1
|
Chen Z, Vallega KA, Wang D, Quan Z, Fan S, Wang Q, Leal T, Ramalingam SS, Sun SY. Inhibition of hTERT/telomerase/telomere mediates therapeutic efficacy of osimertinib in EGFR mutant lung cancer. J Exp Med 2024; 221:e20240435. [PMID: 39297884 PMCID: PMC11413468 DOI: 10.1084/jem.20240435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
The inevitable acquired resistance to osimertinib (AZD9291), an FDA-approved third-generation EGFR tyrosine kinase inhibitor (EGFR-TKI) for the treatment of patients with advanced non-small cell lung cancer (NSCLC) harboring EGFR activating or T790M resistant mutations, limits its long-term clinical benefit. Telomere maintenance via telomerase reactivation is linked to uncontrolled cell growth and is a cancer hallmark and an attractive cancer therapeutic target. Our effort toward understanding the action mechanisms, including resistance mechanisms, of osimertinib has led to the identification of a novel and critical role in maintaining c-Myc-dependent downregulation of hTERT, a catalytic subunit of telomerase, and subsequent inhibition of telomerase/telomere and induction of telomere dysfunction in mediating therapeutic efficacy of osimertinib. Consequently, osimertinib combined with the telomere inhibitor, 6-Thio-dG, which is currently tested in a phase II trial, effectively inhibited the growth of osimertinib-resistant tumors, regressed EGFRm NSCLC patient-derived xenografts, and delayed the emergence of acquired resistance to osimertinib, warranting clinical validation of this strategy to manage osimertinib acquired resistance.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Karin A. Vallega
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Zihan Quan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ticiana Leal
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
2
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Chen J, Li L, Huangfu L, Du H, Ji X, Xing X, Ji J. Death receptor 5 promotes tumor progression in gastric cancer. FEBS Open Bio 2023; 13:2375-2388. [PMID: 37879960 PMCID: PMC10699099 DOI: 10.1002/2211-5463.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Death receptor 5 (DR5) can inhibit malignant proliferation via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in many cancers. Here we examined the expression and sublocalization of DR5 in gastric cancer, as well as its effects on clinical prognosis and cellular processes. Our analysis included a cohort of 240 gastric cancer patients. Bioinformatic analysis showed a significant correlation between DR5 and DNA replication, tumor mutation burden (TMB), and tumor stemness. Unlike death receptor 4 (DR4TRAIL-R1), DR5 was expressed in the cytoplasm and nucleus, and was found to be positively correlated with lymphovascular invasion, lymph node metastasis, and TNM stage. Patients with positive DR5 had worse overall survival (OS) (P = 0.006). The multivariate Cox model showed that DR5 is an independent poor prognostic factor (hazard ratio = 1.693). Furthermore, knockdown of DR5 inhibited aggressive behaviors, including proliferation and metastasis in gastric cancer cells, and inhibited lung metastasis in vivo. In summary, nuclear localization of DR5 expression is a poor prognosis factor in gastric cancer and promotes growth, invasion, and metastasis of tumor cells in vitro and in vivo.
Collapse
Affiliation(s)
- Junbing Chen
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Lin Li
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
- Department of Gastroenterology, Aerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijingChina
| | - Longtao Huangfu
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Hong Du
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xin Ji
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiaofang Xing
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| |
Collapse
|
4
|
Bravo Perina L, Faria Gomes IN, Alcantara Pelloso AR, Silva VAO, Rebolho Batista Arantes LM, Eliseo Melendez M. Combined effect of the pro-apoptotic rhTRAIL protein and HSV-1 virus in head and neck cancer cell lines. Sci Rep 2023; 13:18023. [PMID: 37865660 PMCID: PMC10590400 DOI: 10.1038/s41598-023-44888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Knowledge on the molecular and clinical characteristics of head and neck squamous cell carcinoma (HNSCC) is vast. However, an effective therapy that increases the life expectancy of these patients, with a 5-year overall survival of 50%, is still unknown. Here we evaluated the combined effect of the pro-apoptotic protein rhTRAIL with the replication-competent wild-type HSV-1 virus in head and neck cancer cell lines. We observed a difference in the modulation profile of proteins related to apoptotic pathways in the studied cell lines. The HCB289 exhibited caspase-9 activation in the presence of the HSV-1 virus, while the UD-SCC-2 exhibited caspase-8 activation in the presence of rhTRAIL. Both cell lines exhibited PARP activation by combining rhTRAIL and HSV-1 virus treatment. Flow cytometry analysis exhibited greater induction of late apoptosis for the HCB289 and UD-SCC-2 after the combination treatment of the HSV-1 and rhTRAIL. However, the UD-SCC-2 also presented induction of late apoptosis by the presence of rhTRAIL in monotherapy. These data suggest an enhancement of the effect of the combination treatment of the rhTRAIL and the HSV-1 on reducing viability and induction of cell death.
Collapse
Affiliation(s)
- Lucas Bravo Perina
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, RJ, 20230-240, Brazil
| | | | - Ana Rúbia Alcantara Pelloso
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, RJ, 20230-240, Brazil
| | - Viviane Aline Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil
- Department of Pathology and Legal Medicine, Medical School of the Federal University of Bahia, Salvador, BA, 40026-010, Brazil
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, 40296-710, Brazil
| | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil.
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, RJ, 20230-240, Brazil.
| |
Collapse
|
5
|
Ohara G, Okabe K, Toyama N, Ohta Y, Xinman S, Ichimura N, Sato K, Urata Y, Hibi H. Hyperthermia maintains death receptor expression and promotes TRAIL-induced apoptosis. J Oral Pathol Med 2023; 52:718-726. [PMID: 37317871 DOI: 10.1111/jop.13457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/22/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tumor necrosis factor-related apoptosis-inducing ligand activates apoptotic pathways and could potentially be used in anticancer treatments. However, oral squamous cell carcinoma cells are known to be resistant to tumor necrosis factor-related apoptosis-inducing ligand-induced cell death. It has been previously reported that hyperthermia upregulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in other cancers. As such, we evaluated whether hyperthermia upregulates tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in a tumor necrosis factor-related apoptosis-inducing ligand-resistant oral squamous cell carcinoma cell line. METHODS The oral squamous cell carcinoma cell line HSC3 was cultured and divided into hyperthermia and control groups. We investigated the antitumor effects of recombinant human tumor necrosis factor-related apoptosis-inducing ligand using cell proliferation and apoptosis assays. Additionally, we measured death receptor 4 and 5 levels, and determined death receptor ubiquitination status, as well as E3 ubiquitin ligase targeting of death receptor in both hyperthermia and control groups before recombinant human tumor necrosis factor-related apoptosis-inducing ligand administration. RESULTS Treatment with recombinant human tumor necrosis factor-related apoptosis-inducing ligand produced greater inhibitory effects in the hyperthermia group than in the control group. Moreover, death receptor protein expression in the hyperthermia group was upregulated on the cell surface (and overall), although death receptor mRNA was downregulated. The half-life of death receptor was several hours longer in the hyperthermia group; concomitantly, E3 ubiquitin ligase expression and death receptor ubiquitination were downregulated in this group. CONCLUSION Our findings suggested that hyperthermia enhances apoptotic signaling by tumor necrosis factor-related apoptosis-inducing ligand via the suppression of death receptor ubiquitination, which upregulates death receptor expression. These data suggest that the combination of hyperthermia and tumor necrosis factor-related apoptosis-inducing ligand has implications in developing a novel treatment strategy for oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Go Ohara
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuto Okabe
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoto Toyama
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral and Maxillofacial Surgery, Iwata City Hospital, Iwata, Japan
| | - Yuya Ohta
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Song Xinman
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norihisa Ichimura
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Kotaro Sato
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Urata
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
6
|
Liang J, Feng Y, Liu Y, Shi K, Zhou G, Liu L, Liu Y, Qiao K, Liu W, Wang X. Serum soluble DR5 predicts mortality risk in patients with HBV-related hepatocellular carcinoma. Front Oncol 2022; 12:1040812. [PMID: 36605430 PMCID: PMC9807802 DOI: 10.3389/fonc.2022.1040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Death receptor 5 (DR5) is significantly upregulated in various human tumor tissues; however, the relationship between serum levels of soluble DR5 (sDR5) and the mortality risk of hepatocellular carcinoma (HCC) is not understood. Our aim is to investigate the prognostic value of serum sDR5 in HCC patients. Methods A total of 170 patients with HBV-HCC were recruited, with 82 and 88 patients as derivation and validation cohorts, respectively. sDR5 levels were analyzed using ELISA. The predictive factors for mortality were selected using LASSO regression analysis. Cox regression analysis was used to analyze the independent factors affecting mortality in 2 years. A nomogram based on the interquartile range of the sDR5 values predicted mortality rates. Results Serum sDR5 level was identified as an independent risk factor for mortality in patients with HBV-HCC. The 2-year cumulative mortality rates of HBV-HCC were 10, 28.57, 38.10, and 95% across the sDR5 quartiles, respectively (p < 0.001). The sDR5 had an AUROC of 0.851 (95% CI: 0.755-0.920) in the derivation cohort. When the cut-off value was 30.06pg/mL, the AUROC of sDR5 was 0.778 (95% CI 0.677-0.860) in the validation cohort. The calibration curves fit well, and the decision curves showed that sDR5 had a high standardized net benefit. sDR5 predicted the prognosis of HBV-HCC patients most accurately. Further, serum sDR5 level was significantly positively associated with BCLC stage and the presence or absence of ascites. Conclusion sDR5 showed high predictive accuracy in patients with HBV-HCC; thus, it is considered a new serological biomarker.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Infectious Disease, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ying Feng
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Liu
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ke Shi
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guiqin Zhou
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Long Liu
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yaxin Liu
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Kexin Qiao
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen Liu
- Department of Infectious Disease, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,*Correspondence: Xianbo Wang, ; Wen Liu,
| | - Xianbo Wang
- Department of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China,*Correspondence: Xianbo Wang, ; Wen Liu,
| |
Collapse
|
7
|
Prognostic Impact of Caspase-8, CDK9 and Phospho-CDK9 (Thr 186) Expression in Patients with Uterine Cervical Cancer Treated with Definitive Chemoradiation and Brachytherapy. Cancers (Basel) 2022; 14:cancers14225500. [PMID: 36428594 PMCID: PMC9688434 DOI: 10.3390/cancers14225500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction: After primary platinum-based chemoradiation of locally advanced uterine cervical cancer, a substantial proportion of women present with persistent, recurrent or metastatic disease, indicating an unmet need for biomarker development. Methods: We evaluated the clinical records of 69 cervical cancer patients (Federation of Gynecology and Obstetrics, FIGO Stage > IB3) who were subjected to definitive CRT. Immunohistochemical scoring of caspase-8, cyclin dependent kinase 9 (CDK9) and phosphorylated (phospho-)CDK9 (threonine (Thr) 186) was performed on pretreatment samples and correlated with the histopathological and clinical endpoints, including relapse-free survival (RFS), distant metastasis-free survival (DMFS), cancer-specific survival (CSS) and overall survival (OS). Results: Lower levels of caspase-8 were more prevalent in patients with a higher T-stage (p = 0.002) and a higher FIGO stage (p = 0.003), and were significantly correlated with CDK9 expression (p = 0.018) and inversely with pCDK9 detection (p = 0.014). Increased caspase-8 levels corresponded to improved RFS (p = 0.005), DMFS (p = 0.038) and CSS (p = 0.017) in the univariate analyses. Low CDK9 expression was associated with worse RFS (p = 0.008), CSS (p = 0.015) and OS (p = 0.007), but not DMFS (p = 0.083), and remained a significant prognosticator for RFS (p = 0.003) and CSS (p = 0.009) in the multivariate analyses. Furthermore, low pCDK9 staining was significantly associated with superior RFS (p = 0.004) and DMFS (p = 0.001), and increased CSS (p = 0.022), and remained significant for these endpoints in the multivariate analyses. Conclusion: Increased caspase-8 and CDK9 levels correlate with improved disease-related outcomes in cervical cancer patients treated with CRT, whereas elevated pCDK9 levels predict worse survival in this patient population.
Collapse
|
8
|
Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:73-120. [PMID: 33931145 DOI: 10.1016/bs.apcsb.2021.01.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis, also named programmed cell death, is a fundament process required for morphogenetic homeostasis during early development and in pathophysiological conditions. It is come into existence in 1972 by work of Kerr, Wyllie and Currie and later on investigated during the research on development of the C. elegans. Trigger by several stimuli, apoptosis is necessary during the embryonic development and aging as homeostatic mechanism to control the cell population and also play a key role as defense mechanism against the immune responses and elimination of damaged cells. Cancer, a genetic disease, is a growing burden on the health and economy of both developing and developed countries. Every year there is tremendously increasing in the number of new cancer cases and mortality rate. Although, there is a significant improvement have been made in biotechnological and bioinformatic fields however, the therapeutic advantages and cancer etiology is still under explored. Several studies determined the deregulation of different apoptotic components during the cancer development and progression. Apoptosis relies on activation of distinct signaling pathways that are often deregulated in cancer. Thus, exploring the single or more than one apoptotic component underlying their expression in carcinogenesis could help to track the disease progression. Current book chapter will provide the several evidences supporting the use of different apoptotic components as prognosis and prediction markers in various human cancer types.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduation Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Neelam Goel
- Department of Information Technology, UIET, Panjab University, Chandigarh, India.
| |
Collapse
|
9
|
Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules 2021; 11:biom11040499. [PMID: 33810241 PMCID: PMC8065657 DOI: 10.3390/biom11040499] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and their corresponding death receptors (e.g., DR5) not only initiate apoptosis through activation of the extrinsic apoptotic pathway but also exert non-apoptotic biological functions such as regulation of inflammation and cancer metastasis. The involvement of the TRAIL/death receptor signaling pathway in the regulation of cancer invasion and metastasis is complex as both positive and negative roles have been reported. The underlying molecular mechanisms are even more complicated. This review will focus on discussing current knowledge in our understanding of the involvement of TRAIL/death receptor-mediated signaling in the regulation of cancer cell invasion and metastasis.
Collapse
|
10
|
Stöhr D, Schmid JO, Beigl TB, Mack A, Maichl DS, Cao K, Budai B, Fullstone G, Kontermann RE, Mürdter TE, Tait SWG, Hagenlocher C, Pollak N, Scheurich P, Rehm M. Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids. Cell Death Differ 2020; 27:3037-3052. [PMID: 32433558 PMCID: PMC7560834 DOI: 10.1038/s41418-020-0559-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 11/13/2022] Open
Abstract
The influence of 3D microenvironments on apoptosis susceptibility remains poorly understood. Here, we studied the susceptibility of cancer cell spheroids, grown to the size of micrometastases, to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Interestingly, pronounced, spatially coordinated response heterogeneities manifest within spheroidal microenvironments: In spheroids grown from genetically identical cells, TRAIL-resistant subpopulations enclose, and protect TRAIL-hypersensitive cells, thereby increasing overall treatment resistance. TRAIL-resistant layers form at the interface of proliferating and quiescent cells and lack both TRAILR1 and TRAILR2 protein expression. In contrast, oxygen, and nutrient deprivation promote high amounts of TRAILR2 expression in TRAIL-hypersensitive cells in inner spheroid layers. COX-II inhibitor celecoxib further enhanced TRAILR2 expression in spheroids, likely resulting from increased ER stress, and thereby re-sensitized TRAIL-resistant cell layers to treatment. Our analyses explain how TRAIL response heterogeneities manifest within well-defined multicellular environments, and how spatial barriers of TRAIL resistance can be minimized and eliminated.
Collapse
Affiliation(s)
- Daniela Stöhr
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jens O Schmid
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, 70376, Stuttgart, Germany
- Department of Laboratory Medicine, Robert-Bosch-Hospital, 70376, Stuttgart, Germany
| | - Tobias B Beigl
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Alexandra Mack
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Daniela S Maichl
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Kai Cao
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Beate Budai
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Gavin Fullstone
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, 70376, Stuttgart, Germany
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Cathrin Hagenlocher
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Nadine Pollak
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Peter Scheurich
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany.
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin D2, Ireland.
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin D2, Ireland.
| |
Collapse
|
11
|
Caspase-8: The double-edged sword. Biochim Biophys Acta Rev Cancer 2020; 1873:188357. [PMID: 32147543 DOI: 10.1016/j.bbcan.2020.188357] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is a cysteine - aspartate specific protease that classically triggers the extrinsic apoptotic pathway, in response to the activation of cell surface Death Receptors (DRs) like FAS, TRAIL-R and TNF-R. Besides it's roles in triggering death receptor-mediated apoptosis, Caspase-8 has also been implicated in the onsets of anoikis, autophagy and pyroptosis. Furthermore, Caspase-8 also plays a crucial pro-survival function by inhibiting an alternative form of programmed cell death called necroptosis. Low expression levels of pro-Caspase-8 is therefore associated with the malignant transformation of cancers. However, the long-held notion that pro-Caspase-8 expression/activity is generally lost in most cancers, thereby contributing to apoptotic escape and enhanced resistance to anti-cancer therapeutics, has been found to be true for only a minority of cancers types. In the majority of cases, pro-Caspase-8 expression is maintained and sometimes elevated, while it's apoptotic activity is regulated through different mechanisms. This supports the notion that the non-apoptotic functions of Caspase-8 offer growth advantage in these cancer types and have, therefore, gained renewed interest in the recent years. In light of these reasons, a number of therapeutic approaches have been employed, with the intent of targeting pro-Caspase-8 in cancer cells. In this review, we would attempt to discuss - the classic roles of Caspase-8 in initiating apoptosis; it's non-apoptotic functions; it's the clinical significance in different cancer types; and the therapeutic applications exploiting the ability of pro-Caspase-8 to regulate various cellular functions.
Collapse
|
12
|
A Cell's Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int J Mol Sci 2019; 20:ijms20174133. [PMID: 31450613 PMCID: PMC6747454 DOI: 10.3390/ijms20174133] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death.
Collapse
|
13
|
Rahman S, Kraljević Pavelić S, Markova-Car E. Circadian (De)regulation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20112662. [PMID: 31151182 PMCID: PMC6600143 DOI: 10.3390/ijms20112662] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancer encompass different malignancies that develop in and around the throat, larynx, nose, sinuses and mouth. Most head and neck cancers are squamous cell carcinomas (HNSCC) that arise in the flat squamous cells that makeup the thin layer of tissue on the surface of anatomical structures in the head and neck. Each year, HNSCC is diagnosed in more than 600,000 people worldwide, with about 50,000 new cases. HNSCC is considered extremely curable if detected early. But the problem remains in treatment of inoperable cases, residues or late stages. Circadian rhythm regulation has a big role in developing various carcinomas, and head and neck tumors are no exception. A number of studies have reported that alteration in clock gene expression is associated with several cancers, including HNSCC. Analyses on circadian clock genes and their association with HNSCC have shown that expression of PER1, PER2, PER3, CRY1, CRY2,CKIε, TIM, and BMAL1 are deregulated in HNSCC tissues. This review paper comprehensively presents data on deregulation of circadian genes in HNSCC and critically evaluates their potential diagnostics and prognostics role in this type of pathology.
Collapse
Affiliation(s)
- Sadia Rahman
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| | - Elitza Markova-Car
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| |
Collapse
|
14
|
Wan Z, Zhang X, Yu X, Hou Y. Prognostic significance of serum soluble DR5 levels in small-cell lung cancer. Int J Med Sci 2019; 16:403-408. [PMID: 30911274 PMCID: PMC6428977 DOI: 10.7150/ijms.28814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
The death receptor 5 (DR5) is a member of the tumor necrosis factor receptor superfamily that can transduce the apoptosis signal in cells. This study assessed serum levels of soluble death receptor 5 (sDR5) in small-cell lung cancer (SCLC) patients compared with those in healthy controls. Clinicopathological features of patients, treatment responses, and overall survival of patients were also recorded and analyzed. The sDR5 levels were analyzed using ELISA in 50 healthy controls and 82 SCLC patients before and after first-line chemotherapy. The statistical data showed that pre-treatment levels of serum sDR5 in SCLC patients were higher than those of healthy controls (P<0.001). Pre-treatment levels of serum sDR5 were significantly associated with smoking history of patients, Veterans Administration Lung Study Group (VALSG) stage, tumor size, and lymph node (N) metastasis (P=0.028, 0.001, 0.028, and 0.01, respectively). After treatment with the first-line chemotherapy, the post-treatment levels of serum sDR5 were obviously decreased (P<0.001), and correlated with treatment responses (P<0.001), although there was no significant difference in their pretreatment sDR5 levels (P=0.62). Cox proportional hazard analysis demonstrated that the post-treatment levels of serum sDR5, VALSG stage, and PS status were all independent predictors for overall survival of patients. The results from the current study indicate that serum level of sDR5 could be further confirmed as a biomarker to predict treatment responses and survival of SCLC patients.
Collapse
Affiliation(s)
- Zhenfa Wan
- Department of Medical Imaging, The Fourth Hospital of Jinan City, Shandong, 250014, China
| | - Xiaoshan Zhang
- Department of Medical Imaging, Weihaiwei People's Hospital, Weihai, Shandong, 264200, China
| | - Xinshuang Yu
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China
| | - Yong Hou
- Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, China
| |
Collapse
|
15
|
Wagner J, Kline CL, Zhou L, Campbell KS, MacFarlane AW, Olszanski AJ, Cai KQ, Hensley HH, Ross EA, Ralff MD, Zloza A, Chesson CB, Newman JH, Kaufman H, Bertino J, Stein M, El-Deiry WS. Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment. J Clin Invest 2018. [PMID: 29533922 DOI: 10.1172/jci96711] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ONC201 is a first-in-class, orally active antitumor agent that upregulates cytotoxic TRAIL pathway signaling in cancer cells. ONC201 has demonstrated safety and preliminary efficacy in a first-in-human trial in which patients were dosed every 3 weeks. We hypothesized that dose intensification of ONC201 may impact antitumor efficacy. We discovered that ONC201 exerts dose- and schedule-dependent effects on tumor progression and cell death signaling in vivo. With dose intensification, we note a potent anti-metastasis effect and inhibition of cancer cell migration and invasion. Our preclinical results prompted a change in ONC201 dosing in all open clinical trials. We observed accumulation of activated NK+ and CD3+ cells within ONC201-treated tumors and that NK cell depletion inhibits ONC201 efficacy in vivo, including against TRAIL/ONC201-resistant Bax-/- tumors. Immunocompetent NCR1-GFP mice, in which NK cells express GFP, demonstrated GFP+ NK cell infiltration of syngeneic MC38 colorectal tumors. Activation of primary human NK cells and increased degranulation occurred in response to ONC201. Coculture experiments identified a role for TRAIL in human NK-mediated antitumor cytotoxicity. Preclinical results indicate the potential utility for ONC201 plus anti-PD-1 therapy. We observed an increase in activated TRAIL-secreting NK cells in the peripheral blood of patients after ONC201 treatment. The results offer what we believe to be a unique pathway of immune stimulation for cancer therapy.
Collapse
Affiliation(s)
- Jessica Wagner
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program and Department of Hematology/Oncology
| | - C Leah Kline
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program and Department of Hematology/Oncology
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program and Department of Hematology/Oncology
| | - Kerry S Campbell
- Blood Cell Development and Function Program, Institute for Cancer Research
| | | | | | | | | | - Eric A Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Marie D Ralff
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program and Department of Hematology/Oncology
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Charles B Chesson
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Jenna H Newman
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Howard Kaufman
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Joseph Bertino
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Mark Stein
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Molecular Therapeutics Program and Department of Hematology/Oncology
| |
Collapse
|
16
|
Aghababazadeh M, Dorraki N, Javan FA, Fattahi AS, Gharib M, Pasdar A. Downregulation of Caspase 8 in a group of Iranian breast cancer patients - A pilot study. J Egypt Natl Canc Inst 2017; 29:191-195. [PMID: 29233452 DOI: 10.1016/j.jnci.2017.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
PURPOSE It is now well known that evading apoptosis, as a cancer hallmark, can lead to tumour initiation, progression and metastasis. As a result of genome wide association studies, an initiator protease in this pathway, caspase 8 (CASP8), has been found to be an important gene regarding breast cancer susceptibility. The alterations of the expression of this gene have been reported in breast cancer cell lines. Given that in previous studies expression analysis of this gene had only been done in breast cancer cell lines, in this study we aimed to evaluate the expression of this gene in breast cancer tissues versus adjacent normal tissues, using real-time quantitative method. METHODS Caspase 8 mRNA expression was quantified using comparative RT-qPCR in 27 fresh frozen breast tumours and 27 adjacent normal tissues. Moreover, relationship between the expression changes of CASP8 in tumour tissue and various clinical and pathological features were evaluated in an Iranian population. RESULTS The present study showed that expression of CASP8 was significantly reduced in tumour tissues compared to neighbouring normal tissues (p = .004). CASP8 expression was significantly correlated with the status of hormone receptors (ER and PR). CONCLUSION To the best of our knowledge, this study is the first report on reduced expression of CASP8 in breast cancer versus adjacent normal tissues. Our data support previous results obtained from cell lines and therefore highlights the seminal role of the induction of CASP8 expression, as a novel therapeutic approach, in order to sensitize tumour cells to apoptotic stimuli.
Collapse
Affiliation(s)
- Masoumeh Aghababazadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Najmeh Dorraki
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzal Javan
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asieh Sadat Fattahi
- Endoscopic and Minimally Invasive Surgery Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom.
| |
Collapse
|
17
|
Xiong H, Yang Y, Yang K, Zhao D, Tang H, Ran X. Loss of the clock gene PER2 is associated with cancer development and altered expression of important tumor-related genes in oral cancer. Int J Oncol 2017; 52:279-287. [PMID: 29115399 DOI: 10.3892/ijo.2017.4180] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/24/2017] [Indexed: 11/05/2022] Open
Abstract
Recent studies have demonstrated that abnormal expression of the clock gene PER2 is closely associated with the development of a variety of cancer types. However, the expression of PER2 in oral squamous cell carcinoma (OSCC), a common malignant tumor in humans, and its correlations with the clinicopathological parameters and survival time of OSCC patients and the altered expression of important tumor-related genes remain unclear. In the present study, we detected the mRNA and protein expression levels of PER2, PIK3CA, PTEN, P53, P14ARF and caspase‑8 in OSCC tissues and cancer-adjacent oral mucosa by reverse transcription-quantitative PCR (RT-qPCR), western blotting and immunohistochemistry. The results showed that the PER2, PTEN, P53, P14ARF and caspase‑8 mRNA and protein expression levels in OSCC were significantly reduced compared with those in cancer-adjacent tissues. Additionally, the PIK3CA protein expression level was significantly increased in OSCC tissues, whereas the mRNA level was not. Decreased expression of PER2 was significantly associated with advanced clinical stage and the presence of lymphatic metastasis in OSCC patients. Patients with PER2‑negative expression had a significantly shorter survival time than those with PER2‑positive expression. PER2 expression was negatively correlated with PIK3CA and P53 levels, and positively correlated with PTEN, P14ARF and caspase‑8 levels. In summary, the results of this study suggest that loss of PER2 expression is closely associated with the genesis and development of OSCC and that PER2 may be an important prognostic biomarker in OSCC. PER2 may serve an antitumor role via the P53/P14ARF, PIK3CA/AKT and caspase‑8 pathways.
Collapse
Affiliation(s)
- Honggang Xiong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yixin Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kai Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dan Zhao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong Tang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiongwen Ran
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
18
|
Oh YT, Yue P, Sun SY. DR5 suppression induces sphingosine-1-phosphate-dependent TRAF2 polyubiquitination, leading to activation of JNK/AP-1 and promotion of cancer cell invasion. Cell Commun Signal 2017; 15:18. [PMID: 28482915 PMCID: PMC5422905 DOI: 10.1186/s12964-017-0174-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
Background Death receptor (DR5), a well-characterized death domain-containing cell surface pro-apoptotic protein, has been suggested to suppress cancer cell invasion and metastasis. However, the underlying mechanisms have not been fully elucidated. Our recent work demonstrates that DR5 suppression promotes cancer cell invasion and metastasis through caspase-8/TRAF2-mediated activation of ERK and JNK signaling and MMP1 elevation. The current study aimed at addressing the mechanism through which TRAF2 is activated in a caspase-8 dependent manner. Results DR5 knockdown increased TRAF2 polyubiquitination, a critical event for TRAF2-mediated JNK/AP-1 activation. Suppression of sphingosine-1-phosphate (S1P) generation or depletion of casapse-8 inhibited not only enhancement of cell invasion, but also elevation and polyubiquitination of TRAF2, activation of JNK/AP-1 activation and increased expression of MMP1 induced by DR5 knockdown. Conclusions Both S1P and caspase-8 are critical for TRAF2 stabilization, polyubiquitination, subsequent activation of JNK/AP1 signaling and MMP1 expression and final promotion of cell invasion.
Collapse
Affiliation(s)
- You-Take Oh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road, Clinical Building C3088, Atlanta, GA, 30322, USA
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road, Clinical Building C3088, Atlanta, GA, 30322, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road, Clinical Building C3088, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Naoum GE, Buchsbaum DJ, Tawadros F, Farooqi A, Arafat WO. Journey of TRAIL from Bench to Bedside and its Potential Role in Immuno-Oncology. Oncol Rev 2017; 11:332. [PMID: 28584572 PMCID: PMC5432952 DOI: 10.4081/oncol.2017.332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
Induction of apoptosis in cancer cells has increasingly been the focus of many therapeutic approaches in oncology field. Since its identification as a TNF family member, TRAIL (TNF-related apoptosis-inducing ligand) paved a new path in apoptosis inducing cancer therapies. Its selective ability to activate extrinsic and intrinsic cell death pathways in cancer cells only, independently from p53 mutations responsible for conventional therapeutics resistance, spotted TRAIL as a potent cancer apoptotic agent. Many recombinant preparations of TRAIL and death receptor targeting monoclonal antibodies have been developed and being tested pre-clinically and clinically both as a single agent and in combinations. Of note, the monoclonal antibodies were not the only type of antibodies developed to target TRAIL receptors. Recent technology has brought forth several single chain variable domains (scFv) designs fused recombinantly to TRAIL as well. Also, it is becoming progressively more understandable that field of nanotechnology has revolutionized cancer diagnosis and therapy. The recent breakthroughs in materials science and protein engineering have helped considerably in strategically loading drugs into nanoparticles or conjugating drugs to their surface. In this review we aim to comprehensively highlight the molecular knowledge of TRAIL in the context of its pathway, receptors and resistance factors. We also aim to review the clinical trials that have been done using TRAIL based therapies and to review various scFv designs, the arsenal of nano-carriers and molecules available to selectively target tumor cells with TRAIL.
Collapse
Affiliation(s)
| | | | | | | | - Waleed O. Arafat
- Alexandria Comprehensive Cancer Center, Alexandria, Egypt
- Univeristy of Alabama, Birmingham, AL, USA
- University of Alexandria, Faculty of Medicine, Egypt
| |
Collapse
|
20
|
Wang X, Fu Z, Chen Y, Liu L. Fas expression is downregulated in gastric cancer. Mol Med Rep 2016; 15:627-634. [PMID: 28000850 PMCID: PMC5364875 DOI: 10.3892/mmr.2016.6037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/10/2016] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to investigate Fas expression in tumor samples from patients with gastric cancer, in order to determine the involvement of the Fas signaling pathway. The protein expression levels of Fas, caspase-8, caspase-3 and poly (adenosine diphosphate-ribose) polymerase 1 (PARP1) were examined in gastric cancer specimens and their associations with clinical pathological parameters were analyzed with immunohistochemical staining and western blot analysis. The mRNA expression was quantified with quantitative PCR and apoptosis was examined with a FACScan flow cytometer. The results demonstrated that the downregulation of Fas expression was correlated with less histological differentiation, gender (male), and increased lymph node and distant metastases (P<0.05). In the AGS established gastric cancer cell line, upregulation of the Fas signaling pathway promoted the apoptosis of gastric cancer cells by upregulating the expression of caspase-8 and caspase-3, and downregulating the expression of PARP1. The present study demonstrated that Fas was associated with gastric cancer and promoted the apoptosis of gastric cancer cells via caspase-8, caspase-3 and PARP1. These results suggested that caspase-8, caspase-3 and PARP1 may be triggers of gastric cancer, and upregulation of caspase-8 and caspase-3 expression, or inhibition of PARP1 expression may improve the therapeutic outcome in patients with gastric cancer.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Ying Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
21
|
Oh YT, Yue P, Wang D, Tong JS, Chen ZG, Khuri FR, Sun SY. Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling. Oncotarget 2016; 6:41324-38. [PMID: 26510914 PMCID: PMC4747408 DOI: 10.18632/oncotarget.5847] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023] Open
Abstract
The role of death receptor 5 (DR5), a well-known cell surface pro-apoptotic protein, in the negative regulation of invasion and metastasis of human cancer cells and the underlying mechanisms are largely unknown and were hence the focus of this study. In this report, we have demonstrated that DR5 functions to suppress invasion and metastasis of human cancer cells, as evidenced by enhanced cancer cell invasion and metastasis upon genetic suppression of DR5 either by gene knockdown or knockout. When DR5 is suppressed, FADD and caspase-8 may recruit and stabilize TRAF2 to form a metastasis and invasion signaling complex, resulting in activation of ERK and JNK/AP-1 signaling that mediate the elevation and activation of matrix metalloproteinase-1 (MMP1) and eventual promotion of cancer invasion and metastasis. Our findings thus highlight a novel non-apoptotic function of DR5 as a suppressor of human cancer cell invasion and metastasis and suggest a basic working model elucidating the underlying biology.
Collapse
Affiliation(s)
- You-Take Oh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Ping Yue
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute and School of Medicine, Pittsburgh, PA, USA
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
22
|
Fritsche H, Heilmann T, Tower RJ, Hauser C, von Au A, El-Sheikh D, Campbell GM, Alp G, Schewe D, Hübner S, Tiwari S, Kownatzki D, Boretius S, Adam D, Jonat W, Becker T, Glüer CC, Zöller M, Kalthoff H, Schem C, Trauzold A. TRAIL-R2 promotes skeletal metastasis in a breast cancer xenograft mouse model. Oncotarget 2016; 6:9502-16. [PMID: 25909161 PMCID: PMC4496234 DOI: 10.18632/oncotarget.3321] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/09/2015] [Indexed: 12/13/2022] Open
Abstract
Despite improvements in detection, surgical approaches and systemic therapies, breast cancer remains typically incurable once distant metastases occur. High expression of TRAIL-R2 was found to be associated with poor prognostic parameters in breast cancer patients, suggesting an oncogenic function of this receptor. In the present study, we aimed to determine the impact of TRAIL-R2 on breast cancer metastasis. Using an osteotropic variant of MDA-MB-231 breast cancer cells, we examine the effects of TRAIL-R2 knockdown in vitro and in vivo. Strikingly, in addition to the reduced levels of the proliferation-promoting factor HMGA2 and corresponding inhibition of cell proliferation, knockdown of TRAIL-R2 increased the levels of E-Cadherin and decreased migration. In vivo, these cells were strongly impaired in their ability to form bone metastases after intracardiac injection. Evaluating possible underlying mechanisms revealed a strong downregulation of CXCR4, the receptor for the chemokine SDF-1 important for homing of cancers cells to the bone. In accordance, cell migration towards SDF-1 was significantly impaired by TRAIL-R2 knockdown. Conversely, overexpression of TRAIL-R2 upregulated CXCR4 levels and enhanced SDF-1-directed migration. We therefore postulate that inhibition of TRAIL-R2 expression could represent a promising therapeutic strategy leading to an effective impairment of breast cancer cell capability to form skeletal metastases.
Collapse
Affiliation(s)
- Hendrik Fritsche
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Thorsten Heilmann
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany.,Department of Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Robert J Tower
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Charlotte Hauser
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anja von Au
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Doaa El-Sheikh
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Graeme M Campbell
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Göhkan Alp
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Denis Schewe
- Department of General Pediatrics, ALL-BFM Study Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sebastian Hübner
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Sanjay Tiwari
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniel Kownatzki
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Susann Boretius
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dieter Adam
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Walter Jonat
- Department of Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Becker
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claus C Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany
| | - Christian Schem
- Department of Gynecology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anna Trauzold
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University of Kiel, Kiel, Germany.,Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
23
|
Crowder RN, Dicker DT, El-Deiry WS. The Deubiquitinase Inhibitor PR-619 Sensitizes Normal Human Fibroblasts to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Cell Death. J Biol Chem 2016; 291:5960-5970. [PMID: 26757822 DOI: 10.1074/jbc.m115.713545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 01/01/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapy that selectively targets cancer cell death while non-malignant cells remain viable. Using a panel of normal human fibroblasts, we characterized molecular differences in human foreskin fibroblasts and WI-38 TRAIL-resistant cells and marginally sensitive MRC-5 cells compared with TRAIL-sensitive human lung and colon cancer cells. We identified decreased caspase-8 protein expression and protein stability in normal fibroblasts compared with cancer cells. Additionally, normal fibroblasts had incomplete TRAIL-induced caspase-8 activation compared with cancer cells. We found that normal fibroblasts lack the ubiquitin modification of caspase-8 required for complete caspase-8 activation. Treatment with the deubiquitinase inhibitor PR-619 increased caspase-8 ubiquitination and caspase-8 enzymatic activity and sensitized normal fibroblasts to TRAIL-mediated apoptosis. Therefore, posttranslational regulation of caspase-8 confers resistance to TRAIL-induced cell death in normal cells through blockade of initiation of the extrinsic cell death pathway.
Collapse
Affiliation(s)
- Roslyn N Crowder
- From the Department of Medicine, Hematology/Oncology Division, Penn State Milton S. Hershey Medical Center, Penn State Cancer Institute, Hershey, Pennsylvania 17033 and
| | - David T Dicker
- From the Department of Medicine, Hematology/Oncology Division, Penn State Milton S. Hershey Medical Center, Penn State Cancer Institute, Hershey, Pennsylvania 17033 and; the Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Wafik S El-Deiry
- From the Department of Medicine, Hematology/Oncology Division, Penn State Milton S. Hershey Medical Center, Penn State Cancer Institute, Hershey, Pennsylvania 17033 and; the Department of Hematology/Oncology and Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111.
| |
Collapse
|
24
|
Yao Q, Du J, Lin J, Luo Y, Wang Y, Liu Y, Zhang B, Ren C, Liu C. Prognostic significance of TRAIL signalling molecules in cervical squamous cell carcinoma. J Clin Pathol 2015; 69:122-7. [PMID: 26254281 DOI: 10.1136/jclinpath-2014-202811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/19/2015] [Indexed: 12/27/2022]
Abstract
AIM Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that preferentially induces apoptosis in cancer cells while exhibiting little or no toxicity in normal cells. In this study, we evaluated the clinicopathological significance of TRAIL signalling members' expression profiles in cervical squamous cell carcinoma (CSCC). METHODS TRAIL, DR5, caspase-8 and cellular FLICE-inhibitory protein (c-FLIP) protein expression was investigated in 72 stage IA2-IIIA CSCC patients using immunohistochemistry. Correlation between protein expression and clinicopathological features, radiotherapy response and survival was statistically analysed. RESULTS Positive c-FLIP expression was an independent negative indicator for disease-free survival (DFS) (p=0.015) in multivariate Cox regression analysis. The DR5 nuclear positive group (p=0.069 by log rank test) showed some advantage of radiotherapy for overall survival (OS) compared with the DR5 nuclear negative cohort (p=0.568 by log rank test). In addition, loss of TRAIL expression was associated with worse differentiation (p=0.004), while absence of caspase-8 staining was more frequently observed in cases with lymphovascular invasion (p=0.035). CONCLUSIONS High c-FLIP expression is shown to be an independent prognostic variable, DR5 nuclear expression may serve as a predictive biomarker for radiotherapy, and TRAIL as well as caspase-8 loss may be associated with malignant progression.
Collapse
Affiliation(s)
- Qian Yao
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Juan Du
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Jie Lin
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Yiming Luo
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yuxiang Wang
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yan Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Caixia Ren
- Department of Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Congrong Liu
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
25
|
Erkul E, Kucukodaci Z, Pinar D, Gungor A, Alparslan Babayigit M, Kurt O, Cincik H. TRAIL and TRAIL receptors in patients with laryngeal cancer. Head Neck 2015; 38 Suppl 1:E535-41. [PMID: 25810124 DOI: 10.1002/hed.24035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Tumor necrosis factor-related associated-inducing ligand (TRAIL) is a death ligand currently under clinical trials for laryngeal carcinoma. METHODS Paraffin-embedded tissues from 40 patients with laryngeal carcinoma and 20 patients with benign laryngeal pathologies were retrospectively analyzed using immunohistochemistry in terms of distribution and intensity, and for final analysis of immunoreactivity of receptors, H-score was used. The study group was assessed in terms of localization, lymph node staging, tumor stage, overall survival, disease-free survival, locoregional control, perineural invasion, and vascular invasion. RESULTS The H-score of decoy-R2 (DcR2) staining were increased significantly in tumor tissue (p = .04). A significantly greater increase in terms of H-score of DR5 receptor staining (p = .06) was detected in tumor tissue. CONCLUSION TRAIL-mediated gene therapy may not be effective. Indeed, the findings may indicate treatment resistance. TRAIL and TRAIL receptor levels were not associated with prognosis © 2015 Wiley Periodicals, Inc. Head Neck 38: E535-E541, 2016.
Collapse
Affiliation(s)
- Evren Erkul
- Department of Otorhinolaryngology, Gülhane Military Medical Academy Haydarpasa Training Hospital, Istanbul, Turkey
| | - Zafer Kucukodaci
- Department of Pathology, Gülhane Military Medical Academy Haydarpasa Training Hospital, Istanbul, Turkey
| | - Dogan Pinar
- Department of Otorhinolaryngology, Gülhane Military Medical Academy Haydarpasa Training Hospital, Istanbul, Turkey
| | - Atila Gungor
- Department of Otorhinolaryngology, Gülhane Military Medical Academy Haydarpasa Training Hospital, Istanbul, Turkey
| | | | - Onuralp Kurt
- Department of Otorhinolaryngology, Gülhane Military Medical Academy Haydarpasa Training Hospital, Istanbul, Turkey
| | - Hakan Cincik
- Department of Otorhinolaryngology, Gülhane Military Medical Academy Haydarpasa Training Hospital, Istanbul, Turkey
| |
Collapse
|
26
|
von Karstedt S, Conti A, Nobis M, Montinaro A, Hartwig T, Lemke J, Legler K, Annewanter F, Campbell AD, Taraborrelli L, Grosse-Wilde A, Coy JF, El-Bahrawy MA, Bergmann F, Koschny R, Werner J, Ganten TM, Schweiger T, Hoetzenecker K, Kenessey I, Hegedüs B, Bergmann M, Hauser C, Egberts JH, Becker T, Röcken C, Kalthoff H, Trauzold A, Anderson KI, Sansom OJ, Walczak H. Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 2015; 27:561-73. [PMID: 25843002 PMCID: PMC6591140 DOI: 10.1016/j.ccell.2015.02.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 02/02/2015] [Accepted: 02/26/2015] [Indexed: 01/05/2023]
Abstract
Many cancers harbor oncogenic mutations of KRAS. Effectors mediating cancer progression, invasion, and metastasis in KRAS-mutated cancers are only incompletely understood. Here we identify cancer cell-expressed murine TRAIL-R, whose main function ascribed so far has been the induction of apoptosis as a crucial mediator of KRAS-driven cancer progression, invasion, and metastasis and in vivo Rac-1 activation. Cancer cell-restricted genetic ablation of murine TRAIL-R in autochthonous KRAS-driven models of non-small-cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) reduces tumor growth, blunts metastasis, and prolongs survival by inhibiting cancer cell-autonomous migration, proliferation, and invasion. Consistent with this, high TRAIL-R2 expression correlates with invasion of human PDAC into lymph vessels and with shortened metastasis-free survival of KRAS-mutated colorectal cancer patients.
Collapse
Affiliation(s)
- Silvia von Karstedt
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Annalisa Conti
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK; Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Max Nobis
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Antonella Montinaro
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Torsten Hartwig
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Johannes Lemke
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Karen Legler
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Franka Annewanter
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Andrew D Campbell
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Lucia Taraborrelli
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Anne Grosse-Wilde
- German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Institute for Systems Biology, 401 Terry Avenue N, Seattle, WA 98109, USA
| | - Johannes F Coy
- German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; TAVARLIN AG, Biotechpark Pfungstadt, Reißstraße 1a, 64319 Pfungstadt, Germany
| | - Mona A El-Bahrawy
- Department of Histopathology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Frank Bergmann
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Ronald Koschny
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Jens Werner
- Department of Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Tom M Ganten
- Department of Gastroenterology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Thomas Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Konrad Hoetzenecker
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Istvan Kenessey
- 2nd Department of Pathology, Semmelweis University Budapest, Ulloi ut 93, 1091 Budapest, Hungary
| | - Balazs Hegedüs
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Molecular Oncology Research Group, Hungarian Academy of Sciences-Semmelweis University, 1091 Budapest, Hungary
| | - Michael Bergmann
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Charlotte Hauser
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Thomas Becker
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany
| | - Anna Trauzold
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, 24105 Kiel, Germany; Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Kurt I Anderson
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Owen J Sansom
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
27
|
Bertsch U, Röder C, Kalthoff H, Trauzold A. Compartmentalization of TNF-related apoptosis-inducing ligand (TRAIL) death receptor functions: emerging role of nuclear TRAIL-R2. Cell Death Dis 2014; 5:e1390. [PMID: 25165876 PMCID: PMC4454323 DOI: 10.1038/cddis.2014.351] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023]
Abstract
Localized in the plasma membrane, death domain-containing TNF-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induce apoptosis and non-apoptotic signaling when crosslinked by the ligand TRAIL or by agonistic receptor-specific antibodies. Recently, an increasing body of evidence has accumulated that TRAIL receptors are additionally found in noncanonical intracellular locations in a wide range of cell types, preferentially cancer cells. Thus, besides their canonical locations in the plasma membrane and in intracellular membranes of the secretory pathway as well as endosomes and lysosomes, TRAIL receptors may also exist in autophagosomes, in nonmembraneous cytosolic compartment as well as in the nucleus. Such intracellular locations have been mainly regarded as hide-outs for these receptors representing a strategy for cancer cells to resist TRAIL-mediated apoptosis. Recently, a novel function of intracellular TRAIL-R2 has been revealed. When present in the nuclei of tumor cells, TRAIL-R2 inhibits the processing of the primary let-7 miRNA (pri-let-7) via interaction with accessory proteins of the Microprocessor complex. The nuclear TRAIL-R2-driven decrease in mature let-7 enhances the malignancy of cancer cells. This finding represents a new example of nuclear activity of typically plasma membrane-located cytokine and growth factor receptors. Furthermore, this extends the list of nucleic acid targets of the cell surface receptors by pri-miRNA in addition to DNA and mRNA. Here we review the diverse functions of TRAIL-R2 depending on its intracellular localization and we particularly discuss the nuclear TRAIL-R2 (nTRAIL-R2) function in the context of known nuclear activities of other normally plasma membrane-localized receptors.
Collapse
Affiliation(s)
- U Bertsch
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel D-24105, Germany
| | - C Röder
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel D-24105, Germany
| | - H Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel D-24105, Germany
| | - A Trauzold
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University of Kiel, Kiel D-24105, Germany
| |
Collapse
|
28
|
Hernandez-Cueto A, Hernandez-Cueto D, Antonio-Andres G, Mendoza-Marin M, Jimenez-Gutierrez C, Sandoval-Mejia AL, Mora-Campos R, Gonzalez-Bonilla C, Vega MI, Bonavida B, Huerta-Yepez S. Death receptor 5 expression is inversely correlated with prostate cancer progression. Mol Med Rep 2014; 10:2279-86. [PMID: 25174820 PMCID: PMC4214341 DOI: 10.3892/mmr.2014.2504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 06/24/2014] [Indexed: 12/30/2022] Open
Abstract
Prostate carcinoma (PCa) is one of the most common cancers in men. Prostate-specific antigen (PSA) has been widely used to predict the outcome of PCa and screening with PSA has resulted in a decline in mortality. However, PSA is not an optimal prognostic tool as its sensitivity may be too low to reduce morbidity and mortality. Consequently, there is a demand for additional robust biomarkers for prostate cancer. Death receptor 5 (DR5) has been implicated in the prognosis of several cancers and it has been previously shown that it is negatively regulated by Yin Yang 1 (YY1) in prostate cancer cell lines. The present study investigated the clinical significance of DR5 expression in a prostate cancer patient cohort and its correlation with YY1 expression. Immunohistochemical analysis of protein expression distribution was performed using tissue microarray constructs from 54 primary PCa and 39 prostatic intraepithelial neoplasia (PIN) specimens. DR5 expression was dramatically reduced as a function of higher tumor grade. By contrast, YY1 expression was elevated in PCa tumors as compared with that in PIN, and was increased with higher tumor grade. DR5 had an inverse correlation with YY1 expression. Bioinformatic analyses corroborated these data. The present findings suggested that DR5 and YY1 expression levels may serve as progression biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Angeles Hernandez-Cueto
- Immunology and Infection Research Unit, National Medical Center 'La Raza', IMSS, Mexico City 02200, Mexico
| | - Daniel Hernandez-Cueto
- Oncology Disease Research Unit, Children Hospital of Mexico 'Federico Gomez', Mexico City 06720, Mexico
| | - Gabriela Antonio-Andres
- Oncology Disease Research Unit, Children Hospital of Mexico 'Federico Gomez', Mexico City 06720, Mexico
| | - Marisela Mendoza-Marin
- Department of Pathology, Hospital General Regional No. 25, IMSS, Mexico City 06720, Mexico
| | | | | | | | - Cesar Gonzalez-Bonilla
- Immunology and Infection Research Unit, National Medical Center 'La Raza', IMSS, Mexico City 02200, Mexico
| | - Mario I Vega
- Oncology Research Unit, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sara Huerta-Yepez
- Oncology Disease Research Unit, Children Hospital of Mexico 'Federico Gomez', Mexico City 06720, Mexico
| |
Collapse
|
29
|
Gao D, Xu Z, Zhang X, Zhu C, Wang Y, Min W. Cadmium triggers kidney cell apoptosis of purse red common carp (Cyprinus carpio) without caspase-8 activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:728-737. [PMID: 23954723 DOI: 10.1016/j.dci.2013.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Caspase-8, the essential initiator caspase, is believed to play a pivotal role in death receptor-mediated apoptotic pathway. It also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid in mammals. However, its role in fish remains elusive in Cadmium-induced apoptotic pathway. In this study, we isolated the caspase-8 gene from common carp, one of the most important industrial aquatic animals in China using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of caspase-8 comprised 475 amino acids, which showed approximately 64.1% identity and 79.8% similarity to zebrafish (Danio rerio) caspase-8, possessed two conserved death effector domains, a large subunit and a small subunit. Phylogenetic analysis demonstrated that caspase-8 formed a clade with zebrafish caspase-8. In kidney, cadmium (Cd) exposure triggered apoptosis and increased caspase-3 and -9 activities, whereas it did not affect caspase-8 activity. Real-time quantitative PCR analysis revealed that caspase-8 transcriptional level was not significantly increased in kidney after exposure to Cd. Using Western blot analysis, no caspase-8 cleaved fragment was detected and no significant alteration of procaspase-8 level was found with the same Cd-treated condition. Moreover, the immunopositive staining was predominantly limited to the cytoplasm of renal tubular epithelial cells and no remarkable changes of immunoreactivities were observed using immunohistochemical detection after Cd treatment. The results reveal that Cd can trigger apoptosis, while it cannot activate caspase-8 in purse red common carp.
Collapse
Affiliation(s)
- Dian Gao
- Medical College of Nanchang University, Nanchang 330006, PR China; Institute of Immunotherapy, Nanchang University, Nanchang 330006, PR China
| | | | | | | | | | | |
Collapse
|
30
|
da Conceição Braga L, Silva LM, Piedade JB, Traiman P, da Silva Filho AL. Epigenetic and expression analysis of TRAIL-R2 and BCL2: on the TRAIL to knowledge of apoptosis in ovarian tumors. Arch Gynecol Obstet 2013; 289:1061-9. [DOI: 10.1007/s00404-013-3060-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
|
31
|
Abstract
It has been known for many years that the protein Fas-associated death domain (FADD) is an essential protein forming the apical portion of the extrinsic apoptosis pathway that permits association of death receptors, e.g., CD95, DR4, DR5 with pro-caspases 8 and 10, thereby facilitating caspase activation (e.g., ref. 1, and references therein). It is also known that FADD can recruit other proteins to regulate NFκB and MAPK pathways which in turn can promote proliferation and cell cycle progression. In NSCLC high expression of FADD has been associated with shorter survival times and lymph node metastasis or oral cancer and worse survival, and the present manuscript in head and neck cancer demonstrates similar findings with respect to lymph node metastasis and survival.2,3
Collapse
Affiliation(s)
- Paul Dent
- Department of Neurosurgery; Massey Cancer Center; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
32
|
Targeted delivery of tumor necrosis factor-related apoptosis-inducing ligand to keratinocytes with a pemphigus mAb. J Invest Dermatol 2013; 133:2212-20. [PMID: 23439393 PMCID: PMC3681880 DOI: 10.1038/jid.2013.85] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
Abstract
We determined the feasibility of using an anti-desmoglein (Dsg) mAb, Px44, to deliver a biologically active protein to keratinocytes. Recombinantly produced Px44-green fluorescent protein (GFP) injected into mice and skin organ culture delivered GFP to the cell surface of keratinocytes. We replaced GFP with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to produce Px44-TRAIL. We chose TRAIL as a biological model because it inhibits activated lymphocytes and causes apoptosis of hyperproliferative keratinocytes, features of various skin diseases. Px44-TRAIL formed a trimer, the biologically active form of TRAIL. Standard assays of TRAIL activity showed that Px44-TRAIL caused apoptosis of Jurkat cells and inhibited IFN-γ production by activated CD4+ T cells. Enzyme-linked immunoassay with Px44-TRAIL showed delivery of TRAIL to Dsg. Immunofluorescence with Px44-TRAIL incubated on skin sections and cultured keratinocytes or injected into mouse skin, human organ culture, or human xenografts detected TRAIL on keratinocytes. Px44-TRAIL caused apoptosis of the hyperproliferative, but not differentiating, cultured keratinocytes through binding to Dsg3. Foldon, a small trimerization domain, cloned into Px44-TRAIL maintained its stability and biological activity at 37° C for at least 48 hours. These data suggest that such targeted therapy is feasible and may be useful for hyperproliferative and inflamed skin diseases.
Collapse
|
33
|
Fan S, Müller S, Chen ZG, Pan L, Tighiouart M, Shin DM, Khuri FR, Sun SY. Prognostic impact of Fas-associated death domain, a key component in death receptor signaling, is dependent on the presence of lymph node metastasis in head and neck squamous cell carcinoma. Cancer Biol Ther 2013; 14:365-9. [PMID: 23358467 DOI: 10.4161/cbt.23636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
FAS-associated death domain (FADD) is a key adaptor protein that bridges a death receptor (e.g., death receptor 5; DR5) to caspase-8 to form the death-inducing signaling complex during apoptosis. The expression and prognostic impact of FADD in head and neck squamous cell carcinoma (HNSCC) have not been well studied. This study focuses on detecting FADD expression and analyzing its prognostic impact in primary and metastatic HNSCCs. We found a significant increase in FADD expression in primary tumors with lymph node metastasis (LNM) in comparison with primary tumors with no LNM. This increase was significantly less in the matched LNM tissues. Both univariate and multivariable analyses indicated that lower FADD expression was significantly associated with better disease-free survival and overall survival in HNSCC patients with LNM although FADD expression did not significantly affect survival of HNSCC patients without LNM . When combined with DR5 or caspase-8 expression, patients with LNM expressing both low FADD and DR5 or both low FADD and caspase-8 had significantly better prognosis than those expressing both high FADD and DR5 or both high FADD and caspase-8. However, the expression of both low FADD and caspase-8 was significantly linked to worse overall survival compared with both high FADD and caspase-8 expression in HNSCC patients without LNM. Hence, we suggest that FADD alone or together with DR5 and caspase-8 participates in metastatic process of HNSCC.
Collapse
Affiliation(s)
- Songqing Fan
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR, Maddika S, Łos M. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 2013; 17:12-29. [PMID: 23301705 PMCID: PMC3823134 DOI: 10.1111/jcmm.12001] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/24/2012] [Indexed: 02/06/2023] Open
Abstract
The rapid accumulation of knowledge on apoptosis regulation in the 1990s was followed by the development of several experimental anticancer- and anti-ischaemia (stroke or myocardial infarction) drugs. Activation of apoptotic pathways or the removal of cellular apoptotic inhibitors has been suggested to aid cancer therapy and the inhibition of apoptosis was thought to limit ischaemia-induced damage. However, initial clinical studies on apoptosis-modulating drugs led to unexpected results in different clinical conditions and this may have been due to co-effects on non-apoptotic interconnected cell death mechanisms and the ‘yin-yang’ role of autophagy in survival versus cell death. In this review, we extend the analysis of cell death beyond apoptosis. Upon introduction of molecular pathways governing autophagy and necrosis (also called necroptosis or programmed necrosis), we focus on the interconnected character of cell death signals and on the shared cell death processes involving mitochondria (e.g. mitophagy and mitoptosis) and molecular signals playing prominent roles in multiple pathways (e.g. Bcl2-family members and p53). We also briefly highlight stress-induced cell senescence that plays a role not only in organismal ageing but also offers the development of novel anticancer strategies. Finally, we briefly illustrate the interconnected character of cell death forms in clinical settings while discussing irradiation-induced mitotic catastrophe. The signalling pathways are discussed in their relation to cancer biology and treatment approaches.
Collapse
Affiliation(s)
- Mayur V Jain
- Department of Clinical & Experimental Medicine, Division of Cell Biology, Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sung ES, Park KJ, Choi HJ, Kim CH, Kim YS. The proteasome inhibitor MG132 potentiates TRAIL receptor agonist-induced apoptosis by stabilizing tBid and Bik in human head and neck squamous cell carcinoma cells. Exp Cell Res 2012; 318:1564-76. [PMID: 22513214 DOI: 10.1016/j.yexcr.2012.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/26/2012] [Accepted: 04/02/2012] [Indexed: 11/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is often resistant to conventional chemotherapy and thus requires novel treatment regimens. Here, we investigated the effects of the proteasome inhibitor MG132 in combination with tumor necrosis factor-related apoptosis inducing ligand (TRAIL) or agonistic TRAIL receptor 1 (DR4)-specific monoclonal antibody, AY4, on sensitization of TRAIL- and AY4-resistant human HNSCC cell lines. Combination treatment of HNSCC cells synergistically induced apoptotic cell death accompanied by caspase-8, caspase-9, and caspase-3 activation and Bid cleavage into truncated Bid (tBid). Generation and accumulation of tBid through the cooperative action of MG132 with TRAIL or AY4 and Bik accumulation through MG132-mediated proteasome inhibition are critical to the synergistic apoptosis. In HNSCC cells, Bak was constrained by Mcl-1 and Bcl-X(L), but not by Bcl-2. Conversely, Bax did not interact with Mcl-1, Bcl-X(L), or Bcl-2. Importantly, tBid plays a major role in Bax activation, and Bik indirectly activates Bak by displacing it from Mcl-1 and Bcl-X(L), pointing to the synergistic mechanism of the combination treatment. In addition, knockdown of both Mcl-1 and Bcl-X(L) significantly sensitized HNSCC cells to TRAIL and AY4 as a single agent, suggesting that Bak constraint by Mcl-1 and Bcl-X(L) is an important resistance mechanism of TRAIL receptor-mediated apoptotic cell death. Our results provide a novel molecular mechanism for the potent synergy between MG132 proteasome inhibitor and TRAIL receptor agonists in HNSCC cells, suggesting that the combination of these agents may offer a new therapeutic strategy for HNSCC treatment.
Collapse
Affiliation(s)
- Eun-Sil Sung
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Kang Z, Chen JJ, Yu Y, Li B, Sun SY, Zhang B, Cao L. Drozitumab, a human antibody to death receptor 5, has potent antitumor activity against rhabdomyosarcoma with the expression of caspase-8 predictive of response. Clin Cancer Res 2011; 17:3181-92. [PMID: 21385927 DOI: 10.1158/1078-0432.ccr-10-2874] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is a common pediatric soft-tissue tumor. In this study, we evaluated the efficacy and selectivity of drozitumab, a death receptor DR5-targeted therapeutic antibody, in RMS preclinical models. EXPERIMENTAL DESIGN A panel of 11 RMS cell lines was used for in vitro studies. The molecular marker predictive of response to drozitumab was interrogated. Selected RMS cell lines were injected into the gastrocnemius muscle of mice for in vivo assessment of the potency and selectivity of drozitumab. RESULTS We report that DR5, but not DR4, persisted at high levels and on the surface of all RMS cell lines. DR5 antibody drozitumab was effective in vitro against the majority of RMS cell lines. There was a strong correlation between caspase-8 expression and the sensitivity to drozitumab, which induced the rapid assembly of the death-induced signaling complex and the cleavage of caspase-8 only in sensitive cells. More importantly, caspase-8 catalytic activity was both necessary and sufficient for mediating the sensitivity to drozitumab. Furthermore, drozitumab had potent antitumor activity against established RMS xenografts with a specificity predicted from the in vitro analysis and with tumor-free status in half of the treated mice. CONCLUSION Our study provides the first preclinical evaluation of the potency and selectivity of a death receptor antibody in RMS. Drozitumab is effective, in vitro, against the majority of RMS cell lines that express caspase-8 and, in vivo, may provide long-term control of RMS.
Collapse
Affiliation(s)
- Zhigang Kang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
TNFα cooperates with IFN-γ to repress Bcl-xL expression to sensitize metastatic colon carcinoma cells to TRAIL-mediated apoptosis. PLoS One 2011; 6:e16241. [PMID: 21264227 PMCID: PMC3022032 DOI: 10.1371/journal.pone.0016241] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/08/2010] [Indexed: 12/18/2022] Open
Abstract
Background TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. Methodology/Principal Findings The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. Conclusions/Significance TNFα and IFN-γ cooperate to overcome TRAIL resistance at least partially through enhancing caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great promise for further development for the treatment of metastatic colorectal cancer.
Collapse
|
38
|
Sun SY. Understanding the Role of the Death Receptor 5/FADD/caspase-8 Death Signaling in Cancer Metastasis. MOLECULAR AND CELLULAR PHARMACOLOGY 2011; 3:31-34. [PMID: 21461184 PMCID: PMC3066014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The normal function of the extrinsic apoptotic pathway is to mediate apoptosis. Thus, this pathway is generally recognized to be critical in host immune surveillance against cancer. However, many studies have suggested that some key components in this pathway including Fas, death receptor 5 (DR5), Fas-associated death domain (FADD) and caspase-8 may contribute to cancer growth or metastasis. Our recent study on DR5 and caspase-8 expression in human head and neck cancer tissues indicate that high caspase-8 either alone or along with high DR5 in tumor tissue from patients with lymph node metastasis is significantly associated with poor disease-free survival and overall survival, suggesting that these proteins may be involved in positive regulation of cancer metastasis. Thus, efforts should be made to better understand the role of the death receptor 5/FADD/caspase-8 death signaling in regulation of cancer metastasis.
Collapse
Affiliation(s)
- Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| |
Collapse
|