte antigen G (HLA-G) were associated with event-free survival (EFS) in pediatric Hodgkin's lymphoma (HL). We evaluated the association of HLA-G 3′-UTR polymorphisms with EFS in 113 pediatric HL patients treated using the AIEOP LH-2004 protocol. Patients with the +3027-C/A genotype (rs17179101, UTR-7 haplotype) showed lower EFS than those with the +3027-C/C genotype (HR= 3.23, 95%CI: 0.99-10.54, P=0.012). Female patients and systemic B symptomatic patients with the HLA-G +3027 polymorphism showed lower EFS. Multivariate analysis showed that the +3027-A polymorphism (HR 3.17, 95%CI 1.16-8.66, P=0.025) was an independent prognostic factor. Immunohistochemical analysis showed that HL cells from patients with the +3027-C/A genotype did not express HLA-G. Moreover, HLA-G +3027 polymorphism improved EFS prediction when added to the algorithm for therapeutic group classification of pediatric HL patients. Our findings suggest HLA-G +3027 polymorphism is a prognostic marker in pediatric HL patients undergoing treatment according to LH-2004 protocol.
Collapse
|
22
|
Yin B, Zeng Y, Wu T, Yu S, Xu J, Liu S, Diao L, Zhao Z, Liang D, Li Y. Functional properties of peripheral CD8+ T cells in patients with repeated implantation failure. Am J Reprod Immunol 2017; 78. [PMID: 28508475 DOI: 10.1111/aji.12704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/14/2017] [Indexed: 12/01/2022] Open
Affiliation(s)
- Biao Yin
- The State Key Laboratory of Medical Genetics of China; Central South University; Changsha China
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation; Shenzhen Zhongshan Institute for Reproduction and Genetics; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation; Shenzhen Zhongshan Institute for Reproduction and Genetics; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
| | - Tonghua Wu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation; Shenzhen Zhongshan Institute for Reproduction and Genetics; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
| | - Shuyi Yu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation; Shenzhen Zhongshan Institute for Reproduction and Genetics; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
| | - Jian Xu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation; Shenzhen Zhongshan Institute for Reproduction and Genetics; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation; Shenzhen Zhongshan Institute for Reproduction and Genetics; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation; Shenzhen Zhongshan Institute for Reproduction and Genetics; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
| | - Zhenfu Zhao
- School of Medicine; Shenzhen University; Shenzhen Guangdong China
| | - Desheng Liang
- The State Key Laboratory of Medical Genetics of China; Central South University; Changsha China
| | - Yuye Li
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation; Shenzhen Zhongshan Institute for Reproduction and Genetics; Fertility Center; Shenzhen Zhongshan Urology Hospital; Shenzhen China
| |
Collapse
|
23
|
Nardi FDS, Slowik R, Michelon T, Manvailer LFDS, Wagner B, Neumann J, Horn P, Bicalho MDG, Rebmann V. High Amounts of Total and Extracellular Vesicle-Derived Soluble HLA-G are Associated with HLA-G 14-bp Deletion Variant in Women with Embryo Implantation Failure. Am J Reprod Immunol 2016; 75:661-71. [PMID: 26959830 DOI: 10.1111/aji.12507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
PROBLEM Human leukocyte antigen-G (HLA-G) expression is related to 14-bp insertion/deletion polymorphism at the 3'UTR of the HLA-G gene. Soluble forms of HLA-G are released as free molecules or via extracellular vesicles (EVs). Due to the crucial role of HLA-G during pregnancy, we analyzed the 14-bp polymorphism and the two secreted forms in implantation failure women (IF) and in fertile women (FW). METHOD OF STUDY For the genetic analysis, 49 IF and 34 FW were genotyped. For sHLA-G quantification, serum samples from 35 IF and 23 FW were available. ExoQuick(™) kit was used for EVs precipitation. The total soluble HLA-G (sHLA-Gtot ) and vesicular sHLA-GEV were quantified by ELISA. The EVs size and concentration were determined by nanoparticle tracking analysis (NTA). RESULTS An increased proportion of IF presented high levels of sHLA-Gtot (P = 0.02) and vesicular sHLA-GEV (P = 0.0003) compared to FW. The 14-bp deletion allele is more frequent in IF (P = 0.0002) and associated with high levels of sHLA-Gtot and vesicular sHLA-GEV . CONCLUSION The high expression of sHLA-Gtot and sHLA-GEV , together with the presence of the 14-bp deletion allele, might be involved in implantation failure.
Collapse
Affiliation(s)
- Fabiola da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Laboratory of Immunogenetics and Histocompatibility (LIGH), Genetics Department, Federal University of Paraná, Curitiba, Brazil.,Capes Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Renata Slowik
- Laboratory of Immunogenetics and Histocompatibility (LIGH), Genetics Department, Federal University of Paraná, Curitiba, Brazil
| | | | - Luis Felipe Dos Santos Manvailer
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Capes Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Bettina Wagner
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Jorge Neumann
- Reproductive Immunology Center, Porto Alegre, Brazil
| | - Peter Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Maria da Graça Bicalho
- Laboratory of Immunogenetics and Histocompatibility (LIGH), Genetics Department, Federal University of Paraná, Curitiba, Brazil
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
24
|
Kariminekoo S, Movassaghpour A, Rahimzadeh A, Talebi M, Shamsasenjan K, Akbarzadeh A. Implications of mesenchymal stem cells in regenerative medicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 44:749-57. [PMID: 26757594 DOI: 10.3109/21691401.2015.1129620] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are a population of multipotent progenitors which reside in bone marrow, fat, and some other tissues and can be isolated from various adult and fetal tissues. Self-renewal potential and multipotency are MSC's hallmarks. They have the capacity of proliferation and differentiation into a variety of cell lineages like osteoblasts, condrocytes, adipocytes, fibroblasts, cardiomyocytes. MSCs can be identified by expression of some surface molecules like CD73, CD90, CD105, and lack of hematopoietic specific markers including CD34, CD45, and HLA-DR. They are hopeful tools for regenerative medicine for repairing injured tissues. Many studies have focused on two significant features of MSC therapy: (I) systemically administered MSCs home to sites of ischemia or injury, and (II) MSCs can modulate T-cell-mediated immunological responses. MSCs express chemokine receptors and ligands involved in cells migration and homing process. MSCs induce immunomedulatory effects on the innate (dendritic cells, monocyte, natural killer cells, and neutrophils) and the adaptive immune system cells (T helper-1, cytotoxic T lymphocyte, and B lymphocyte) by secreting soluble factors like TGF-β, IL-10, IDO, PGE-2, sHLA-G5, or by cell-cell interaction. In this review, we discuss the main applications of mesenchymal stem in Regenerative Medicine and known mechanisms of homing and Immunomodulation of MSCs.
Collapse
Affiliation(s)
- Saber Kariminekoo
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran ;,b Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Aliakbar Movassaghpour
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Amirbahman Rahimzadeh
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Talebi
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Karim Shamsasenjan
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- c Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran ;,d Stem Cell Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
25
|
Ismail Madkour WA, Noah B, Zaheer H, Al-Bahr A, Abdelhamid AM, Shaeer M, Moawad A. Does sequential embryo transfer improve pregnancy rate in patients with repeated implantation failure? A randomized control study. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2015. [DOI: 10.1016/j.mefs.2015.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
Adar T, Grisaru-Granovsky S, Ben Ya'acov A, Goldin E, Bar-Gil Shitrit A. Pregnancy and the Immune System: General Overview and the Gastroenterological Perspective. Dig Dis Sci 2015; 60:2581-9. [PMID: 25947331 DOI: 10.1007/s10620-015-3683-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
Pregnancy represents a unique immune tolerant condition that cannot be attributed merely to generalized immunosuppression. A variety of mechanisms have been described, ranging from the non-self recognition, immunomodulation of specific inflammatory cell populations and a Th2-directed shift of the immune response, which are mediated by both localized and systemic mediators. Furthermore, an inflammatory response directed toward the conceptus is no longer considered an obligatory deleterious response; instead, it is considered an important factor that is necessary for normal growth and development. These immunomodulatory changes during pregnancy may also affect concurrent conditions and alter the course of inflammatory diseases. Herein, we review the main immunomodulatory changes that occur during pregnancy and their effect on coexisting inflammatory conditions, with a specific focus on gastrointestinal disorders.
Collapse
Affiliation(s)
- Tomer Adar
- Digestive Disease Institute, Shaare Zedek Medical Center, Affiliated with the School of Medicine in the Hebrew University of Jerusalem, 12 Bayit St., 91031, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
27
|
Li L, Schust DJ. Isolation, purification and in vitro differentiation of cytotrophoblast cells from human term placenta. Reprod Biol Endocrinol 2015; 13:71. [PMID: 26156160 PMCID: PMC4497497 DOI: 10.1186/s12958-015-0070-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The syncytialization of cytotrophoblast cells to syncytiotrophoblast is central to human placental transport and hormone production. Many techniques for in vitro study of this process have been proposed and new investigators to the field may find the literature in the field daunting. Here, we present a straightforward and reliable method to establish this important model using modern but readily available tools and reagents. METHODS Villous cytotrophoblast cells are obtained from term placenta using mild enzymatic degradation, Percoll gradient centrifugation, negative magnetic cell sorting using an antibody against classical major histocompatibility complex molecules and in vitro culture on a matrix-coated growth surface. RESULTS The purity of isolated cytotrophoblast cells exceeds 98 % as assessed by cytokeratin-7 expression using flow cytometry. Contamination by mesenchymal cells, extravillous trophoblast cells, leukocytes, Hofbauer and endothelial cells is minimized (less than 2 % when analyzed for vimentin, HLA-G, CD45, CD163 and CD31 using flow cytometry). Isolated cytotrophoblast cells began to aggregate into monolayers of mononucleated cells within about 12 h of plating. By 72 h in culture, most cytotrophoblast cells have differentiated into syncytiotrophoblast as demonstrated by a loss of intercellular E-cadherin expression upon fusion into multinucleated syncytia. After 72 h in culture, nearly every cultured cell expresses syncytiotrophoblast markers, including cytokeratin-7, human chorionic gonadotropin-β (β-hCG) and the fusion-related proteins glial cell missing-1 (GCM-1) and syncytin. CONCLUSIONS We present an efficient and reliable method for isolating of cytotrophoblast cells with high purity and complete differentiation into syncytiotrophoblast in vitro.
Collapse
Affiliation(s)
- Liping Li
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 500 N. Keene Street, Columbia, MO, USA.
- Department of Obstetrics and Gynecology, Guangzhou Medical University Affiliated Guangzhou First People's Hospital, 1 Panfu Road, Guangzhou, China.
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 500 N. Keene Street, Columbia, MO, USA.
| |
Collapse
|
28
|
Dos Santos LS, da Silva Mol JP, de Macedo AA, Silva APC, Dos Santos Ribeiro DL, Santos RL, da Paixão TA, de Carvalho Neta AV. Transcription of non-classic major histocompatibility complex (MHC) class I in the bovine placenta throughout gestation and after Brucella abortus infection. Vet Immunol Immunopathol 2015; 167:166-70. [PMID: 26188737 DOI: 10.1016/j.vetimm.2015.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 11/29/2022]
Abstract
Transcription of non-classical major histocompatibility complex class I (MHC-I) was assessed in the bovine placenta throughout gestation. Additionally, the effect of Brucella abortus infection on expression of non-classical MHC-I was also evaluated using a chorioallantoic membrane explant model of infection. The non-classical MHC-I genes MICB and NC3 had higher levels of transcription in the intercotyledonary region when compared to the placentome, which had higher levels of transcription at the second trimester of gestation. NC1 and classical MHC-I had very low levels of transcription throughout gestation. Trophoblastic cells of B. abortus-infected chorioallantoic membrane explants had an increase in transcription of non-classical MHC-I at 4h post infection. Therefore, this study provides an analysis of non-classical MHC-I transcription at different stages of gestation and different placental tissues, and during B. abortus infection. These findings provide additional knowledge on immune regulation in placental tissues, a known immune-privileged site.
Collapse
Affiliation(s)
| | - Juliana Pinto da Silva Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Auricélio Alves de Macedo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Patrícia Carvalho Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiane Alves da Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
29
|
Gregori S, Amodio G, Quattrone F, Panina-Bordignon P. HLA-G Orchestrates the Early Interaction of Human Trophoblasts with the Maternal Niche. Front Immunol 2015; 6:128. [PMID: 25870595 PMCID: PMC4378286 DOI: 10.3389/fimmu.2015.00128] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/09/2015] [Indexed: 01/13/2023] Open
Abstract
Extravillous trophoblasts (EVTs) play a central role in educating maternal leukocytes, endometrial stromal and endothelial cells to generate a receptive decidual microenvironment tailored to accept the semi-allogeneic fetus. HLA-G, a non-classical HLA class I molecule endowed with immune-regulatory functions, is primarily expressed on EVTs lining the placenta and on the naturally occurring tolerogenic dendritic cells, named DC-10, which are enriched in the human first trimester decidua. Decidual DC-10 are involved in HLA-G-mediated tolerance at the maternal–fetal interface. EVTs not only establish a tolerogenic microenvironment through the interaction with maternal innate and adaptive cells but also orchestrate placenta vascular and tissue remodeling, leading to a successful pregnancy. Here, we discuss the potential implications of the HLA-G-mediated cross-talk among the cells present at the maternal–fetal interface, and its role in maintaining a positive relationship between the mother and the fetus.
Collapse
Affiliation(s)
- Silvia Gregori
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Giada Amodio
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Federica Quattrone
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital , Milan , Italy
| | - Paola Panina-Bordignon
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital , Milan , Italy
| |
Collapse
|
30
|
Rizzo R, Lo Monte G, Bortolotti D, Graziano A, Gentili V, Di Luca D, Marci R. Impact of soluble HLA-G levels and endometrial NK cells in uterine flushing samples from primary and secondary unexplained infertile women. Int J Mol Sci 2015; 16:5510-6. [PMID: 25764161 PMCID: PMC4394489 DOI: 10.3390/ijms16035510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/17/2015] [Accepted: 03/04/2015] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was to determine the levels of human leukocyte antigen G (HLA-G) and endometrial Natural Killer ((e)NK) cell percentages in uterine flushing samples from primary and secondary infertile women. sHLA-G levels were lower in the uterine flushing samples from primary infertile women in comparison with women with secondary infertility. Lower CD56+KIR2DL4+ (e)NK cell percentages were detected in primary infertile women compared with secondary infertile women. This is the first study demonstrating that primary and secondary unexplained infertilities are characterized by different basal sHLA-G levels and CD56+KIR2DL4+ (e)NK cell percentages.
Collapse
Affiliation(s)
- Roberta Rizzo
- Department of Medical Sciences, Section of Microbiology and Genetics, University of Ferrara, 44100 Ferrara, Italy.
| | - Giuseppe Lo Monte
- Department of Morphology, Surgery and Experimental Medicine, Section of Gynecology and Obstetrics, University of Ferrara, 44100 Ferrara, Italy.
- University Hospital "S. Anna", 44100 Ferrara, Italy.
| | - Daria Bortolotti
- Department of Medical Sciences, Section of Microbiology and Genetics, University of Ferrara, 44100 Ferrara, Italy.
| | - Angela Graziano
- Department of Morphology, Surgery and Experimental Medicine, Section of Gynecology and Obstetrics, University of Ferrara, 44100 Ferrara, Italy.
- University Hospital "S. Anna", 44100 Ferrara, Italy.
| | - Valentina Gentili
- Department of Medical Sciences, Section of Microbiology and Genetics, University of Ferrara, 44100 Ferrara, Italy.
| | - Dario Di Luca
- Department of Medical Sciences, Section of Microbiology and Genetics, University of Ferrara, 44100 Ferrara, Italy.
| | - Roberto Marci
- Department of Morphology, Surgery and Experimental Medicine, Section of Gynecology and Obstetrics, University of Ferrara, 44100 Ferrara, Italy.
- University Hospital "S. Anna", 44100 Ferrara, Italy.
| |
Collapse
|
31
|
Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, Shussman N, Almogy G, Cuapio A, Hofer E, Mevorach D, Tabib A, Ortenberg R, Markel G, Miklić K, Jonjic S, Brennan CA, Garrett WS, Bachrach G, Mandelboim O. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015; 42:344-355. [PMID: 25680274 DOI: 10.1016/j.immuni.2015.01.010] [Citation(s) in RCA: 852] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/19/2014] [Accepted: 01/23/2015] [Indexed: 12/17/2022]
Abstract
Bacteria, such as Fusobacterium nucleatum, are present in the tumor microenvironment. However, the immunological consequences of intra-tumoral bacteria remain unclear. Here, we have shown that natural killer (NK) cell killing of various tumors is inhibited in the presence of various F. nucleatum strains. Our data support that this F. nucleatum-mediated inhibition is mediated by human, but not by mouse TIGIT, an inhibitory receptor present on all human NK cells and on various T cells. Using a library of F. nucleatum mutants, we found that the Fap2 protein of F. nucleatum directly interacted with TIGIT, leading to the inhibition of NK cell cytotoxicity. We have further demonstrated that tumor-infiltrating lymphocytes expressed TIGIT and that T cell activities were also inhibited by F. nucleatum via Fap2. Our results identify a bacterium-dependent, tumor-immune evasion mechanism in which tumors exploit the Fap2 protein of F. nucleatum to inhibit immune cell activity via TIGIT.
Collapse
Affiliation(s)
- Chamutal Gur
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC Jerusalem, 91120, Israel; The Rheumatology Research Center, Hadassah-Hebrew University, Jerusalem, 91120, Israel
| | - Yara Ibrahim
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, 91120, Israel
| | - Batya Isaacson
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC Jerusalem, 91120, Israel
| | - Rachel Yamin
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC Jerusalem, 91120, Israel
| | - Jawad Abed
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, 91120, Israel
| | - Moriya Gamliel
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC Jerusalem, 91120, Israel
| | - Jonatan Enk
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC Jerusalem, 91120, Israel
| | - Yotam Bar-On
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC Jerusalem, 91120, Israel
| | - Noah Stanietsky-Kaynan
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC Jerusalem, 91120, Israel
| | - Shunit Coppenhagen-Glazer
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, 91120, Israel
| | - Noam Shussman
- Department of General Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Gideon Almogy
- Department of General Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel
| | - Angelica Cuapio
- Department of Vascular Biology and Thrombosis Research Medical University of Vienna, 1090, Austria
| | - Erhard Hofer
- Department of Vascular Biology and Thrombosis Research Medical University of Vienna, 1090, Austria
| | - Dror Mevorach
- The Rheumatology Research Center, Hadassah-Hebrew University, Jerusalem, 91120, Israel
| | - Adi Tabib
- The Rheumatology Research Center, Hadassah-Hebrew University, Jerusalem, 91120, Israel
| | - Rona Ortenberg
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, 526260, Israel
| | - Gal Markel
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, 526260, Israel
| | - Karmela Miklić
- Department of Histology and Embryology Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000, Croatia
| | - Stipan Jonjic
- Department of Histology and Embryology Center for Proteomics, Faculty of Medicine, University of Rijeka, 51000, Croatia
| | | | - Wendy S Garrett
- Harvard School of Public Health, Boston, MA, 02115, USA; Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, 91120, Israel.
| | - Ofer Mandelboim
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC Jerusalem, 91120, Israel.
| |
Collapse
|
32
|
Rahimzadeh A, Mirakabad FST, Movassaghpour A, Shamsasenjan K, Kariminekoo S, Talebi M, Shekari A, Zeighamian V, Ghalhar MG, Akbarzadeh A. Biotechnological and biomedical applications of mesenchymal stem cells as a therapeutic system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:559-70. [PMID: 25340260 DOI: 10.3109/21691401.2014.968823] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic, multipotent progenitor cells which reside in bone marrow (BM), support homing of hematopoietic stem cells (HSCs) and self-renewal in the BM. These cells have the potential to differentiate into tissues of mesenchymal origin, such as fibroblasts, adipocytes, cardiomyocytes, and stromal cells. MSCs can express surface molecules like CD13, CD29, CD44, CD73, CD90, CD166, CXCL12 and toll-like receptors (TLRs). Different factors, such as TGF-β, IL-10, IDO, PGE-2, sHLA-G5, HO, and Galectin-3, secreted by MSCs, induce interaction in cell to cell immunomodulatory effects on innate and adaptive cells of the immune system. Furthermore, these cells can stimulate and increase the TH2 and regulatory T-cells through inhibitory effects on the immune system. MSCs originate from the BM and other tissues including the brain, adipose tissue, peripheral blood, cornea, thymus, spleen, fallopian tube, placenta, Wharton's jelly and umbilical cord blood. Many studies have focused on two significant features of MSC therapy: (I) MSCs can modulate T-cell-mediated immunological responses, and (II) systemically administered MSCs home in to sites of ischemia or injury. In this review, we describe the known mechanisms of immunomodulation and homing of MSCs. As a result, this review emphasizes the functional role of MSCs in modulating immune responses, their capability in homing to injured tissue, and their clinical therapeutic potential.
Collapse
Affiliation(s)
- Amirbahman Rahimzadeh
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Aliakbar Movassaghpour
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Karim Shamsasenjan
- d Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tabriz , Iran
| | - Saber Kariminekoo
- a Hematology and Oncology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mehdi Talebi
- e Hematology and Blood Banking Department, Faculty of Medical Science , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Shekari
- f Department Of Medical Genetic , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Vahideh Zeighamian
- g Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Masoud Gandomkar Ghalhar
- g Department of Medical Biotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- h Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
33
|
Sharma R, Das A. Organ-specific phenotypic and functional features of NK cells in humans. Immunol Res 2014; 58:125-31. [PMID: 24366663 DOI: 10.1007/s12026-013-8477-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells kill virus-infected and tumor target cells without prior sensitization. Each NK cell expresses a multitude of activating and inhibitory receptors, and the interplay of signals determines the outcome of NK cell activity. NK cell-mediated cytolysis of target cell involves polarized degranulation at effector-target interface. Peripheral blood NK cell constitutes about 10% of lymphocytes, and approximately 90% of peripheral blood NK cells are CD56(dim)CD16(+); however, there is a distinct subset of NK cells, CD56(bright)CD16(-), expressed by certain lymphoid organs which are able to produce large amounts of cytokines including interferon-γ, tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor, but the cytotoxicity is attained only on their prolonged activation. In this review, we discuss the accumulated data on distinct phenotypes of NK cells in human uterus, liver, intestine, skin, and lung and also attempt to correlate their phenotype with corresponding activity and functions, with significant stress on the role of NK cells in pathology in the specific organs. Our detailed understanding of altered NK cell activity in different organs and their inherent cytotoxic activity against tumor target cells will help us design better immunotherapeutic strategies in NK cell-mediated cancer therapies.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biotechnology, Delhi Technological University, Bawana Road, New Delhi, 110042, Delhi, India
| | | |
Collapse
|
34
|
Sotnikova N, Voronin D, Antsiferova Y, Bukina E. Interaction of Decidual CD56+ NK with Trophoblast Cells during Normal Pregnancy and Recurrent Spontaneous Abortion at Early Term of Gestation. Scand J Immunol 2014; 80:198-208. [DOI: 10.1111/sji.12196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/24/2014] [Indexed: 12/30/2022]
Affiliation(s)
- N. Sotnikova
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - D. Voronin
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - Y. Antsiferova
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| | - E. Bukina
- Federal State Research Institute of Maternity and Childhood named V.N. Gorodkov; Ivanovo Russia
| |
Collapse
|
35
|
Sammar M, Nisamblatt S, Gonen R, Huppertz B, Gizurarson S, Osol G, Meiri H. The role of the carbohydrate recognition domain of placental protein 13 (PP13) in pregnancy evaluated with recombinant PP13 and the DelT221 PP13 variant. PLoS One 2014; 9:e102832. [PMID: 25079598 PMCID: PMC4117483 DOI: 10.1371/journal.pone.0102832] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Placental protein 13 (PP13), a placenta specific protein, is reduced in the first trimester of pregnancy in women who subsequently develop preeclampsia. A naturally occurring PP13 deletion of thymidine at position 221 (DelT221 or truncated variant) is associated with increased frequency of severe preeclampsia. In this study we compared the full length (wildtype) PP13 and the truncated variant. METHODS Full length PP13 or its DelT221 variant were cloned, expressed and purified from E-Coli. Both variants were administrated into pregnant rats at day 8 of pregnancy for slow release (>5 days) through osmotic pumps and rat blood pressure was measured. Animals were sacrificed at day 15 or day 21 and their utero-placental vasculature was examined. RESULTS The DelT221 variant (11 kDA) lacked exon 4 and a part of exon 3, and is short of 2 amino acids involved in the carbohydrate (CRD) binding of the wildtype (18 kDA). Unlike the wildtype PP13, purification of DelT221 variant required special refolding. PP13 specific poly- clonal antibodies recognized both PP13 and DelT221 but PP13 specific monoclonal antibodies recognized only the wildtype, indicating the loss of major epitopes. Wildtype PP13 mRNA and its respective proteins were both lower in PE patients compared to normal pregnancies. The DelT221 mutant was not found in a large Caucasian cohort. Pregnant rats exposed to wildtype or DelT221 PP13 variants had significantly lower blood pressure compared to control. The wildtype but not the DelT221 mutant caused extensive vein expansion. CONCLUSION This study revealed the importance of PP13 in regulating blood pressure and expanding the utero-placental vasculature in pregnant rats. PP13 mutant lacking amino acids of the PP13 CRD domain fails to cause vein expansion but did reduce blood pressure. The study provides a basis for replenishing patients at risk for preeclampsia by the full length but not the truncated PP13.
Collapse
Affiliation(s)
- Marei Sammar
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Shahar Nisamblatt
- Prof. Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Ron Gonen
- Department of Obstetrics and Gynecology, Bnai Zion Medical Center, and Technion-Israel Institute of Technology, Haifa, Israel
| | - Berthold Huppertz
- Institute of Cell Biology, Histology and Embryology/Biobank Graz, Medical University of Graz, Graz, Austria
| | - Sveinbjorn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Science, University of Iceland, Reykjavik, Iceland
| | - George Osol
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Hamutal Meiri
- Telemarpe Ltd, Tel Aviv, and Hy-Laboratories, Rehovot, Israel
| |
Collapse
|
36
|
Rebmann V, da Silva Nardi F, Wagner B, Horn PA. HLA-G as a tolerogenic molecule in transplantation and pregnancy. J Immunol Res 2014; 2014:297073. [PMID: 25143957 PMCID: PMC4131093 DOI: 10.1155/2014/297073] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/07/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022] Open
Abstract
HLA-G is a nonclassical HLA class I molecule. In allogeneic situations such as pregnancy or allograft transplantation, the expression of HLA-G has been related to a better acceptance of the fetus or the allograft. Thus, it seems that HLA-G is crucially involved in mechanisms shaping an allogeneic immune response into tolerance. In this contribution we focus on (i) how HLA-G is involved in transplantation and human reproduction, (ii) how HLA-G is regulated by genetic and microenvironmental factors, and (iii) how HLA-G can offer novel perspectives with respect to therapy.
Collapse
Affiliation(s)
- Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Fabiola da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
- CAPES Foundation, Ministry of Education of Brazil, 70.040-020 Brasília, DF, Brazil
| | - Bettina Wagner
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| |
Collapse
|
37
|
Abstract
Human leukocyte antigen-G (HLA-G) is a low polymorphic nonclassical HLA-I molecule restrictively expressed and with suppressive functions. HLA-G gene products are quite complex, with seven HLA-G isoforms, four membrane bound, and other three soluble isoforms that can suffer different posttranslational modifications or even complex formations. In addition, HLA-G has been described included in exosomes. In this review we will focus on HLA-G biochemistry with special emphasis to the mechanisms that regulate its expression and how the protein modifications affect the quantification in biological fluids.
Collapse
|
38
|
Du MR, Guo PF, Piao HL, Wang SC, Sun C, Jin LP, Tao Y, Li YH, Zhang D, Zhu R, Fu Q, Li DJ. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal-fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:1502-11. [PMID: 24453244 DOI: 10.4049/jimmunol.1203425] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Physiological pregnancy requires the maternal immune system to recognize and tolerate embryonic Ags. Although multiple mechanisms have been proposed, it is not yet clear how the fetus evades the maternal immune system. In this article, we demonstrate that trophoblast-derived thymic stromal lymphopoietin (TSLP) instructs decidual CD11c(+) dendritic cells (dDCs)with increased costimulatory molecules; MHC class II; and Th2/3-type, but not Th1-type, cytokines. TSLP-activated dDCs induce proliferation and differentiation of decidual CD4(+)CD25(-) T cells into CD4(+)CD25(+)FOXP3(+) regulatory T cells (Tregs) through TGF-β1. TSLP-activated dDC-induced Tregs display immunosuppressive features and express Th2-type cytokines. In addition, decidual CD4(+)CD25(+)FOXP3(+) Tregs promote invasiveness and HLA-G expression of trophoblasts, resulting in preferential production of Th2 cytokines and reduced cytotoxicity in decidual CD56(bright)CD16(-) NK cells. Of interest, decreased TSLP expression and reduced numbers of Tregs were observed at the maternal-fetal interface during miscarriage. Our study identifies a novel feedback loop between embryo-derived trophoblasts and maternal decidual leukocytes, which induces a tolerogenic immune response to ensure a successful pregnancy.
Collapse
Affiliation(s)
- Mei-Rong Du
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Institute of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200011, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lotfinegad P, Shamsasenjan K, Movassaghpour A, Majidi J, Baradaran B. Immunomodulatory nature and site specific affinity of mesenchymal stem cells: a hope in cell therapy. Adv Pharm Bull 2013; 4:5-13. [PMID: 24409403 DOI: 10.5681/apb.2014.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022] Open
Abstract
Immunosuppressive ability of mesenchymal stem cells (MSCs), their differentiation properties to various specialized tissue types, ease of in vitro and in vivo expansion and specific migration capacity, make them to be tested in different clinical trials for the treatment of various diseases. The immunomodulatory effects of MSCs are less identified which probably has high clinically significance. The clinical trials based on primary research will cause better understanding the ability of MSCs in immunomodulatory applications and site specific migration in the optimization of therapy. So, this review focus on MSCs functional role in modulating immune responses, their ability in homing to tumor, their potency as delivery vehicle and their medical importance.
Collapse
Affiliation(s)
- Parisa Lotfinegad
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Azar Y, Shainer R, Almogi-Hazan O, Bringer R, Compton SR, Paidas MJ, Barnea ER, Or R. PreImplantation Factor Reduces Graft-versus-Host Disease by Regulating Immune Response and Lowering Oxidative Stress (Murine Model). Biol Blood Marrow Transplant 2013; 19:519-28. [DOI: 10.1016/j.bbmt.2012.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 12/17/2012] [Indexed: 11/26/2022]
|
41
|
Graebin P, Veit TD, Alho CS, Dias FS, Chies JAB. Polymorphic variants in exon 8 at the 3' UTR of the HLA-G gene are associated with septic shock in critically ill patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R211. [PMID: 23107167 PMCID: PMC3682315 DOI: 10.1186/cc11845] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/09/2012] [Indexed: 01/24/2023]
Abstract
Introduction Critically ill patients are characterized as individuals hospitalized in the Intensive Care Unit (ICU) and can evolve to sepsis, septic shock or even death. Among others, genetic factors can influence the outcome of critically ill patients. HLA-G is a non-classical class Ib molecule that has limited protein variability, presenting seven isoforms generated by alternative splicing, and presents immunomodulatory properties. Polymorphisms at the 3'UTR are thought to influence HLA-G gene expression. It was previously observed that increased sHLA-G5 levels were predictive of survival among septic shock patients. We assessed the frequencies of 7 polymorphisms in exon 8 at the 3' UTR of HLA-G and associated these variants with different clinical outcomes in critically ill patients. Methods Exon 8 at the 3' UTR of the HLA-G gene from 638 critically ill subjects was amplified by PCR and sequenced. Genotypes were identified using FinchTV software v.1.4.0 and the most probable haplotype constitution of each sample was determined by PHASE software v.2.1. Haplotype frequencies, linkage disequilibrium, heterozygosity test and Hardy-Weinberg Equilibrium were estimated using ARLEQUIN software v.3.5. Results Among all critically ill patients, an association between carriers of the +2960IN_+3142 G_+3187A haplotype and septic shock (P = 0.047) was observed. Septic patients who carried the +2960IN_+3142G_+3187A haplotype presented an increased risk for septic shock (P = 0.031). Conclusions The present study showed, for the first time, an association between polymorphisms in exon 8 at the 3 'UTR of HLA-G gene and outcomes of critically ill patients. These results may be important for understanding the mechanisms involved in evolution to septic shock in critically ill patients.
Collapse
|
42
|
Simon A, Laufer N. Assessment and treatment of repeated implantation failure (RIF). J Assist Reprod Genet 2012; 29:1227-39. [PMID: 22976427 DOI: 10.1007/s10815-012-9861-4] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 09/05/2012] [Indexed: 12/28/2022] Open
Abstract
Repeated implantation failure (RIF) is determined when embryos of good quality fail to implant following several in vitro fertilization (IVF) treatment cycles. Implantation failure is related to either maternal factors or embryonic causes. Maternal factors include uterine anatomic abnormalities, thrombophilia, non-receptive endometrium and immunological factors. Failure of implantation due to embryonic causes is associated with either genetic abnormalities or other factors intrinsic to the embryo that impair its ability to develop in utero, to hatch and to implant. New methods of time-lapse imaging of embryos and assessment of their metabolic functions may improve selection of embryos for transfer, and subsequent outcomes for IVF patients, as well as for those diagnosed with RIF. This review discusses the various causes associated with RIF and addresses appropriate treatments.
Collapse
Affiliation(s)
- Alex Simon
- Department of Obstetrics and Gynecology, In Vitro Fertilization Unit, Ein Kerem, Hebrew University, Hadassah Medical Center, POB 12000, Jerusalem, 91120, Israel.
| | | |
Collapse
|
43
|
Aminzadeh F, Ghorashi Z, Nabati S, Ghasemshirazi M, Arababadi MK, Shamsizadeh A, Karimabad MN, Khorramdelazad H, Darakhshan S, Hassanshahi G. Differential expression of CXC chemokines CXCL10 and CXCL12 in term and pre-term neonates and their mothers. Am J Reprod Immunol 2012; 68:338-44. [PMID: 22738089 DOI: 10.1111/j.1600-0897.2012.01167.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/24/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND AIM Pre-term delivery is a mostly unknown frequent disorder worldwide. This project aimed to investigate the circulating levels of CXCL12 (SDF-1) and CXCL10 (IP-10) in cord blood of term and pre-term delivered fetuses and their corresponding mothers. MATERIAL AND METHODS Cord and peripheral blood samples were collected from 50 pre-term and 50 term infants and their mothers. Serum levels of CXCL12 and CXCL10 were measured by ELISA. RESULTS The findings of this study indicated that the circulating levels of CXCL10 were elevated in mothers bearing pre-term infants, while CXCL12 was only increased in pre-term infants. CONCLUSION The results suggested that the pathophysiological status of both mother and infant are involved in prematurity. Moreover, these findings suggest an inflammatory response in pre-term labor, which probably is controlled by inducible chemokines such as CXCL10.
Collapse
Affiliation(s)
- Fariba Aminzadeh
- Department of Gynecology Surgery, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
González A, Rebmann V, LeMaoult J, Horn PA, Carosella ED, Alegre E. The immunosuppressive molecule HLA-G and its clinical implications. Crit Rev Clin Lab Sci 2012; 49:63-84. [PMID: 22537084 DOI: 10.3109/10408363.2012.677947] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human leukocyte antigen G (HLA-G) is a non-classical major histocompatibility complex (MHC) class I molecule that, through interaction with its receptors, exerts important tolerogenic functions. Its main physiological expression occurs in placenta where it seems to participate in the maternal tolerance toward the fetus. HLA-G has been studied as a marker of pregnancy complications such as abortion or pre-eclapmsia. Although HLA-G is not expressed in most adult tissues, its ectopic expression has been observed in some diseases such as viral infections, autoimmune disorders, and especially cancer. HLA-G neo-expression in cancer is associated with the capability of tumor cells to evade the immune control. In this review, we will summarize HLA-G biology and how it participates in these physiopathological processes. Special attention will be paid to its role as a diagnostic tool and also as a therapeutic target.
Collapse
Affiliation(s)
- Alvaro González
- Department of Biochemistry, University Clinic of Navarra, Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Wallace AE, Fraser R, Cartwright JE. Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum Reprod Update 2012; 18:458-71. [PMID: 22523109 DOI: 10.1093/humupd/dms015] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND During pregnancy, maternal uterine spiral arteries (SAs) are remodelled from minimal-flow, high-resistance vessels into larger diameter vessels with low resistance and high flow. Fetal extravillous trophoblasts (EVT) have important roles in this process. Decidual natural killer cells (dNK cells) are the major maternal immune component of the decidua and accumulate around SAs before trophoblast invasion. A role for dNK cells in vessel remodelling is beginning to be elucidated. This review examines the overlapping and dissimilar mechanisms used by EVT and dNK cells in this process and how this may mirror another example of tissue remodelling, namely cancer development. METHODS The published literature was searched using Pubmed focusing on EVT, dNK cells and SA remodelling. Additional papers discussing cancer development are also included. RESULTS Similarities exist between actions carried out by dNK cells and EVT. Both interact with vascular cells lining the SA, as well as with each other, to promote transformation of the SA. EVT differentiation has previously been likened to the epithelial-mesenchymal transition in cancer cells, and we discuss how dNK-EVT interactions at the maternal-fetal interface can also be compared with the roles of immune cells in cancer. CONCLUSIONS The combined role that dNK cells and EVT play in SA remodelling suggests that these interactions could be described as a partnership. The investigation of pregnancy as a multicellular system involving both fetal and maternal components, as well as comparisons to similar examples of tissue remodelling, will further identify the key mechanisms in SA remodelling that are required for a successful pregnancy.
Collapse
Affiliation(s)
- Alison E Wallace
- Reproductive and Cardiovascular Disease Research Group, Division of Biomedical Sciences, St George's University of London, London, UK.
| | | | | |
Collapse
|
46
|
Simon A, Laufer N. Repeated implantation failure: clinical approach. Fertil Steril 2012; 97:1039-43. [PMID: 22464086 DOI: 10.1016/j.fertnstert.2012.03.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 12/27/2022]
Abstract
Successful embryo implantation depends on a well-functioning endometrium as well as a normal healthy embryo. This process might be hampered if either of these variables is defective. Repeated implantation failure (RIF) is diagnosed when good-quality embryos repeatedly fail to implant after transfer in several IVF treatment cycles. The causes of RIF originate with either the mother or the embryo. The authors discuss factors that are associated with RIF and address various treatment options.
Collapse
Affiliation(s)
- Alex Simon
- In Vitro Fertilization Unit, Department of Obstetrics and Gynecology, Ein Kerem, Hebrew University, Hadassah Medical Center, Jerusalem, Israel.
| | | |
Collapse
|
47
|
Lee J, Romero R, Xu Y, Kim JS, Park JY, Kusanovic JP, Chaiworapongsa T, Hassan SS, Kim CJ. Maternal HLA panel-reactive antibodies in early gestation positively correlate with chronic chorioamnionitis: evidence in support of the chronic nature of maternal anti-fetal rejection. Am J Reprod Immunol 2011; 66:510-26. [PMID: 21951517 PMCID: PMC3234997 DOI: 10.1111/j.1600-0897.2011.01066.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PROBLEM Maternal tolerance of the fetus is essential for viviparity, yet anti-fetal rejection occurs in several pregnancy complications. Chronic chorioamnionitis is a feature of anti-fetal cellular rejection. There is a robust association between chronic chorioamnionitis and maternal seropositivity for anti-human leukocyte antigen (HLA) panel-reactive antibodies (PRA) at the time of delivery. This longitudinal study was performed to assess maternal HLA PRA status in early gestation and the temporal evolution of maternal HLA PRA in the context of chronic chorioamnionitis and, thereby, to determine whether HLA PRA during the course of pregnancy is useful for the detection of anti-fetal rejection. METHOD OF STUDY Maternal sera obtained before 16 weeks of gestation and at delivery were analyzed for HLA PRA in cases with (N = 100) and without (N = 150) chronic chorioamnionitis. RESULTS IgG (but not IgM) HLA class I and II PRA positivity at delivery was higher in cases with chronic chorioamnionitis than in those without chronic chorioamnionitis. IgG HLA class I PRA positivity before 16 weeks of gestation was higher in cases with chronic chorioamnionitis than in those without (30.3 versus 13.3%; P = 0.001). Positive conversion (negative HLA PRA before 16 weeks of gestation but positive at delivery) of IgG HLA class I and II PRA was significantly associated with chronic chorioamnionitis. Fetal HLA class I antigen-specific antibodies were confirmed in 12 of 16 mothers tested who were sensitized to HLA class I antigens before 16 weeks of gestation. CONCLUSION Positive maternal HLA PRA before 16 weeks of gestation and the temporal evolution of maternal HLA PRA are associated with the presence of chronic chorioamnionitis at the time of delivery. Maternal IgG HLA PRA has the potential to be a monitoring tool of anti-fetal rejection. Furthermore, the findings herein indicate that subsets of fetuses are exposed to alloimmune HLA antibodies for months, especially in cases with chronic chorioamnionitis.
Collapse
Affiliation(s)
- JoonHo Lee
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Jung-Sun Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Young Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Sótero del Rio Hospital, Santiago, Chile
- Department of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
48
|
Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res 2011; 346:53-64. [PMID: 21987220 DOI: 10.1007/s00441-011-1249-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/11/2011] [Indexed: 12/16/2022]
Abstract
Placenta-derived stem cells (PDSCs) have gained interest as an alternative source of stem cells for regenerative medicine because of their potential for self-renewal and differentiation and their immunomodulatory properties. Although many studies have characterized various PDSCs biologically, the properties of the self-renewal and differentiation potential among PDSCs have not yet been directly compared. We consider the characterization of chorionic-plate-derived mesenchymal stem cells (CP-MSCs) and Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) among various PDSCs and the assessment of their differentiation potential to be important for future studies into the applicability and effectiveness of PDSCs in cell therapy. In the present study, the capacities for self-renewal and multipotent differentiation of CP-MSCs and WJ-MSC isolated from normal term placentas were compared. CP-MSCs and WJ-MSCs expressed mRNAs for the pluripotent stem cell markers Oct-4, Nanog, and Sox-2. Additionally, HLA-G for immunomodulatory effects was found to be expressed at both the mRNA and protein levels in both cell types. The CP-MSCs and WJ-MSCs also had the capacities to differentiate into cells of mesodermal (adipogenic and osteogenic) and endodermal (hepatogenic) lineages. Expression of adipogenesis-related genes was higher in CP-MSCs than in WJ-MSCs, whereas WJ-MSCs accumulated more mineralized matrix than CP-MSCs. The WJ-MSCs expressed more of CYP3A4 mRNA, a marker for mature hepatocytes, than CP-MSCs. Thus, we propose that CP-MSCs and WJ-MSCs are useful sources of cells for appropriate clinical applications in the treatment of various degenerative diseases.
Collapse
|
49
|
Gur C, Enk J, Kassem SA, Suissa Y, Magenheim J, Stolovich-Rain M, Nir T, Achdout H, Glaser B, Shapiro J, Naparstek Y, Porgador A, Dor Y, Mandelboim O. Recognition and killing of human and murine pancreatic beta cells by the NK receptor NKp46. THE JOURNAL OF IMMUNOLOGY 2011; 187:3096-103. [PMID: 21849674 DOI: 10.4049/jimmunol.1101269] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes is an incurable disease that is currently treated by insulin injections or in rare cases by islet transplantation. We have recently shown that NKp46, a major killer receptor expressed by NK cells, recognizes an unknown ligand expressed by β cells and that in the absence of NKp46, or when its activity is blocked, diabetes development is inhibited. In this study, we investigate whether NKp46 is involved in the killing of human β cells that are intended to be used for transplantation, and we also thoroughly characterize the interaction between NKp46 and its human and mouse β cell ligands. We show that human β cells express an unknown ligand for NKp46 and are killed in an NKp46-dependent manner. We further demonstrate that the expression of the NKp46 ligand is detected on human β cells already at the embryonic stage and that it appears on murine β cells only following birth. Because the NKp46 ligand is detected on healthy β cells, we wondered why type 1 diabetes does not develop in all individuals and show that NK cells are absent from the vicinity of islets of healthy mice and are detected in situ in proximity with β cells in NOD mice. We also investigate the molecular mechanisms controlling NKp46 interactions with its β cell ligand and demonstrate that the recognition is confined to the membrane proximal domain and stalk region of NKp46 and that two glycosylated residues of NKp46, Thr(125) and Asn(216), are critical for this recognition.
Collapse
Affiliation(s)
- Chamutal Gur
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chauhan M, Balakrishnan M, Yallampalli U, Endsley J, Hankins GDV, Theiler R, Yallampalli C. Adrenomedullin 2/intermedin regulates HLA-G in human trophoblasts. Biol Reprod 2011; 85:1232-9. [PMID: 21816853 DOI: 10.1095/biolreprod.110.086835] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Adrenomedullin 2 (ADM2), also referred to as intermedin (IMD), is expressed in trophoblast cells in human placenta and enhances the invasion and migration of first-trimester HTR-8SV/neo cells. Further infusion of ADM2 antagonist in pregnant rat causes fetoplacental growth restriction, suggesting a role for ADM2 in maintaining a successful pregnancy. This study was undertaken to assess whether ADM2 protein is present in decidual tissue and colocalized with HLA-G-positive cytotrophoblast cells and natural killer cells; to assess whether ADM2 regulates expression of HLA-G in trophoblast cells; and to identify whether mitogen-activated protein kinase (MAPK) signaling pathway is involved in ADM2-induced trophoblast cell invasion and migration. Using immunohistochemical methods and RT-PCR, this study shows that ADM2 protein is colocalized with HLA-G-expressing cytotrophoblast cells as well as with NCAM1 (CD56) immunoreactivity in human first-trimester decidual tissue, and that ADM2 mRNA is expressed in peripheral blood natural killer cells. Further, ADM2 dose dependently increases the expression of HLA-G antigen in HTR-8SV/neo cells as well as in term placental villi explants, suggesting involvement of ADM2 in the regulation of HLA-G in trophoblast cells. In addition, interference with the activity of RAF and MAPK3/1 by their inhibitors, manumycin and U0126, respectively, reduces ADM2-induced HTR-8SV/neo cell invasion and migration. In summary, this study suggests a potential involvement for ADM2 in regulating HLA-G antigen at the maternal-fetal interface in human pregnancy and facilitating trophoblast invasion and migration via MAPK3/1 phosphorylation.
Collapse
Affiliation(s)
- Madhu Chauhan
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555-1062, USA.
| | | | | | | | | | | | | |
Collapse
|