1
|
Li M, Mo Y, Yu Q, Anayyat U, Yang H, Zhang F, Wei Y, Wang X. Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway. Exp Neurol 2024; 383:115029. [PMID: 39461710 DOI: 10.1016/j.expneurol.2024.115029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/16/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a geriatric disorder that can be roughly classified into sporadic AD and hereditary AD. The latter is strongly associated with genetic factors, and its treatment poses greater challenges compared to sporadic AD. Rotating magnetic fields (RMF) is a non-invasive treatment known to have diverse biological effects, including the modulation of the central nervous system and aging. However, the impact of RMF on hereditary AD and its underlying mechanism remain unexplored. In this study, we exposed APP/PS1 mice to RMF (2 h/day, 0.2 T, 4 Hz) for a duration of 6 months. The results demonstrated that RMF treatment significantly ameliorated their cognitive and memory impairments, attenuated neuronal damage, and reduced amyloid deposition. Furthermore, RNA-sequencing analysis revealed a significant enrichment of autophagy-related genes and the PI3K/AKT-mTOR signaling pathway. Western blotting further confirmed that RMF activated autophagy and suppressed the phosphorylation of proteins associated with the PI3K/AKT/mTOR signaling pathway in APP/PS1 mice. These protective effects and the underlying mechanism were also observed in Aβ25-35-exposed HT22 cells. Collectively, our findings indicate that RMF improves cognitive and memory dysfunction in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway, thus highlighting the potential of RMF as a clinical treatment for hereditary AD.
Collapse
Affiliation(s)
- Mengqing Li
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Yaxian Mo
- Songgang People's Hospital, Shenzhen, Guangdong 518105, China
| | - Qinyao Yu
- School of Pharmacy, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Umer Anayyat
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Hua Yang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Fen Zhang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Yunpeng Wei
- Songgang People's Hospital, Shenzhen, Guangdong 518105, China.
| | - Xiaomei Wang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong 518061, China; International Cancer Center, Shenzhen University Health Sciences Center, Shenzhen, Guangdong 518061, China.
| |
Collapse
|
2
|
Wang H, Li X, Zhang Q, Fu C, Jiang W, Xue J, Liu S, Meng Q, Ai L, Zhi X, Deng S, Liang W. Autophagy in Disease Onset and Progression. Aging Dis 2024; 15:1646-1671. [PMID: 37962467 PMCID: PMC11272186 DOI: 10.14336/ad.2023.0815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 11/15/2023] Open
Abstract
Autophagy is a biological phenomenon whereby components of cells can self-degrade using autophagosomes. During this process, cells can clear dysfunctional organelles or unwanted elements. Autophagy can recycle unnecessary biomolecules into new components or sometimes, even destroy the cells themselves. This cellular process was first observed in 1962 by Keith R. Porter et al. Since then, autophagy has been studied for over 60 years, and much has been learned on the topic. Nevertheless, the process is still not fully understood. It has been proven, for example, that autophagy can be a positive force for maintaining good health by removing older or damaged cells. By contrast, autophagy is also involved in the onset and progression of various conditions caused by pathogenic infections. These diseases generally involve several important organs in the human body, including the liver, kidney, heart, and central nervous system. The regulation of the defects of autophagy defects may potentially be used to treat some diseases. This review comprehensively discusses recent research frontiers and topics of interest regarding autophagy-related diseases.
Collapse
Affiliation(s)
- Hao Wang
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, Guangdong, China.
| | - Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Chengtao Fu
- School of Medicine, Huzhou University, Zhejiang, China.
| | - Wenjie Jiang
- Department of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin, China.
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shan Liu
- Bioimaging Core of Shenzhen Bay Laboratory Shenzhen, China.
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Lisha Ai
- Department of Teaching and Research, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Shoulong Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
3
|
Jakubowski H. Homocysteine Thiolactone Detoxifying Enzymes and Alzheimer's Disease. Int J Mol Sci 2024; 25:8095. [PMID: 39125665 PMCID: PMC11312131 DOI: 10.3390/ijms25158095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Elevated levels of homocysteine (Hcy) and related metabolites are associated with Alzheimer's disease (AD). Severe hyperhomocysteinemia causes neurological deficits and worsens behavioral and biochemical traits associated with AD. Although Hcy is precluded from entering the Genetic Code by proofreading mechanisms of aminoacyl-tRNA synthetases, and thus is a non-protein amino acid, it can be attached to proteins via an N-homocysteinylation reaction mediated by Hcy-thiolactone. Because N-homocysteinylation is detrimental to a protein's function and biological integrity, Hcy-thiolactone-detoxifying enzymes-PON1, BLMH, BPHL-have evolved. This narrative review provides an account of the biological function of these enzymes and of the consequences of their impairments, leading to the phenotype characteristic of AD. Overall, accumulating evidence discussed in this review supports a hypothesis that Hcy-thiolactone contributes to neurodegeneration associated with a dysregulated Hcy metabolism.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +48-973-972-8733; Fax: +48-973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, International Center for Public Health, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Liu Y, Theil S, Ibach M, Walter J. DAP12 interacts with RER1 and is retained in the secretory pathway before assembly with TREM2. Cell Mol Life Sci 2024; 81:302. [PMID: 39008111 PMCID: PMC11335228 DOI: 10.1007/s00018-024-05298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024]
Abstract
DNAX-activating protein of 12 kDa (DAP12) is a transmembrane adapter protein expressed in lymphoid and myeloid lineage cells. It interacts with several immunoreceptors forming functional complexes that trigger intracellular signaling pathways. One of the DAP12 associated receptors is the triggering receptor expressed on myeloid cells 2 (TREM2). Mutations in both DAP12 and TREM2 have been linked to neurodegenerative diseases. However, mechanisms involved in the regulation of subcellular trafficking and turnover of these proteins are not well understood. Here, we demonstrate that proteasomal degradation of DAP12 is increased in the absence of TREM2. Interestingly, unassembled DAP12 is also retained in early secretory compartments, including the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC), thereby preventing its transport to the plasma membrane. We also show that unassembled DAP12 interacts with the retention in ER sorting receptor 1 (RER1). The deletion of endogenous RER1 decreases expression of functional TREM2-DAP12 complexes and membrane proximal signaling, and resulted in almost complete inhibition of phagocytic activity in THP-1 differentiated macrophage-like cells. These results indicate that RER1 acts as an important regulator of DAP12 containing immunoreceptor complexes and immune cell function.
Collapse
Affiliation(s)
- Yanxia Liu
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | - Sandra Theil
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | - Melanie Ibach
- Department of Neurology, University of Bonn, Bonn, 53127, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, 53127, Germany.
| |
Collapse
|
5
|
Hadi F, Mortaja M, Hadi Z. Calcium (Ca 2+) hemostasis, mitochondria, autophagy, and mitophagy contribute to Alzheimer's disease as early moderators. Cell Biochem Funct 2024; 42:e4085. [PMID: 38951992 DOI: 10.1002/cbf.4085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
This review rigorously investigates the early cerebral changes associated with Alzheimer's disease, which manifest long before clinical symptoms arise. It presents evidence that the dysregulation of calcium (Ca2+) homeostasis, along with mitochondrial dysfunction and aberrant autophagic processes, may drive the disease's progression during its asymptomatic, preclinical stage. Understanding the intricate molecular interplay that unfolds during this critical period offers a window into identifying novel therapeutic targets, thereby advancing the treatment of neurodegenerative disorders. The review delves into both established and emerging insights into the molecular alterations precipitated by the disruption of Ca2+ balance, setting the stage for cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Hadi
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Mahsa Mortaja
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Zahra Hadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
6
|
Xie Y, Ke X, Ye Z, Li X, Chen Z, Liu J, Wu Z, Liu Q, Du X. Se-methylselenocysteine ameliorates mitochondrial function by targeting both mitophagy and autophagy in the mouse model of Alzheimer's disease. Food Funct 2024; 15:4310-4322. [PMID: 38529619 DOI: 10.1039/d4fo00520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Background: Alzheimer's disease (AD) exerts tremendous pressure on families and society due to its unknown etiology and lack of effective treatment options. Our previous study had shown that Se-methylselenocysteine (SMC) improved the cognition and synaptic plasticity of triple-transgenic AD (3 × Tg-AD) mice and alleviated the related pathological indicators. We are dedicated to investigating the therapeutic effects and molecular mechanisms of SMC on mitochondrial function in 3 × Tg-AD mice. Methods: Transmission electron microscopy (TEM), western blotting (WB), mitochondrial membrane potential (ΔΨm), mitochondrial swelling test, and mitochondrial oxygen consumption test were used to evaluate the mitochondrial morphology and function. Mitophagy flux and autophagy flux were assessed with immunofluorescence, TEM and WB. The Morris water maze test was applied to detect the behavioral ability of mice. Results: The destroyed mitochondrial morphology and function were repaired by SMC through ameliorating mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial fusion/fission balance in 3 × Tg-AD mice. In addition, SMC ameliorated mitochondria by activating mitophagy flux via the BNIP3/NIX pathway and triggering autophagy flux by suppressing the Ras/Raf/MEK/ERK/mTOR pathway. SMC remarkably increased the cognitive ability of AD mice. Conclusions: This research indicated that SMC might exert its therapeutic effect by protecting mitochondria in 3 × Tg-AD mice.
Collapse
Affiliation(s)
- Yongli Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Xiaoshan Ke
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Zhencong Ye
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Xuexia Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Zetao Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Jiantao Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Ziyi Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Qiong Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiubo Du
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
7
|
Alves VC, Figueiro-Silva J, Trullas R, Ferrer I, Carro E. Olfactory Receptor OR2K2 Expression in Human Choroid Plexus as a Potential Marker in Early Sporadic Alzheimer's Disease. Genes (Basel) 2024; 15:385. [PMID: 38540444 PMCID: PMC10970182 DOI: 10.3390/genes15030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
Epithelial cells comprising the choroid plexus (CP) form a crucial barrier between the blood and the cerebrospinal fluid, thereby assuming a central position in brain homeostasis and signaling. Mounting evidence suggests that the impairment of CP function may be a significant contributor to Alzheimer's disease (AD) pathogenesis. CP function relies on the expression of specific receptors, and the potential involvement of olfactory receptors (ORs) and taste receptors (TASRs) in chemical surveillance within the CP is being investigated. Previous studies have implicated ORs and TASRs in neurodegenerative disorders like AD, although the direct evidence of their expression in the human CP remains to be established. In this study, we conducted a transcriptomic analysis encompassing eleven ORs and TASRs in the CP, comparing samples from healthy age-matched controls to those from patients with AD spanning Braak stages I to VI. Among these receptors, a striking finding emerged-OR2K2 exhibited robust expression, with a statistically significant upregulation noted at Braak stage I. Surprisingly, at the protein level, OR2K2 showed a significant decrease in both Braak stage I and VI. Additionally, we identified CP epithelial cells as the source of OR2K2 expression, where it colocalized with autophagy markers LC3 and p62. We postulate that OR2K2 could be subjected to degradation by autophagy in the early stages of AD, triggering a compensatory mechanism that leads to increased OR2K2 mRNA transcription. This study uncovers a potential role for OR2K2 in AD pathogenesis, offering a novel perspective on the intricate dynamics at play in this neurodegenerative disorder.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, 8952 Zurich, Switzerland;
- Department of Molecular Life Science, University of Zurich, 8952 Zurich, Switzerland
| | - Ramon Trullas
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Isidre Ferrer
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Institute of Neuropathology, Bellvitge University Hospital-IDIBELL, 08908 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08007 Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, 28222 Madrid, Spain
| |
Collapse
|
8
|
Witucki Ł, Jakubowski H. Homocysteine metabolites inhibit autophagy, elevate amyloid beta, and induce neuropathy by impairing Phf8/H4K20me1-dependent epigenetic regulation of mTOR in cystathionine β-synthase-deficient mice. J Inherit Metab Dis 2023; 46:1114-1130. [PMID: 37477632 DOI: 10.1002/jimd.12661] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The loss of cystathionine β-synthase (CBS), an important homocysteine (Hcy)-metabolizing enzyme or the loss of PHF8, an important histone demethylase participating in epigenetic regulation, causes severe intellectual disability in humans. Similar neuropathies were also observed in Cbs-/- and Phf8-/- mice. How CBS or PHF8 depletion can cause neuropathy was unknown. To answer this question, we examined a possible interaction between PHF8 and CBS using Cbs-/- mouse and neuroblastoma cell models. We quantified gene expression by RT-qPCR and western blotting, mTOR-bound H4K20me1 by chromatin immunoprecipitation (CHIP) assay, and amyloid β (Aβ) by confocal fluorescence microscopy using anti-Aβ antibody. We found significantly reduced expression of Phf8, increased H4K20me1, increased mTOR expression and phosphorylation, and increased App, both on protein and mRNA levels in brains of Cbs-/- mice versus Cbs+/- sibling controls. Autophagy-related Becn1, Atg5, and Atg7 were downregulated while p62, Nfl, and Gfap were upregulated on protein and mRNA levels, suggesting reduced autophagy and increased neurodegeneration in Cbs-/- brains. In mouse neuroblastoma N2a or N2a-APPswe cells, treatments with Hcy-thiolactone, N-Hcy-protein or Hcy, or Cbs gene silencing by RNA interference significantly reduced Phf8 expression and increased total H4K20me1 as well as mTOR promoter-bound H4K20me1. This led to transcriptional mTOR upregulation, autophagy downregulation, and significantly increased APP and Aβ levels. The Phf8 gene silencing increased Aβ, but not APP, levels. Taken together, our findings identify Phf8 as a regulator of Aβ synthesis and suggest that neuropathy of Cbs deficiency is mediated by Hcy metabolites, which transcriptionally dysregulate the Phf8 → H4K20me1 → mTOR → autophagy pathway thereby increasing Aβ accumulation.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
9
|
Lemus Silva EG, Delgadillo Y, White RE, Lucin KM. Beclin 1 regulates astrocyte phagocytosis and phagosomal recruitment of retromer. Tissue Cell 2023; 82:102100. [PMID: 37182392 DOI: 10.1016/j.tice.2023.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Phagocytosis plays an important role in maintaining brain homeostasis and when impaired can result in the accumulation of unwanted cellular material. While microglia are traditionally considered the phagocytes of the brain, astrocytes are also capable of phagocytosis and are the most numerous cells in the brain. In Alzheimer's disease (AD), astrocytes can be found surrounding β-amyloid (Aβ) plaques yet they seem unable to eliminate these deposits, suggesting phagocytosis may be impaired in AD. Mechanisms that might diminish astrocyte phagocytosis in AD are currently unclear. Here, we demonstrate that the autophagy protein beclin 1, which is reduced in AD, plays a role in regulating astrocyte phagocytosis. Specifically, we show that reducing beclin 1 in C6 astrocytes impairs the phagocytosis of latex beads, reduces retromer levels, and impairs retromer recruitment to the phagosomal membrane. Furthermore, we show that these beclin 1-mediated changes are accompanied by reduced expression of the phagocytic receptor Scavenger Receptor Class B type I (SR-BI). Collectively, these findings suggest a critical role for the protein beclin 1 in both receptor trafficking and receptor-mediated phagocytosis in astrocytes. Moreover, these findings provide insight into mechanisms by which astrocytes may become impaired in AD.
Collapse
Affiliation(s)
| | | | - Robin E White
- Westfield State University, Westfield, MA 01086, USA
| | - Kurt M Lucin
- Eastern Connecticut State University, Willimantic, CT 06226, USA.
| |
Collapse
|
10
|
Witucki Ł, Borowczyk K, Suszyńska-Zajczyk J, Warzych E, Pawlak P, Jakubowski H. Deletion of the Homocysteine Thiolactone Detoxifying Enzyme Bleomycin Hydrolase, in Mice, Causes Memory and Neurological Deficits and Worsens Alzheimer's Disease-Related Behavioral and Biochemical Traits in the 5xFAD Model of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1735-1755. [PMID: 37718819 PMCID: PMC10578231 DOI: 10.3233/jad-230578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Bleomycin hydrolase (BLMH), a homocysteine (Hcy)-thiolactone detoxifying enzyme, is attenuated in Alzheimer's disease (AD) brains. Blmh loss causes astrogliosis in mice while the loss of histone demethylase Phf8, which controls mTOR signaling, causes neuropathy in mice and humans. OBJECTIVE To examine how Blmh gene deletion affects the Phf8/H4K20me1/mTOR/autophagy pathway, amyloid-β (Aβ) accumulation, and cognitive/neuromotor performance in mice. METHODS We generated a new mouse model of AD, the Blmh-/-5xFAD mouse. Behavioral assessments were conducted by cognitive/neuromotor testing. Blmh and Phf8 genes were silenced in mouse neuroblastoma N2a-APPswe cells by RNA interference. mTOR- and autophagy-related proteins, and AβPP were quantified by western blotting and the corresponding mRNAs by RT-qPCR. Aβ was quantified by western blotting (brains) and by confocal microscopy (cells). RESULTS Behavioral testing showed cognitive/neuromotor deficits in Blmh-/- and Blmh-/-5xFAD mice. Phf8 was transcriptionally downregulated in Blmh-/- and Blmh-/-5xFAD brains. H4K20me1, mTOR, phospho-mTOR, and AβPP were upregulated while autophagy markers Becn1, Atg5, and Atg7 were downregulated in Blmh-/- and Blmh-/-5xFAD brains. Aβ was elevated in Blmh-/-5xFAD brains. These biochemical changes were recapitulated in Blmh-silenced N2a-APPswe cells, which also showed increased H4K20me1-mTOR promoter binding and impaired autophagy flux (Lc3-I, Lc3-II, p62). Phf8-silencing or treatments with Hcy-thiolactone or N-Hcy-protein, metabolites elevated in Blmh-/- mice, induced biochemical changes in N2a-APPswe cells like those induced by the Blmh-silencing. However, Phf8-silencing elevated Aβ without affecting AβPP. CONCLUSIONS Our findings show that Blmh interacts with AβPP and the Phf8/H4K20me1/mTOR/autophagy pathway, and that disruption of those interactions causes Aβ accumulation and cognitive/neuromotor deficits.
Collapse
Affiliation(s)
- Łukasz Witucki
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, International Center for Public Health, Newark, NJ, USA
| | - Kamila Borowczyk
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, International Center for Public Health, Newark, NJ, USA
| | - Joanna Suszyńska-Zajczyk
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, International Center for Public Health, Newark, NJ, USA
| |
Collapse
|
11
|
Peña-Martinez C, Rickman AD, Heckmann BL. Beyond autophagy: LC3-associated phagocytosis and endocytosis. SCIENCE ADVANCES 2022; 8:eabn1702. [PMID: 36288309 PMCID: PMC9604515 DOI: 10.1126/sciadv.abn1702] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/26/2022] [Indexed: 05/08/2023]
Abstract
Noncanonical functions of the autophagy machinery in pathways including LC3-associated phagocytosis and LC3-associated endocytosis have garnered increasing interest in both normal physiology and pathobiology. New discoveries over the past decade of noncanonical uses of the autophagy machinery in these distinct molecular mechanisms have led to robust investigation into the roles of single-membrane LC3 lipidation. Noncanonical autophagy pathways have now been implicated in the regulation of multiple processes ranging from debris clearance, cellular signaling, and immune regulation and inflammation. Accumulating evidence is demonstrating roles in a variety of disease states including host-pathogen responses, autoimmunity, cancer, and neurological and neurodegenerative pathologies. Here, we broadly summarize the differences in the mechanistic regulation between autophagy and LAP and LANDO and highlight some of the key roles of LAP and LANDO in innate immune function, inflammation, and disease pathology.
Collapse
Affiliation(s)
- Carolina Peña-Martinez
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Alexis D. Rickman
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Bradlee L. Heckmann
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| |
Collapse
|
12
|
The Effect of Ghrelin on Apoptosis, Necroptosis and Autophagy Programmed Cell Death Pathways in the Hippocampal Neurons of Amyloid-β 1–42-Induced Rat Model of Alzheimer’s Disease. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Dang X, Huan X, Du X, Chen X, Bi M, Yan C, Jiao Q, Jiang H. Correlation of Ferroptosis and Other Types of Cell Death in Neurodegenerative Diseases. Neurosci Bull 2022; 38:938-952. [PMID: 35482278 PMCID: PMC9352832 DOI: 10.1007/s12264-022-00861-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Ferroptosis is defined as an iron-dependent, non-apoptotic cell death pathway, with specific morphological phenotypes and biochemical changes. There is a growing realization that ferroptosis has significant implications for several neurodegenerative diseases. Even though ferroptosis is different from other forms of programmed death such as apoptosis and autophagic death, they involve a number of common protein molecules. This review focuses on current research on ferroptosis and summarizes the cross-talk among ferroptosis, apoptosis, and autophagy that are implicated in neurodegenerative diseases. We hope that this information provides new ideas for understanding the mechanisms and searching for potential therapeutic approaches and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoting Dang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xuejie Huan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis, Prevention of Neurological Disorders, State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
14
|
Kim S, Kim DK, Jeong S, Lee J. The Common Cellular Events in the Neurodegenerative Diseases and the Associated Role of Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:5894. [PMID: 35682574 PMCID: PMC9180188 DOI: 10.3390/ijms23115894] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022] Open
Abstract
Neurodegenerative diseases are inseparably linked with aging and increase as life expectancy extends. There are common dysfunctions in various cellular events shared among neurogenerative diseases, such as calcium dyshomeostasis, neuroinflammation, and age-associated decline in the autophagy-lysosome system. However, most of all, the prominent pathological feature of neurodegenerative diseases is the toxic buildup of misfolded protein aggregates and inclusion bodies accompanied by an impairment in proteostasis. Recent studies have suggested a close association between endoplasmic reticulum (ER) stress and neurodegenerative pathology in cellular and animal models as well as in human patients. The contribution of mutant or misfolded protein-triggered ER stress and its associated signaling events, such as unfolded protein response (UPR), to the pathophysiology of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, amyotrophic lateral sclerosis, and prion disease, is described here. Impaired UPR action is commonly attributed to exacerbated ER stress, pathogenic protein aggregate accumulation, and deteriorating neurodegenerative pathologies. Thus, activating certain UPR components has been shown to alleviate ER stress and its associated neurodegeneration. However, uncontrolled activation of some UPR factors has also been demonstrated to worsen neurodegenerative phenotypes, suggesting that detailed molecular mechanisms around ER stress and its related neurodegenerations should be understood to develop effective therapeutics against aging-associated neurological syndromes. We also discuss current therapeutic endeavors, such as the development of small molecules that selectively target individual UPR components and address ER stress in general.
Collapse
Affiliation(s)
- Soojeong Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Doo Kyung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Seho Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
15
|
Chan HH, Leong CO, Lim CL, Koh RY. Roles of receptor-interacting protein kinase 1 in SH-SY5Y cells with beta amyloid-induced neurotoxicity. J Cell Mol Med 2022; 26:1434-1444. [PMID: 35106914 PMCID: PMC8899176 DOI: 10.1111/jcmm.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD), the major cause of dementia, affects the elderly population worldwide. Previous studies have shown that depletion of receptor‐interacting protein kinase 1 (RIPK1) expression reverted the AD phenotype in murine AD models. Necroptosis, executed by mixed lineage kinase domain‐like (MLKL) protein and activated by RIPK1 and RIPK3, has been shown to be involved in AD. However, the role of RIPK1 in beta‐amyloid (Aβ)‐induced necroptosis is not yet fully understood. In this study, we explored the role of RIPK1 in the SH‐SY5Y human neuroblastoma cells treated with Aβ 1–40 or Aβ 1–42. We showed that Aβ‐induced neuronal cell death was independent of apoptosis and autophagy pathways. Further analyses depicted that activation of RIPK1/MLKL‐dependant necroptosis pathway was observed in vitro. We demonstrated that inhibition of RIPK1 expression rescued the cells from Aβ‐induced neuronal cell death and ectopic expression of RIPK1 was found to enhance the stability of the endogenous APP. In summary, our findings demonstrated that Aβ can potentially drive necroptosis in an RIPK1‐MLKL‐dependent manner, proposing that RIPK1 plays an important role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Hong-Hao Chan
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chooi-Ling Lim
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Rhun-Yian Koh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Cai Q, Ganesan D. Regulation of neuronal autophagy and the implications in neurodegenerative diseases. Neurobiol Dis 2022; 162:105582. [PMID: 34890791 PMCID: PMC8764935 DOI: 10.1016/j.nbd.2021.105582] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Neurons are highly polarized and post-mitotic cells with the specific requirements of neurotransmission accompanied by high metabolic demands that create a unique challenge for the maintenance of cellular homeostasis. Thus, neurons rely heavily on autophagy that constitutes a key quality control system by which dysfunctional cytoplasmic components, protein aggregates, and damaged organelles are sequestered within autophagosomes and then delivered to the lysosome for degradation. While mature lysosomes are predominantly located in the soma of neurons, the robust, constitutive biogenesis of autophagosomes occurs in the synaptic terminal via a conserved pathway that is required to maintain synaptic integrity and function. Following formation, autophagosomes fuse with late endosomes and then are rapidly and efficiently transported by the microtubule-based cytoplasmic dynein motor along the axon toward the soma for lysosomal clearance. In this review, we highlight the recent knowledge of the roles of autophagy in neuronal health and disease. We summarize the available evidence about the normal functions of autophagy as a protective factor against neurodegeneration and discuss the mechanism underlying neuronal autophagy regulation. Finally, we describe how autophagy function is affected in major neurodegenerative diseases with a special focus on Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis.
Collapse
|
17
|
Macroautophagy and Mitophagy in Neurodegenerative Disorders: Focus on Therapeutic Interventions. Biomedicines 2021; 9:biomedicines9111625. [PMID: 34829854 PMCID: PMC8615936 DOI: 10.3390/biomedicines9111625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aβ, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.
Collapse
|
18
|
Ledo JH, Liebmann T, Zhang R, Chang JC, Azevedo EP, Wong E, Silva HM, Troyanskaya OG, Bustos V, Greengard P. Presenilin 1 phosphorylation regulates amyloid-β degradation by microglia. Mol Psychiatry 2021; 26:5620-5635. [PMID: 32792660 PMCID: PMC7881060 DOI: 10.1038/s41380-020-0856-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Amyloid-β peptide (Aβ) accumulation in the brain is a hallmark of Alzheimer's Disease. An important mechanism of Aβ clearance in the brain is uptake and degradation by microglia. Presenilin 1 (PS1) is the catalytic subunit of γ-secretase, an enzyme complex responsible for the maturation of multiple substrates, such as Aβ. Although PS1 has been extensively studied in neurons, the role of PS1 in microglia is incompletely understood. Here we report that microglia containing phospho-deficient mutant PS1 display a slower kinetic response to micro injury in the brain in vivo and the inability to degrade Aβ oligomers due to a phagolysosome dysfunction. An Alzheimer's mouse model containing phospho-deficient PS1 show severe Aβ accumulation in microglia as well as the postsynaptic protein PSD95. Our results demonstrate a novel mechanism by which PS1 modulates microglial function and contributes to Alzheimer's -associated phenotypes.
Collapse
Affiliation(s)
- Jose Henrique Ledo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA.
| | - Thomas Liebmann
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Ran Zhang
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Jerry C Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Estefania P Azevedo
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, 10065, USA
| | - Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hernandez Moura Silva
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Olga G Troyanskaya
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
- Flatiron Institute, Simons Foundation, New York, NY, 10010, USA
| | - Victor Bustos
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
19
|
Understanding amphisomes. Biochem J 2021; 478:1959-1976. [PMID: 34047789 DOI: 10.1042/bcj20200917] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Amphisomes are intermediate/hybrid organelles produced through the fusion of endosomes with autophagosomes within cells. Amphisome formation is an essential step during a sequential maturation process of autophagosomes before their ultimate fusion with lysosomes for cargo degradation. This process is highly regulated with multiple protein machineries, such as SNAREs, Rab GTPases, tethering complexes, and ESCRTs, are involved to facilitate autophagic flux to proceed. In neurons, autophagosomes are robustly generated in axonal terminals and then rapidly fuse with late endosomes to form amphisomes. This fusion event allows newly generated autophagosomes to gain retrograde transport motility and move toward the soma, where proteolytically active lysosomes are predominantly located. Amphisomes are not only the products of autophagosome maturation but also the intersection of the autophagy and endo-lysosomal pathways. Importantly, amphisomes can also participate in non-canonical functions, such as retrograde neurotrophic signaling or autophagy-based unconventional secretion by fusion with the plasma membrane. In this review, we provide an updated overview of the recent discoveries and advancements on the molecular and cellular mechanisms underlying amphisome biogenesis and the emerging roles of amphisomes. We discuss recent developments towards the understanding of amphisome regulation as well as the implications in the context of major neurodegenerative diseases, with a comparative focus on Alzheimer's disease and Parkinson's disease.
Collapse
|
20
|
Prasanth MI, Malar DS, Tencomnao T, Brimson JM. The emerging role of the sigma-1 receptor in autophagy: hand-in-hand targets for the treatment of Alzheimer's. Expert Opin Ther Targets 2021; 25:401-414. [PMID: 34110944 DOI: 10.1080/14728222.2021.1939681] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Autophagy is a cellular catabolic mechanism that helps clear damaged cellular components and is essential for normal cellular and tissue function. The sigma-1 receptor (σ-1R) is a chaperone protein involved in signal transduction, neurite outgrowth, and plasticity, improving memory, and neuroprotection. Recent evidence shows that σ-1R can promote autophagy. Autophagy activation by the σ-1Rs along with other neuroprotective effects makes it an interesting target for the treatment of Alzheimer's disease. AF710B, T-817 MA, and ANAVEX2-73 are some of the σ-1R agonists which have shown promising results and have entered clinical trials. These molecules have also been found to induce autophagy and show cytoprotective effects in cellular models. AREAS COVERED This review provides insight into the current understanding of σ-1R functions related to autophagy and their role in alleviating AD. EXPERT OPINION We propose a mechanism through which the activation of σ-1R and autophagy could alter amyloid precursor protein processing to inhibit amyloid-β production by reconstituting cholesterol and gangliosides in the lipid raft to offer neuroprotection against AD. Future AD treatment could involve the combined targeting of the σ-1R and autophagy activation. We suggest that future studies investigate the link between autophagy the σ-1R and AD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Wang K, Zhang W. Mitochondria-associated endoplasmic reticulum membranes: At the crossroad between familiar and sporadic Alzheimer's disease. Synapse 2021; 75:e22196. [PMID: 33559220 DOI: 10.1002/syn.22196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and is incurable. The widely accepted amyloid hypothesis failed to produce efficient clinical therapies. In contrast, there is increasing evidence suggesting that the disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) is a critical upstream event of AD pathogenesis. Here, we review MAM's role in some AD symptoms such as plaque formation, tau hyperphosphorylation, synaptic loss, aberrant lipid synthesis, disturbed calcium homeostasis, and abnormal autophagy. At last, we proposed that MAM plays a central role in familial AD (FAD) and sporadic AD (SAD).
Collapse
Affiliation(s)
- Kangrun Wang
- Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wenling Zhang
- The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
22
|
Reich N, Hölscher C. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Front Neurosci 2020; 14:614828. [PMID: 33381011 PMCID: PMC7767977 DOI: 10.3389/fnins.2020.614828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in the development of Alzheimer's disease (AD) and Parkinson's disease (PD), yet the clinical failures of the recent decades indicate that there are further pathological mechanisms at work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive and motor impediments. Interestingly, the acylated form of the hormone ghrelin has shown the potential to ameliorate the latter pathologic changes, although some studies indicate a few complications that need to be considered in the long-term administration of the hormone. As such, this review will illustrate the wide-ranging neuroprotective properties of acylated ghrelin and critically evaluate the hormone's therapeutic benefits for the treatment of AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, A Second Hospital, Shanxi Medical University, Taiyuan, China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
23
|
Bhatia V, Sharma S. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease. J Neurol Sci 2020; 421:117253. [PMID: 33476985 DOI: 10.1016/j.jns.2020.117253] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/21/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The pathological hallmarks of AD are amyloid plaques [aggregates of amyloid beta (A)] and neurofibrillary tangles (aggregates of tau protein). Growing evidence suggests that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than A plaques. Mitochondrial damage plays an important role in AD. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. Elevate reactive oxygen species/reactive nitrogen species production and defective mitochondrial dynamic balance has been suggested to be the reason as well as the consequence of AD related pathology. Oxidative stress is a prominent early event in the pathogenesis of AD and is therefore believed to contribute to tau hyperphosphorylation. Several studies have shown that the autophagy pathway in neurons is important under physiological and pathological conditions. Therefore, this pathway plays a crucial role for the degradation of endogenous soluble tau. However, the relationship between mitochondrial dysfunctioning, oxidative stress, autophagy dysregulation, and neuronal cell death in AD remains unclear. Here, we review the latest progress in AD, with a special emphasis on mitochondrial dysfunctioning, oxidative stress, and autophagy. We also discuss the interlink mechanism of these three factors in AD.
Collapse
Affiliation(s)
- Vandana Bhatia
- School of Pharmaceutical and Healthcare, CT University, Ludhiana, Punjab, India
| | - Saurabh Sharma
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India.
| |
Collapse
|
24
|
Wang ZY, Liu J, Zhu Z, Su CF, Sreenivasmurthy SG, Iyaswamy A, Lu JH, Chen G, Song JX, Li M. Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: A mechanism review. Biomed Pharmacother 2020; 133:110968. [PMID: 33189067 DOI: 10.1016/j.biopha.2020.110968] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic diseases related to progressive damage of the nervous system. Globally, the number of people with an ND is dramatically increasing consistent with the fast aging of society and one of the common features of NDs is the abnormal aggregation of diverse proteins. Autophagy is the main process by which misfolded proteins and damaged organelles are removed from cells. It has been found that the impairment of autophagy is associated with many NDs, suggesting that autophagy has a vital role in the neurodegeneration process. Recently, more and more studies have reported that autophagy inducers display a protective role in different ND experimental models, suggesting that enhancement of autophagy could be a potential therapy for NDs. In this review, the evidence for beneficial effects of traditional Chinese medicine (TCM) regulate autophagy in the models of Alzheimer's disease (AD), Parkinson's disease (PD), and other NDs are presented and common autophagy-related mechanisms are identified. The results demonstrate that TCM which regulate autophagy are potential therapeutic candidates for ND treatment.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Jia Liu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhou Zhu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Cheng-Fu Su
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | | | - Ashok Iyaswamy
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Gang Chen
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Ju-Xian Song
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
25
|
López-Pérez Ó, Badiola JJ, Bolea R, Ferrer I, Llorens F, Martín-Burriel I. An Update on Autophagy in Prion Diseases. Front Bioeng Biotechnol 2020; 8:975. [PMID: 32984276 PMCID: PMC7481332 DOI: 10.3389/fbioe.2020.00975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a dynamic intracellular mechanism involved in protein and organelle turnover through lysosomal degradation. When properly regulated, autophagy supports normal cellular and developmental processes, whereas defects in autophagic degradation have been associated with several pathologies, including prion diseases. Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurodegenerative disorders characterized by the accumulation of the pathological misfolded isoform (PrPSc) of the physiological cellular prion protein (PrPc) in the central nervous system. Autophagic vacuoles have been described in experimental models of TSE and in the natural disease in humans. The precise connection of this process with prion-related neuropathology, or even whether autophagy is completely beneficial or pathogenic during neurodegeneration, is poorly understood. Thus, the biological role of autophagy in these diseases is still open to debate. During the last years, researchers have used a wide range of morphological, genetic and biochemical methods to monitor and manipulate the autophagic pathway and thus determine the specific role of this process in TSE. It has been suggested that PrPc could play a crucial role in modulating the autophagic pathway in neuronal cells, and the presence of abnormal autophagic activity has been frequently observed in several models of TSE both in vitro and in vivo, as well as in human prion diseases. Altogether, these findings suggest that autophagy is implicated in prion neuropathology and points to an impairment or failure of the process, potentially contributing to the pathogenesis of the disease. Additionally, autophagy is now emerging as a host defense response in controlling prion infection that plays a protective role by facilitating the clearance of aggregation-prone proteins accumulated within neurons. Since autophagy is one of the pathways of PrPSc degradation, and drug-induced stimulation of autophagic flux (the dynamic process of autophagic degradation activity) produces anti-prion effects, new treatments based on its activation have been tested to develop therapeutic strategies for prion diseases. In this review, we summarize previous and recent findings concerning the role of autophagy in TSE.
Collapse
Affiliation(s)
- Óscar López-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Franc Llorens
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Instituto Agroalimentario de Aragón-IA2, Instituto de Investigación Sanitaria Aragón-IISA, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Zaragoza, Spain
| |
Collapse
|
26
|
Annexin A5 prevents amyloid-β-induced toxicity in choroid plexus: implication for Alzheimer's disease. Sci Rep 2020; 10:9391. [PMID: 32523019 PMCID: PMC7286910 DOI: 10.1038/s41598-020-66177-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
In Alzheimer’s disease (AD) amyloid-β (Aβ) deposits may cause impairments in choroid plexus, a specialised brain structure which forms the blood–cerebrospinal fluid (CSF) barrier. We previously carried out a mass proteomic-based study in choroid plexus from AD patients and we found several differentially regulated proteins compared with healthy subjects. One of these proteins, annexin A5, was previously demonstrated implicated in blocking Aβ-induced cytotoxicity in neuronal cell cultures. Here, we investigated the effects of annexin A5 on Aβ toxicity in choroid plexus. We used choroid plexus tissue samples and CSF from mild cognitive impairment (MCI) and AD patients to analyse Aβ accumulation, cell death and annexin A5 levels compared with control subjects. Choroid plexus cell cultures from rats were used to analyse annexin A5 effects on Aβ-induced cytotoxicity. AD choroid plexus exhibited progressive reduction of annexin A5 levels along with progressive increased Aβ accumulation and cell death as disease stage was higher. On the other hand, annexin A5 levels in CSF from patients were found progressively increased as the disease stage increased in severity. In choroid plexus primary cultures, Aβ administration reduced endogenous annexin A5 levels in a time-course dependent manner and simultaneously increased annexin A5 levels in extracellular medium. Annexin A5 addition to choroid plexus cell cultures restored the Aβ-induced impairments on autophagy flux and apoptosis in a calcium-dependent manner. We propose that annexin A5 would exert a protective role in choroid plexus and this protection is lost as Aβ accumulates with the disease progression. Then, brain protection against further toxic insults would be jeopardised.
Collapse
|
27
|
Kim HN, Seo BR, Kim H, Koh JY. Cilostazol restores autophagy flux in bafilomycin A1-treated, cultured cortical astrocytes through lysosomal reacidification: roles of PKA, zinc and metallothionein 3. Sci Rep 2020; 10:9175. [PMID: 32514052 PMCID: PMC7280249 DOI: 10.1038/s41598-020-66292-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
Cilostazol, a phosphodiesterase 3 inhibitor, reduces the amyloid-beta (Aβ) burden in mouse models of Alzheimer disease by as yet unidentified mechanisms. In the present study, we examined the possibility that cilostazol ameliorates lysosomal dysfunction. Astrocytes treated with bafilomycin A1 (BafA1) exhibited markedly reduced DND-189 and acridine orange (AO) fluorescence, indicating reduced lysosomal acidity. In both cases, BafA1-induced alkalization was reversed by addition of cilostazol, dibutyryl cAMP or forskolin. All three agents significantly increased free zinc levels in lysosomes, and addition of the zinc chelator TPEN abrogated lysosomal reacidification. These treatments did not raise free zinc levels or reverse BafA1-mediated lysosomal alkalization in metallothionein 3 (Mt3)-null astrocytes, indicating that the increases in zinc in astrocytes were derived mainly from Mt3. Lastly, in FITC-Aβ-treated astrocytes, cilostazol reversed lysosomal alkalization, increased cathepsin D activity, and reduced Aβ accumulation in astrocytes. Cilostazol also reduced mHtt aggregate formation in GFP-mHttQ74–expressing astrocytes. Collectively, our results present the novel finding that cAMP/PKA can overcome the v-ATPase blocking effect of BafA1 in a zinc- and Mt3-dependent manner.
Collapse
Affiliation(s)
- Ha Na Kim
- Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Bo-Ra Seo
- Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Hyunjin Kim
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Korea; Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Korea; Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. .,Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
28
|
Kaur S, Changotra H. The beclin 1 interactome: Modification and roles in the pathology of autophagy-related disorders. Biochimie 2020; 175:34-49. [PMID: 32428566 DOI: 10.1016/j.biochi.2020.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Beclin 1 a yeast Atg6/VPS30 orthologue has a significant role in autophagy process (Macroautophagy) and protein sorting. The function of beclin 1 depends on the interaction with several autophagy-related genes (Atgs) and other proteins during the autophagy process. The role mediated by beclin 1 is controlled by various conditions and factors. Beclin 1 is regulated at the gene and protein levels by different factors. These regulations could subsequently alter the beclin 1 induced autophagy process. Therefore, it is important to study the components of beclin 1 interactome and factors affecting its expression. Expression of this gene is differentially regulated under different conditions in different cells or tissues. So, the regulation part is important to study as beclin 1 is one of the candidate genes involved in diseases related to autophagy dysfunction. This review focuses on the functions of beclin 1, its interacting partners, regulations at gene and protein level, and the role of beclin 1 interactome in relation to various diseases along with the recent developments in the field.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India.
| |
Collapse
|
29
|
Li Y, Lv Z, Zhang J, Ma Q, Li Q, Song L, Gong L, Zhu Y, Li X, Hao Y, Yang Y. Profiling of differentially expressed circular RNAs in peripheral blood mononuclear cells from Alzheimer's disease patients. Metab Brain Dis 2020; 35:201-213. [PMID: 31834549 DOI: 10.1007/s11011-019-00497-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
Abstract
Expression of circular RNA (circRNA), a class of noncoding RNAs that regulates gene expression, is altered in Alzheimer's disease. This study profiled differentially expressed circRNAs in peripheral blood mononuclear cells (PBMCs) from five patients with Alzheimer's disease compared to healthy controls using circRNA microarrays. We identified a total of 4060 differentially expressed circRNAs (1990 upregulated and 2070 downregulated) in Alzheimer's disease patients. Among these circRNAs, 10 randomly selected circRNAs were verified using qRT-PCR. The top 10 upregulated and downregulated circRNAs were used to predict their target miRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that these differentially expressed circRNAs were strongly associated with inflammation, metabolism, and immune responses, which are all risk factors for Alzheimer's disease. The circRNA-miRNA-mRNA network was most involved in the MAPK, mTOR, AMPK, and WNT signaling pathways in Alzheimer's disease. In conclusion, the current study demonstrated the importance of circRNAs in Alzheimer's disease development. Future studies will evaluate some of these circRNAs as biomarkers for early disease detection and to develop therapeutic strategies to clinically control Alzheimer's disease progression.
Collapse
Affiliation(s)
- Yanxin Li
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhanyun Lv
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Jing Zhang
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Qianqian Ma
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Qiuhua Li
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Li Song
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Li Gong
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Yunliang Zhu
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Xiangyuan Li
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China
- Jining Medical University, Jining, 272067, China
| | - Yanlei Hao
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China.
- Jining Medical University, Jining, 272067, China.
| | - Yan Yang
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining, 272000, China.
- Jining Medical University, Jining, 272067, China.
| |
Collapse
|
30
|
Kareem O, Bader GN, Pottoo FH, Amir M, Barkat MA, Pandey M. Beclin 1 Complex and Neurodegenerative Disorders. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Beclin1 is the mammalian orthologue of yeast Atg6/vacuolar protein sorting-30 (VPS30). Beclin1 interacts with various biological macromolecules like ATG14, BIF-1, NRBF2, RUBICON, UVRAG, AMBRA1, HMGB1, PINK1, and PARKIN. Such interactions promote Beclin1-PI3KC3 complex formation. Autophagy is blocked in apoptosis owing to the breakdown of Beclin1 by caspase whereas autophagy induction inhibits effector caspase degradation, therefore, blocks apoptosis. Thus, the Beclin1 is an essential biomolecular species for cross-regulation between autophagy and apoptosis. Various studies carried out in neurodegenerative animal models associated with aggregated proteins have confirmed that multifunctional Beclin1 protein is necessary for neuronal integrity. The role of Beclin1 protein has been investigated and was reported in various human neurodegeneration disorders. This chapter aims to provide an insight into the role of Beclin1 in the development of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ozaifa Kareem
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Mohd. Amir
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Md. Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al-Batin, Saudi Arabia
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, India
| |
Collapse
|
31
|
Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis 2020; 35:11-30. [PMID: 31811496 DOI: 10.1007/s11011-019-00516-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
32
|
Association between autophagy and rapid eye movement sleep loss-associated neurodegenerative and patho-physio-behavioral changes. Sleep Med 2019; 63:29-37. [DOI: 10.1016/j.sleep.2019.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/26/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
33
|
Chan HH, Koh RY, Lim CL, Leong CO. Receptor-Interacting Protein Kinase 1 (RIPK1) as a Potential Therapeutic Target: An Overview of Its Possible Role in the Pathogenesis of Alzheimer's Disease. Curr Alzheimer Res 2019; 16:907-918. [PMID: 31642777 DOI: 10.2174/1567205016666191023102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Abstract
Alzheimer's Disease (AD) is an age-dependent neurodegenerative disorder, the most common type of dementia that is clinically characterized by the presence of beta-amyloid (Aβ) extracellularly and intraneuronal tau protein tangles that eventually leads to the onset of memory and cognition impairment, development of psychiatric symptoms and behavioral disorders that affect basic daily activities. Current treatment approved by the U.S Food and Drug Administration (FDA) for AD is mainly focused on the symptoms but not on the pathogenesis of the disease. Recently, receptor-interacting protein kinase 1 (RIPK1) has been identified as a key component in the pathogenesis of AD through necroptosis. Furthermore, genetic and pharmacological suppression of RIPK1 has been shown to revert the phenotype of AD and its mediating pathway is yet to be deciphered. This review is aimed to provide an overview of the pathogenesis and current treatment of AD with the involvement of autophagy as well as providing a novel insight into RIPK1 in reverting the progression of AD, probably through an autophagy machinery.
Collapse
Affiliation(s)
- Hong Hao Chan
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chooi Ling Lim
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Chee Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Battaglia C, Venturin M, Sojic A, Jesuthasan N, Orro A, Spinelli R, Musicco M, De Bellis G, Adorni F. Candidate Genes and MiRNAs Linked to the Inverse Relationship Between Cancer and Alzheimer's Disease: Insights From Data Mining and Enrichment Analysis. Front Genet 2019; 10:846. [PMID: 31608105 PMCID: PMC6771301 DOI: 10.3389/fgene.2019.00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022] Open
Abstract
The incidence of cancer and Alzheimer’s disease (AD) increases exponentially with age. A growing body of epidemiological evidence and molecular investigations inspired the hypothesis of an inverse relationship between these two pathologies. It has been proposed that the two diseases might utilize the same proteins and pathways that are, however, modulated differently and sometimes in opposite directions. Investigation of the common processes underlying these diseases may enhance the understanding of their pathogenesis and may also guide novel therapeutic strategies. Starting from a text-mining approach, our in silico study integrated the dispersed biological evidence by combining data mining, gene set enrichment, and protein-protein interaction (PPI) analyses while searching for common biological hallmarks linked to AD and cancer. We retrieved 138 genes (ALZCAN gene set), computed a significant number of enriched gene ontology clusters, and identified four PPI modules. The investigation confirmed the relevance of autophagy, ubiquitin proteasome system, and cell death as common biological hallmarks shared by cancer and AD. Then, from a closer investigation of the PPI modules and of the miRNAs enrichment data, several genes (SQSTM1, UCHL1, STUB1, BECN1, CDKN2A, TP53, EGFR, GSK3B, and HSPA9) and miRNAs (miR-146a-5p, MiR-34a-5p, miR-21-5p, miR-9-5p, and miR-16-5p) emerged as promising candidates. The integrative approach uncovered novel miRNA-gene networks (e.g., miR-146 and miR-34 regulating p62 and Beclin1 in autophagy) that might give new insights into the complex regulatory mechanisms of gene expression in AD and cancer.
Collapse
Affiliation(s)
- Cristina Battaglia
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Italy.,Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Marco Venturin
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Segrate, Italy
| | - Aleksandra Sojic
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Nithiya Jesuthasan
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Alessandro Orro
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Roberta Spinelli
- Istituto Istruzione Superiore Statale IRIS Versari, Cesano Maderno, Italy
| | - Massimo Musicco
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Gianluca De Bellis
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| | - Fulvio Adorni
- Department of Biomedical Sciences, Institute of Biomedical Technologies-National Research Council (ITB-CNR), Segrate, Italy
| |
Collapse
|
35
|
Liang J, Zhou F, Xiong X, Zhang X, Li S, Li X, Gao M, Li Y. Enhancing the retrograde axonal transport by curcumin promotes autophagic flux in N2a/APP695swe cells. Aging (Albany NY) 2019; 11:7036-7050. [PMID: 31488728 PMCID: PMC6756876 DOI: 10.18632/aging.102235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
The accumulation of autophagosomes and dysfunction at the axonal terminal of neurons play crucial roles in the genesis and development of Alzheimer’s disease (AD). Abnormalities in neuron axonal transport-related proteins prevent autophagosome maturation in AD. Curcumin, a polyphenol plant compound, has been shown to exert neuroprotective effects by increasing autophagy in AD, but the underlying mechanism of its effect on autophagy axon transport remains elusive. This study investigated the effects of curcumin on autophagosome formation and axonal transport in N2a/APP695swe cells (AD cell model) as well as the mechanism underlying those effects. Curcumin treatment significantly increased the expression of Beclin1, Atg5, and Atg16L1, induced the formation of autophagosomes, and promoted autophagosome–lysosome fusion in N2a/APP695swe cells. At the same time, curcumin promoted the expression of dynein, dynactin, and BICD2 as well as their binding to form the retrograde axonal transport molecular motor complex. Moreover, curcumin also increased the expression of the scaffolding proteins Rab7- interacting lysosomal protein (RILP) and huntingtin in N2a/APP695swe cells. Taken together, our findings indicate that curcumin increases autophagic flux by promoting interactions among autophagic axonal transport-related proteins and inducing lysosome–autophagosome fusion. This study provides evidence suggesting the potential use of curcumin as a novel treatment for AD.
Collapse
Affiliation(s)
- Jie Liang
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.,Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fanlin Zhou
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.,Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaomin Xiong
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.,Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiong Zhang
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shijie Li
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.,Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoju Li
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.,Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Minna Gao
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yu Li
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.,Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
36
|
Markov AV, Kel AE, Salomatina OV, Salakhutdinov NF, Zenkova MA, Logashenko EB. Deep insights into the response of human cervical carcinoma cells to a new cyano enone-bearing triterpenoid soloxolone methyl: a transcriptome analysis. Oncotarget 2019; 10:5267-5297. [PMID: 31523389 PMCID: PMC6731101 DOI: 10.18632/oncotarget.27085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Semisynthetic triterpenoids, bearing cyano enone functionality in ring A, are considered now as novel promising anti-tumor agents. However, despite the large-scale studies, their effects on cervical carcinoma cells and, moreover, mechanisms underlying cell death activation by such compounds in this cell type have not been fully elucidated. In this work, we attempted to reconstitute the key pathways and master regulators involved in the response of human cervical carcinoma KB-3-1 cells to the novel glycyrrhetinic acid derivative soloxolone methyl (SM) by a transcriptomic approach. Functional annotation of differentially expressed genes, analysis of their cis- regulatory sequences and protein-protein interaction network clearly indicated that stress of endoplasmic reticulum (ER) is the central event triggered by SM in the cells. A range of key ER stress sensors and transcription factor AP-1 were identified as upstream transcriptional regulators, controlling the response of the cells to SM. Additionally, by using Gene Expression Omnibus data, we showed the ability of SM to modulate the expression of key genes involved in regulation of the high proliferative rate of cervical carcinoma cells. Further Connectivity Map analysis revealed similarity of SM's effects with known ER stress inducers thapsigargin and geldanamycin, targeting SERCA and Grp94, respectively. According to the molecular docking study, SM could snugly fit into the active sites of these proteins in the positions very close to that of both inhibitors. Taken together, our findings provide a basis for the better understanding of the intracellular processes in tumor cells switched on in response to cyano enone-bearing triterpenoids.
Collapse
Affiliation(s)
- Andrey V Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Alexander E Kel
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation.,geneXplain GmbH, Wolfenbüttel 38302, Germany
| | - Oksana V Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation.,N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Evgeniya B Logashenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| |
Collapse
|
37
|
Suomi F, McWilliams T. Autophagy in the mammalian nervous system: a primer for neuroscientists. Neuronal Signal 2019; 3:NS20180134. [PMID: 32269837 PMCID: PMC7104325 DOI: 10.1042/ns20180134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/06/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy refers to the lysosomal degradation of damaged or superfluous components and is essential for metabolic plasticity and tissue integrity. This evolutionarily conserved process is particularly vital to mammalian post-mitotic cells such as neurons, which face unique logistical challenges and must sustain homoeostasis over decades. Defective autophagy has pathophysiological importance, especially for human neurodegeneration. The present-day definition of autophagy broadly encompasses two distinct yet related phenomena: non-selective and selective autophagy. In this minireview, we focus on established and emerging concepts in the field, paying particular attention to the physiological significance of macroautophagy and the burgeoning world of selective autophagy pathways in the context of the vertebrate nervous system. By highlighting established basics and recent breakthroughs, we aim to provide a useful conceptual framework for neuroscientists interested in autophagy, in addition to autophagy enthusiasts with an eye on the nervous system.
Collapse
Affiliation(s)
- Fumi Suomi
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| | - Thomas G. McWilliams
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
- Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| |
Collapse
|
38
|
Yang C, Cai CZ, Song JX, Tan JQ, Durairajan SSK, Iyaswamy A, Wu MY, Chen LL, Yue Z, Li M, Lu JH. NRBF2 is involved in the autophagic degradation process of APP-CTFs in Alzheimer disease models. Autophagy 2019; 13:2028-2040. [PMID: 28980867 DOI: 10.1080/15548627.2017.1379633] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Alzheimer disease (AD) is the most common neurodegenerative disease characterized by the deposition of amyloid plaque in the brain. The autophagy-associated PIK3C3-containing phosphatidylinositol 3-kinase (PtdIns3K) complex has been shown to interfere with APP metabolism and amyloid beta peptide (Aβ) homeostasis via poorly understood mechanisms. Here we report that NRBF2 (nuclear receptor binding factor 2), a key component and regulator of the PtdIns3K, is involved in APP-CTFs homeostasis in AD cell models. We found that NRBF2 interacts with APP in vivo and its expression levels are reduced in hippocampus of 5XFAD AD mice; we further demonstrated that NRBF2 overexpression promotes degradation of APP C-terminal fragments (APP-CTFs), and reduces Aβ1-40 and Aβ1-42 levels in human mutant APP-overexpressing cells. Conversely, APP-CTFs, Aβ1-40 and Aβ1-42 levels were increased in Nrbf2 knockdown or nrbf2 knockout cells. Furthermore, NRBF2 positively regulates autophagy in neuronal cells and NRBF2-mediated reduction of APP-CTFs levels is autophagy dependent. Importantly, nrbf2 knockout attenuates the recruitment of APP and APP-CTFs into phagophores and the sorting of APP and APP-CTFs into endosomal intralumenal vesicles, which is accompanied by the accumulation of the APP and APP-CTFs into RAB5-positive early endosomes. Collectively, our results reveal the potential connection between NRBF2 and the AD-associated protein APP by showing that NRBF2 plays an important role in regulating degradation of APP-CTFs through modulating autophagy.
Collapse
Affiliation(s)
- Chuanbin Yang
- a Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research , School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Cui-Zan Cai
- b State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Taipa, Macau SAR , China
| | - Ju-Xian Song
- a Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research , School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Jie-Qiong Tan
- c State Key Laboratory of Medical Genetics , Xiangya Medical School , Central South University , Changsha, Hunan , China
| | - Siva Sundara Kumar Durairajan
- a Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research , School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Ashok Iyaswamy
- a Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research , School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Ming-Yue Wu
- b State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Taipa, Macau SAR , China
| | - Lei-Lei Chen
- a Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research , School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Zhenyu Yue
- d Department of Neurology and Neuroscience , Friedman Brain Institute , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Min Li
- a Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research , School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Jia-Hong Lu
- b State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Taipa, Macau SAR , China
| |
Collapse
|
39
|
Luo H, Han L, Xu J. Apelin/APJ system: A novel promising target for neurodegenerative diseases. J Cell Physiol 2019; 235:638-657. [DOI: 10.1002/jcp.29001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Huaiqing Luo
- Department of Physiology Changsha Medical University Changsha Hunan China
- Department of Physiology, School of Basic Medical Science Central South University Changsha Hunan China
| | - Li Han
- Department of Physiology Changsha Medical University Changsha Hunan China
| | - Jin Xu
- School of Pharmaceutical Sciences Changsha Medical University Changsha Hunan China
| |
Collapse
|
40
|
de Mello NP, Orellana AM, Mazucanti CH, de Morais Lima G, Scavone C, Kawamoto EM. Insulin and Autophagy in Neurodegeneration. Front Neurosci 2019; 13:491. [PMID: 31231176 PMCID: PMC6558407 DOI: 10.3389/fnins.2019.00491] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
Crosstalk in the pathophysiological processes underpinning metabolic diseases and neurodegenerative disorders have been the subject of extensive investigation, in which insulin signaling and autophagy impairment demonstrate to be a common factor in both conditions. Although it is still somewhat conflicting, pharmacological and genetic strategies that regulate these pathways may be a promising approach for aggregate protein clearancing and consequently the delaying of onset or progression of the disease. However, as the response due to this modulation seems to be time-dependent, finding the right regulation of autophagy may be a potential target for drug development for neurodegenerative diseases. In this way, this review focuses on the role of insulin signaling/resistance and autophagy in some neurodegenerative diseases, discussing pharmacological and non-pharmacological interventions in these diseases.
Collapse
Affiliation(s)
- Natália Prudente de Mello
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Geovanni de Morais Lima
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Chen J, Long Z, Li Y, Luo M, Luo S, He G. Alteration of the Wnt/GSK3β/β‑catenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer's disease model. Int J Mol Med 2019; 44:313-323. [PMID: 31115485 DOI: 10.3892/ijmm.2019.4198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/12/2019] [Indexed: 11/06/2022] Open
Abstract
The abnormal activation of glycogen synthase kinase 3β (GSK3β) is one of the mechanisms involved in the pathogenesis of Alzheimer's disease (AD), which results in amyloid β‑peptide (Aβ) plaque overproduction, Tau hyperphosphorylation and neuronal loss. A number of studies have reported that the activation of the mammalian target of rapamycin (mTOR) contributes to the generation and deposition of Aβ, as well as to the formation of neurofibrillary tangles (NFTs) by inhibiting autophagy. GSK3β is also involved in the mTOR signalling pathway. However, whether the inhibition of the activation of mTOR via the regulation of the function of GSK3β affects the pathology of AD remains unclear. In this study, we intraperitoneally injected amyloid precursor protein (APP)/presenilin‑1 (PS1) transgenic mice with rapamycin, a known activator of autophagy that inhibits mTOR. Our results revealed that rapamycin treatment decreased senile plaque deposition by reducing APP generation, and downregulating β‑ and γ‑secretase activity. Rapamycin also increased Aβ clearance by promoting autophagy and reduced Tau hyperphosphorylation by upregulating the levels of insulin‑degrading enzyme. Additionally, rapamycin markedly promoted the proliferation of differentiated SH‑SY5Y cells stably transfected with the APPswe gene and prevented neuronal loss in the brains of mice in a model of AD. Moreover, rapamycin induced autophagy and promoted autolysosome degradation. In this study, we provide evidence that rapamycin inhibits GSK3β activation and elevates β‑catenin expression by improving the Wnt3a expression levels, which facilitates the amelioration of AD pathology. On the whole, our findings indicate that rapamycin inhibits the activation of mTOR and alters the Wnt/GSK3β/β‑catenin signalling pathway; thus, it may serve as a therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- Jingfei Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhimin Long
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yanzhen Li
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Min Luo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shifang Luo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
42
|
Koh JY, Kim HN, Hwang JJ, Kim YH, Park SE. Lysosomal dysfunction in proteinopathic neurodegenerative disorders: possible therapeutic roles of cAMP and zinc. Mol Brain 2019; 12:18. [PMID: 30866990 PMCID: PMC6417073 DOI: 10.1186/s13041-019-0439-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
A number of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, share intra- and/or extracellular deposition of protein aggregates as a common core pathology. While the species of accumulating proteins are distinct in each disease, an increasing body of evidence indicates that defects in the protein clearance system play a crucial role in the gradual accumulation of protein aggregates. Among protein degradation systems, the endosome-autophagosome-lysosome pathway (EALP) is the main degradation machinery, especially for large protein aggregates. Lysosomal dysfunction or defects in fusion with vesicles containing cargo are commonly observed abnormalities in proteinopathic neurodegenerative diseases. In this review, we discuss the available evidence for a mechanistic connection between components of the EALP-especially lysosomes-and neurodegenerative diseases. We also focus on lysosomal pH regulation and its significance in maintaining flux through the EALP. Finally, we suggest that raising cAMP and free zinc levels in brain cells may be beneficial in normalizing lysosomal pH and EALP flux.
Collapse
Affiliation(s)
- Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Ha Na Kim
- Neural Injury Lab, Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jung Jin Hwang
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Yang-Hee Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Sang Eun Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
43
|
Zeng Q, Siu W, Li L, Jin Y, Liang S, Cao M, Ma M, Wu Z. Autophagy in Alzheimer's disease and promising modulatory effects of herbal medicine. Exp Gerontol 2019; 119:100-110. [PMID: 30710681 DOI: 10.1016/j.exger.2019.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive and unremitting neurodegenerative disorder characterized by memory loss and cognitive impairment. It affects the quality of life of victims severely. The prevalence of AD has been increasing in recent years. Therefore, it is of great importance to elucidate the pathogenesis of AD and find out effective therapeutic approaches. Autophagy, a primary intracellular way of degrading aggregated proteins and damaged organelles, has been discovered to be involved in the pathological changes of AD. In the last few years, much progress has been made in finding autophagy regulators from natural products, providing new insights to develop treatment strategy for AD by targeting autophagy. In the present review, we provided an overview of the recent research progress regarding the function role of autophagy in AD, the regulation mechanisms of autophagy-lysosomal pathway as well as therapeutic potential of herbal medicine on AD by targeting autophagy.
Collapse
Affiliation(s)
- Qiang Zeng
- Integrated Chinese and Western Medicine postdoctoral research station, Jinan University, Guangzhou 510632, China; Shenzhen Institute of Geriatrics, Shenzhen 518020, China; The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Wingsum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Limin Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Yu Jin
- The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Shaoyu Liang
- The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Meiqun Cao
- Shenzhen Institute of Geriatrics, Shenzhen 518020, China; The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Min Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Zhengzhi Wu
- Integrated Chinese and Western Medicine postdoctoral research station, Jinan University, Guangzhou 510632, China; Shenzhen Institute of Geriatrics, Shenzhen 518020, China; The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| |
Collapse
|
44
|
Esteves AR, Filipe F, Magalhães JD, Silva DF, Cardoso SM. The Role of Beclin-1 Acetylation on Autophagic Flux in Alzheimer's Disease. Mol Neurobiol 2019; 56:5654-5670. [PMID: 30661206 DOI: 10.1007/s12035-019-1483-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/10/2019] [Indexed: 01/25/2023]
Abstract
Macroautophagy impairment plays a key role in sporadic Alzheimer's disease (sAD) neurodegenerative process. Nevertheless, the mechanism(s) that lead to a deficiency in macroautophagy in AD remains elusive. In this work, we identify, for the first time that Beclin-1 acetylation status is implicated in the alterations in autophagy observed in AD neurodegeneration. We observed that Beclin-1 is deacetylated by sirtuin 1 (SIRT1) and acetylated by p300. In addition, Beclin-1 acetylation inhibits autophagosome maturation, leading to impairment in autophagic flux. We also analyzed some proteins known to be involved in the maturation of autophagosomes such as Rab7, which participates in the fusion step with lysosomes. We observed that increased expression of Rab7 might represent a response to boost the formation of large perinuclear lysosome clusters in accordance with an increase in lysosomal biogenesis determined by increase in LAMP-2A, LAMP-1, and cathepsin D expression in AD cells. Thus, our data provides strong evidences that Beclin-1 acetylation impairs the autophagic flux, and despite lysosomal biogenesis seems to be triggered as a compensatory response, autophagosome fusion with lysosomes is compromised contributing to AD neurodegeneration.
Collapse
Affiliation(s)
- A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Filipa Filipe
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diana F Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
45
|
Huang L, Lin M, Zhong X, Yang H, Deng M. Galangin decreases p‑tau, Aβ42 and β‑secretase levels, and suppresses autophagy in okadaic acid‑induced PC12 cells via an Akt/GSK3β/mTOR signaling‑dependent mechanism. Mol Med Rep 2019; 19:1767-1774. [PMID: 30628698 DOI: 10.3892/mmr.2019.9824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 10/19/2018] [Indexed: 11/05/2022] Open
Abstract
Okadaic acid (OA)‑induced neurotoxicity may be considered a novel tool used to study Alzheimer's disease (AD) pathology, and may be helpful in the development of a novel therapeutic approach. It has been reported that galangin inhibits β‑site amyloid precursor protein‑cleaving enzyme 1 expression, which is a key enzyme for amyloid β (Aβ) generation and is a potential drug candidate for AD therapy. However, further studies are required to confirm its neuroprotective effects in other AD models. The present study aimed to explore the neuroprotective effects of galangin on OA‑induced neurotoxicity in PC12 cells. The cells were divided into the following groups: Control group, model group (175 nM OA for 48 h) and galangin groups (0.25, 0.5 and 1 µg/ml). Beclin‑1, phosphorylated (p)‑protein kinase B (Akt), p‑glycogen synthase kinase (GSK)3β and p‑mechanistic target of rapamycin (mTOR) expression was also measured in the following PC12 cell groups: Control group, model group, 3‑methyladenine group (5 nM), rapamycin group (100 nM) and galangin group (1 µg/ml). The levels of β‑secretase, Aβ42 and p‑tau were detected by ELISA, Beclin‑1 expression was examined by immunohistochemistry and the protein expression levels of p‑Akt, p‑mTOR p‑GSK3β, and Beclin‑1 were detected by western blotting. Galangin treatment enhanced cell viability in cells treated with OA, and decreased β‑secretase, Aβ42 and p‑tau levels. In addition, it suppressed Beclin‑1 and p‑GSK3β expression, but promoted p‑Akt and p‑mTOR expression by regulating the Akt/GSK3β/mTOR pathway. These results indicated that galangin protected PC12 cells from OA‑induced cytotoxicity and inhibited autophagy via the Akt/GSK3β/mTOR pathway, thus suggesting that it may be considered a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Liping Huang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, Guangdong 524048, P.R. China
| | - Mingqin Lin
- College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Xiaoqin Zhong
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Hongyan Yang
- College of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Minzhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
46
|
Morsi M, Kobeissy F, Magdeldin S, Maher A, Aboelmagd O, Johar D, Bernstein L. A shared comparison of diabetes mellitus and neurodegenerative disorders. J Cell Biochem 2018; 120:14318-14325. [PMID: 30565720 DOI: 10.1002/jcb.28094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 10/29/2018] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus (DM), one of the most prevalent metabolic diseases in the world population, is associated with a number of comorbid conditions including obesity, pancreatic endocrine changes, and renal and cardio-cerebrovascular alterations, coupled with peripheral neuropathy and neurodegenerative disease, some of these disorders are bundled into metabolic syndrome. Type 1 DM (T1DM) is an autoimmune disease that destroys the insulin-secreting islet cells. Type 2 DM (T2DM) is diabetes that is associated with an imbalance in the glucagon/insulin homeostasis that leads to the formation of amyloid deposits in the brain, pancreatic islet cells, and possibly in the kidney glomerulus. There are several layers of molecular pathologic alterations that contribute to the DM metabolic pathophysiology and its associated neuropathic manifestations. In this review, we describe the general signature metabolic features of DM and the cross-talk with neurodegeneration. We will assess the underlying molecular key players associated with DM-induced neuropathic disorders that are associated with both T1DM and T2DM. In this context, we will highlight the role of tau and amyloid protein deposits in the brain as well in the pancreatic islet cells, and possibly in the kidney glomerulus. Furthermore, we will discuss the central role of mitochondria, oxidative stress, and the unfolded protein response in mediating the DM-associated neuropathic degeneration. This study will elucidate the relationship between DM and neurodegeneration which may account for the evolution of other neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease as discussed later.
Collapse
Affiliation(s)
- Mahmoud Morsi
- Faculty of Medicine, Menoufia University, Shebin El-kom, Egypt
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Basic Research, Children's Cancer Hospital, Cairo, Egypt.,Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed Maher
- Zoonotic Diseases Department, National Research Center, Dokki, Egypt
| | | | - Dina Johar
- Department of Biochemistry and Nutrition, Faculty of Women for Arts, Sciences and Education, Ain Shams University, Cairo, Egypt.,Department of Physiology and Pathophysiology, Faculty of Health Sciences, Rady College of Medicine, Max Rady University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
47
|
Uddin MS, Mamun AA, Labu ZK, Hidalgo-Lanussa O, Barreto GE, Ashraf GM. Autophagic dysfunction in Alzheimer's disease: Cellular and molecular mechanistic approaches to halt Alzheimer's pathogenesis. J Cell Physiol 2018; 234:8094-8112. [PMID: 30362531 DOI: 10.1002/jcp.27588] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Autophagy is a preserved cytoplasmic self-degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy-related genes and alterations of autophagic flux. Alzheimer's disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer's pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Zubair Khalid Labu
- Department of Pharmacy, World University of Bangladesh, Dhaka, Bangladesh
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Panagaki T, Gengler S, Hölscher C. The Novel DA–CH3 Dual Incretin Restores Endoplasmic Reticulum Stress and Autophagy Impairments to Attenuate Alzheimer-Like Pathology and Cognitive Decrements in the APPSWE/PS1ΔE9 Mouse Model. J Alzheimers Dis 2018; 66:195-218. [DOI: 10.3233/jad-180584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Theodora Panagaki
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Simon Gengler
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
49
|
Promoter Variant Alters Expression of the Autophagic BECN1 Gene: Implications for Clinical Manifestations of Machado-Joseph Disease. THE CEREBELLUM 2018; 16:957-963. [PMID: 28699106 DOI: 10.1007/s12311-017-0875-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Autophagy is especially important in disorders where accumulation of the mutant protein is a hallmark, such as the Machado-Joseph disease/spinocerebellar ataxia type 3 (MJD/SCA3). We analyzed the promoter of the BECN1 gene, whose overexpression has been reported to exert neuroprotective effects in MJD, with the aim of finding variants that could be associated with expression levels of beclin-1 and could be tested as modifiers of onset and disease severity. A fragment encompassing the BECN1 promoter was sequenced in 95 MJD subjects and 120 controls. The impact of the variation detected on transcription factors (TFs) binding affinity was evaluated in silico and inferences concerning levels of expression were confirmed by fluorescence-based quantitative real-time PCR in a subset of 28 MJD subjects and 26 controls. Four previously described (rs60221525, rs116943570, rs34882610, and rs34037822) and one novel (c.-933delG) variants were identified. In silico analysis performed for the most frequent variants-rs60221525 C allele and rs116943570 T allele-predicted an impact of the presence of these alleles on TF binding affinity. BECN1 expression levels were in agreement with the in silico predictions, showing a tendency for decreased levels in samples with the rs60221525 C allele and for increased levels in samples with the rs116943570 T allele. MJD patients carrying the rs60221525 C allele presented a tendency for earlier estimated age at onset. Moreover, patients with the rs60221525 C allele presented a more severe clinical picture, compared to patients without this allele. The analysis of a larger number of patients from different cohorts, currently unavailable, would be required to confirm these results.
Collapse
|
50
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|