1
|
Parshuram ZA, Harrison TL, Simonsen AK, Stinchcombe JR, Frederickson ME. Nonsymbiotic legumes are more invasive, but only if polyploid. THE NEW PHYTOLOGIST 2023; 237:758-765. [PMID: 36305214 DOI: 10.1111/nph.18579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Both mutualism and polyploidy are thought to influence invasion success in plants, but few studies have tested their joint effects. Mutualism can limit range expansion when plants cannot find a compatible partner in a novel habitat, or facilitate range expansion when mutualism increases a plant's niche breadth. Polyploids are also expected to have greater niche breadth because of greater self-compatibility and phenotypic plasticity, increasing invasion success. For 847 legume species, we compiled data from published sources to estimate ploidy, symbiotic status with rhizobia, specificity on rhizobia, and the number of introduced ranges. We found that diploid species have had limited spread around the globe regardless of whether they are symbiotic or how many rhizobia partners they can host. Polyploids, by contrast, have been successfully introduced to many new ranges, but interactions with rhizobia constrain their range expansion. In a hidden state model of trait evolution, we also found evidence of a high rate of re-diploidization in symbiotic legume lineages, suggesting that symbiosis and ploidy may interact at macroevolutionary scales. Overall, our results suggest that symbiosis with rhizobia limits range expansion when legumes are polyploid but not diploid.
Collapse
Affiliation(s)
- Zoe A Parshuram
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Tia L Harrison
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Anna K Simonsen
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
2
|
Czyż KB, Taylor CM, Kawaliło M, Koczyk G. Gain or Loss? Evidence for Legume Predisposition to Symbiotic Interactions with Rhizobia via Loss of Pathogen-Resistance-Related Gene Families. Int J Mol Sci 2022; 23:ijms232416003. [PMID: 36555644 PMCID: PMC9783688 DOI: 10.3390/ijms232416003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nodulation is a hallmark yet non-universal characteristic of legumes. It is unknown whether the mechanisms underlying nitrogen-fixing symbioses evolved within legumes and the broader nitrogen-fixing clade (NFC) repeatedly de novo or based on common ancestral pathways. Ten new transcriptomes representing members from the Cercidoideae and Caesalpinioideae subfamilies were supplemented with published omics data from 65 angiosperms, to investigate how gene content correlates with nodulation capacity within Fabaceae and the NFC. Orthogroup analysis categorized annotated genes into 64150 orthogroups, of which 19 were significantly differentially represented between nodulating versus non-nodulating NFC species and were most commonly absent in nodulating taxa. The distribution of six over-represented orthogroups within Viridiplantae representatives suggested that genomic evolution events causing gene family expansions, including whole-genome duplications (WGDs), were unlikely to have facilitated the development of stable symbioses within Fabaceae as a whole. Instead, an absence of representation of 13 orthogroups indicated that losses of genes involved in trichome development, defense and wounding responses were strongly associated with rhizobial symbiosis in legumes. This finding provides novel evidence of a lineage-specific predisposition for the evolution and/or stabilization of nodulation in Fabaceae, in which a loss of pathogen resistance genes may have allowed for stable mutualistic interactions with rhizobia.
Collapse
Affiliation(s)
- Katarzyna B. Czyż
- Biometry and Bioinformatics Team, Institute of Plant Genetics Polish Academy of Science, 60-479 Poznań, Poland
- Correspondence:
| | - Candy M. Taylor
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Michał Kawaliło
- Biometry and Bioinformatics Team, Institute of Plant Genetics Polish Academy of Science, 60-479 Poznań, Poland
| | - Grzegorz Koczyk
- Biometry and Bioinformatics Team, Institute of Plant Genetics Polish Academy of Science, 60-479 Poznań, Poland
| |
Collapse
|
3
|
Cheng A, Mohd Hanafiah N, Harikrishna JA, Eem LP, Baisakh N, Mispan MS. A Reappraisal of Polyploidy Events in Grasses (Poaceae) in a Rapidly Changing World. BIOLOGY 2022; 11:biology11050636. [PMID: 35625365 PMCID: PMC9138248 DOI: 10.3390/biology11050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Around 80% of megaflora species became extinct at the Cretaceous–Paleogene (K–Pg) boundary. Subsequent polyploidy events drove the survival of thousands of plant species and played a significant historical role in the development of the most successful modern cereal crops. However, current and rapid global temperature change poses an urgent threat to food crops worldwide, including the world’s big three cereals: rice, wheat, and maize, which are members of the grass family, Poaceae. Some minor cereals from the same family (such as teff) have grown in popularity in recent years, but there are important knowledge gaps regarding the similarities and differences between major and minor crops, including how polyploidy affects their biological processes under natural and (a)biotic stress conditions and thus the potential to harness polyploidization attributes for improving crop climate resilience. This review focuses on the impact of polyploidy events on the Poaceae family, which includes the world’s most important food sources, and discusses the past, present, and future of polyploidy research for major and minor crops. The increasing accessibility to genomes of grasses and their wild progenitors together with new tools and interdisciplinary research on polyploidy can support crop improvement for global food security in the face of climate change.
Collapse
Affiliation(s)
- Acga Cheng
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
| | - Noraikim Mohd Hanafiah
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
| | - Jennifer Ann Harikrishna
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lim Phaik Eem
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
- Correspondence: (N.B.); (M.S.M.)
| | - Muhamad Shakirin Mispan
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (N.B.); (M.S.M.)
| |
Collapse
|
4
|
Unequal contribution of two paralogous CENH3 variants in cowpea centromere function. Commun Biol 2020; 3:775. [PMID: 33319863 PMCID: PMC7738545 DOI: 10.1038/s42003-020-01507-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
In most diploids the centromere-specific histone H3 (CENH3), the assembly site of active centromeres, is encoded by a single copy gene. Persistance of two CENH3 paralogs in diploids species raises the possibility of subfunctionalization. Here we analysed both CENH3 genes of the diploid dryland crop cowpea. Phylogenetic analysis suggests that gene duplication of CENH3 occurred independently during the speciation of Vigna unguiculata. Both functional CENH3 variants are transcribed, and the corresponding proteins are intermingled in subdomains of different types of centromere sequences in a tissue-specific manner together with the kinetochore protein CENPC. CENH3.2 is removed from the generative cell of mature pollen, while CENH3.1 persists. CRISPR/Cas9-based inactivation of CENH3.1 resulted in delayed vegetative growth and sterility, indicating that this variant is needed for plant development and reproduction. By contrast, CENH3.2 knockout individuals did not show obvious defects during vegetative and reproductive development. Hence, CENH3.2 of cowpea is likely at an early stage of pseudogenization and less likely undergoing subfunctionalization.
Collapse
|
5
|
Mutti G, Raveane A, Pagano A, Bertolini F, Semino O, Balestrazzi A, Macovei A. Plant TDP1 (Tyrosyl-DNA Phosphodiesterase 1): A Phylogenetic Perspective and Gene Expression Data Mining. Genes (Basel) 2020; 11:E1465. [PMID: 33297410 PMCID: PMC7762302 DOI: 10.3390/genes11121465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/28/2023] Open
Abstract
The TDP1 (tyrosyl-DNA phosphodiesterase 1) enzyme removes the non-specific covalent intermediates between topoisomerase I and DNA, thus playing a crucial role in preventing DNA damage. While mammals possess only one TDP1 gene, in plants two genes (TDP1α and TDP1β) are present constituting a small gene subfamily. These display a different domain structure and appear to perform non-overlapping functions in the maintenance of genome integrity. Namely, the HIRAN domain identified in TDP1β is involved in the interaction with DNA during the recognition of stalled replication forks. The availability of transcriptomic databases in a growing variety of experimental systems provides new opportunities to fill the current gaps of knowledge concerning the evolutionary origin and the specialized roles of TDP1 genes in plants. Whereas a phylogenetic approach has been used to track the evolution of plant TDP1 protein, transcriptomic data from a selection of representative lycophyte, eudicots, and monocots have been implemented to explore the transcriptomic dynamics in different tissues and a variety of biotic and abiotic stress conditions. While the phylogenetic analysis indicates that TDP1α is of non-plant origin and TDP1β is plant-specific originating in ancient vascular plants, the gene expression data mining comparative analysis pinpoints for tissue- and stress-specific responses.
Collapse
Affiliation(s)
- Giacomo Mutti
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
| | - Alessandro Raveane
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy;
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy;
| | - Ornella Semino
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.M.); (A.P.); (O.S.); (A.B.)
| |
Collapse
|
6
|
Sun Q, Yu S, Guo Z. Calmodulin-Like (CML) Gene Family in Medicago truncatula: Genome-Wide Identification, Characterization and Expression Analysis. Int J Mol Sci 2020; 21:E7142. [PMID: 32992668 PMCID: PMC7582678 DOI: 10.3390/ijms21197142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023] Open
Abstract
Calcium is an important second messenger in mediating adaptation responses of plants to abiotic and biotic stresses. Calmodulin-like (CML) protein is an important calcium-signaling protein that can sense and decode Ca2+ signal in plants. Medicago truncatula is a model legume plant; however, investigations of MtCML proteins are limited. Using genome analysis and BLAST database searches, fifty MtCML proteins that possess EF-hand motifs were identified. Phylogenetic analysis showed that CML homologs between M. truncatula, Arabidopsis thaliana and Oryza sativa shared close relationships. Gene structure analysis revealed that these MtCML genes contained one to four conserved EF-hand motifs. All MtCMLs are localized to eight chromosomes and underwent gene duplication. In addition, MtCML genes were differentially expressed in different tissues of M. truncatula. Cis-acting elements in promoter region and expression analysis revealed the potential response of MtCML protein to abiotic stress and hormones. The results provide a basis of further functional research on the MtCML gene family and facilitate their potential use for applications in the genetic improvement on M. truncatula in drought, cold and salt stress environments.
Collapse
Affiliation(s)
| | | | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (Q.S.); (S.Y.)
| |
Collapse
|
7
|
Moharana KC, Venancio TM. Polyploidization events shaped the transcription factor repertoires in legumes (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:726-741. [PMID: 32270526 DOI: 10.1111/tpj.14765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Transcription factors (TFs) are essential for plant growth and development. Several legumes (e.g. soybean) are rich sources of protein and oil and have great economic importance. Here we report a phylogenomic analysis of TF families in legumes and their potential association with important traits (e.g. nitrogen fixation). We used TF DNA-binding domains to systematically screen the genomes of 15 leguminous and five non-leguminous species. Transcription factor orthologous groups (OGs) were used to estimate OG sizes in ancestral nodes using a gene birth-death model, which allowed the identification of lineage-specific expansions. The OG analysis and rate of synonymous substitutions show that major TF expansions are strongly associated with whole-genome duplication (WGD) events in the legume (approximately 58 million years ago) and Glycine (approximately 13 million years ago) lineages, which account for a large fraction of the Phaseolus vulgaris and Glycine max TF repertoires. Of the 3407 G. max TFs, 1808 and 676 have homeologs within single syntenic regions in Phaseolus vulgaris and Vitis vinifera, respectively. We found a trend for TFs expanded in legumes to be preferentially transcribed in roots and nodules, supporting their recruitment early in the evolution of nodulation in the legume clade. Some families also showed count differences between G. max and the wild soybean Glycine soja, including genes located within important quantitative trait loci. Our findings strongly support the roles of two WGDs in shaping the TF repertoires in the legume and Glycine lineages, and these are probably related to important aspects of legume and soybean biology.
Collapse
Affiliation(s)
- Kanhu C Moharana
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
8
|
Chen H, Zeng Y, Yang Y, Huang L, Tang B, Zhang H, Hao F, Liu W, Li Y, Liu Y, Zhang X, Zhang R, Zhang Y, Li Y, Wang K, He H, Wang Z, Fan G, Yang H, Bao A, Shang Z, Chen J, Wang W, Qiu Q. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 2020; 11:2494. [PMID: 32427850 PMCID: PMC7237683 DOI: 10.1038/s41467-020-16338-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Artificially improving traits of cultivated alfalfa (Medicago sativa L.), one of the most important forage crops, is challenging due to the lack of a reference genome and an efficient genome editing protocol, which mainly result from its autotetraploidy and self-incompatibility. Here, we generate an allele-aware chromosome-level genome assembly for the cultivated alfalfa consisting of 32 allelic chromosomes by integrating high-fidelity single-molecule sequencing and Hi-C data. We further establish an efficient CRISPR/Cas9-based genome editing protocol on the basis of this genome assembly and precisely introduce tetra-allelic mutations into null mutants that display obvious phenotype changes. The mutated alleles and phenotypes of null mutants can be stably inherited in generations in a transgene-free manner by cross pollination, which may help in bypassing the debate about transgenic plants. The presented genome and CRISPR/Cas9-based transgene-free genome editing protocol provide key foundations for accelerating research and molecular breeding of this important forage crop.
Collapse
Affiliation(s)
- Haitao Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Lingli Huang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Bolin Tang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - He Zhang
- BGI-Qingdao, 266555, Qingdao, China
| | - Fei Hao
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China
| | - Yanbin Liu
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Xiaoshuang Zhang
- Guangdong Sanjie Forage Biotechnology Co., Ltd., 510630, Guangzhou, China
- Sanjie Institute of Forage, 712100, Yangling, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yongxin Li
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Hua He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China
| | | | - Hui Yang
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Aike Bao
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Zhanhuan Shang
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou University, 730000, Lanzhou, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, 650223, Kunming, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, 710072, Xi'an, China.
| |
Collapse
|
9
|
A Tale of Two Families: Whole Genome and Segmental Duplications Underlie Glutamine Synthetase and Phosphoenolpyruvate Carboxylase Diversity in Narrow-Leafed Lupin ( Lupinus angustifolius L.). Int J Mol Sci 2020; 21:ijms21072580. [PMID: 32276381 PMCID: PMC7177731 DOI: 10.3390/ijms21072580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 01/04/2023] Open
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) has recently been supplied with advanced genomic resources and, as such, has become a well-known model for molecular evolutionary studies within the legume family—a group of plants able to fix nitrogen from the atmosphere. The phylogenetic position of lupins in Papilionoideae and their evolutionary distance to other higher plants facilitates the use of this model species to improve our knowledge on genes involved in nitrogen assimilation and primary metabolism, providing novel contributions to our understanding of the evolutionary history of legumes. In this study, we present a complex characterization of two narrow-leafed lupin gene families—glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC). We combine a comparative analysis of gene structures and a synteny-based approach with phylogenetic reconstruction and reconciliation of the gene family and species history in order to examine events underlying the extant diversity of both families. Employing the available evidence, we show the impact of duplications on the initial complement of the analyzed gene families within the genistoid clade and posit that the function of duplicates has been largely retained. In terms of a broader perspective, our results concerning GS and PEPC gene families corroborate earlier findings pointing to key whole genome duplication/triplication event(s) affecting the genistoid lineage.
Collapse
|
10
|
Bueno E, Kisha T, Maki SL, von Wettberg EJB, Singer S. Genetic diversity of Chamaecrista fasciculata (Fabaceae) from the USDA germplasm collection. BMC Res Notes 2019; 12:117. [PMID: 30832729 PMCID: PMC6400026 DOI: 10.1186/s13104-019-4152-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/22/2019] [Indexed: 11/21/2022] Open
Abstract
Objective Chamaecrista fasciculata is a widespread annual legume across Eastern North America, with potential as a restoration planting, biofuel crop, and genetic model for non-papillinoid legumes. As a non-Papilinoid, C. fasciculata, belongs to the Caesalpiniod group in which nodulation likely arose independently of the nodulation in Papilinoid and Mimosoid legumes. Thus, C. fasciculata is an attractive model system for legume evolution. In this study, we describe population structure and genetic diversity among 32 USDA germplasm accessions of C. fasciculata using 317 AFLP markers developed from 12 primer pairs, to assess where geographically there is the most genetic variation. Results We found that the C. fasciculata germplasm collection fall into four clusters with admixture among them. After correcting for outliers, our analysis shows two primary groups across Eastern and Central North America. To better understand the population biology of this species, further sampling of the full range of this widespread species is needed across North America, as well as the development of a larger set of markers providing denser coverage of the genome. Further sampling will help clarify geographical relationships in this widespread temperate species. Electronic supplementary material The online version of this article (10.1186/s13104-019-4152-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erika Bueno
- Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | | | - Sonja L Maki
- Biology and Cognitive Science Department, Carleton College, Northfield, MN, USA.,Plant and Earth Science Department, University of Wisconsin-River Falls, River Falls, WI, USA
| | | | - Susan Singer
- Biology and Cognitive Science Department, Carleton College, Northfield, MN, USA.,Department of Biology, Rollins College, Winter Park, FL, USA
| |
Collapse
|
11
|
Szczepaniak A, Książkiewicz M, Podkowiński J, Czyż KB, Figlerowicz M, Naganowska B. Legume Cytosolic and Plastid Acetyl-Coenzyme-A Carboxylase Genes Differ by Evolutionary Patterns and Selection Pressure Schemes Acting before and after Whole-Genome Duplications. Genes (Basel) 2018; 9:genes9110563. [PMID: 30469317 PMCID: PMC6265850 DOI: 10.3390/genes9110563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
Acetyl-coenzyme A carboxylase (ACCase, E.C.6.4.1.2) catalyzes acetyl-coenzyme A carboxylation to malonyl coenzyme A. Plants possess two distinct ACCases differing by cellular compartment and function. Plastid ACCase contributes to de novo fatty acid synthesis, whereas cytosolic enzyme to the synthesis of very long chain fatty acids, phytoalexins, flavonoids, and anthocyanins. The narrow leafed lupin (Lupinus angustifolius L.) represents legumes, a plant family which evolved by whole-genome duplications (WGDs). The study aimed on the contribution of these WGDs to the multiplication of ACCase genes and their further evolutionary patterns. The molecular approach involved bacterial artificial chromosome (BAC) library screening, fluorescent in situ hybridization, linkage mapping, and BAC sequencing. In silico analysis encompassed sequence annotation, comparative mapping, selection pressure calculation, phylogenetic inference, and gene expression profiling. Among sequenced legumes, the highest number of ACCase genes was identified in lupin and soybean. The most abundant plastid ACCase subunit genes were accB. ACCase genes in legumes evolved by WGDs, evidenced by shared synteny and Bayesian phylogenetic inference. Transcriptional activity of almost all copies was confirmed. Gene duplicates were conserved by strong purifying selection, however, positive selection occurred in Arachis (accB2) and Lupinus (accC) lineages, putatively predating the WGD event(s). Early duplicated accA and accB genes underwent transcriptional sub-functionalization.
Collapse
Affiliation(s)
- Anna Szczepaniak
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Jan Podkowiński
- Department of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland.
| | - Katarzyna B Czyż
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| | - Marek Figlerowicz
- Department of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland.
| |
Collapse
|
12
|
Battenberg K, Potter D, Tabuloc CA, Chiu JC, Berry AM. Comparative Transcriptomic Analysis of Two Actinorhizal Plants and the Legume Medicago truncatula Supports the Homology of Root Nodule Symbioses and Is Congruent With a Two-Step Process of Evolution in the Nitrogen-Fixing Clade of Angiosperms. FRONTIERS IN PLANT SCIENCE 2018; 9:1256. [PMID: 30349546 PMCID: PMC6187967 DOI: 10.3389/fpls.2018.01256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/08/2018] [Indexed: 05/18/2023]
Abstract
Root nodule symbiosis (RNS) is a symbiotic interaction established between angiosperm hosts and nitrogen-fixing soil bacteria in specialized organs called root nodules. The host plants provide photosynthate and the microsymbionts supply fixed nitrogen. The origin of RNS represents a major evolutionary event in the angiosperms, and understanding the genetic underpinnings of this event is of major economic and agricultural importance. Plants that engage in RNS are restricted to a single angiosperm clade known as the nitrogen-fixing clade (NFC), yet occur in multiple lineages scattered within the NFC. It has been postulated that RNS evolved in two steps: a gain-of-predisposition event occurring at the base of the NFC, followed by a gain-of-function event in each host plant lineage. Here, we first explore the premise that RNS has evolved from a single common background, and then we explore whether a two-step process better explains the evolutionary origin of RNS than either a single-step process, or multiple origins. We assembled the transcriptomes of root and nodule of two actinorhizal plants, Ceanothus thyrsiflorus and Datisca glomerata. Together with the corresponding published transcriptomes of the model legume Medicago truncatula, the gene expression patterns in roots and nodules were compared across the three lineages. We found that orthologs of many genes essential for RNS in the model legumes are expressed in all three lineages, and that the overall nodule gene expression patterns were more similar to each other than expected by random chance, a finding that supports a common evolutionary background for RNS shared by the three lineages. Moreover, phylogenetic analyses suggested that a substantial portion of the genes experiencing selection pressure changes at the base of the NFC also experienced additional changes at the base of each host plant lineage. Our results (1) support the occurrence of an event that led to RNS at the base of the NFC, and (2) suggest a subsequent change in each lineage, most consistent with a two-step origin of RNS. Among several conserved functions identified, strigolactone-related genes were down-regulated in nodules of all three species, suggesting a shared function similar to that shown for arbuscular mycorrhizal symbioses.
Collapse
Affiliation(s)
- Kai Battenberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Daniel Potter
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Joanna C. Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Alison M. Berry
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Liang Z, Schnable JC. Functional Divergence between Subgenomes and Gene Pairs after Whole Genome Duplications. MOLECULAR PLANT 2018; 11:388-397. [PMID: 29275166 DOI: 10.1016/j.molp.2017.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
Gene loss following whole genome duplication (WGD) is often biased, with one subgenome retaining more ancestral genes and the other sustaining more gene deletions. While bias toward the greater expression of gene copies on one subgenome can explain bias in gene loss, this raises the question to what drives differences in gene expression levels between subgenomes. Differences in chromatin modifications and epigenetic markers between subgenomes in several model species are now being identified, providing an explanation for bias in gene expression between subgenomes. WGDs can be classified into duplications with higher, biased gene loss and bias in gene expression between subgenomes versus those with lower, unbiased rates of gene loss and an absence of detectable bias between subgenomes; however, the originally proposed link between these two classes and whether WGD results from an allo- or autopolyploid event is inconsistent with recent data from the allopolyploid Capsella bursa-pastoris. The gene balance hypothesis can explain bias in the functional categories of genes retained following WGD, the difference in gene loss rates between unbiased and biased WGDs, and how plant genomes have avoided being overrun with genes encoding dose-sensitive subunits of multiprotein complexes. Comparisons of gene expression patterns between retained transcription factor pairs in maize suggest the high degree of retention for WGD-derived pairs of transcription factors may instead be explained by the older duplication-degeneration-complementation model.
Collapse
Affiliation(s)
- Zhikai Liang
- Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - James C Schnable
- Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| |
Collapse
|
14
|
Forrester NJ, Ashman TL. The direct effects of plant polyploidy on the legume-rhizobia mutualism. ANNALS OF BOTANY 2018; 121:209-220. [PMID: 29182713 PMCID: PMC5808787 DOI: 10.1093/aob/mcx121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/08/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Polyploidy is known to significantly alter plant genomes, phenotypes and interactions with the abiotic environment, yet the impacts of polyploidy on plant-biotic interactions are less well known. A particularly important plant-biotic interaction is the legume-rhizobia mutualism, in which rhizobia fix atmospheric nitrogen in exchange for carbon provided by legume hosts. This mutualism regulates nutrient cycles in natural ecosystems and provides nitrogen to agricultural environments. Despite the ecological, evolutionary and agricultural importance of plant polyploidy and the legume-rhizobia mutualism, it is not yet fully understood whether plant polyploidy directly alters mutualism traits or the consequences on plant growth. SCOPE The aim was to propose a conceptual framework to understand how polyploidy might directly enhance the quantity and quality of rhizobial symbionts hosted by legume plants, resulting in increased host access to fixed nitrogen (N). Mechanistic hypotheses have been devised to examine how polyploidy can directly alter traits that impact the quantity (e.g. nodule number, nodule size, terminal bacteroid differentiation) and quality of symbionts (e.g. nodule environment, partner choice, host sanctions). To evaluate these hypotheses, an exhaustive review of studies testing the effects of plant polyploidy on the mutualism was conducted. In doing so, overall trends were synthesized, highlighting the limited understanding of the mechanisms that underlie variation in results achieved thus far, revealing striking gaps in knowledge and uncovering areas ripe for future research. CONCLUSIONS Plant polyploidy can immediately alter nodule size, N fixation rate and the identity of rhizobial symbionts hosted by polyploid legumes, but many of the mechanistic hypotheses proposed here, such as bacteroid number and enhancements of the nodule environment, remain unexplored. Although current evidence supports a role of plant polyploidy in enhancing key aspects of the legume-rhizobia mutualism, the underlying mechanisms and effects on host benefit from the mutualism remain unresolved.
Collapse
Affiliation(s)
- Nicole J Forrester
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- For correspondence. E-mail
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Rubenach AJS, Hecht V, Vander Schoor JK, Liew LC, Aubert G, Burstin J, Weller JL. EARLY FLOWERING3 Redundancy Fine-Tunes Photoperiod Sensitivity. PLANT PHYSIOLOGY 2017; 173:2253-2264. [PMID: 28202598 PMCID: PMC5373058 DOI: 10.1104/pp.16.01738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/13/2017] [Indexed: 05/07/2023]
Abstract
Three pea (Pisum sativum) loci controlling photoperiod sensitivity, HIGH RESPONSE (HR), DIE NEUTRALIS (DNE), and STERILE NODES (SN), have recently been shown to correspond to orthologs of Arabidopsis (Arabidopsis thaliana) circadian clock genes EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO, respectively. A fourth pea locus, PHOTOPERIOD (PPD), also contributes to the photoperiod response in a similar manner to SN and DNE, and recessive ppd mutants on a spring-flowering hr mutant background show early, photoperiod-insensitive flowering. However, the molecular identity of PPD has so far remained elusive. Here, we show that the PPD locus also has a role in maintenance of diurnal and circadian gene expression rhythms and identify PPD as an ELF3 co-ortholog, termed ELF3b Genetic interactions between pea ELF3 genes suggest that loss of PPD function does not affect flowering time in the presence of functional HR, whereas PPD can compensate only partially for the lack of HR These results provide an illustration of how gene duplication and divergence can generate potential for the emergence of more subtle variations in phenotype that may be adaptively significant.
Collapse
Affiliation(s)
- Andrew J S Rubenach
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (A.J.S.R., V.H., J.K.V., L.C.L., J.L.W.); and
- INRA, UMR1347 Agroécologie, F-21065, Dijon, France (G.A., J.B.)
| | - Valérie Hecht
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (A.J.S.R., V.H., J.K.V., L.C.L., J.L.W.); and
- INRA, UMR1347 Agroécologie, F-21065, Dijon, France (G.A., J.B.)
| | - Jacqueline K Vander Schoor
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (A.J.S.R., V.H., J.K.V., L.C.L., J.L.W.); and
- INRA, UMR1347 Agroécologie, F-21065, Dijon, France (G.A., J.B.)
| | - Lim Chee Liew
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (A.J.S.R., V.H., J.K.V., L.C.L., J.L.W.); and
- INRA, UMR1347 Agroécologie, F-21065, Dijon, France (G.A., J.B.)
| | - Gregoire Aubert
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (A.J.S.R., V.H., J.K.V., L.C.L., J.L.W.); and
- INRA, UMR1347 Agroécologie, F-21065, Dijon, France (G.A., J.B.)
| | - Judith Burstin
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (A.J.S.R., V.H., J.K.V., L.C.L., J.L.W.); and
- INRA, UMR1347 Agroécologie, F-21065, Dijon, France (G.A., J.B.)
| | - James L Weller
- School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (A.J.S.R., V.H., J.K.V., L.C.L., J.L.W.); and
- INRA, UMR1347 Agroécologie, F-21065, Dijon, France (G.A., J.B.)
| |
Collapse
|
16
|
Donkpegan ASL, Doucet JL, Migliore J, Duminil J, Dainou K, Piñeiro R, Wieringa JJ, Champluvier D, Hardy OJ. Evolution in African tropical trees displaying ploidy-habitat association: The genus Afzelia (Leguminosae). Mol Phylogenet Evol 2016; 107:270-281. [PMID: 27825871 DOI: 10.1016/j.ympev.2016.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 10/26/2016] [Accepted: 11/04/2016] [Indexed: 11/30/2022]
Abstract
Polyploidy has rarely been documented in rain forest trees but it has recently been found in African species of the genus Afzelia (Leguminosae), which is composed of four tetraploid rain forest species and two diploid dry forest species. The genus Afzelia thus provides an opportunity to examine how and when polyploidy and habitat shift occurred in Africa, and whether they are associated. In this study, we combined three plastid markers (psbA, trnL, ndhF), two nuclear markers (ribosomal ITS and the single-copy PEPC E7 gene), plastomes (obtained by High Throughput Sequencing) and morphological traits, with an extensive taxonomic and geographic sampling to explore the evolutionary history of Afzelia. Both nuclear DNA and morphological vegetative characters separated diploid from tetraploid lineages. Although the two African diploid species were well differentiated genetically and morphologically, the relationships among the tetraploid species were not resolved. In contrast to the nuclear markers, plastid markers revealed that one of the diploid species forms a well-supported clade with the tetraploids, suggesting historical hybridisation, possibly in relation with genome duplication (polyploidization) and habitat shift from dry to rain forests. Molecular dating based on fossil-anchored gene phylogenies indicates that extant Afzelia started diverging c. 14.5 or 20Ma while extant tetraploid species started diverging c. 7.0 or 9.4Ma according to plastid and nuclear DNA, respectively. Additional studies of tropical polyploid plants are needed to assess whether the ploidy-habitat association observed in African Afzelia would reflect a role of polyploidization in niche divergence in the tropics.
Collapse
Affiliation(s)
- Armel S L Donkpegan
- TERRA Research Centre, Central African Forests, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium; Evolutionary Biology and Ecology Unit CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, 50 avenue F. D. Roosevelt, B-1050 Brussels, Belgium.
| | - Jean-Louis Doucet
- TERRA Research Centre, Central African Forests, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium; BIOSE, Management of Forest Resources, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030, Belgium.
| | - Jérémy Migliore
- Evolutionary Biology and Ecology Unit CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, 50 avenue F. D. Roosevelt, B-1050 Brussels, Belgium.
| | - Jérôme Duminil
- Evolutionary Biology and Ecology Unit CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, 50 avenue F. D. Roosevelt, B-1050 Brussels, Belgium; Bioversity International, c/o CIFOR Central Africa Regional Office P.O. Box 2008 Messa, Yaoundé, Cameroon; Institut de Recherche pour le Développement, UMR-DIADE, BP 64501, 34394 Montpellier, France.
| | - Kasso Dainou
- BIOSE, Management of Forest Resources, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030, Belgium; Nature+ asbl, Winstar Park, Rue Provinciale 62, 1301, Wavre, Belgium; Université d'Agriculture de Kétou, BP: 43, Kétou, Benin.
| | - Rosalía Piñeiro
- Conservation, Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS, Richmond, Surrey, UK.
| | - Jan J Wieringa
- Naturalis Biodiversity Centre, National Herbarium of The Netherlands, Darwinweg 2, 2333 CR Leiden, The Netherlands.
| | | | - Olivier J Hardy
- Evolutionary Biology and Ecology Unit CP 160/12, Faculté des Sciences, Université Libre de Bruxelles, 50 avenue F. D. Roosevelt, B-1050 Brussels, Belgium.
| |
Collapse
|
17
|
Książkiewicz M, Rychel S, Nelson MN, Wyrwa K, Naganowska B, Wolko B. Expansion of the phosphatidylethanolamine binding protein family in legumes: a case study of Lupinus angustifolius L. FLOWERING LOCUS T homologs, LanFTc1 and LanFTc2. BMC Genomics 2016; 17:820. [PMID: 27769166 PMCID: PMC5073747 DOI: 10.1186/s12864-016-3150-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Arabidopsis FLOWERING LOCUS T (FT) gene, a member of the phosphatidylethanolamine binding protein (PEBP) family, is a major controller of flowering in response to photoperiod, vernalization and light quality. In legumes, FT evolved into three, functionally diversified clades, FTa, FTb and FTc. A milestone achievement in narrow-leafed lupin (Lupinus angustifolius L.) domestication was the loss of vernalization responsiveness at the Ku locus. Recently, one of two existing L. angustifolius homologs of FTc, LanFTc1, was revealed to be the gene underlying Ku. It is the first recorded involvement of an FTc homologue in vernalization. The evolutionary basis of this phenomenon in lupin has not yet been deciphered. RESULTS Bacterial artificial chromosome (BAC) clones carrying LanFTc1 and LanFTc2 genes were localized in different mitotic chromosomes and constituted sequence-specific landmarks for linkage groups NLL-10 and NLL-17. BAC-derived superscaffolds containing LanFTc genes revealed clear microsyntenic patterns to genome sequences of nine legume species. Superscaffold-1 carrying LanFTc1 aligned to regions encoding one or more FT-like genes whereas superscaffold-2 mapped to a region lacking such a homolog. Comparative mapping of the L. angustifolius genome assembly anchored to linkage map localized superscaffold-1 in the middle of a 15 cM conserved, collinear region. In contrast, superscaffold-2 was found at the edge of a 20 cM syntenic block containing highly disrupted collinearity at the LanFTc2 locus. 118 PEBP-family full-length homologs were identified in 10 legume genomes. Bayesian phylogenetic inference provided novel evidence supporting the hypothesis that whole-genome and tandem duplications contributed to expansion of PEBP-family genes in legumes. Duplicated genes were subjected to strong purifying selection. Promoter analysis of FT genes revealed no statistically significant sequence similarity between duplicated copies; only RE-alpha and CCAAT-box motifs were found at conserved positions and orientations. CONCLUSIONS Numerous lineage-specific duplications occurred during the evolution of legume PEBP-family genes. Whole-genome duplications resulted in the origin of subclades FTa, FTb and FTc and in the multiplication of FTa and FTb copy number. LanFTc1 is located in the region conserved among all main lineages of Papilionoideae. LanFTc1 is a direct descendant of ancestral FTc, whereas LanFTc2 appeared by subsequent duplication.
Collapse
Affiliation(s)
- Michał Książkiewicz
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Sandra Rychel
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Matthew N Nelson
- Natural Capital and Plant Health, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, RH17 6TN, UK.,School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.,The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Katarzyna Wyrwa
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Barbara Naganowska
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Bogdan Wolko
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
18
|
Abstract
Polyploidy-the increase in the number of whole chromosome sets-is an important evolutionary force in eukaryotes. Polyploidy is well recognized throughout the evolutionary history of plants and animals, where several ancient events have been hypothesized to be drivers of major evolutionary radiations. However, fungi provide a striking contrast: while numerous recent polyploids have been documented, ancient fungal polyploidy is virtually unknown. We present a survey of known fungal polyploids that confirms the absence of ancient fungal polyploidy events. Three hypotheses may explain this finding. First, ancient fungal polyploids are indeed rare, with unique aspects of fungal biology providing similar benefits without genome duplication. Second, fungal polyploids are not successful in the long term, leading to few extant species derived from ancient polyploidy events. Third, ancient fungal polyploids are difficult to detect, causing the real contribution of polyploidy to fungal evolution to be underappreciated. We consider each of these hypotheses in turn and propose that failure to detect ancient events is the most likely reason for the lack of observed ancient fungal polyploids. We examine whether existing data can provide evidence for previously unrecognized ancient fungal polyploidy events but discover that current resources are too limited. We contend that establishing whether unrecognized ancient fungal polyploidy events exist is important to ascertain whether polyploidy has played a key role in the evolution of the extensive complexity and diversity observed in fungi today and, thus, whether polyploidy is a driver of evolutionary diversifications across eukaryotes. Therefore, we conclude by suggesting ways to test the hypothesis that there are unrecognized polyploidy events in the deep evolutionary history of the fungi.
Collapse
|
19
|
Foo E, Heynen EMH, Reid JB. Common and divergent shoot-root signalling in legume symbioses. THE NEW PHYTOLOGIST 2016; 210:643-56. [PMID: 26661110 DOI: 10.1111/nph.13779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The role of shoot-root signals in the control of nodulation and arbuscular mycorrhizal (AM) development were examined in the divergent legume species pea and blue lupin. These species were chosen as pea can host both symbionts, whereas lupin can nodulate but has lost the ability to form AM. Intergeneric grafts between lupin and pea enabled examination of key long-distance signals in these symbioses. The role of strigolactones, auxin and elements of the autoregulation of nodulation (AON) pathway were investigated. Grafting studies were combined with loss-of-function mutants to monitor symbioses (nodulation, AM) and hormone effects (levels, gene expression and application studies). Lupin shoots suppress AM colonization in pea roots, in part by downregulating strigolactone exudation involving reduced expression of the strigolactone biosynthesis gene PsCCD8. By contrast, lupin shoots enhance pea nodulation, independently of strigolactones, possibly due to a partial incompatibility in AON shoot-root signalling between pea and lupin. This study highlights that nodulation and AM symbioses can be regulated independently and this may be due to long-distance signals, a phenomenon we were able to uncover by working with divergent legumes. We also identify a role for strigolactone exudation in determining the status of non-AM hosts.
Collapse
Affiliation(s)
- Eloise Foo
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Eveline M H Heynen
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
- Applied Biology, HAS University of Applied Sciences, 5200 MA, 's-Hertogenbosch, the Netherlands
| | - James B Reid
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
20
|
Ramos G, de Lima HC, Prenner G, de Queiroz LP, Zartman CE, Cardoso D. Molecular systematics of the Amazonian genus Aldina, a phylogenetically enigmatic ectomycorrhizal lineage of papilionoid legumes. Mol Phylogenet Evol 2016; 97:11-18. [DOI: 10.1016/j.ympev.2015.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|
21
|
Wang Z, Cheng K, Wan L, Yan L, Jiang H, Liu S, Lei Y, Liao B. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics 2015; 16:1053. [PMID: 26651343 PMCID: PMC4676100 DOI: 10.1186/s12864-015-2258-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/30/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Plant bZIP proteins characteristically harbor a highly conserved bZIP domain with two structural features: a DNA-binding basic region and a leucine (Leu) zipper dimerization region. They have been shown to be diverse transcriptional regulators, playing crucial roles in plant development, physiological processes, and biotic/abiotic stress responses. Despite the availability of six completely sequenced legume genomes, a comprehensive investigation of bZIP family members in legumes has yet to be presented. RESULTS In this study, we identified 428 bZIP genes encoding 585 distinct proteins in six legumes, Glycine max, Medicago truncatula, Phaseolus vulgaris, Cicer arietinum, Cajanus cajan, and Lotus japonicus. The legume bZIP genes were categorized into 11 groups according to their phylogenetic relationships with genes from Arabidopsis. Four kinds of intron patterns (a-d) within the basic and hinge regions were defined and additional conserved motifs were identified, both presenting high group specificity and supporting the group classification. We predicted the DNA-binding patterns and the dimerization properties, based on the characteristic features in the basic and hinge regions and the Leu zipper, respectively, which indicated that some highly conserved amino acid residues existed across each major group. The chromosome distribution and analysis for WGD-derived duplicated blocks revealed that the legume bZIP genes have expanded mainly by segmental duplication rather than tandem duplication. Expression data further revealed that the legume bZIP genes were expressed constitutively or in an organ-specific, development-dependent manner playing roles in multiple seed developmental stages and tissues. We also detected several key legume bZIP genes involved in drought- and salt-responses by comparing fold changes of expression values in drought-stressed or salt-stressed roots and leaves. CONCLUSIONS In summary, this genome-wide identification, characterization and expression analysis of legume bZIP genes provides valuable information for understanding the molecular functions and evolution of the legume bZIP transcription factor family, and highlights potential legume bZIP genes involved in regulating tissue development and abiotic stress responses.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Ke Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Liyun Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
22
|
Kim JH, Lee C, Hyung D, Jo YJ, Park JS, Cook DR, Choi HK. CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes. PLANT METHODS 2015; 11:30. [PMID: 25908937 PMCID: PMC4407554 DOI: 10.1186/s13007-015-0074-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Genetic markers are tools that can facilitate molecular breeding, even in species lacking genomic resources. An important class of genetic markers is those based on orthologous genes, because they can guide hypotheses about conserved gene function, a situation that is well documented for a number of agronomic traits. For under-studied species a key bottleneck in gene-based marker development is the need to develop molecular tools (e.g., oligonucleotide primers) that reliably access genes with orthology to the genomes of well-characterized reference species. RESULTS Here we report an efficient platform for the design of cross-species gene-derived markers in legumes. The automated platform, named CSGM Designer (URL: http://tgil.donga.ac.kr/CSGMdesigner), facilitates rapid and systematic design of cross-species genic markers. The underlying database is composed of genome data from five legume species whose genomes are substantially characterized. Use of CSGM is enhanced by graphical displays of query results, which we describe as "circular viewer" and "search-within-results" functions. CSGM provides a virtual PCR representation (eHT-PCR) that predicts the specificity of each primer pair simultaneously in multiple genomes. CSGM Designer output was experimentally validated for the amplification of orthologous genes using 16 genotypes representing 12 crop and model legume species, distributed among the galegoid and phaseoloid clades. Successful cross-species amplification was obtained for 85.3% of PCR primer combinations. CONCLUSION CSGM Designer spans the divide between well-characterized crop and model legume species and their less well-characterized relatives. The outcome is PCR primers that target highly conserved genes for polymorphism discovery, enabling functional inferences and ultimately facilitating trait-associated molecular breeding.
Collapse
Affiliation(s)
- Jin-Hyun Kim
- />Department of Medical Bioscience, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| | - Chaeyoung Lee
- />Department of Medical Bioscience, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| | - Daejin Hyung
- />Department of Computer Science, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| | - Ye-Jin Jo
- />Department of Genetic Engineering, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| | - Joo-Seok Park
- />Department of Applied Bioscience, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| | - Douglas R Cook
- />Department of Plant Pathology, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Hong-Kyu Choi
- />Department of Genetic Engineering, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| |
Collapse
|
23
|
Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution. Appl Environ Microbiol 2015; 81:3049-61. [PMID: 25710371 DOI: 10.1128/aem.04253-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/17/2015] [Indexed: 11/20/2022] Open
Abstract
Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophytic bradyrhizobia were isolated on the basis of oligotrophic properties, selective medium, and nodulation on siratro (Macroptilium atropurpureum). Six bradyrhizobial strains were obtained exclusively from rice grown in a crop rotational system. The isolates were separated into photosynthetic bradyrhizobia (PB) and nonphotosynthetic bradyrhizobia (non-PB). Thai bradyrhizobial strains promoted rice growth of Thai rice cultivars better than the Japanese bradyrhizobial strains. This implies that the rice cultivars possess characteristics that govern rice-bacterium associations. To examine whether leguminous plants in a rice plantation system support the persistence of rice endophytic bradyrhizobia, isolates were tested for legume nodulation. All PB strains formed symbioses with Aeschynomene indica and Aeschynomene evenia. On the other hand, non-PB strains were able to nodulate Aeschynomene americana, Vigna radiata, and M. atropurpureum but unable to nodulate either A. indica or A. evenia. Interestingly, the nodABC genes of all of these bradyrhizobial strains seem to exhibit low levels of similarity to those of Bradyrhizobium diazoefficiens USDA110 and Bradyrhizobium sp. strain ORS285. From these results, we discuss the evolution of the plant-bradyrhizobium association, including nonlegumes, in terms of photosynthetic lifestyle and nod-independent interactions.
Collapse
|
24
|
Odee DW, Wilson J, Omondi S, Perry A, Cavers S. Rangewide ploidy variation and evolution in Acacia senegal: a north-south divide? AOB PLANTS 2015; 7:plv011. [PMID: 25680798 PMCID: PMC4363475 DOI: 10.1093/aobpla/plv011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Knowledge of rangewide variation in DNA content and ploidy level may be valuable in understanding the evolutionary history of a species. Recent studies of Acacia senegal report diploids and occasional tetraploids in the Sudano-Sahelian region of sub-Saharan Africa, but nothing is known about the overall extent of DNA ploidy variation within the species. In this study, we determine the DNA content and ploidy level of A. senegal across its native range, and explore whether the variation is related to its evolutionary and colonization history. We used propidium iodide flow cytometry (FCM) to estimate DNA content (2C value) and infer ploidy in 157 individuals from 54 populations on various tissues, using seeds, fresh leaves, dried leaves and twigs and herbarium specimens. The mean 2C DNA (pg ± s.d.) contents detected were 1.47 ± 0.09, 2.12 ± 0.02, 2.89 ± 0.12, and a single individual with 4.51 pg, corresponding to a polyploid series of diploid, triploid, tetraploid and hexaploid individuals. Diploids were confirmed by chromosome counts (2n = 2x = 26). Most populations (90.7 %) were of single ploidy level, while mixed ploidy populations (9.3 %) comprising mostly diploids (2x+3x, 2x+4x and 2x+6x) were restricted to the Sudano-Sahelian and Indian subcontinent regions, its northern range. The species is predominantly diploid, and no mixed ploidy populations were detected in east and southern Africa, its southern range. The geographic pattern of ploidy variation in conjunction with existing phylogeographic and phylogenetic data of the species suggests that polyploids have occurred multiple times in its evolutionary and recent colonization history, including contemporary ecological timescales. The successful use of external tissues of dried twigs in FCM is new, and presents the opportunity to study numerous other dryland woody species.
Collapse
Affiliation(s)
- David W Odee
- Kenya Forestry Research Institute, PO Box 20412-00200, Nairobi, Kenya Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Julia Wilson
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Stephen Omondi
- Kenya Forestry Research Institute, PO Box 20412-00200, Nairobi, Kenya
| | - Annika Perry
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Stephen Cavers
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| |
Collapse
|
25
|
Vanneste K, Maere S, Van de Peer Y. Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0353. [PMID: 24958926 PMCID: PMC4071526 DOI: 10.1098/rstb.2013.0353] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genome sequencing has demonstrated that besides frequent small-scale duplications, large-scale duplication events such as whole genome duplications (WGDs) are found on many branches of the evolutionary tree of life. Especially in the plant lineage, there is evidence for recurrent WGDs, and the ancestor of all angiosperms was in fact most likely a polyploid species. The number of WGDs found in sequenced plant genomes allows us to investigate questions about the roles of WGDs that were hitherto impossible to address. An intriguing observation is that many plant WGDs seem associated with periods of increased environmental stress and/or fluctuations, a trend that is evident for both present-day polyploids and palaeopolyploids formed around the Cretaceous–Palaeogene (K–Pg) extinction at 66 Ma. Here, we revisit the WGDs in plants that mark the K–Pg boundary, and discuss some specific examples of biological innovations and/or diversifications that may be linked to these WGDs. We review evidence for the processes that could have contributed to increased polyploid establishment at the K–Pg boundary, and discuss the implications on subsequent plant evolution in the Cenozoic.
Collapse
Affiliation(s)
- Kevin Vanneste
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Genomics Research Institute (GRI), University of Pretoria, 0028 Pretoria, South Africa
| |
Collapse
|
26
|
Przysiecka Ł, Książkiewicz M, Wolko B, Naganowska B. Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L.) genome. FRONTIERS IN PLANT SCIENCE 2015; 6:268. [PMID: 25954293 PMCID: PMC4404975 DOI: 10.3389/fpls.2015.00268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/03/2015] [Indexed: 05/20/2023]
Abstract
Lupins, like other legumes, have a unique biosynthesis scheme of 5-deoxy-type flavonoids and isoflavonoids. A key enzyme in this pathway is chalcone isomerase (CHI), a member of CHI-fold protein family, encompassing subfamilies of CHI1, CHI2, CHI-like (CHIL), and fatty acid-binding (FAP) proteins. Here, two Lupinus angustifolius (narrow-leafed lupin) CHILs, LangCHIL1 and LangCHIL2, were identified and characterized using DNA fingerprinting, cytogenetic and linkage mapping, sequencing and expression profiling. Clones carrying CHIL sequences were assembled into two contigs. Full gene sequences were obtained from these contigs, and mapped in two L. angustifolius linkage groups by gene-specific markers. Bacterial artificial chromosome fluorescence in situ hybridization approach confirmed the localization of two LangCHIL genes in distinct chromosomes. The expression profiles of both LangCHIL isoforms were very similar. The highest level of transcription was in the roots of the third week of plant growth; thereafter, expression declined. The expression of both LangCHIL genes in leaves and stems was similar and low. Comparative mapping to reference legume genome sequences revealed strong syntenic links; however, LangCHIL2 contig had a much more conserved structure than LangCHIL1. LangCHIL2 is assumed to be an ancestor gene, whereas LangCHIL1 probably appeared as a result of duplication. As both copies are transcriptionally active, questions arise concerning their hypothetical functional divergence. Screening of the narrow-leafed lupin genome and transcriptome with CHI-fold protein sequences, followed by Bayesian inference of phylogeny and cross-genera synteny survey, identified representatives of all but one (CHI1) main subfamilies. They are as follows: two copies of CHI2, FAPa2 and CHIL, and single copies of FAPb and FAPa1. Duplicated genes are remnants of whole genome duplication which is assumed to have occurred after the divergence of Lupinus, Arachis, and Glycine.
Collapse
Affiliation(s)
- Łucja Przysiecka
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz UniversityPoznań, Poland
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
- *Correspondence: Michał Książkiewicz, Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of SciencesPoznań, Poland
| |
Collapse
|
27
|
Cannon SB, McKain MR, Harkess A, Nelson MN, Dash S, Deyholos MK, Peng Y, Joyce B, Stewart CN, Rolf M, Kutchan T, Tan X, Chen C, Zhang Y, Carpenter E, Wong GKS, Doyle JJ, Leebens-Mack J. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol 2014; 32:193-210. [PMID: 25349287 DOI: 10.1093/molbev/msu296] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. The history of WGD has also not been established for legume lineages outside the Papilionoideae. We investigated the presence and timing of WGDs in the legumes by querying thousands of phylogenetic trees constructed from transcriptome and genome data from 20 diverse legumes and 17 outgroup species. The timing of duplications in the gene trees indicates that the papilionoid WGD occurred in the common ancestor of all papilionoids. The earliest diverging lineages of the Papilionoideae include both nodulating taxa, such as the genistoids (e.g., lupin), dalbergioids (e.g., peanut), phaseoloids (e.g., beans), and galegoids (=Hologalegina, e.g., clovers), and clades with nonnodulating taxa including Xanthocercis and Cladrastis (evaluated in this study). We also found evidence for several independent WGDs near the base of other major legume lineages, including the Mimosoideae-Cassiinae-Caesalpinieae (MCC), Detarieae, and Cercideae clades. Nodulation is found in the MCC and papilionoid clades, both of which experienced ancestral WGDs. However, there are numerous nonnodulating lineages in both clades, making it unclear whether the phylogenetic distribution of nodulation is due to independent gains or a single origin followed by multiple losses.
Collapse
Affiliation(s)
- Steven B Cannon
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA
| | - Michael R McKain
- Department of Plant Biology, University of Georgia Donald Danforth Plant Sciences Center, St Louis, MO
| | - Alex Harkess
- Department of Plant Biology, University of Georgia
| | - Matthew N Nelson
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia The School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sudhansu Dash
- Virtual Reality Application Center, Iowa State University
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yanhui Peng
- Department of Plant Sciences, The University of Tennessee
| | - Blake Joyce
- Department of Plant Sciences, The University of Tennessee
| | | | - Megan Rolf
- Donald Danforth Plant Sciences Center, St Louis, MO
| | - Toni Kutchan
- Donald Danforth Plant Sciences Center, St Louis, MO
| | - Xuemei Tan
- BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China
| | - Cui Chen
- BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China
| | - Yong Zhang
- BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China
| | - Eric Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Jeff J Doyle
- L. H. Bailey Hortorium, Department of Plant Biology, Cornell University
| | | |
Collapse
|
28
|
Lin Y, Cheng Y, Jin J, Jin X, Jiang H, Yan H, Cheng B. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. PLoS One 2014; 9:e102825. [PMID: 25047803 PMCID: PMC4105503 DOI: 10.1371/journal.pone.0102825] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.
Collapse
Affiliation(s)
- Yongxiang Lin
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Ying Cheng
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Jing Jin
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaolei Jin
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Haiyang Jiang
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Hanwei Yan
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Beijiu Cheng
- Key Lab of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
29
|
Moghe GD, Shiu SH. The causes and molecular consequences of polyploidy in flowering plants. Ann N Y Acad Sci 2014; 1320:16-34. [PMID: 24903334 DOI: 10.1111/nyas.12466] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polyploidy is an important force shaping plant genomes. All flowering plants are descendants of an ancestral polyploid species, and up to 70% of extant vascular plant species are believed to be recent polyploids. Over the past century, a significant body of knowledge has accumulated regarding the prevalence and ecology of polyploid plants. In this review, we summarize our current understanding of the causes and molecular consequences of polyploidization in angiosperms. We also provide a discussion on the relationships between polyploidy and adaptation and suggest areas where further research may provide a better understanding of polyploidy.
Collapse
|
30
|
Bombarely A, Coate JE, Doyle JJ. Mining transcriptomic data to study the origins and evolution of a plant allopolyploid complex. PeerJ 2014; 2:e391. [PMID: 24883252 PMCID: PMC4034613 DOI: 10.7717/peerj.391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/01/2014] [Indexed: 12/18/2022] Open
Abstract
Allopolyploidy combines two progenitor genomes in the same nucleus. It is a common speciation process, especially in plants. Deciphering the origins of polyploid species is a complex problem due to, among other things, extinct progenitors, multiple origins, gene flow between different polyploid populations, and loss of parental contributions through gene or chromosome loss. Among the perennial species of Glycine, the plant genus that includes the cultivated soybean (G. max), are eight allopolyploid species, three of which are studied here. Previous crossing studies and molecular systematic results from two nuclear gene sequences led to hypotheses of origin for these species from among extant diploid species. We use several phylogenetic and population genomics approaches to clarify the origins of the genomes of three of these allopolyploid species using single nucleotide polymorphism data and a guided transcriptome assembly. The results support the hypothesis that all three polyploid species are fixed hybrids combining the genomes of the two putative parents hypothesized on the basis of previous work. Based on mapping to the soybean reference genome, there appear to be no large regions for which one homoeologous contribution is missing. Phylogenetic analyses of 27 selected transcripts using a coalescent approach also are consistent with multiple origins for these allopolyploid species, and suggest that origins occurred within the last several hundred thousand years.
Collapse
Affiliation(s)
| | - Jeremy E Coate
- Department of Biology, Reed College , Portland, OR , USA
| | - Jeff J Doyle
- Department of Plant Biology, Cornell University , Ithaca, NY , USA
| |
Collapse
|
31
|
Kroc M, Koczyk G, Święcicki W, Kilian A, Nelson MN. New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1237-1249. [PMID: 24633641 DOI: 10.1007/s00122-014-2294-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
This is the first clear evidence of duplication and/or triplication of large chromosomal regions in a genome of a Genistoid legume, the most basal clade of Papilionoid legumes. Lupinus angustifolius L. (narrow-leafed lupin) is the most widely cultivated species of Genistoid legume, grown for its high-protein grain. As a member of this most basal clade of Papilionoid legumes, L. angustifolius serves as a useful model for exploring legume genome evolution. Here, we report an improved reference genetic map of L. angustifolius comprising 1207 loci, including 299 newly developed Diversity Arrays Technology markers and 54 new gene-based PCR markers. A comparison between the L. angustifolius and Medicago truncatula genomes was performed using 394 sequence-tagged site markers acting as bridging points between the two genomes. The improved L. angustifolius genetic map, the updated M. truncatula genome assembly and the increased number of bridging points between the genomes together substantially enhanced the resolution of synteny and chromosomal colinearity between these genomes compared to previous reports. While a high degree of syntenic fragmentation was observed that was consistent with the large evolutionary distance between the L. angustifolius and M. truncatula genomes, there were striking examples of conserved colinearity of loci between these genomes. Compelling evidence was found of large-scale duplication and/or triplication in the L. angustifolius genome, consistent with one or more ancestral polyploidy events.
Collapse
Affiliation(s)
- Magdalena Kroc
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479, Poznan, Poland
| | | | | | | | | |
Collapse
|
32
|
De Mita S, Streng A, Bisseling T, Geurts R. Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism. THE NEW PHYTOLOGIST 2014; 201:961-972. [PMID: 24400903 DOI: 10.1111/nph.12549] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/16/2013] [Indexed: 05/11/2023]
Abstract
The symbiosis between legumes and nitrogen-fixing rhizobia co-opted pre-existing endomycorrhizal features. In particular, both symbionts release lipo-chitooligosaccharides (LCOs) that are recognized by LysM-type receptor kinases. We investigated the evolutionary history of rhizobial LCO receptor genes MtLYK3-LjNFR1 to gain insight into the evolutionary origin of the rhizobial symbiosis. We performed a phylogenetic analysis integrating gene copies from nonlegumes and legumes, including the non-nodulating, phylogenetically basal legume Cercis chinensis. Signatures of differentiation between copies were investigated through patterns of molecular evolution. We show that two rounds of duplication preceded the evolution of the rhizobial symbiosis in legumes. Molecular evolution patterns indicate that the resulting three paralogous gene copies experienced different selective constraints. In particular, one copy maintained the ancestral function, and another specialized into perception of rhizobial LCOs. It has been suggested that legume LCO receptors evolved from a putative ancestral defense-related chitin receptor through the acquisition of two kinase motifs. However, the phylogenetic analysis shows that these domains are actually ancestral, suggesting that this scenario is unlikely. Our study underlines the evolutionary significance of gene duplication and subsequent neofunctionalization in MtLYK3-LjNFR1 genes. We hypothesize that their ancestor was more likely a mycorrhizal LCO receptor, than a defense-related receptor kinase.
Collapse
Affiliation(s)
- Stéphane De Mita
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
- INRA Nancy-Lorraine, UMR Interactions Arbres/Micro-organismes, 54380, Champenoux, France
| | - Arend Streng
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - René Geurts
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| |
Collapse
|
33
|
Aoki S, Ito M, Iwasaki W. From β- to α-proteobacteria: the origin and evolution of rhizobial nodulation genes nodIJ. Mol Biol Evol 2013; 30:2494-508. [PMID: 24030554 DOI: 10.1093/molbev/mst153] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although many α- and some β-proteobacterial species are symbiotic with legumes, the evolutionary origin of nitrogen-fixing nodulation remains unclear. We examined α- and β-proteobacteria whose genomes were sequenced using large-scale phylogenetic profiling and revealed the evolutionary origin of two nodulation genes. These genes, nodI and nodJ (nodIJ), play key roles in the secretion of Nod factors, which are recognized by legumes during nodulation. We found that only the nodulating β-proteobacteria, including the novel strains isolated in this study, possess both nodIJ and their paralogous genes (DRA-ATPase/permease genes). Contrary to the widely accepted scenario of the α-proteobacterial origin of rhizobia, our exhaustive phylogenetic analysis showed that the entire nodIJ clade is included in the clade of Burkholderiaceae DRA-ATPase/permease genes, that is, the nodIJ genes originated from gene duplication in a lineage of the β-proteobacterial family. After duplication, the evolutionary rates of nodIJ were significantly accelerated relative to those of homologous genes, which is consistent with their novel function in nodulation. The likelihood analyses suggest that this accelerated evolution is not associated with changes in either nonsynonymous/synonymous substitution rates or transition/transversion rates, but rather, in the GC content. Although the low GC content of the nodulation genes has been assumed to reflect past horizontal transfer events from donor rhizobial genomes with low GC content, no rhizobial genome with such low GC content has yet been found. Our results encourage a reconsideration of the origin of nodulation and suggest new perspectives on the role of the GC content of bacterial genes in functional adaptation.
Collapse
Affiliation(s)
- Seishiro Aoki
- Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | | |
Collapse
|
34
|
Li QG, Zhang L, Li C, Dunwell JM, Zhang YM. Comparative Genomics Suggests That an Ancestral Polyploidy Event Leads to Enhanced Root Nodule Symbiosis in the Papilionoideae. Mol Biol Evol 2013; 30:2602-11. [DOI: 10.1093/molbev/mst152] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Schubert M, Koteyeva NK, Zdyb A, Santos P, Voitsekhovskaja OV, Demchenko KN, Pawlowski K. Lignification of cell walls of infected cells in Casuarina glauca nodules that depend on symplastic sugar supply is accompanied by reduction of plasmodesmata number and narrowing of plasmodesmata. PHYSIOLOGIA PLANTARUM 2013; 147:524-40. [PMID: 22924772 DOI: 10.1111/j.1399-3054.2012.01685.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/05/2012] [Accepted: 06/24/2012] [Indexed: 05/03/2023]
Abstract
The oxygen protection system for the bacterial nitrogen-fixing enzyme complex nitrogenase in actinorhizal nodules of Casuarina glauca resembles that of legume nodules: infected cells contain large amounts of the oxygen-binding protein hemoglobin and are surrounded by an oxygen diffusion barrier. However, while in legume nodules infected cells are located in the central tissue, actinorhizal nodules are composed of modified lateral roots with infected cells in the expanded cortex. Since an oxygen diffusion barrier around the entire cortex would also block oxygen access to the central vascular system where it is required to provide energy for transport processes, here each individual infected cell is surrounded with an oxygen diffusion barrier. In order to assess the effect of these oxygen diffusion barriers on oxygen supply for energy production for transport processes, apoplastic and symplastic sugar transport pathways in C. glauca nodules were examined. The results support the idea that sugar transport to and within the nodule cortex relies to a large extent on the less energy-demanding symplastic mechanism. This is in line with the assumption that oxygen access to the nodule vascular system is substantially restricted. In spite of this dependence on symplastic transport processes to supply sugars to infected cells, plasmodesmal connections between infected cells, and to a lesser degree with uninfected cells, were reduced during the differentiation of infected cells.
Collapse
Affiliation(s)
- Maria Schubert
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Göttingen University, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang P, Fouracre J, Kelly S, Karki S, Gowik U, Aubry S, Shaw MK, Westhoff P, Slamet-Loedin IH, Quick WP, Hibberd JM, Langdale JA. Evolution of GOLDEN2-LIKE gene function in C(3) and C (4) plants. PLANTA 2013; 237:481-95. [PMID: 22968911 PMCID: PMC3555242 DOI: 10.1007/s00425-012-1754-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/26/2012] [Indexed: 05/03/2023]
Abstract
A pair of GOLDEN2-LIKE transcription factors is required for normal chloroplast development in land plant species that encompass the range from bryophytes to angiosperms. In the C(4) plant maize, compartmentalized function of the two GLK genes in bundle sheath and mesophyll cells regulates dimorphic chloroplast differentiation, whereas in the C(3) plants Physcomitrella patens and Arabidopsis thaliana the genes act redundantly in all photosynthetic cells. To assess whether the cell-specific function of GLK genes is unique to maize, we analyzed gene expression patterns in the C(4) monocot Sorghum bicolor and C(4) eudicot Cleome gynandra. Compartmentalized expression was observed in S. bicolor, consistent with the development of dimorphic chloroplasts in this species, but not in C. gynandra where bundle sheath and mesophyll chloroplasts are morphologically similar. The generation of single and double mutants demonstrated that GLK genes function redundantly in rice, as in other C(3) plants, despite the fact that GLK gene duplication in monocots preceded the speciation of rice, maize and sorghum. Together with phylogenetic analyses of GLK gene sequences, these data have allowed speculation on the evolutionary trajectory of GLK function. Based on current evidence, most species that retain single GLK genes belong to orders that contain only C(3) species. We therefore propose that the ancestral state is a single GLK gene, and hypothesize that GLK gene duplication enabled sub-functionalization, which in turn enabled cell-specific function in C(4) plants with dimorphic chloroplasts. In this scenario, GLK gene duplication preconditioned the evolution of C(4) physiology that is associated with chloroplast dimorphism.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1-3RB UK
| | - Jim Fouracre
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1-3RB UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1-3RB UK
| | | | - Udo Gowik
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sylvain Aubry
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2-3EA UK
| | - Michael K. Shaw
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd., Oxford, OX1-3RE UK
| | - Peter Westhoff
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | - Julian M. Hibberd
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2-3EA UK
| | - Jane A. Langdale
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1-3RB UK
| |
Collapse
|
37
|
Wang P, Fouracre J, Kelly S, Karki S, Gowik U, Aubry S, Shaw MK, Westhoff P, Slamet-Loedin IH, Quick WP, Hibberd JM, Langdale JA. Evolution of GOLDEN2-LIKE gene function in C(3) and C (4) plants. PLANTA 2013; 237:481-495. [PMID: 22968911 DOI: 10.1007/s00425-012-1754-3 [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/26/2012] [Indexed: 05/28/2023]
Abstract
A pair of GOLDEN2-LIKE transcription factors is required for normal chloroplast development in land plant species that encompass the range from bryophytes to angiosperms. In the C(4) plant maize, compartmentalized function of the two GLK genes in bundle sheath and mesophyll cells regulates dimorphic chloroplast differentiation, whereas in the C(3) plants Physcomitrella patens and Arabidopsis thaliana the genes act redundantly in all photosynthetic cells. To assess whether the cell-specific function of GLK genes is unique to maize, we analyzed gene expression patterns in the C(4) monocot Sorghum bicolor and C(4) eudicot Cleome gynandra. Compartmentalized expression was observed in S. bicolor, consistent with the development of dimorphic chloroplasts in this species, but not in C. gynandra where bundle sheath and mesophyll chloroplasts are morphologically similar. The generation of single and double mutants demonstrated that GLK genes function redundantly in rice, as in other C(3) plants, despite the fact that GLK gene duplication in monocots preceded the speciation of rice, maize and sorghum. Together with phylogenetic analyses of GLK gene sequences, these data have allowed speculation on the evolutionary trajectory of GLK function. Based on current evidence, most species that retain single GLK genes belong to orders that contain only C(3) species. We therefore propose that the ancestral state is a single GLK gene, and hypothesize that GLK gene duplication enabled sub-functionalization, which in turn enabled cell-specific function in C(4) plants with dimorphic chloroplasts. In this scenario, GLK gene duplication preconditioned the evolution of C(4) physiology that is associated with chloroplast dimorphism.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 2013; 31:240-6. [DOI: 10.1038/nbt.2491] [Citation(s) in RCA: 832] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022]
|
39
|
Abstract
The primary model legumes to date have been Medicago truncatula and Lotus japonicus. Both species are tractable both genetically and in the greenhouse, and for both, substantial sets of tools and resources for molecular genetic research have been assembled. As sequencing costs have declined, however, additional legume genomes have been sequenced, and the funding available to crops such as soybean has enabled these to be developed to the status of genetic models in their own right. This chapter, therefore, describes a broader set of model species in the legumes, and discusses similarities and differences between the genomes sequenced to date, as well as computational resources available for various legume species. Genome structural characteristics in, for example, Medicago truncatula and Glycine max, can have large impacts on the kinds of functional genomic research that may be carried out in these species. Both of these genomes have substantial redundancy for many gene families, but the nature of the redundancy is different in the two genomes-with the redundancy typically being in the form of local gene duplications in Medicago, and in whole-genome-duplication-derived duplications in Glycine. Similar considerations (about gene environments and genome structure) will likely need to be taken into account for any model or crop species.
Collapse
Affiliation(s)
- Steven B Cannon
- United States Department of Agriculture, Agricultural Research Service, Ames, IA, USA
| |
Collapse
|
40
|
Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SCM, Valls JFM, Bertioli DJ. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. ANNALS OF BOTANY 2013; 111:113-26. [PMID: 23131301 PMCID: PMC3523650 DOI: 10.1093/aob/mcs237] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/02/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. METHODS Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. KEY RESULTS Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3-2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general. CONCLUSIONS The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the peculiar reproductive biology of Arachis.
Collapse
Affiliation(s)
- Márcio C Moretzsohn
- Embrapa Recursos Genéticos e Biotecnologia, C.P. 02372, CEP 70·770-917, Brasília, DF, Brazil.
| | | | | | | | | | | |
Collapse
|
41
|
Manzanilla V, Bruneau A. Phylogeny reconstruction in the Caesalpinieae grade (Leguminosae) based on duplicated copies of the sucrose synthase gene and plastid markers. Mol Phylogenet Evol 2012; 65:149-62. [DOI: 10.1016/j.ympev.2012.05.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 01/05/2023]
|
42
|
Li J, Dai X, Liu T, Zhao PX. LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res 2012; 40:D1221-9. [PMID: 22110036 PMCID: PMC3245131 DOI: 10.1093/nar/gkr939] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/08/2011] [Accepted: 10/11/2011] [Indexed: 11/17/2022] Open
Abstract
Legumes play a vital role in maintaining the nitrogen cycle of the biosphere. They conduct symbiotic nitrogen fixation through endosymbiotic relationships with bacteria in root nodules. However, this and other characteristics of legumes, including mycorrhization, compound leaf development and profuse secondary metabolism, are absent in the typical model plant Arabidopsis thaliana. We present LegumeIP (http://plantgrn.noble.org/LegumeIP/), an integrative database for comparative genomics and transcriptomics of model legumes, for studying gene function and genome evolution in legumes. LegumeIP compiles gene and gene family information, syntenic and phylogenetic context and tissue-specific transcriptomic profiles. The database holds the genomic sequences of three model legumes, Medicago truncatula, Glycine max and Lotus japonicus plus two reference plant species, A. thaliana and Populus trichocarpa, with annotations based on UniProt, InterProScan, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases. LegumeIP also contains large-scale microarray and RNA-Seq-based gene expression data. Our new database is capable of systematic synteny analysis across M. truncatula, G. max, L. japonicas and A. thaliana, as well as construction and phylogenetic analysis of gene families across the five hosted species. Finally, LegumeIP provides comprehensive search and visualization tools that enable flexible queries based on gene annotation, gene family, synteny and relative gene expression.
Collapse
Affiliation(s)
| | | | | | - Patrick Xuechun Zhao
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| |
Collapse
|
43
|
Abstract
Legumes are the third-largest family of angiosperms, the second-most-important crop family, and a key source of biological nitrogen in agriculture. Recently, the genome sequences of Glycine max (soybean), Medicago truncatula, and Lotus japonicus were substantially completed. Comparisons among legume genomes reveal a key role for duplication, especially a whole-genome duplication event approximately 58 Mya that is shared by most agriculturally important legumes. A second and more recent genome duplication occurred only in the lineage leading to soybean. Outcomes of genome duplication, including gene fractionation and sub- and neofunctionalization, have played key roles in shaping legume genomes and in the evolution of legume-specific traits. Analysis of legume genome sequences also enables the discovery of legume-specific gene families and provides a framework for genome-wide association mapping that will target phenotypes of special importance in legumes. Translating genomic resources from sequenced species to less studied but still important "orphan" legumes will enhance prospects for world food production.
Collapse
Affiliation(s)
- Nevin D Young
- Department of Plant Pathology and Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA.
| | | |
Collapse
|
44
|
Op den Camp RH, De Mita S, Lillo A, Cao Q, Limpens E, Bisseling T, Geurts R. A phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A response regulators. PLANT PHYSIOLOGY 2011; 157:2013-22. [PMID: 22034625 PMCID: PMC3327194 DOI: 10.1104/pp.111.187526] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/25/2011] [Indexed: 05/20/2023]
Abstract
Legumes host their Rhizobium spp. symbiont in novel root organs called nodules. Nodules originate from differentiated root cortical cells that dedifferentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole-genome duplication has occurred at the root of the legume Papilionoideae subfamily. We hypothesize that gene pairs originating from this duplication event and are conserved in distinct Papilionoideae lineages have evolved symbiotic functions. A phylogenetic strategy was applied to search for such gene pairs to identify novel regulators of nodulation, using the cytokinin phosphorelay pathway as a test case. In this way, two paralogous type-A cytokinin response regulators were identified that are involved in root nodule symbiosis. Response Regulator9 (MtRR9) and MtRR11 in medicago (Medicago truncatula) and an ortholog in lotus (Lotus japonicus) are rapidly induced upon Rhizobium spp. Nod factor signaling. Constitutive expression of MtRR9 results in arrested primordia that have emerged from cortical, endodermal, and pericycle cells. In legumes, lateral root primordia are not exclusively formed from pericycle cells but also require the involvement of the root cortical cell layer. Therefore, the MtRR9-induced foci of cell divisions show a strong resemblance to lateral root primordia, suggesting an ancestral function of MtRR9 in this process. Together, these findings provide a proof of principle for the applied phylogenetic strategy to identify genes with a symbiotic function in legumes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - René Geurts
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, 6708 PB, Wageningen, The Netherlands (R.H.M.O.d.C., S.D.M., A.L., Q.C., E.L., T.B., R.G.); Institut de Recherche pour le Développement Montpellier, 34394 Montpellier cedex 5, France (S.D.M.); Department of Biotechnology, Beijing University of Agriculture, Huilongguan Changping District, Beijing, China 102206 (Q.C.); and College of Science, King Saud University, Riyadh 11451, Saudi Arabia (T.B.)
| |
Collapse
|
45
|
Matita, a new retroelement from peanut: characterization and evolutionary context in the light of the Arachis A-B genome divergence. Mol Genet Genomics 2011; 287:21-38. [PMID: 22120641 DOI: 10.1007/s00438-011-0656-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/20/2011] [Indexed: 12/16/2022]
Abstract
Cultivated peanut is an allotetraploid with an AB-genome. In order to learn more of the genomic structure of peanut, we characterized and studied the evolution of a retrotransposon originally isolated from a resistance gene analog (RGA)-containing bacterial artificial chromosome (BAC) clone. It is a moderate copy number Ty1-copia retrotransposon from the Bianca lineage and we named it Matita. Fluorescent in situ hybridization (FISH) experiments showed that Matita is mainly located on the distal regions of chromosome arms and is of approximately equal frequency on both A- and B-chromosomes. Its chromosome-specific hybridization pattern facilitates the identification of individual chromosomes, a useful cytogenetic tool considering that chromosomes in peanut are mostly metacentric and of similar size. Phylogenetic analysis of Matita elements, molecular dating of transposition events, and an estimation of the evolutionary divergence of the most probable A- and B-donor species suggest that Matita underwent its last major burst of transposition activity at around the same time of the A- and B-genome divergence about 3.5 million years ago. By probing BAC libraries with overgos probes for Matita, resistance gene analogues, and single- or low-copy genes, it was demonstrated that Matita is not randomly distributed in the genome but exhibits a significant tendency of being more abundant near resistance gene homologues than near single-copy genes. The described work is a further step towards broadening the knowledge on genomic and chromosomal structure of peanut and on its evolution.
Collapse
|
46
|
Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jöcker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O'Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz DC, Rogers J, Quétier F, Town CD, Roe BA. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011; 480:520-4. [PMID: 22089132 PMCID: PMC3272368 DOI: 10.1038/nature10625] [Citation(s) in RCA: 780] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/13/2011] [Indexed: 11/09/2022]
Abstract
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.
Collapse
Affiliation(s)
- Nevin D Young
- Department of Plant Pathology, University of Minnesota, St Paul, Minnesota 55108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Doyle JJ. Phylogenetic perspectives on the origins of nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1289-95. [PMID: 21995796 DOI: 10.1094/mpmi-05-11-0114] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent refinements to the phylogeny of rosid angiosperms support the conclusion that nodulation has evolved several times in the so-called N(2)-fixing clade (NFC), and provide dates for these origins. The hypothesized predisposition that enabled the evolution of nodulation occurred approximately 100 million years ago (MYA), was retained in the various lineages that radiated rapidly shortly thereafter, and was functional in its non-nodulation role for at least an additional 30 million years in each nodulating lineage. Legumes radiated rapidly shortly after their origin approximately 60 MYA, and nodulation most likely evolved several times during this radiation. The major lineages of papilionoid legumes diverged close to the time of origin of nodulation, accounting for the diversity of nodule biology in the group. Nodulation symbioses exemplify the concept of "deep homology," sharing various homologous components across nonhomologous origins of nodulation, largely due to recruitment from existing functions, notably the older arbuscular mycorrhizal symbiosis. Although polyploidy may have played a role in the origin of papilionoid legume nodules, it did not do so in other legumes, nor did the prerosid whole-genome triplication lead directly to the predisposition of nodulation.
Collapse
Affiliation(s)
- Jeff J Doyle
- Department of Plant Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
48
|
Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JSS, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R. LysM-Type Mycorrhizal Receptor Recruited for Rhizobium Symbiosis in Nonlegume Parasponia. Science 2010; 331:909-12. [DOI: 10.1126/science.1198181] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|