1
|
Nasehi F, Rylance C, Schnell E, Greene MA, Conway C, Hough Z, Duckett S, Muise-Helmericks RC, Foley AC. Analysis of potential TAK1/Map3k7 phosphorylation targets in hypertrophy and cachexia models of skeletal muscle. Biol Open 2024; 13:bio060487. [PMID: 39211992 PMCID: PMC11449438 DOI: 10.1242/bio.060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
TGFβ-activated kinase-1 (TAK1) is phosphorylated during both muscle growth and muscle wasting. To understand how this can lead to such opposite effects, we first performed multiplex kinase array of mouse embryonic stem cells with and without stimulation of TAK1 to determine its potential downstream targets. The phosphorylation of these targets was then compared in three different models: hypertrophic longissimus muscle of Texel sheep, tibialis anterior muscle of mice with cancer-induced cachexia and C2C12-derived myofibers, with and without blockade of TAK1 phosphorylation. In both Texel sheep and in cancer-induced cachexia, phosphorylation of both TAK1 and p38 was increased. Whereas p90RSK was increased in Texel sheep but not cachexia and the phosphorylation of HSP27 and total Jnk were increased in cachexia but not Texel. To understand this further, we examined the expression of these proteins in C2C12 cells as they differentiated into myotubes, with and without blockade of TAK1 phosphorylation. In C2C12 cells, decreased phosphorylation of TAK1 leads to reduced phosphorylation of p38, JNK, and HSP27 after 16 h and muscle fiber hypertrophy after 3 days. However, continuous blockade of this pathway leads to muscle fiber failure, suggesting that the timing of TAK1 activation controls the expression of context-dependent targets.
Collapse
Affiliation(s)
- Fatemeh Nasehi
- Department of Bioengineering, Clemson University, 68 President Street, Charleston, SC 29425, USA
| | - Cameron Rylance
- Department of Bioengineering, Clemson University, 68 President Street, Charleston, SC 29425, USA
| | - Erin Schnell
- University of South Carolina School of Medicine, 6311 Garners Ferry Road, Columbia, SC 29209, USA
| | - Maslyn Ann Greene
- Department of Animal and Veterinary Science, Clemson University, Lane #129, Clemson, SC 29634, USA
| | - Caroline Conway
- Dartmouth's Department of Cognitive Science, 5 Maynard St, Hanover, NH 03755, USA
| | - Zachary Hough
- University of Maryland, Baltimore School of Medicine, Baltimore, MD 21201, USA
| | - Susan Duckett
- Department of Animal and Veterinary Science, Clemson University, Lane #129, Clemson, SC 29634, USA
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ann Catherine Foley
- Department of Bioengineering, Clemson University, 68 President Street, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Garg V, Yang Y, Nowotschin S, Setty M, Kuo YY, Sharma R, Polyzos A, Salataj E, Murphy D, Jang A, Pe’er D, Apostolou E, Hadjantonakis AK. Single-cell analysis of bidirectional reprogramming between early embryonic states reveals mechanisms of differential lineage plasticities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534648. [PMID: 37034770 PMCID: PMC10081288 DOI: 10.1101/2023.03.28.534648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Two distinct fates, pluripotent epiblast (EPI) and primitive (extra-embryonic) endoderm (PrE), arise from common progenitor cells, the inner cell mass (ICM), in mammalian embryos. To study how these sister identities are forged, we leveraged embryonic (ES) and eXtraembryonic ENdoderm (XEN) stem cells - in vitro counterparts of the EPI and PrE. Bidirectional reprogramming between ES and XEN coupled with single-cell RNA and ATAC-seq analyses uncovered distinct rates, efficiencies and trajectories of state conversions, identifying drivers and roadblocks of reciprocal conversions. While GATA4-mediated ES-to-iXEN conversion was rapid and nearly deterministic, OCT4, KLF4 and SOX2-induced XEN-to-iPS reprogramming progressed with diminished efficiency and kinetics. The dominant PrE transcriptional program, safeguarded by Gata4, and globally elevated chromatin accessibility of EPI underscored the differential plasticities of the two states. Mapping in vitro trajectories to embryos revealed reprogramming in either direction tracked along, and toggled between, EPI and PrE in vivo states without transitioning through the ICM.
Collapse
Affiliation(s)
- Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Yang Yang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manu Setty
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Polyzos
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eralda Salataj
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Dylan Murphy
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Amy Jang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe’er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Effie Apostolou
- Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| |
Collapse
|
3
|
Athanasouli P, Balli M, De Jaime-Soguero A, Boel A, Papanikolaou S, van der Veer BK, Janiszewski A, Vanhessche T, Francis A, El Laithy Y, Nigro AL, Aulicino F, Koh KP, Pasque V, Cosma MP, Verfaillie C, Zwijsen A, Heindryckx B, Nikolaou C, Lluis F. The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency. Nat Commun 2023; 14:1210. [PMID: 36869101 PMCID: PMC9984534 DOI: 10.1038/s41467-023-36914-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Early during preimplantation development and in heterogeneous mouse embryonic stem cells (mESC) culture, pluripotent cells are specified towards either the primed epiblast or the primitive endoderm (PE) lineage. Canonical Wnt signaling is crucial for safeguarding naive pluripotency and embryo implantation, yet the role and relevance of canonical Wnt inhibition during early mammalian development remains unknown. Here, we demonstrate that transcriptional repression exerted by Wnt/TCF7L1 promotes PE differentiation of mESCs and in preimplantation inner cell mass. Time-series RNA sequencing and promoter occupancy data reveal that TCF7L1 binds and represses genes encoding essential naive pluripotency factors and indispensable regulators of the formative pluripotency program, including Otx2 and Lef1. Consequently, TCF7L1 promotes pluripotency exit and suppresses epiblast lineage formation, thereby driving cells into PE specification. Conversely, TCF7L1 is required for PE specification as deletion of Tcf7l1 abrogates PE differentiation without restraining epiblast priming. Taken together, our study underscores the importance of transcriptional Wnt inhibition in regulating lineage specification in ESCs and preimplantation embryo development as well as identifies TCF7L1 as key regulator of this process.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Martina Balli
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Anchel De Jaime-Soguero
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
| | - Annekatrien Boel
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium
| | - Sofia Papanikolaou
- Department of Rheumatology, Clinical Immunology, Medical School, University of Crete, 70013, Heraklion, Greece.,Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Bernard K van der Veer
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Adrian Janiszewski
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Tijs Vanhessche
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Annick Francis
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Youssef El Laithy
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Antonio Lo Nigro
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Francesco Aulicino
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain
| | - Kian Peng Koh
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Vincent Pasque
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.,KU Leuven Institute for Single-Cell Omics (LISCO), 3000, Leuven, Belgium
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Catherine Verfaillie
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium
| | - Christoforos Nikolaou
- Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Frederic Lluis
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
| |
Collapse
|
4
|
Herchcovici Levy S, Feldman Cohen S, Arnon L, Lahav S, Awawdy M, Alajem A, Bavli D, Sun X, Buganim Y, Ram O. Esrrb is a cell-cycle-dependent associated factor balancing pluripotency and XEN differentiation. Stem Cell Reports 2022; 17:1334-1350. [PMID: 35594859 PMCID: PMC9214067 DOI: 10.1016/j.stemcr.2022.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Cell cycle and differentiation decisions are linked; however, the underlying principles that drive these decisions are unclear. Here, we combined cell-cycle reporter system and single-cell RNA sequencing (scRNA-seq) profiling to study the transcriptomes of embryonic stem cells (ESCs) in the context of cell-cycle states and differentiation. By applying retinoic acid, to G1 and G2/M ESCs, we show that, while both populations can differentiate toward epiblast stem cells (EpiSCs), only G2/M ESCs could differentiate into extraembryonic endoderm cells. We identified Esrrb, a pluripotency factor that is upregulated during G2/M, as a driver of extraembryonic endoderm stem cell (XEN) differentiation. Furthermore, enhancer chromatin states based on wild-type (WT) and ESRRB knockout (KO) ESCs show association of ESRRB with XEN poised enhancers. G1 cells overexpressing Esrrb allow ESCs to produce XENs, while ESRRB-KO ESCs lost their potential to differentiate into XEN. Overall, this study reveals a vital link between Esrrb and cell-cycle states during the exit from pluripotency.
Collapse
Affiliation(s)
- Sapir Herchcovici Levy
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Sharon Feldman Cohen
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Lee Arnon
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Shlomtzion Lahav
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Muhammad Awawdy
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Adi Alajem
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Danny Bavli
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Xue Sun
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| | - Oren Ram
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
5
|
Bérenger-Currias NM, Mircea M, Adegeest E, van den Berg PR, Feliksik M, Hochane M, Idema T, Tans SJ, Semrau S. A gastruloid model of the interaction between embryonic and extra-embryonic cell types. J Tissue Eng 2022; 13:20417314221103042. [PMID: 35707767 PMCID: PMC9189523 DOI: 10.1177/20417314221103042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
Stem-cell derived in vitro systems, such as organoids or embryoids, hold great
potential for modeling in vivo development. Full control over their initial
composition, scalability, and easily measurable dynamics make those systems
useful for studying specific developmental processes in isolation. Here we
report the formation of gastruloids consisting of mouse embryonic stem cells
(mESCs) and extraembryonic endoderm (XEN) cells. These XEN-enhanced gastruloids
(XEGs) exhibit the formation of neural epithelia, which are absent in
gastruloids derived from mESCs only. By single-cell RNA-seq, imaging, and
differentiation experiments, we demonstrate the neural characteristics of the
epithelial tissue. We further show that the mESCs induce the differentiation of
the XEN cells to a visceral endoderm-like state. Finally, we demonstrate that
local inhibition of WNT signaling and production of a basement membrane by the
XEN cells underlie the formation of the neuroepithelial tissue. In summary, we
establish XEGs to explore heterotypic cellular interactions and their
developmental consequences in vitro.
Collapse
Affiliation(s)
- Noémie Mlp Bérenger-Currias
- Department of Physics, Leiden University, Leiden, The Netherlands.,Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Maria Mircea
- Department of Physics, Leiden University, Leiden, The Netherlands
| | - Esmée Adegeest
- Department of Physics, Leiden University, Leiden, The Netherlands
| | | | - Marleen Feliksik
- Department of Physics, Leiden University, Leiden, The Netherlands
| | - Mazène Hochane
- Department of Physics, Leiden University, Leiden, The Netherlands
| | - Timon Idema
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Sander J Tans
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands.,AMOLF, Amsterdam, The Netherlands
| | - Stefan Semrau
- Department of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Smith MK, Clark CC, McCoski SR. Technical note: improving the efficiency of generating bovine extraembryonic endoderm cells. J Anim Sci 2020; 98:5871434. [PMID: 32663851 DOI: 10.1093/jas/skaa222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/10/2020] [Indexed: 11/12/2022] Open
Abstract
The formation of extraembryonic endoderm (XEN) occurs early in embryonic development. The cell types that develop from the XEN remain poorly studied in ruminant species because of the lack of suitable cell culture model systems. The goal of this work was to establish a protocol for producing XEN cell cultures from bovine blastocysts. Previous work identified fibroblast growth factor 2 (FGF2) as a facilitator of bovine XEN development. Further refinements in culture conditions studied here included exposure to 20% fetal bovine serum and FGF2 replenishment. These modifications yielded an endoderm outgrowth formation incidence of 81.6% ± 5.5% compared with 33.3% ± 5.5% in bovine serum albumin (BSA)-supplemented controls. These cells resembled XEN when examined morphologically and contained XEN transcripts (GATA binding protein 4 [GATA4] and GATA binding protein 6 [GATA6]) as well as transcripts present in visceral (BCL2 interacting protein 1 [BNIP1] and vascular endothelial growth factor A [VEGFA]) and parietal (C-X-C motif chemokine receptor 4 [CXCR4], thrombomodulin [THBD], and hematopoietically expressed homeobox [HHEX]) XEN. Two XEN cell lines were maintained for prolonged culture. Both lines continued to proliferate for approximately 6 wk before becoming senescent. These cultures maintained an XEN-like state and continued to express GATA4 and GATA6 until senescence. An increase in the abundance of visceral and parietal XEN transcripts was observed with continued culture, suggesting that these cells either undergo spontaneous differentiation or retain the ability to form various XEN cell types. Stocks of cultured cells exposed to a freeze-thaw procedure possessed similar phenotypic and genotypic behaviors as nonfrozen cells. To conclude, a procedure for efficient production of primary bovine XEN cell cultures was developed. This new protocol may assist researchers in exploring this overlooked cell type for its roles in nutrient supply during embryogenesis.
Collapse
Affiliation(s)
- Mary K Smith
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Catherine C Clark
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Sarah R McCoski
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| |
Collapse
|
7
|
Micale L, Morlino S, Biagini T, Carbone A, Fusco C, Ritelli M, Giambra V, Zoppi N, Nardella G, Notarangelo A, Schirizzi A, Mazzoccoli G, Grammatico P, Wade EM, Mazza T, Colombi M, Castori M. Insights into the molecular pathogenesis of cardiospondylocarpofacial syndrome: MAP3K7 c.737-7A > G variant alters the TGFβ-mediated α-SMA cytoskeleton assembly and autophagy. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165742. [PMID: 32105826 DOI: 10.1016/j.bbadis.2020.165742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022]
Abstract
Transforming growth factor beta-activated kinase 1 (TAK1) is a highly conserved kinase protein encoded by MAP3K7, and activated by multiple extracellular stimuli, growth factors and cytokines. Heterozygous variants in MAP3K7 cause the cardiospondylocarpofacial syndrome (CSCFS) which is characterized by short stature, dysmorphic facial features, cardiac septal defects with valve dysplasia, and skeletal anomalies. CSCFS has been described in seven patients to date and its molecular pathogenesis is only partially understood. Here, the functional effects of the MAP3K7 c.737-7A > G variant, previously identified in a girl with CSCFS and additional soft connective tissue features, were explored. This splice variant generates an in-frame insertion of 2 amino acid residues in the kinase domain of TAK1. Computational analysis revealed that this in-frame insertion alters protein dynamics in the kinase activation loop responsible for TAK1 autophosphorylation after binding with its interactor TAB1. Co-immunoprecipitation studies demonstrate that the ectopic expression of TAK1-mutated protein impairs its ability to physically bind TAB1. In patient's fibroblasts, MAP3K7 c.737-7A > G variant results in reduced TAK1 autophosphorylation and dysregulation of the downstream TAK1-dependent signaling pathway. TAK1 loss-of-function is associated with an impaired TGFβ-mediated α-SMA cytoskeleton assembly and cell migration, and defective autophagy process. These findings contribute to our understanding of the molecular pathogenesis of CSCFS and might offer the rationale for the design of novel therapeutic targets.
Collapse
Affiliation(s)
- Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy.
| | - Silvia Morlino
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Tommaso Biagini
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Annalucia Carbone
- Division of Internal Medicine and Unit of Chronobiology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Angelantonio Notarangelo
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Annalisa Schirizzi
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy; Dipartimento di Biologia, Università degli Studi di Bari, "Aldo Moro", Bari, Italy
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Unit of Chronobiology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Grammatico
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Emma M Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| |
Collapse
|
8
|
Hunter A, Dai Y, Brown KJ, Muise-Helmericks RC, Foley AC. TAK1/Map3k7 enhances differentiation of cardiogenic endoderm from mouse embryonic stem cells. J Mol Cell Cardiol 2019; 137:132-142. [PMID: 31668971 DOI: 10.1016/j.yjmcc.2019.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 11/28/2022]
Abstract
Specification of the primary heart field in mouse embryos requires signaling from the anterior visceral endoderm (AVE). The nature of these signals is not known. We hypothesized that the TGFβ-activated kinase (TAK1/Map3k7) may act as a cardiogenic factor, based on its expression in heart-inducing endoderm and its requirement for cardiac differentiation of p19 cells. To test this, mouse embryonic stem (ES) cells overexpressing Map3k7 were isolated and differentiated as embryoid bodies (EBs). Map3k7-overexpressing EBs showed increased expression of AVE markers but interestingly, showed little effect on mesoderm formation and had no impact on overall cardiomyocyte formation. To test whether the pronounced expansion of endoderm masks an expansion of cardiac lineages, chimeric EBs were made consisting of Map3k7-overexpressing ES and wild type ES cells harboring a cardiac reporter transgene, MHCα::GFP, allowing cardiac differentiation to be assessed specifically in wild type ES cells. Wild type ES cells co-cultured with Map3k7-overexpressing cells had a 4-fold increase in expression of the cardiac reporter, supporting the hypothesis that Map3k7 increases the formation of cardiogenic endoderm. To further examine the role of Map3k7 in early lineage specification, other endodermal markers were examined. Interestingly, markers that are expressed in both the VE and later in gut development were expanded, whereas transcripts that specifically mark the early definitive (streak-derived) endoderm (DE) were not. To determine if Map3k7 is necessary for endoderm differentiation, EBs were grown in the presence of the Map3k7 specific inhibitor 5Z-7-oxozeaenol. Endoderm differentiation was dramatically decreased in these cells. Western blot analysis showed that known downstream targets of Map3k7 (Jnk, Nemo-like kinase (NLK) and p38 MAPK) were all inhibited. By contrast, transcripts for another TGFβ target, Sonic Hedgehog (Shh) were markedly upregulated, as were transcripts for Gli2 (but not Gli1 and Gli3). Together these data support the hypothesis that Map3k7 governs the formation, or proliferation of cardiogenic endoderm.
Collapse
Affiliation(s)
- Andrew Hunter
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC, United States of America
| | - Yunkai Dai
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC, United States of America
| | - Kemar J Brown
- Harvard Medical School/Massachusetts General Hospital, Corrigan Minehan Division of Cardiology, Boston, MA, United States of America
| | - Robin C Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Ann C Foley
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC, United States of America.
| |
Collapse
|
9
|
Xu M, Shaw G, Murphy M, Barry F. Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells 2019; 37:754-765. [PMID: 30779868 PMCID: PMC6591688 DOI: 10.1002/stem.2993] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/21/2018] [Accepted: 02/03/2019] [Indexed: 12/14/2022]
Abstract
There has been considerable interest in the generation of functional mesenchymal stromal cell (MSC) preparations from induced pluripotent stem cells (iPSCs) and this is now regarded as a potential source of unlimited, standardized, high‐quality cells for therapeutic applications in regenerative medicine. Although iMSCs meet minimal criteria for defining MSCs in terms of marker expression, there are substantial differences in terms of trilineage potential, specifically a marked reduction in chondrogenic and adipogenic propensity in iMSCs compared with bone marrow‐derived (BM) MSCs. To reveal the cellular basis underlying these differences, we conducted phenotypic, functional, and genetic comparisons between iMSCs and BM‐MSCs. We found that iMSCs express very high levels of both KDR and MSX2 compared with BM‐MSCs. In addition, BM‐MSCs had significantly higher levels of PDGFRα. These distinct gene expression profiles were maintained during culture expansion, suggesting that prepared iMSCs are more closely related to vascular progenitor cells (VPCs). Although VPCs can differentiate along the chondrogenic, osteogenic, and adipogenic pathways, they require different inductive conditions compared with BM‐MSCs. These observations suggest to us that iMSCs, based on current widely used preparation protocols, do not represent a true alternative to primary MSCs isolated from BM. Furthermore, this study highlights the fact that high levels of expression of typical MSC markers such as CD73, CD90, and CD105 are insufficient to distinguish MSCs from other mesodermal progenitors in differentiated induced pluripotent stem cell cultures. stem cells2019;37:754–765
Collapse
Affiliation(s)
- Maojia Xu
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Mary Murphy
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
10
|
Zhong Y, Binas B. Transcriptome analysis shows ambiguous phenotypes of murine primitive endoderm-related stem cell lines. Genes Cells 2019; 24:324-331. [PMID: 30821040 DOI: 10.1111/gtc.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 01/06/2023]
Abstract
Primitive endoderm (PrE)-related cell lines (XEN, pXEN and nEnd cells) show key features of the PrE. By transcriptome analysis, we show: (a) Compared to embryonic stem cells, PrE-related cell lines are less in vivo like, although early nEnd cells are most similar to the PrE. (b) These cell lines show post-PrE features of parietal (XEN and pXEN cells) or visceral (nEnd cells) endoderm, likely driven by Tgf-β and Wnt/Activin signaling, respectively. (c) pXEN and nEnd cell lines additionally show pre-PrE features. Hence, neither pXEN nor nEnd cell cultures represent a distinct in vivo entity. Rather, their properties are compatible with mixed and hybrid phenotypes. Our findings indicate that pre-PrE, PrE and early post-PrE phenotypes result from different niches, which need to be better understood to derive cell lines that distinctly represent the early stages of the extraembryonic endoderm.
Collapse
Affiliation(s)
- Yixiang Zhong
- Department of Molecular & Life Science, College of Science and Convergence Technology, Hanyang University, Gyeonggi-do, Korea
| | - Bert Binas
- Department of Molecular & Life Science, College of Science and Convergence Technology, Hanyang University, Gyeonggi-do, Korea
| |
Collapse
|
11
|
Quantification of Cardiomyocyte Beating Frequency Using Fourier Transform Analysis. PHOTONICS 2018. [DOI: 10.3390/photonics5040039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pacemaker cardiomyocytes of the sinoatrial node (SAN) beat more rapidly than cells of the working myocardium. Beating in SAN cells responds to β-adrenergic and cholinergic signaling by speeding up or slowing, respectively. Beat rate has traditionally been assessed using voltage or calcium sensitive dyes, however these may not reflect the true rate of beating because they sequester calcium. Finally, in vitro differentiated cardiomyocytes sometimes briefly pause during imaging giving inaccurate beat rates. We have developed a MATLAB automation to calculate cardiac beat rates directly from video clips based on changes in pixel density at the edges of beating areas. These data are normalized to minimize the effects of secondary movement and are converted to frequency data using a fast Fourier transform (FFT). We find that this gives accurate beat rates even when there are brief pauses in beating. This technique can be used to rapidly assess beating of cardiomyocytes in organoid culture. This technique could also be combined with field scanning techniques to automatically and accurately assess beating within a complex cardiac organoid.
Collapse
|
12
|
Abstract
At the time of implantation, the mouse blastocyst has developed three cell lineages: the epiblast (Epi), the primitive endoderm (PrE), and the trophectoderm (TE). The PrE and TE are extraembryonic tissues but their interactions with the Epi are critical to sustain embryonic growth, as well as to pattern the embryo. We review here the cellular and molecular events that lead to the production of PrE and Epi lineages and discuss the different hypotheses that are proposed for the induction of these cell types. In the second part, we report the current knowledge about the epithelialization of the PrE.
Collapse
|
13
|
Ngondo RP, Cirera-Salinas D, Yu J, Wischnewski H, Bodak M, Vandormael-Pournin S, Geiselmann A, Wettstein R, Luitz J, Cohen-Tannoudji M, Ciaudo C. Argonaute 2 Is Required for Extra-embryonic Endoderm Differentiation of Mouse Embryonic Stem Cells. Stem Cell Reports 2018; 10:461-476. [PMID: 29396181 PMCID: PMC5830960 DOI: 10.1016/j.stemcr.2017.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
In mouse, although four Argonaute (AGO) proteins with partly overlapping functions in small-RNA pathways exist, only Ago2 deficiency causes embryonic lethality. To investigate the role of AGO2 during mouse early development, we generated Ago2-deficient mouse embryonic stem cells (mESCs) and performed a detailed characterization of their differentiation potential. Ago2 disruption caused a global reduction of microRNAs, which resulted in the misregulation of only a limited number of transcripts. We demonstrated, both in vivo and in vitro, that AGO2 is dispensable for the embryonic germ-layer formation. However, Ago2-deficient mESCs showed a specific defect during conversion into extra-embryonic endoderm cells. We proved that this defect is cell autonomous and can be rescued by both a catalytically active and an inactive Ago2, but not by Ago2 deprived of its RNA binding capacity or by Ago1 overexpression. Overall, our results suggest a role for AGO2 in stem cell differentiation. Ago2 deletion strongly affects microRNA but not mRNA levels in mESCs AGO2 is dispensable for mESC self-renewal and formation of embryonic germ layers AGO2 but not AGO1 is required for GATA6 expression during XEN conversion of mESCs AGO2 is essential for the in vitro expression of extra-embryonic endoderm genes
Collapse
Affiliation(s)
- Richard Patryk Ngondo
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Daniel Cirera-Salinas
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Jian Yu
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland; Life Science Zurich Graduate School, University of Zürich, Zurich, Switzerland
| | - Harry Wischnewski
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Maxime Bodak
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland; Life Science Zurich Graduate School, University of Zürich, Zurich, Switzerland
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, 75015 Paris Cedex, France
| | - Anna Geiselmann
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, 75015 Paris Cedex, France
| | - Rahel Wettstein
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland; Life Science Zurich Graduate School, University of Zürich, Zurich, Switzerland
| | - Janina Luitz
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland
| | - Michel Cohen-Tannoudji
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, 75015 Paris Cedex, France
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, IMHS, Chair of RNAi and Genome Integrity, Zurich, Switzerland.
| |
Collapse
|
14
|
Brown K, Legros S, Ortega FA, Dai Y, Doss MX, Christini DJ, Robinson RB, Foley AC. Overexpression of Map3k7 activates sinoatrial node-like differentiation in mouse ES-derived cardiomyocytes. PLoS One 2017; 12:e0189818. [PMID: 29281682 PMCID: PMC5744947 DOI: 10.1371/journal.pone.0189818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022] Open
Abstract
In vivo, cardiomyocytes comprise a heterogeneous population of contractile cells defined by unique electrophysiologies, molecular markers and morphologies. The mechanisms directing myocardial cells to specific sub-lineages remain poorly understood. Here we report that overexpression of TGFβ-Activated Kinase (TAK1/Map3k7) in mouse embryonic stem (ES) cells faithfully directs myocardial differentiation of embryoid body (EB)-derived cardiac cells toward the sinoatrial node (SAN) lineage. Most cardiac cells in Map3k7-overexpressing EBs adopt markers, cellular morphologies, and electrophysiological behaviors characteristic of the SAN. These data, in addition to the fact that Map3k7 is upregulated in the sinus venous—the source of cells for the SAN—suggest that Map3k7 may be an endogenous regulator of the SAN fate.
Collapse
Affiliation(s)
- Kemar Brown
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Stephanie Legros
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Francis A. Ortega
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yunkai Dai
- Department of Bioengineering, Clemson University, Charleston, SC, United States of America
| | - Michael Xavier Doss
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - David J. Christini
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Richard B. Robinson
- Department of Pharmacology, Columbia University Medical Center, New York, NY, United States of America
| | - Ann C. Foley
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
- Department of Bioengineering, Clemson University, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
15
|
Anderson KGV, Hamilton WB, Roske FV, Azad A, Knudsen TE, Canham M, Forrester LM, Brickman JM. Insulin fine-tunes self-renewal pathways governing naive pluripotency and extra-embryonic endoderm. Nat Cell Biol 2017; 19:1164-1177. [DOI: 10.1038/ncb3617] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
|
16
|
Gene expression analysis of bovine embryonic disc, trophoblast and parietal hypoblast at the start of gastrulation. ZYGOTE 2017; 25:265-278. [PMID: 28534463 DOI: 10.1017/s0967199417000090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In cattle early gastrulation-stage embryos (Stage 5), four tissues can be discerned: (i) the top layer of the embryonic disc consisting of embryonic ectoderm (EmE); (ii) the bottom layer of the disc consisting of mesoderm, endoderm and visceral hypoblast (MEH); (iii) the trophoblast (TB); and (iv) the parietal hypoblast. We performed microsurgery followed by RNA-seq to analyse the transcriptome of these four tissues as well as a developmentally earlier pre-gastrulation embryonic disc. The cattle EmE transcriptome was similar at Stages 4 and 5, characterised by the OCT4/SOX2/NANOG pluripotency network. Expression of genes associated with primordial germ cells suggest their presence in the EmE tissue at these stages. Anterior visceral hypoblast genes were transcribed in the Stage 4 disc, but no longer by Stage 5. The Stage 5 MEH layer was equally similar to mouse embryonic and extraembryonic visceral endoderm. Our data suggest that the first mesoderm to invaginate in cattle embryos is fated to become extraembryonic. TGFβ, FGF, VEGF, PDGFA, IGF2, IHH and WNT signals and receptors were expressed, however the representative members of the FGF families differed from that seen in equivalent tissues of mouse embryos. The TB transcriptome was unique and differed significantly from that of mice. FGF signalling in the TB may be autocrine with both FGFR2 and FGF2 expressed. Our data revealed a range of potential inter-tissue interactions, highlighted significant differences in early development between mice and cattle and yielded insight into the developmental events occurring at the start of gastrulation.
Collapse
|
17
|
Kelly GM, Gatie MI. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells Int 2017; 2017:3684178. [PMID: 28373885 PMCID: PMC5360977 DOI: 10.1155/2017/3684178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.
Collapse
Affiliation(s)
- Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
- Department of Paediatrics and Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Child Health Research Institute, London, ON, Canada
- Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
| |
Collapse
|
18
|
Wörsdörfer P, Bosen F, Gebhardt M, Russ N, Zimmermann K, Komla Kessie D, Sekaran T, Egert A, Ergün S, Schorle H, Pfeifer A, Edenhofer F, Willecke K. Abrogation of Gap Junctional Communication in ES Cells Results in a Disruption of Primitive Endoderm Formation in Embryoid Bodies. Stem Cells 2016; 35:859-871. [PMID: 27870307 DOI: 10.1002/stem.2545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022]
Abstract
Gap junctional intercellular communication (GJIC) has been suggested to be involved in early embryonic development but the actual functional role remained elusive. Connexin (Cx) 43 and Cx45 are co-expressed in embryonic stem (ES) cells, form gap junctions and are considered to exhibit adhesive function and/or to contribute to the establishment of defined communication compartments. Here, we describe the generation of Cx43/Cx45-double deficient mouse ES cells to achieve almost complete breakdown of GJIC. Cre-loxP induced deletion of both, Cx43 and Cx45, results in a block of differentiation in embryoid bodies (EBs) without affecting pluripotency marker expression and proliferation in ES cells. We demonstrate that GJIC-incompetent ES cells fail to form primitive endoderm in EB cultures, representing the inductive key step of further differentiation events. Lentiviral overexpression of either Cx43 or Cx45 in Cx43/45 mutants rescued the observed phenotype, confirming the specificity and indicating a partially redundant function of both connexins. Upon differentiation GJIC-incompetent ES cells exhibit a strikingly altered subcellular localization pattern of the transcription factor NFATc3. Control EBs exhibit significantly more activated NFATc3 in cellular nuclei than mutant EBs suggesting that Cx-mediated communication is needed for synchronized NFAT activation to induce orchestrated primitive endoderm formation. Moreover, pharmacological inhibition of NFATc3 activation by Cyclosporin A, a well-described inhibitor of calcineurin, phenocopies the loss of GJIC in control cells. Stem Cells 2017;35:859-871.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical School, Bonn, Germany
| | | | - Martina Gebhardt
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical School, Bonn, Germany
| | - Nicole Russ
- Institute of Reconstructive Neurobiology, University of Bonn Medical School, Bonn, Germany
| | | | - David Komla Kessie
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Thileepan Sekaran
- Institute of Reconstructive Neurobiology, University of Bonn Medical School, Bonn, Germany
| | - Angela Egert
- Department of Developmental Pathology, University of Bonn Medical School, Bonn, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, University of Bonn Medical School, Bonn, Germany
| | | | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.,Institute of Reconstructive Neurobiology, University of Bonn Medical School, Bonn, Germany.,Department of Genomics, Stem Cell Biology & Regenerative Medicine, Institute of Molecular Biology, Leopold-Franzens-University Innsbruck (LFUI), Innsbruck, Austria
| | | |
Collapse
|
19
|
Shojaei H, Hong H, Redline RW. High-level expression of divergent endodermal lineage markers in gonadal and extra-gonadal yolk sac tumors. Mod Pathol 2016; 29:1278-88. [PMID: 27443515 DOI: 10.1038/modpathol.2016.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/09/2022]
Abstract
Yolk sac tumors occur at both gonadal and extra-gonadal sites. A recent case of ovarian endometrioid-pattern yolk sac tumor with strong diffuse expression of TTF-1 illustrated the potential for misdiagnosis due to divergent expression of endodermal lineage markers. The aim of this study was to investigate the expression of four divergent endodermal lineage markers, TTF-1, CDX2, Hep Par 1, and Napsin A, in gonadal and extra-gonadal yolk sac tumors of differing age, sex, and location (excluding foci of overt hepatoid differentiation). We identified 26 cases (5 ovarian, 15 testicular, and 6 extra-gonadal) containing yolk sac tumor as identified by typical histology and confirmed by positive immunohistochemical staining for alpha-fetoprotein and glypican-3. Mixed or ambiguous foci were confirmed by immunohistochemistry (SALL4 positive and Oct-4 negative). The relative proportion of three histologic patterns: reticular/cystic, solid/myxoid, and glandular was estimated. Percent positivity for the four divergent endodermal lineage markers was compared within yolk sac tumor areas according to site, age group, and histologic pattern. High-level (>25%) staining for one or more divergent endodermal lineage markers was seen in eleven cases: Hep Par 1 in seven cases, all post-pubertal, TTF-1 in four cases, two ovarian and two extra-gonadal, and CDX2 in three cases, with no age or site predilection. No case highly expressed all three divergent endodermal lineage markers, but four co-expressed high levels of two markers: two ovarian yolk sac tumors with TTF-1 and Hep Par 1, one testicular yolk sac tumor with CDX2 and Hep Par 1, and one extra-gonadal yolk sac tumors with TTF-1 and CDX2. While no absolute correlation of high-level divergent endodermal lineage marker expression with histologic subtype was observed, TTF-1 and CDX2 expression was predominantly seen in reticular/cystic and glandular areas while Hep Par 1 was most frequent in myxoid/solid and glandular areas.
Collapse
Affiliation(s)
- Hadi Shojaei
- Pathology Resident, Department of Pathology, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hong Hong
- Pathology Resident, Department of Pathology, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Raymond W Redline
- Departments of Pathology and Reproductive Biology, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
20
|
Garg V, Morgani S, Hadjantonakis AK. Capturing Identity and Fate Ex Vivo: Stem Cells from the Mouse Blastocyst. Curr Top Dev Biol 2016; 120:361-400. [PMID: 27475857 DOI: 10.1016/bs.ctdb.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During mouse preimplantation development, three molecularly, morphologically, and spatially distinct lineages are formed, the embryonic epiblast, the extraembryonic primitive endoderm, and the trophectoderm. Stem cell lines representing each of these lineages have now been derived and can be indefinitely maintained and expanded in culture, providing an unlimited source of material to study the interplay of tissue-specific transcription factors and signaling pathways involved in these fundamental cell fate decisions. Here we outline our current understanding of the derivation, maintenance, and properties of these in vitro stem cell models representing the preimplantation embryonic lineages.
Collapse
Affiliation(s)
- V Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - S Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.
| |
Collapse
|
21
|
Krivega MV, Geens M, Heindryckx B, Santos-Ribeiro S, Tournaye H, Van de Velde H. Cyclin E1 plays a key role in balancing between totipotency and differentiation in human embryonic cells. Mol Hum Reprod 2015; 21:942-56. [PMID: 26416983 DOI: 10.1093/molehr/gav053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 09/21/2015] [Indexed: 12/17/2022] Open
Abstract
STUDY HYPOTHESIS We aimed to investigate if Cyclin E1 (CCNE1) plays a role in human embryogenesis, in particular during the early developmental stages characterized by a short cell cycle. STUDY FINDING CCNE1 is expressed in plenipotent human embryonic cells and plays a critical role during hESC derivation via the naïve state and, potentially, normal embryo development. WHAT IS KNOWN ALREADY A short cell cycle due to a truncated G1 phase has been associated with the high developmental capacity of embryonic cells. CCNE1 is a critical G1/S transition regulator. CCNE1 overexpression can cause shortening of the cell cycle and it is constitutively expressed in mouse embryonic stem cells and cancer cells. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We investigated expression of CCNE1 in human preimplantation embryo development and embryonic stem cells (hESC). Functional studies included CCNE1 overexpression in hESC and CCNE1 downregulation in the outgrowths formed by plated human blastocysts. Analysis was performed by immunocytochemistry and quantitative real-time PCR. Mann-Whitney statistical test was applied. MAIN RESULTS AND THE ROLE OF CHANCE The CCNE1 protein was ubiquitously and constitutively expressed in the plenipotent cells of the embryo from the 4-cell stage up to and including the full blastocyst. During blastocyst expansion, CCNE1 was downregulated in the trophectoderm (TE) cells. CCNE1 shortly co-localized with NANOG in the inner cell mass (ICM) of expanding blastocysts, mimicking the situation in naïve hESC. In the ICM of expanded blastocysts, which corresponds with primed hESC, CCNE1 defined a subpopulation of cells different from NANOG/POU5F1-expressing pluripotent epiblast (EPI) cells and GATA4/SOX17-expressing primitive endoderm (PrE) cells. This CCNE1-positive cell population was associated with visceral endoderm based on transthyretin expression and marked the third cell lineage within the ICM, besides EPI and PrE, which had never been described before. We also investigated the role of CCNE1 by plating expanded blastocysts for hESC derivation. As a result, all the cells including TE cells re-gained CCNE1 and, consequently, NANOG expression, resembling the phenotype of naïve hESC. The inhibition of CCNE1 expression with siRNA blocked proliferation and caused degeneration of those plated cells. LIMITATIONS, REASONS FOR CAUTION The study is based on a limited number of good-quality human embryos donated to research. WIDER IMPLICATIONS OF THE FINDINGS Our study sheds light on the processes underlying the high developmental potential of early human embryonic cells. The CCNE1-positive plenipotent cell type corresponds with a phenotype that enables early human embryos to recover after fragmentation, cryodamage or (single cell) biopsy on day 3 for preimplantation genetic diagnosis. Knowledge on the expression and function of genes responsible for this flexibility will help us to better understand the undifferentiated state in stem cell biology and might enable us to improve technologies in assisted reproduction. LARGE SCALE DATA NA STUDY FUNDING AND COMPETING INTERESTS: This research is supported by grants from the Fund for Scientific Research - Flanders (FWO-Vlaanderen), the Methusalem (METH) of the VUB and Scientific Research Fond Willy Gepts of UZ Brussel. There are no competing interests.
Collapse
Affiliation(s)
- M V Krivega
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - B Heindryckx
- Ghent Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - S Santos-Ribeiro
- Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Tournaye
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - H Van de Velde
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium Centre for Reproductive Medicine (CRG), Brussels University Hospital, Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
22
|
Murtha M, Strino F, Tokcaer-Keskin Z, Sumru Bayin N, Shalabi D, Xi X, Kluger Y, Dailey L. Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed-pluripotent cells. Stem Cells 2015; 33:378-91. [PMID: 25335464 DOI: 10.1002/stem.1871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/02/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022]
Abstract
Both pluripotent embryonic stem cells (ESCs), established from preimplantation murine blastocysts, and epiblast stem cells (EpiSCs), established from postimplantation embryos, can self-renew in culture or differentiate into each of the primary germ layers. While the core transcription factors (TFs) OCT4, SOX2, and NANOG are expressed in both cell types, the gene expression profiles and other features suggest that ESCs and EpiSCs reflect distinct developmental maturation stages of the epiblast in vivo. Accordingly, "naïve" or "ground state" ESCs resemble cells of the inner cell mass, whereas "primed" EpiSCs resemble cells of the postimplantation egg cylinder. To gain insight into the relationship between naïve and primed pluripotent cells, and of each of these pluripotent states to that of nonpluripotent cells, we have used FAIRE-seq to generate a comparative atlas of the accessible chromatin regions within ESCs, EpiSCs, multipotent neural stem cells, and mouse embryonic fibroblasts. We find a distinction between the accessible chromatin patterns of pluripotent and somatic cells that is consistent with the highly related phenotype of ESCs and EpiSCs. However, by defining cell-specific and shared regions of open chromatin, and integrating these data with published gene expression and ChIP analyses, we also illustrate unique features of the chromatin of naïve and primed cells. Functional studies suggest that multiple stage-specific enhancers regulate ESC- or EpiSC-specific gene expression, and implicate auxiliary TFs as important modulators for stage-specific activation by the core TFs. Together these observations provide insights into the chromatin structure dynamics accompanying transitions between these pluripotent states.
Collapse
Affiliation(s)
- Matthew Murtha
- Department of Microbiology, New York University School of Medicine, New York, New York, USA; Department of Microbiology Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wamaitha SE, del Valle I, Cho LTY, Wei Y, Fogarty NME, Blakeley P, Sherwood RI, Ji H, Niakan KK. Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells. Genes Dev 2015; 29:1239-55. [PMID: 26109048 PMCID: PMC4495396 DOI: 10.1101/gad.257071.114] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Wamaitha et al. demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm cells. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2, and finally Oct4, alongside step-wise activation of extraembryonic endoderm genes. Transcription factor-mediated reprograming is a powerful method to study cell fate changes. In this study, we demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm stem (iXEN) cells. Intriguingly, Gata6 is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells. Furthermore, GATA6 induction in human embryonic stem (hES) cells also down-regulates pluripotency gene expression and up-regulates extraembryonic endoderm (ExEn) genes, revealing a conserved function in mediating this cell fate switch. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2, and finally Oct4, alongside step-wise activation of ExEn genes. Chromatin immunoprecipitation and subsequent high-throughput sequencing analysis shows Gata6 enrichment near pluripotency and endoderm genes, suggesting that Gata6 functions as both a direct repressor and activator. Together, this demonstrates that Gata6 is a versatile and potent reprograming factor that can act alone to drive a cell fate switch from diverse cell types.
Collapse
Affiliation(s)
- Sissy E Wamaitha
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Ignacio del Valle
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Lily T Y Cho
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Yingying Wei
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Norah M E Fogarty
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Paul Blakeley
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Richard I Sherwood
- Brigham and Women's Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Kathy K Niakan
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| |
Collapse
|
24
|
Mulvey CM, Schröter C, Gatto L, Dikicioglu D, Fidaner IB, Christoforou A, Deery MJ, Cho LTY, Niakan KK, Martinez-Arias A, Lilley KS. Dynamic Proteomic Profiling of Extra-Embryonic Endoderm Differentiation in Mouse Embryonic Stem Cells. Stem Cells 2015; 33:2712-25. [DOI: 10.1002/stem.2067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/20/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Claire M. Mulvey
- Cambridge Centre for Proteomics; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
- Department of Genetics; University of Cambridge; Cambridge United Kingdom
| | - Christian Schröter
- Department of Genetics; University of Cambridge; Cambridge United Kingdom
| | - Laurent Gatto
- Cambridge Centre for Proteomics; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
- Computational Proteomics Unit; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
| | - Duygu Dikicioglu
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
- Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
| | - Isik Baris Fidaner
- Department of Computer Engineering; Bogazici University; Istanbul Turkey
| | - Andy Christoforou
- Cambridge Centre for Proteomics; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
- Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
| | - Michael J. Deery
- Cambridge Centre for Proteomics; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
| | - Lily T. Y. Cho
- Neusentis; Pfizer Worldwide Research and Development; Granta Park Science Park, Great Abington; Cambridge United Kingdom
| | - Kathy K. Niakan
- The Francis Crick Institute, Mill Hill Laboratory; London United Kingdom
| | | | - Kathryn S. Lilley
- Cambridge Centre for Proteomics; Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
- Cambridge Systems Biology Centre; Wellcome Trust Stem Cell building; University of Cambridge; Cambridge United Kingdom
- Department of Biochemistry; University of Cambridge; Cambridge United Kingdom
| |
Collapse
|
25
|
Hue I, Evain-Brion D, Fournier T, Degrelle SA. Primary Bovine Extra-Embryonic Cultured Cells: A New Resource for the Study of In Vivo Peri-Implanting Phenotypes and Mesoderm Formation. PLoS One 2015; 10:e0127330. [PMID: 26070137 PMCID: PMC4466545 DOI: 10.1371/journal.pone.0127330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/13/2015] [Indexed: 01/11/2023] Open
Abstract
In addition to nourishing the embryo, extra-embryonic tissues (EETs) contribute to early embryonic patterning, primitive hematopoiesis, and fetal health. These tissues are of major importance for human medicine, as well as for efforts to improve livestock efficiency, but they remain incompletely understood. In bovines, EETs are accessible easily, in large amounts, and prior to implantation. We took advantage of this system to describe, in vitro and in vivo, the cell types present in bovine EETs at Day 18 of development. Specifically, we characterized the gene expression patterns and phenotypes of bovine extra-embryonic ectoderm (or trophoblast; bTC), endoderm (bXEC), and mesoderm (bXMC) cells in culture and compared them to their respective in vivo micro-dissected cells. After a week of culture, certain characteristics (e.g., gene expression) of the in vitro cells were altered with respect to the in vivo cells, but we were able to identify "cores" of cell-type-specific (and substrate-independent) genes that were shared between in vitro and in vivo samples. In addition, many cellular phenotypes were cell-type-specific with regard to extracellular adhesion. We evaluated the ability of individual bXMCs to migrate and spread on micro-patterns, and observed that they easily adapted to diverse environments, similar to in vivo EE mesoderm cells, which encounter different EE epithelia to form chorion, yolk sac, and allantois. With these tissue interactions, different functions arose that were detected in silico and corroborated in vivo at D21-D25. Moreover, analysis of bXMCs allowed us to identify the EE cell ring surrounding the embryonic disc (ED) at D14-15 as mesoderm cells, which had been hypothesized but not shown prior to this study. We envision these data will serve as a major resource for the future in the analysis of peri-implanting phenotypes in response to the maternal metabolism and contribute to subsequent studies of placental/fetal development in eutherians.
Collapse
Affiliation(s)
- Isabelle Hue
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Danièle Evain-Brion
- INSERM, UMR-S1139, U767, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; PremUp Foundation, Paris, France
| | - Thierry Fournier
- INSERM, UMR-S1139, U767, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Séverine A Degrelle
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France; INSERM, UMR-S1139, U767, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; PremUp Foundation, Paris, France
| |
Collapse
|
26
|
|
27
|
Kropp EM, Bhattacharya S, Waas M, Chuppa SL, Hadjantonakis AK, Boheler KR, Gundry RL. N-glycoprotein surfaceomes of four developmentally distinct mouse cell types. Proteomics Clin Appl 2015; 8:603-9. [PMID: 24920426 DOI: 10.1002/prca.201400021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/06/2014] [Accepted: 06/06/2014] [Indexed: 11/12/2022]
Abstract
PURPOSE Detailed knowledge of cell surface proteins present during early embryonic development remains limited for most cell lineages. Due to the relevance of cell surface proteins in their functional roles controlling cell signaling and their utility as accessible, nongenetic markers for cell identification and sorting, the goal of this study was to provide new information regarding the cell surface proteins present during early mouse embryonic development. EXPERIMENTAL DESIGN Using the cell surface capture technology, the cell surface N-glycoproteomes of three cell lines and one in vitro differentiated cell type representing distinct cell fates and stages in mouse embryogenesis were assessed. RESULTS Altogether, more than 600 cell surface N-glycoproteins were identified represented by >5500 N-glycopeptides. CONCLUSIONS AND CLINICAL RELEVANCE The development of new, informative cell surface markers for the reliable identification and isolation of functionally defined subsets of cells from early developmental stages will advance the use of stem cell technologies for mechanistic developmental studies, including disease modeling and drug discovery.
Collapse
Affiliation(s)
- Erin M Kropp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Slater JA, Zhou S, Puscheck EE, Rappolee DA. Stress-induced enzyme activation primes murine embryonic stem cells to differentiate toward the first extraembryonic lineage. Stem Cells Dev 2014; 23:3049-64. [PMID: 25144240 PMCID: PMC4267551 DOI: 10.1089/scd.2014.0157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/21/2014] [Indexed: 12/11/2022] Open
Abstract
Extracellular stresses influence transcription factor (TF) expression and therefore lineage identity in the peri-implantation mouse embryo and its stem cells. This potentially affects pregnancy outcome. To understand the effects of stress signaling during this critical period of pregnancy, we exposed cultured murine embryonic stem cells (mESCs) to hyperosmotic stress. We then measured stress-enzyme-dependent regulation of key pluripotency and lineage TFs. Hyperosmotic stress slowed mESC accumulation due to slowing of the cell cycle over 72 h, after a small apoptotic response within 12 h. Phosphoinositide 3-kinase (PI3K) enzymatic signaling was responsible for stem cell survival under stressed conditions. Stress initially triggered mESC differentiation after 4 h through MEK1, c-Jun N-terminal kinase (JNK), and PI3K enzymatic signaling, which led to proteasomal degradation of Oct4, Nanog, Sox2, and Rex1 TF proteins. Concurrent with this post-transcriptional effect was the decreased accumulation of potency TF mRNA transcripts. After 12-24 h of stress, cells adapted, cell cycle resumed, and Oct4 and Nanog mRNA and protein expression returned to approximately normal levels. The TF protein recovery was mediated by p38MAPK and PI3K signaling, as well as by MEK2 and/or MEK1. However, due to JNK signaling, Rex1 expression did not recover. Probing for downstream lineages revealed that although mESCs did not differentiate morphologically during 24 h of stress, they were primed to differentiate by upregulating markers of the first lineage differentiating from mESCs, extraembryonic endoderm. Thus, although two to three TFs that mark pluripotency recover expression by 24 h of stress, there is nonetheless sustained Rex1 suppression and a priming of mESCs for differentiation to the earliest lineage.
Collapse
Affiliation(s)
- Jill A. Slater
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sichang Zhou
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Elizabeth Ella Puscheck
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Daniel A. Rappolee
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
29
|
Artus J, Chazaud C. A close look at the mammalian blastocyst: epiblast and primitive endoderm formation. Cell Mol Life Sci 2014; 71:3327-38. [PMID: 24794628 PMCID: PMC11113690 DOI: 10.1007/s00018-014-1630-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
During early development, the mammalian embryo undergoes a series of profound changes that lead to the formation of two extraembryonic tissues--the trophectoderm and the primitive endoderm. These tissues encapsulate the pluripotent epiblast at the time of implantation. The current model proposes that the formation of these lineages results from two consecutive binary cell fate decisions. The first controls the formation of the trophectoderm and the inner cell mass, and the second controls the formation of the primitive endoderm and the epiblast within the inner cell mass. While early mammalian embryos develop with extensive plasticity, the embryonic pattern prior to implantation is remarkably reproducible. Here, we review the molecular mechanisms driving the cell fate decision between primitive endoderm and epiblast in the mouse embryo and integrate data from recent studies into the current model of the molecular network regulating the segregation between these lineages and their subsequent differentiation.
Collapse
Affiliation(s)
- Jérôme Artus
- Institut Pasteur, Mouse Functional Genetics, CNRS URA2578, 75015 Paris, France
| | - Claire Chazaud
- Clermont Université, Laboratoire GReD, Université d’Auvergne, BP 10448, 63000 Clermont-Ferrand, France
- Inserm, UMR1103, 63001 Clermont-Ferrand, France
- CNRS, UMR6293, 63001 Clermont-Ferrand, France
| |
Collapse
|
30
|
Wolchinsky Z, Shivtiel S, Kouwenhoven EN, Putin D, Sprecher E, Zhou H, Rouleau M, Aberdam D. Angiomodulin is required for cardiogenesis of embryonic stem cells and is maintained by a feedback loop network of p63 and Activin-A. Stem Cell Res 2013; 12:49-59. [PMID: 24145187 DOI: 10.1016/j.scr.2013.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 02/09/2023] Open
Abstract
The transcription factor p63, member of the p53 gene family, encodes for two main isoforms, TAp63 and ΔNp63 with distinct functions on epithelial homeostasis and cancer. Recently, we discovered that TAp63 is essential for in vitro cardiogenesis and heart development in vivo. TAp63 is expressed by embryonic endoderm and acts on cardiac progenitors by a cell-non-autonomous manner. In the present study, we search for cardiogenic secreted factors that could be regulated by TAp63 and, by ChIP-seq analysis, identified Angiomodulin (AGM), also named IGFBP7 or IGFBP-rP1. We demonstrate that AGM is necessary for cardiac commitment of embryonic stem cells (ESCs) and its regulation depends on TAp63 isoform. TAp63 directly activates both AGM and Activin-A during ESC cardiogenesis while these secreted factors modulate TAp63 gene expression by a feedback loop mechanism. The molecular circuitry controlled by TAp63 on AGM/Activin-A signaling pathway and thus on cardiogenesis emphasizes the importance of p63 during early cardiac development.
Collapse
Affiliation(s)
- Zohar Wolchinsky
- INSERTECH, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shoham Shivtiel
- INSERTECH, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Evelyn Nathalie Kouwenhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centrum, The Netherlands
| | - Daria Putin
- INSERTECH, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Huiqing Zhou
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centrum, The Netherlands; Department of Molecular Developmental Biology, Radboud University Nijmegen, The Netherlands
| | - Matthieu Rouleau
- Laboratoire de PhysioMédecine Moléculaire, CNRS FRE-3472, Nice, France; University of Nice-Sophia Antipolis, France
| | - Daniel Aberdam
- INSERTECH, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; INSERM U976, Paris, France; University of Paris Diderot, France.
| |
Collapse
|
31
|
Babic AM, Jang S, Nicolov E, Voicu H, Luckey CJ. Culture of mouse amniotic fluid-derived cells on irradiated STO feeders results in the generation of primitive endoderm cell lines capable of self-renewal in vitro. Cells Tissues Organs 2013; 198:111-26. [PMID: 24060676 DOI: 10.1159/000353942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2013] [Indexed: 12/14/2022] Open
Abstract
The cells present in amniotic fluid (AF) are currently used for prenatal diagnosis of fetal anomalies but are also a potential source of cells for cell therapy. To better characterize putative progenitor cell populations present in AF, we used culture conditions that support self-renewal to determine if these promoted the generation of stable cell lines from AF-derived cells (AFC). Cells isolated from E11.5 mouse were cultured on irradiated STO fibroblast feeder layers in human embryonic germ cell derivation conditions. The cultures grew multicellular epithelial colonies that could be repropagated from single cells. Reverse transcription semiquantitative polymerase chain reaction of established cell lines revealed that they belonged to the extraembryonic endoderm (ExEn) expressing high levels of Gata6, Gata4, Sox17, Foxa2 and Sox7 mRNA. Hierarchical clustering based on the whole transcriptome expression profile of the AFC lines (AFCL) shows significant correlation between transcription profiles of AFCL and blastocyst-derived XEN, an ExEn cell line. In vitro differentiation of AFCL results in the generation of cells expressing albumin and α-fetoprotein (AFP), while intramuscular injection of AFCL into immunodeficient mice produced AFP-positive tumors with primitive endodermal appearance. Hence, E11.5 mouse AF contains cells that efficiently produce XEN lines. These AF-derived XEN lines do not spontaneously differentiate into embryonic-type cells but are phenotypically stable and have the capacity for extensive expansion. The lack of requirement for reprogramming factors to turn AF-derived progenitor cells into stable cell lines capable of massive expansion together with the known ability of ExEn to contribute to embryonic tissue suggests that this cell type may be a candidate for banking for cell therapies.
Collapse
Affiliation(s)
- Aleksandar M Babic
- Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Tex., USA
| | | | | | | | | |
Collapse
|
32
|
Li J, Zhu L, Qu X, Li J, Lin R, Liao L, Wang J, Wang S, Xu Q, Zhao RC. Stepwise differentiation of human adipose-derived mesenchymal stem cells toward definitive endoderm and pancreatic progenitor cells by mimicking pancreatic development in vivo. Stem Cells Dev 2013; 22:1576-87. [PMID: 23259909 DOI: 10.1089/scd.2012.0148] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pancreatic progenitor (PP) cells are tissue-committed cells, which can differentiate into all kinds of pancreatic cells. They are potential candidates for regeneration of pancreatic tissue. However, it is unfeasible to acquire PP cells from pancreatic tissues and expand them in vitro. Generation of PP cells from adipose tissue-derived mesenchymal stem cells (AD-MSCs) would provide an unlimited source of PP cells. Here we developed a 2-step stepwise protocol, which induced AD-MSCs to generate FOXA2- or SOX17-positive definitive endoderm (DE) (5 days) and pancreatic and duodenal homeobox gene 1 (PDX1)-positive PP cells (4-6 days). By mimicking the developmental progress in embryonic development, we optimized the timing and combination of cytokines to activate the key signaling pathways during pancreatic development. We found that activating the Nodal/Activin signal with Activin A could induce differentiation of AD-MSCs toward DE, which could be further promoted by the Wnt signaling pathway activator Wnt3a. Besides, transient T (BRACHYURY)(+) mesendodermal cells were observed during formation of DE from AD-MSCs. Subsequently, the Wnt signaling pathway inhibitor Dkk1 along with retinoic acid/FGF2 (60 ng/mL) further induced AD-MSC-derived DE cells to differentiate into PDX1-positive PP cells. The derived PP cells were capable to form pancreatic endocrine or exocrine cells. In conclusion, we established a stepwise protocol that could derive DE and PP cells from AD-MSCs. It might provide an unlimited source of autologous PP cells for pancreatic diseases.
Collapse
Affiliation(s)
- Jing Li
- Center of Excellence in Tissue Engineering, Department of Cell Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Moerkamp AT, Paca A, Goumans MJ, Kunath T, Kruithof BPT, Kruithof-de Julio M. Extraembryonic endoderm cells as a model of endoderm development. Dev Growth Differ 2013; 55:301-8. [PMID: 23414197 DOI: 10.1111/dgd.12036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
In recent years the multipotent extraembryonic endoderm (XEN) stem cells have been the center of much attention. In vivo, XEN cells contribute to the formation of the extraembryonic endoderm, visceral and parietal endoderm and later on, the yolk sac. Recent data have shown that the distinction between embryonic and extraembryonic endoderm is not as strict as previously thought due to the integration, and not the displacement, of the visceral endoderm into the definitive embryonic endoderm. Therefore, cells from the extraembryonic endoderm also contribute to definitive endoderm. Many research groups focused on unraveling the potential and ability of XEN cells to both support differentiation and/or differentiate into endoderm-like tissues as an alternative to embryonic stem (ES) cells. Moreover, the conversion of ES to XEN cells, shown recently without genetic manipulations, uncovers significant and novel molecular mechanisms involved in extraembryonic endoderm and definitive endoderm development. XEN cell lines provide a unique model for an early mammalian lineage that complements the established ES and trophoblast stem cell lines. Through the study of essential genes and signaling requirements for XEN cells in vitro, insights will be gained about the developmental program of the extraembryonic and embryonic endodermal lineage in vivo. This review will provide an overview on the current literature focusing on XEN cells as a model for primitive endoderm and possibly definitive endoderm as well as the potential of using these cells for therapeutic applications.
Collapse
Affiliation(s)
- Asja T Moerkamp
- Department of Molecular and Cell Biology, Centre of Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Van Vliet P, Wu SM, Zaffran S, Pucéat M. Early cardiac development: a view from stem cells to embryos. Cardiovasc Res 2012; 96:352-62. [PMID: 22893679 PMCID: PMC3500045 DOI: 10.1093/cvr/cvs270] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 12/11/2022] Open
Abstract
From the 1920s, early cardiac development has been studied in chick and, later, in mouse embryos in order to understand the first cell fate decisions that drive specification and determination of the endocardium, myocardium, and epicardium. More recently, mouse and human embryonic stem cells (ESCs) have demonstrated faithful recapitulation of early cardiogenesis and have contributed significantly to this research over the past few decades. Derived almost 15 years ago, human ESCs have provided a unique developmental model for understanding the genetic and epigenetic regulation of early human cardiogenesis. Here, we review the biological concepts underlying cell fate decisions during early cardiogenesis in model organisms and ESCs. We draw upon both pioneering and recent studies and highlight the continued role for in vitro stem cells in cardiac developmental biology.
Collapse
Affiliation(s)
- Patrick Van Vliet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, CA, USA
| | - Sean M. Wu
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stéphane Zaffran
- Aix-Marseille University, Marseille, France
- INSERM UMRS910, Faculté de Médecine de la Timone, France
| | - Michel Pucéat
- INSERM UMR633, Paris Descartes University, Campus Genopole 1, 4, rue Pierre Fontaine, Evry 91058, Paris, France
| |
Collapse
|
35
|
Chuykin I, Schulz H, Guan K, Bader M. Activation of the PTHRP/adenylate cyclase pathway promotes differentiation of rat XEN cells into parietal endoderm, whereas Wnt/β-catenin signaling promotes differentiation into visceral endoderm. J Cell Sci 2012; 126:128-38. [PMID: 23038778 DOI: 10.1242/jcs.110239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During early mammalian development, primitive endoderm (PrE) is specified and segregated away from the pluripotent epiblast. At a later developmental stage, PrE forms motile parietal endoderm (PE) lying proximal to the trophectoderm, and visceral endoderm (VE) that contacts the developing epiblast and extraembryonic ectoderm. Mouse extraembryonic endoderm (XEN) cells were isolated and became widely used to study signals governing lineage specification. Rat XEN cell lines have also been derived, but were distinguished from mouse by expression of SSEA1 and Oct4. We showed here that rat XEN cells grown in the presence of a GSK3 inhibitor or overexpressing β-catenin exhibited enhanced formation of cell contacts and decreased motility. Rat XEN cells treated with BMP4 revealed similar morphological changes. Furthermore, we observed that rat XEN cells cultured with GSK3 inhibitor formed adhesion and tight junctions, and acquired bottom-top polarity, indicating the formation of VE cells. In contrast, forskolin, an activator of the cAMP pathway, induced the disruption of cell contacts in rat XEN cells. Treatment with forskolin induced PE formation and epithelial-mesenchymal transition (EMT) in rat XEN cells. Using microarray and real-time PCR assays, we found that VE versus PE formation of rat XEN cells was correlated with change in expression levels of VE or PE marker genes. Similar to forskolin, EMT was prompted upon treatment of rat XEN cells with recombinant parathyroid hormone related peptide (PTHRP), an activator of the cAMP pathway in vivo. Taken together, our data suggest that rat XEN cells are PrE-like cells. The activation of Wnt or BMP4 pathways in rat XEN cells leads to the acquisition of VE characteristics, whereas the activation of the PTHRP/cAMP pathway leads to EMT and the formation of PE.
Collapse
Affiliation(s)
- Ilya Chuykin
- Max-Delbrück Center for Molecular Medicine 13125, Berlin, Robert-Rossle Strasse 10, Germany.
| | | | | | | |
Collapse
|
36
|
Artus J, Hadjantonakis AK. Troika of the mouse blastocyst: lineage segregation and stem cells. Curr Stem Cell Res Ther 2012; 7:78-91. [PMID: 22023624 DOI: 10.2174/157488812798483403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/05/2011] [Accepted: 09/24/2011] [Indexed: 12/23/2022]
Abstract
The initial period of mammalian embryonic development is primarily devoted to cell commitment to the pluripotent lineage, as well as to the formation of extraembryonic tissues essential for embryo survival in utero. This phase of development is also characterized by extensive morphological transitions. Cells within the preimplantation embryo exhibit extraordinary cell plasticity and adaptation in response to experimental manipulation, highlighting the use of a regulative developmental strategy rather than a predetermined one resulting from the non-uniform distribution of maternal information in the cytoplasm. Consequently, early mammalian development represents a useful model to study how the three primary cell lineages; the epiblast, primitive endoderm (also referred to as the hypoblast) and trophoblast, emerge from a totipotent single cell, the zygote. In this review, we will discuss how the isolation and genetic manipulation of murine stem cells representing each of these three lineages has contributed to our understanding of the molecular basis of early developmental events.
Collapse
Affiliation(s)
- Jerome Artus
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
37
|
Hwang JTK, Kelly GM. GATA6 and FOXA2 regulate Wnt6 expression during extraembryonic endoderm formation. Stem Cells Dev 2012; 21:3220-32. [PMID: 22607194 DOI: 10.1089/scd.2011.0492] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the earliest epithelial-to-mesenchymal transitions in mouse embryogenesis involves the differentiation of inner cell mass cells into primitive and then into parietal endoderm. These processes can be recapitulated in vitro using F9 teratocarcinoma cells, which differentiate into primitive endoderm when treated with retinoic acid (RA) and into parietal endoderm with subsequent treatment with dibutyryl cyclic adenosine monophosphate (db-cAMP). Our previous work on how primitive endoderm develops revealed that the Wnt6 gene is upregulated by RA, leading to the activation of the canonical WNT-β-catenin pathway. The mechanism by which Wnt6 is regulated was not determined, but in silico analysis of the human WNT6 promoter region had suggested that the GATA6 and FOXA2 transcription factors might be involved [1]. Subsequent analysis determined that both Gata6 and Foxa2 mRNA are upregulated in F9 cells treated with RA or RA and db-cAMP. More specifically, overexpression of Gata6 or Foxa2 alone induced molecular and morphological markers of primitive endoderm, which occurred concomitantly with the upregulation of the Wnt6 gene. Gata6- or Foxa2-overexpressing cells were also found to have increased levels in T-cell factor (TCF)-dependent transcription, and when these cells were treated with db-cAMP, they developed into parietal endoderm. Chromatin immunoprecipitation analysis revealed that GATA6 and FOXA2 were bound to the Wnt6 promoter, and overexpression studies showed that these transcription factors were sufficient to switch on the gene expression of a Wnt6 reporter construct. Together, these results provide evidence for the direct regulation of Wnt6 that leads to the activation of the canonical WNT-β-catenin pathway and subsequent induction of primitive extraembryonic endoderm.
Collapse
Affiliation(s)
- Jason T K Hwang
- Molecular Genetics Unit, Department of Biology, Child Health Research Institute, Western University, London, Ontario, Canada
| | | |
Collapse
|
38
|
Feng X, Zhang J, Smuga-Otto K, Tian S, Yu J, Stewart R, Thomson JA. Protein kinase C mediated extraembryonic endoderm differentiation of human embryonic stem cells. Stem Cells 2012; 30:461-70. [PMID: 22213079 DOI: 10.1002/stem.1018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unlike mouse embryonic stem cells (ESCs), which are closely related to the inner cell mass, human ESCs appear to be more closely related to the later primitive ectoderm. For example, human ESCs and primitive ectoderm share a common epithelial morphology, growth factor requirements, and the potential to differentiate to all three embryonic germ layers. However, it has previously been shown that human ESCs can also differentiate to cells expressing markers of trophoblast, an extraembryonic lineage formed before the formation of primitive ectoderm. Here, we show that phorbol ester 12-O-tetradecanoylphorbol 13-acetate causes human ESCs to undergo an epithelial mesenchymal transition and to differentiate into cells expressing markers of parietal endoderm, another extraembryonic lineage. We further confirmed that this differentiation is through the activation of protein kinase C (PKC) pathway and demonstrated that a particular PKC subtype, PKC-δ, is most responsible for this transition.
Collapse
Affiliation(s)
- Xuezhu Feng
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Xu C, Fan ZP, Müller P, Fogley R, DiBiase A, Trompouki E, Unternaehrer J, Xiong F, Torregroza I, Evans T, Megason SG, Daley GQ, Schier AF, Young RA, Zon LI. Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway. Dev Cell 2012; 22:625-38. [PMID: 22421047 DOI: 10.1016/j.devcel.2012.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/19/2011] [Accepted: 01/11/2012] [Indexed: 12/15/2022]
Abstract
In mammalian embryonic stem cells, the acquisition of pluripotency is dependent on Nanog, but the in vivo analysis of Nanog has been hampered by its requirement for early mouse development. In an effort to examine the role of Nanog in vivo, we identified a zebrafish Nanog ortholog and found that its knockdown impaired endoderm formation. Genome-wide transcription analysis revealed that nanog-like morphants fail to develop the extraembryonic yolk syncytial layer (YSL), which produces Nodal, required for endoderm induction. We examined the genes that were regulated by Nanog-like and identified the homeobox gene mxtx2, which is both necessary and sufficient for YSL induction. Chromatin immunoprecipitation assays and genetic studies indicated that Nanog-like directly activates mxtx2, which, in turn, specifies the YSL lineage by directly activating YSL genes. Our study identifies a Nanog-like-Mxtx2-Nodal pathway and establishes a role for Nanog-like in regulating the formation of the extraembryonic tissue required for endoderm induction.
Collapse
Affiliation(s)
- Cong Xu
- Howard Hughes Medical Institute, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu W, Brown K, Legros S, Foley AC. Nodal mutant eXtraembryonic ENdoderm (XEN) stem cells upregulate markers for the anterior visceral endoderm and impact the timing of cardiac differentiation in mouse embryoid bodies. Biol Open 2012; 1:208-19. [PMID: 23213411 PMCID: PMC3507291 DOI: 10.1242/bio.2012038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Interactions between the endoderm and mesoderm that mediate myocardial induction are difficult to study in vivo because of the small size of mammalian embryos at relevant stages. However, we and others have demonstrated that signals from endodermal cell lines can influence myocardial differentiation from both mouse and human embryoid bodies (EBs), and because of this, assays that utilize embryonic stem (ES) cells and endodermal cell lines provide excellent in vitro models to study early cardiac differentiation. Extraembryonic endoderm (XEN) stem cells have a particular advantage over other heart-inducing cell lines in that they can easily be derived from both wild type and mutant mouse blastocysts. Here we describe the first isolation of a Nodal mutant XEN stem cell line. Nodal−/− XEN cell lines were not isolated at expected Mendelian ratios, and those that were successfully established, showed an increase in markers for the anterior visceral endoderm (AVE). Since AVE represents the heart-inducing endoderm in the mouse, cardiac differentiation was compared in EBs treated with conditioned medium (CM) collected from wild type or Nodal−/− XEN cells. EBs treated with CM from Nodal−/− cells began beating earlier and showed early activation of myocardial genes, but this early cardiac differentiation did not cause an overall increase in cardiomyocyte yield. By comparison, CM from wild type XEN cells both delayed cardiac differentiation and caused a concomitant increase in overall cardiomyocyte formation. Detailed marker analysis suggested that early activation of cardiac differentiation by Nodal−/− XEN CM caused premature differentiation and subsequent depletion of cardiac progenitors.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Weill Cornell Medical College , New York, NY 10065 , USA
| | | | | | | |
Collapse
|
41
|
Kruithof-de Julio M, Alvarez MJ, Galli A, Chu J, Price SM, Califano A, Shen MM. Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling. Development 2011; 138:3885-95. [PMID: 21862554 DOI: 10.1242/dev.065656] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The signaling pathway for Nodal, a ligand of the TGFβ superfamily, plays a central role in regulating the differentiation and/or maintenance of stem cell types that can be derived from the peri-implantation mouse embryo. Extra-embryonic endoderm stem (XEN) cells resemble the primitive endoderm of the blastocyst, which normally gives rise to the parietal and the visceral endoderm in vivo, but XEN cells do not contribute efficiently to the visceral endoderm in chimeric embryos. We have found that XEN cells treated with Nodal or Cripto (Tdgf1), an EGF-CFC co-receptor for Nodal, display upregulation of markers for visceral endoderm as well as anterior visceral endoderm (AVE), and can contribute to visceral endoderm and AVE in chimeric embryos. In culture, XEN cells do not express Cripto, but do express the related EGF-CFC co-receptor Cryptic (Cfc1), and require Cryptic for Nodal signaling. Notably, the response to Nodal is inhibited by the Alk4/Alk5/Alk7 inhibitor SB431542, but the response to Cripto is unaffected, suggesting that the activity of Cripto is at least partially independent of type I receptor kinase activity. Gene set enrichment analysis of genome-wide expression signatures generated from XEN cells under these treatment conditions confirmed the differing responses of Nodal- and Cripto-treated XEN cells to SB431542. Our findings define distinct pathways for Nodal and Cripto in the differentiation of visceral endoderm and AVE from XEN cells and provide new insights into the specification of these cell types in vivo.
Collapse
|
42
|
Artus J, Douvaras P, Piliszek A, Isern J, Baron MH, Hadjantonakis AK. BMP4 signaling directs primitive endoderm-derived XEN cells to an extraembryonic visceral endoderm identity. Dev Biol 2011; 361:245-62. [PMID: 22051107 DOI: 10.1016/j.ydbio.2011.10.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 09/19/2011] [Accepted: 10/08/2011] [Indexed: 12/20/2022]
Abstract
The visceral endoderm (VE) is an epithelial tissue in the early postimplantation mouse embryo that encapsulates the pluripotent epiblast distally and the extraembryonic ectoderm proximally. In addition to facilitating nutrient exchange before the establishment of a circulation, the VE is critical for patterning the epiblast. Since VE is derived from the primitive endoderm (PrE) of the blastocyst, and PrE-derived eXtraembryonic ENdoderm (XEN) cells can be propagated in vitro, XEN cells should provide an important tool for identifying factors that direct VE differentiation. In this study, we demonstrated that BMP4 signaling induces the formation of a polarized epithelium in XEN cells. This morphological transition was reversible, and was associated with the acquisition of a molecular signature comparable to extraembryonic (ex) VE. Resembling exVE which will form the endoderm of the visceral yolk sac, BMP4-treated XEN cells regulated hematopoiesis by stimulating the expansion of primitive erythroid progenitors. We also observed that LIF exerted an antagonistic effect on BMP4-induced XEN cell differentiation, thereby impacting the extrinsic conditions used for the isolation and maintenance of XEN cells in an undifferentiated state. Taken together, our data suggest that XEN cells can be differentiated towards an exVE identity upon BMP4 stimulation and therefore represent a valuable tool for investigating PrE lineage differentiation.
Collapse
Affiliation(s)
- Jérôme Artus
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
43
|
Brown K, Doss MX, Legros S, Artus J, Hadjantonakis AK, Foley AC. eXtraembryonic ENdoderm (XEN) stem cells produce factors that activate heart formation. PLoS One 2010; 5:e13446. [PMID: 20975998 PMCID: PMC2958120 DOI: 10.1371/journal.pone.0013446] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 09/16/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Initial specification of cardiomyocytes in the mouse results from interactions between the extraembryonic anterior visceral endoderm (AVE) and the nascent mesoderm. However the mechanism by which AVE activates cardiogenesis is not well understood, and the identity of specific cardiogenic factors in the endoderm remains elusive. Most mammalian studies of the cardiogenic potential of the endoderm have relied on the use of cell lines that are similar to the heart-inducing AVE. These include the embryonal-carcinoma-derived cell lines, END2 and PYS2. The recent development of protocols to isolate eXtraembryonic ENdoderm (XEN) stem cells, representing the extraembryonic endoderm lineage, from blastocyst stage mouse embryos offers new tools for the genetic dissection of cardiogenesis. METHODOLOGY/PRINCIPAL FINDINGS Here, we demonstrate that XEN cell-conditioned media (CM) enhances cardiogenesis during Embryoid Body (EB) differentiation of mouse embryonic stem (ES) cells in a manner comparable to PYS2-CM and END2-CM. Addition of CM from each of these three cell lines enhanced the percentage of EBs that formed beating areas, but ultimately, only XEN-CM and PYS2-CM increased the total number of cardiomyocytes that formed. Furthermore, our observations revealed that both contact-independent and contact-dependent factors are required to mediate the full cardiogenic potential of the endoderm. Finally, we used gene array comparison to identify factors in these cell lines that could mediate their cardiogenic potential. CONCLUSIONS/SIGNIFICANCE These studies represent the first step in the use of XEN cells as a molecular genetic tool to study cardiomyocyte differentiation. Not only are XEN cells functionally similar to the heart-inducing AVE, but also can be used for the genetic dissection of the cardiogenic potential of AVE, since they can be isolated from both wild type and mutant blastocysts. These studies further demonstrate the importance of both contact-dependent and contact-independent factors in cardiogenesis and identify potential heart-inducing proteins in the endoderm.
Collapse
Affiliation(s)
- Kemar Brown
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Michael Xavier Doss
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephanie Legros
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America
| | - Jérôme Artus
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | | | - Ann C. Foley
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
44
|
Artus J, Panthier JJ, Hadjantonakis AK. A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst. Development 2010; 137:3361-72. [PMID: 20826533 DOI: 10.1242/dev.050864] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inner cell mass (ICM) of the implanting mammalian blastocyst comprises two lineages: the pluripotent epiblast (EPI) and primitive endoderm (PrE). We have identified platelet-derived growth factor receptor alpha (PDGFRα) as an early marker of the PrE lineage and its derivatives in both mouse embryos and ex vivo paradigms of extra-embryonic endoderm (ExEn). By combining live imaging of embryos and embryo-derived stem cells expressing a histone H2B-GFP fusion reporter under the control of Pdgfra regulatory elements with the analysis of lineage-specific markers, we found that Pdgfra expression coincides with that of GATA6, the earliest expressed transcriptional regulator of the PrE lineage. We show that GATA6 is required for the activation of Pdgfra expression. Using pharmacological inhibition and genetic inactivation we addressed the role of the PDGF pathway in the PrE lineage. Our results demonstrate that PDGF signaling is essential for the establishment, and plays a role in the proliferation, of XEN cells, which are isolated from mouse blastocyst stage embryos and represent the PrE lineage. Implanting Pdgfra mutant blastocysts exhibited a reduced number of PrE cells, an effect that was exacerbated by delaying implantation. Surprisingly, we also noted an increase in the number of EPI cells in implantation-delayed Pdgfra-null mutants. Taken together, our data suggest a role for PDGF signaling in the expansion of the ExEn lineage. Our observations also uncover a possible role for the PrE in regulating the size of the pluripotent EPI compartment.
Collapse
Affiliation(s)
- Jérôme Artus
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|