1
|
Li B, Liu Y, Yan P, Ouyang X, Ba Z, Wang Y, Yang T, Yu Z, Ren B, Zhong C, Liu H, Zhang Y, Gou S, Ni J. The novel β-hairpin antimicrobial peptide D-G(RF)3 demonstrates exceptional antibacterial efficacy. Eur J Med Chem 2025; 283:117149. [PMID: 39675159 DOI: 10.1016/j.ejmech.2024.117149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
The clinical application of most natural antimicrobial peptides (AMPs) is hindered by their lack of a synergistic combination of high antibacterial efficacy, low toxicity, and stability, necessitating frequent complex modifications that incur significant labor and economic costs. Therefore, it is imperative to optimize the antibacterial properties of AMPs using some simplified approach. In this study, we designed a library of β-hairpin AMPs with identical β-turn sequences (-D-Pro-Gly-) and varying repetition units (IR, FR, and WK). Ultimately, candidate peptide G(RF)3 exhibited high antibacterial activity and low toxicity; however, its stability was compromised. Moreover, we synthesized the new analogue D-G(RF)3 by D-type amino acid substitution of G(RF)3, and D-G(RF)3 demonstrated concurrent high antibacterial activity, low toxicity, and remarkable stability. Interestingly, both G(RF)3 and D-G(RF)3 exerted bactericidal effects by disrupting the bacterial membrane. However, D-G(RF)3 displayed superior antibiofilm activity with a faster bactericidal rate compared to G(RF)3 and also showed enhanced synergy with antibiotics. Furthermore, D-G(RF)3 exhibited potent in vivo bactericidal activity without inducing drug resistance and has the potential to be a novel antibiotic alternative or adjuvant.
Collapse
Affiliation(s)
- Beibei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yao Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Pengyi Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Xu Ouyang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Zufang Ba
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yu Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Tingting Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhongwei Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Bingqian Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing, 100050, PR China
| | - Hui Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing, 100050, PR China
| | - Yun Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing, 100050, PR China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing, 100050, PR China.
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing, 100050, PR China.
| |
Collapse
|
2
|
Duarte CA, Cabrales A, Echevarría R, Paneque T, Ramírez AC, Casillas D, Sobrino-Iglesias X, Garay H, Besada V, Fernández-Ortega C. Stability in human serum and plasma of the HIV peptide drug candidate CIGB-210 and improved variants. Biotechnol Appl Biochem 2025; 72:187-195. [PMID: 39219226 DOI: 10.1002/bab.2655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The peptide CIGB-210 inhibits HIV replication, inducing a rearrangement of vimentin intermediate filaments. The assessment of the in vitro serum and plasma stability of this peptide is important to develop an optimal pharmacological formulation. A half-life of 17.68 ± 0.59 min was calculated for CIGB-210 in human serum by reverse-phase high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Eight metabolites of CIGB-210 were identified with this methodology, all of them lacking the N-terminal moiety. A previously developed CIGB-210 in-house competitive ELISA was used to compare the stability of CIGB-210 derivatives containing either D-amino acids, acetylation at the N-terminus, or both modifications. The half-life of CIGB-210 in serum was five times higher when measured by ELISA than by HPLC/MS, and twice higher in plasma as compared to serum. The substitution of D-asparagine on position 6 doubled the half-life, while D-amino acids on positions 8 and 9 did not improve the stability. The acetylation of the N-terminus resulted in a 24-fold more stable peptide in plasma. The positive effect of N-terminal acetylation on CIGB-210 serum stability was confirmed by the HPLC/MS method, as the half-life of the peptide was not reached after 2 h of incubation, which represents more than a 6.8-fold increase in the half-life with respect to the original peptide.
Collapse
Affiliation(s)
- Carlos A Duarte
- Departamento de Farmacéuticos, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | - Ania Cabrales
- Departamento de Química-Física, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | - Reina Echevarría
- Departamento de Farmacéuticos, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | - Taimí Paneque
- Departamento de Farmacéuticos, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | - Anna C Ramírez
- Departamento de Farmacéuticos, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | - Dionne Casillas
- Departamento de Farmacéuticos, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | - Xeila Sobrino-Iglesias
- Departamento de Química-Física, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | - Hilda Garay
- Departamento de Química-Física, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | - Vladimir Besada
- Departamento de Química-Física, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | - Celia Fernández-Ortega
- Departamento de Farmacéuticos, Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| |
Collapse
|
3
|
Mishra SK, Akter T, Urmi UL, Enninful G, Sara M, Shen J, Suresh D, Zheng L, Mekonen ES, Rayamajhee B, Labricciosa FM, Sartelli M, Willcox M. Harnessing Non-Antibiotic Strategies to Counter Multidrug-Resistant Clinical Pathogens with Special Reference to Antimicrobial Peptides and Their Coatings. Antibiotics (Basel) 2025; 14:57. [PMID: 39858343 PMCID: PMC11762091 DOI: 10.3390/antibiotics14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial resistance is a critical global challenge in the 21st century, validating Sir Alexander Fleming's warning about the misuse of antibiotics leading to resistant microbes. With a dwindling arsenal of effective antibiotics, it is imperative to concentrate on alternative antimicrobial strategies. Previous studies have not comprehensively discussed the advantages and limitations of various strategies, including bacteriophage therapy, probiotics, immunotherapies, photodynamic therapy, essential oils, nanoparticles and antimicrobial peptides (AMPs) within a single review. This review addresses that gap by providing an overview of these various non-antibiotic antimicrobial strategies, highlighting their pros and cons, with a particular emphasis on antimicrobial peptides (AMPs). We explore the mechanism of action of AMPs against bacteria, viruses, fungi and parasites. While these peptides hold significant promise, their application in mainstream drug development is hindered by challenges such as low bioavailability and potential toxicity. However, advancements in peptide engineering and chemical modifications offer solutions to enhance their clinical utility. Additionally, this review presents updates on strategies aimed at improving the cost, stability and selective toxicity of AMPs through the development of peptidomimetics. These molecules have demonstrated effective activity against a broad range of pathogens, making them valuable candidates for integration into surface coatings to prevent device-associated infections. Furthermore, we discuss various approaches for attaching and functionalising these peptides on surfaces. Finally, we recommend comprehensive in vivo studies to evaluate the efficacy of AMPs and their mimetics, investigate their synergistic combinations with other molecules and assess their potential as coatings for medical devices.
Collapse
Affiliation(s)
- Shyam Kumar Mishra
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
| | - Tanzina Akter
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
- Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka 1349, Bangladesh
| | - Umme Laila Urmi
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | - George Enninful
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | - Manjulatha Sara
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | - Jiawei Shen
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | - Dittu Suresh
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Liangjun Zheng
- Department of Animal Science and Technology, University of Northwest A&F, Yangling 712100, China
| | - Elias Shiferaw Mekonen
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | - Binod Rayamajhee
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| | | | | | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Health and Medicine, University of New South Wales, Sydney, NSW 2052, Australia; (S.K.M.); (T.A.); (M.S.); (J.S.); (B.R.); (M.W.)
| |
Collapse
|
4
|
Ramamourthy G, Vogel HJ. Antibiofilm activities of lactoferricin-related Trp- and Arg-rich antimicrobial hexapeptides against pathogenic Staphylococcus aureus and Pseudomonas aeruginosa strains. Biochem Cell Biol 2025; 103:1-18. [PMID: 39418670 DOI: 10.1139/bcb-2024-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Recently, several antimicrobial peptides (AMPs), varying in length from 12 to 37 residues, have been shown to act as antibiofilm agents. Here, we report a study of 23 hexapeptides modeled after four different Trp- and Arg-rich AMPs, including the RRWQWR-NH2 peptide, derived from bovine lactoferrin. They were tested against the pathogenic Gram-negative Pseudomonas aeruginosa PAO1 strain and a Gram-positive Staphylococcus aureus MRSA strain. Both strains were engineered to express the green fluorescent protein (GFP) protein, and fluorescence detection was used to measure the ability of the peptides to prevent biofilm formation (minimum biofilm inhibitory concentration (MBIC)) or to cause the breakdown of established biofilms (minimum biofilm eradication concentration (MBEC)). Similar antibiofilm activities were obtained with the standard crystal violet dye assay. Most Trp- and Arg-rich hexapeptides displayed a potent antibiofilm activity against the Gram-positive S. aureus MRSA strain. In particular, hexapeptides with 3 Arg and 3 Trp were very effective, especially when they contained the three Trp in sequence. Somewhat unexpectedly, the antimicrobial (MIC) values correlated with the MBIC and MBEC values, which has not been seen for several other AMP/antibiofilm peptides. Our results demonstrate that short Trp- and Arg-rich peptides merit further studies as antibiofilm agents that could be deployed to address part of the antimicrobial resistance problem.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
5
|
Kim J, Lee J, Kang E, Lee K, Lee K, Cheon Y, Lee S, Kim B, Ko YH, Kim JH, In SI, Nam CH. Insights into an indolicidin-derived low-toxic anti-microbial peptide's efficacy against bacterial cells while preserving eukaryotic cell viability. Biofactors 2025; 51:e2145. [PMID: 39569798 DOI: 10.1002/biof.2145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Antimicrobial peptides (AMPs) are a current solution to combat antibiotic resistance, but they have limitations, including their expensive production process and the induction of cytotoxic effects. We have developed novel AMP candidate (peptide 3.1) based on indolicidin, among the shortest naturally occurring AMP. The antimicrobial activity of this peptide is demonstrated by the minimum inhibitory concentration, while the hemolysis tests and MTT assay indicate its low cytotoxicity. In optical diffraction tomography, red blood cells treated with peptide 3.1 showed no discernible effects, in contrast to indolicidin. However, peptide 3.1 did induce cell lysis in E. coli, leading to a reduced potential for the development of antibiotic resistance. To investigate the mechanism underlying membrane selectivity, the structure of peptide 3.1 was analyzed using nuclear magnetic resonance spectroscopy and molecular dynamics simulations. Peptide 3.1 is structured with an increased distinction between hydrophobic and charged residues and remained in close proximity to the eukaryotic membrane. On the other hand, peptide 3.1 exhibited a disordered conformation when approaching the prokaryotic membrane, similar to indolicidin, leading to its penetration into the membrane. Consequently, it appears that the amphipathicity and structural rigidity of peptide 3.1 contribute to its membrane selectivity. In conclusion, this study may lead to the development of Peptide 3.1, a promising commercial candidate based on its low cost to produce and low cytotoxicity. We have also shed light on the mechanism of action of AMP, which exhibits selective toxicity to bacteria while not damaging eukaryotic cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Repill Inc., Daegu, Republic of Korea
| | - Jieun Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Repill Inc., Daegu, Republic of Korea
| | - Eunho Kang
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Repill Inc., Daegu, Republic of Korea
| | - Kyoungmin Lee
- Repill Inc., Daegu, Republic of Korea
- The Interdisciplinary Studies of Artificial Intelligence, DGIST, Daegu, Republic of Korea
| | - Kyungeun Lee
- Repill Inc., Daegu, Republic of Korea
- School of Undergraduate Studies, DGIST, Daegu, Republic of Korea
| | - Yeongmi Cheon
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University Anseong-si, Republic of Korea
| | - Bokyung Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Young Ho Ko
- Center for Self-Assembly and Complexity, Institute for Basic Science, Pohang, Republic of Korea
| | - Jin Hae Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Su Il In
- Department of Energy Science and Engineering, DGIST, Daegu, Republic of Korea
| | - Chang Hoon Nam
- Department of New Biology, DGIST, Daegu, Republic of Korea
| |
Collapse
|
6
|
Cohen DG, Heidenreich TM, Schorey JW, Ross JN, Hammers DE, Vu HM, Moran TE, Winski CJ, Stuckey PV, Ross RL, Yee EA, Santiago-Tirado FH, Lee SW. Minimal domain peptides derived from enterocins exhibit potent antifungal activity. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1506315. [PMID: 39749139 PMCID: PMC11693670 DOI: 10.3389/ffunb.2024.1506315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025]
Abstract
The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by Enterococcus sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide. The canon syn-enterocin peptide library, generated using rational design techniques to have ninety-five synthetic peptide variants from the truncated, linearized, membrane-interacting domain of enterocin AS-48, was screened against three clinically relevant fungal strains: Cryptococcus neoformans, Candida albicans, and Candida auris for potential antifungal activity. Twelve peptides exhibited antifungal activity against C. neoformans, and two peptides exhibited activity against C. albicans. The fourteen active antifungal peptides were minimally cytotoxic to an immortalized human keratinocyte cell line (HaCats). Four select peptides were identified with minimum inhibitory concentrations (MICs) below 8 µM against C. neoformans. In 36-hour cell growth tests with these fungicidal peptides, fungicidal peptide no. 32 displayed inhibitory properties comparable to the leading antifungal medication fluconazole against C. neoformans. Screening of peptide no. 32 against a deletion library of C. neoformans mutants revealed that the mechanism of action of peptide no. 32 may relate to multivesicular bodies (MVBs) or polysaccharide capsule targeting. These findings importantly demonstrate that naturally derived AMPs produced by bacteria can be sourced, engineered, and modified to exhibit potent antifungal activity. Our results will contribute to the development of broad treatment alternatives to fungal infections and lend themselves to direct implications for possible treatment options for C. neoformans infections.
Collapse
Affiliation(s)
- Dorrian G. Cohen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Theresa M. Heidenreich
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | | | - Jessica N. Ross
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Henry M. Vu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Thomas E. Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Christopher J. Winski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Robbi L. Ross
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | | | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Eck Institute for Global Health, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
7
|
Ojah EO, Gneid H, Herschede SR, Busschaert N. Structure-Activity Relationships in Supramolecular Hosts Targeting Bacterial Phosphatidylethanolamine (PE) Lipids. Chemistry 2024; 30:e202402698. [PMID: 39231001 DOI: 10.1002/chem.202402698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
The World Health Organization has described the antimicrobial resistance crisis as one of the top ten global public health threats. New antimicrobial agents that can fight infections caused by antimicrobial resistant pathogens are therefore needed. A potential strategy is the development of small molecules that can selectively interact with bacterial membranes (or membranes of other microbial pathogens), and thereby rapidly kill the bacteria. Here, we report the structure-activity relationship within a group of 22 compounds that were designed to bind the bacterial lipid phosphatidylethanolamine (PE). Liposome-based studies reveal that the lipophilicity of the compounds has the strongest effect on both the affinity and selectivity for PE. The best results were obtained for compounds with logP≈3.75, which showed a 5x-7x selectivity for bacterial PE lipids over human PC (phosphatidylcholine) lipids. Furthermore, these compounds also showed potent antibacterial activity against the Gram-positive bacterium B. cereus, with minimum inhibitory concentrations (MICs) below 10 μM, a concentration where they showed minimal hemolytic activity against human red blood cells. These results not only show the possibility of PE-binding small molecules to function as antibiotics, but also provide guidelines for the development of compounds targeting other types of biologically relevant membrane lipids.
Collapse
Affiliation(s)
- Emmanuel O Ojah
- Chemistry, Tulane University, New Orleans, LA, United States
| | - Hassan Gneid
- Chemistry, Tulane University, New Orleans, LA, United States
| | | | | |
Collapse
|
8
|
Islam T, Tamanna NT, Sagor MS, Zaki RM, Rabbee MF, Lackner M. Antimicrobial Peptides: A Promising Solution to the Rising Threat of Antibiotic Resistance. Pharmaceutics 2024; 16:1542. [PMID: 39771521 PMCID: PMC11728462 DOI: 10.3390/pharmaceutics16121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
The demand for developing novel antimicrobial drugs has increased due to the rapid appearance and global spread of antibiotic resistance. Antimicrobial peptides (AMPs) offer distinct advantages over traditional antibiotics, such as broad-range efficacy, a delayed evolution of resistance, and the capacity to enhance human immunity. AMPs are being developed as potential medicines, and current computational and experimental tools aim to facilitate their preclinical and clinical development. Structural and functional constraints as well as a more stringent regulatory framework have impeded clinical translation of AMPs as possible therapeutic agents. Although around four thousand AMPs have been identified so far, there are some limitations of using these AMPs in clinical trials due to their safety in the host and sometimes limitations in the biosynthesis or chemical synthesis of some AMPs. Overcoming these obstacles may help to open a new era of AMPs to combat superbugs without using synthetic antibiotics. This review describes the classification, mechanisms of action and immune modulation, advantages, difficulties, and opportunities of using AMPs against multidrug-resistant pathogens and highlights the need and priorities for creating targeted development strategies that take into account the most cutting-edge tools currently available. It also describes the barriers to using these AMPs in clinical trials.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Shahjalal Sagor
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh;
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
9
|
Atif M, Babuççu G, Riool M, Zaat S, Jonas U. Antimicrobial Peptide SAAP-148-Functionalized Hydrogels from Photocrosslinkable Polymers with Broad Antibacterial Activity. Macromol Rapid Commun 2024; 45:e2400785. [PMID: 39530205 DOI: 10.1002/marc.202400785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics for treating skin wound infections. Nonetheless, their short half-life in biological environments restricts clinical applicability. Covalent immobilization of AMPs onto suitable substrates offers a comprehensive solution, creating contact-killing surfaces with long-term functionality. Here, a copolymer of poly[(hydroxy ethyl acrylamide)-co-(4-benzophenone acrylamide)-co-(pentafluorophenyl acrylate)-co-(ECOSURF EH-3 acrylate)], in short poly(HEAAm-co-BPAAm-co-PFPA-co-EH3A), is synthesized by free radical polymerization. Subsequent modification of active ester groups with the amine groups of SAAP-148, results in a copolymer, that is non-cytotoxic to human lung fibroblasts. UV photocrosslinking of the benzophenone units yields a polymer network that forms a hydrogel after swelling with aqueous medium. Both the SAAP-148-modified polymer in solution and the photocrosslinked hydrogels show good antimicrobial activity against strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, including multidrug-resistant strains, frequently found in wound infections. The covalent attachment of SAAP-148 prevents leaching, ensuring sustained antimicrobial activity for at least 48 h in diluted human blood plasma and 14 days in PBS. This prolonged retention of antimicrobial activity in human blood plasma significantly enhances its clinical potential. Overall, this study shows the potential of the AMP-functionalized photocrosslinkable polymer as antimicrobial wound dressings, providing an effective alternative to antibiotics.
Collapse
Affiliation(s)
- Muhammad Atif
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Gizem Babuççu
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Immunology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Immunology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Am Biopark 9, 93053, Regensburg, Germany
| | - Sebastian Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Immunology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| |
Collapse
|
10
|
Wang J, Zhang M, Li C, Liu M, Qi Y, Xie X, Zhou C, Ma L. A novel cathelicidin TS-CATH derived from Thamnophis sirtalis combats drug-resistant gram-negative bacteria in vitro and in vivo. Comput Struct Biotechnol J 2024; 23:2388-2406. [PMID: 38882682 PMCID: PMC11176561 DOI: 10.1016/j.csbj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Antimicrobial peptides are promising therapeutic agents for treating drug-resistant bacterial disease due to their broad-spectrum antimicrobial activity and decreased susceptibility to evolutionary resistance. In this study, three novel cathelicidin antimicrobial peptides were identified from Thamnophis sirtalis, Balaenoptera musculus, and Lipotes vexillifer by protein database mining and sequence alignment and were subsequently named TS-CATH, BM-CATH, and LV-CATH, respectively. All three peptides exhibited satisfactory antibacterial activity and broad antibacterial spectra against clinically isolated E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in vitro. Among them, TS-CATH displayed the best antimicrobial/bactericidal activity, with a rapid elimination efficiency against the tested drug-resistant gram-negative bacteria within 20 min, and exhibited the lowest cytotoxicity toward mammalian cells. Furthermore, TS-CATH effectively enhanced the survival rate of mice with ceftazidime-resistant E. coli bacteremia and promoted wound healing in meropenem-resistant P. aeruginosa infection. These results were achieved through the eradication of bacterial growth in target organs and wounds, further inhibiting the systemic dissemination of bacteria and the inflammatory response. TS-CATH exhibited direct antimicrobial activity by damaging the inner and outer membranes, resulting in leakage of the bacterial contents at super-MICs. Moreover, TS-CATH disrupted the bacterial respiratory chain, which inhibited ATP synthesis and induced ROS formation, significantly contributing to its antibacterial efficacy at sub-MICs. Overall, TS-CATH has potential for use as an antibacterial agent.
Collapse
Affiliation(s)
- Jian Wang
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Meina Zhang
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chao Li
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Mengyuan Liu
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yixin Qi
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaolin Xie
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Changlin Zhou
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lingman Ma
- Institution of all authors: College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
11
|
de Moura Cavalheiro MC, de Oliveira CFR, de Araújo Boleti AP, Rocha LS, Jacobowski AC, Pedron CN, de Oliveira Júnior VX, Macedo MLR. Evaluating the Antimicrobial Efficacy of a Designed Synthetic peptide against Pathogenic Bacteria. J Microbiol Biotechnol 2024; 34:2231-2244. [PMID: 39344347 PMCID: PMC11637823 DOI: 10.4014/jmb.2405.05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
Recent research has focused on discovering peptides that effectively target multidrug-resistant bacteria while leaving healthy cells unharmed. In this work, we describe the antimicrobial properties of RK8, a peptide composed of eight amino acid residues. Its activity was tested against multidrug-resistant Gram-negative and Gram-positive bacteria. RK8's efficacy in eradicating mature biofilm and increasing membrane permeability was assessed using Sytox Green. Cytotoxicity assays were conducted both in vitro and in vivo models. Circular dichroism analysis revealed that RK8 adopted an extended structure in water and sodium dodecyl sulfate (SDS). RK8 exhibited MICs of 8-64 μM and MBCs of 4-64 μM against various bacteria, with higher effectiveness observed in Methicillin-resistant Staphylococcus aureus (MRSA) and E. coli KPC+ strains than others. Ciprofloxacin and Vancomycin showed varying MIC and MBC values lower than RK8 for Gram-positive bacteria, but competitive for Gram-negative bacteria. The combination of RK8 and ciprofloxacin showed a synergistic effect. The RK8 peptides could reduce 38% of the mature Acinetobacter baumannii biofilm. Sytox Green reagent achieved 100% membrane permeation of Gram-positive and Gram-negative bacteria. The RK8 peptide did not show cytotoxic effects against murine macrophages (64 μM), erythrocytes (100 μM) or Galleria mellanella larvae (960 μM). In the stability test against peptidases, the RK8 peptide was stable, maintaining around 60% of the molecule intact after 120 min of incubation. These results highlight the potential of RK8 to be a promising strategy for developing a new antimicrobial and antibiofilm agent, inspiring and motivating further research in antimicrobial peptides.
Collapse
Affiliation(s)
- Maria Caroline de Moura Cavalheiro
- Protein Purification Laboratory and its Biological Functions; Faculty of Pharmaceutical Sciences, Food and Nutrition; Faculty of Pharmacy, Food and Nutrition; Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Protein Purification Laboratory and its Biological Functions; Faculty of Pharmaceutical Sciences, Food and Nutrition; Faculty of Pharmacy, Food and Nutrition; Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Ana Paula de Araújo Boleti
- Protein Purification Laboratory and its Biological Functions; Faculty of Pharmaceutical Sciences, Food and Nutrition; Faculty of Pharmacy, Food and Nutrition; Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Layza Sá Rocha
- Protein Purification Laboratory and its Biological Functions; Faculty of Pharmaceutical Sciences, Food and Nutrition; Faculty of Pharmacy, Food and Nutrition; Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Ana Cristina Jacobowski
- Protein Purification Laboratory and its Biological Functions; Faculty of Pharmaceutical Sciences, Food and Nutrition; Faculty of Pharmacy, Food and Nutrition; Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Cibele Nicolaski Pedron
- Center for Natural and Human Sciences of the Federal University of ABC (UFABC), São Paulo, SP, Brazil
| | | | - Maria Lígia Rodrigues Macedo
- Protein Purification Laboratory and its Biological Functions; Faculty of Pharmaceutical Sciences, Food and Nutrition; Faculty of Pharmacy, Food and Nutrition; Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
12
|
Lamba S, Heruka De Zoysa G, Wang K, Lu J, Swift S, Sarojni V. Homo and Hetero-Branched Lipopeptide Dendrimers: Synthesis and Antimicrobial Activity. Bioorg Chem 2024; 150:107567. [PMID: 38936047 DOI: 10.1016/j.bioorg.2024.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Di-branched and tetra-branched versions of a previously reported analogue of the lipopeptide battacin were successfully synthesised using thiol-maleimide click and 1, 2, 3-triazole click chemistry. Antimicrobial studies against drug resistant clinical isolates of Escherichia coli (ESBL E. coli Ctx-M14), Pseudomonas aeruginosa (P. aeruginosa Q502), and Methicillin resistant Staphylococcus aureus (MRSA ATCC 33593), as well as clinically isolated Acinetobacter baumannii (A. baumannii ATCC 19606), and P. aeruginosa (ATCC 27853), revealed that the dendrimeric peptides have antimicrobial activity in the low micromolar range (0.5 -- 4 μM) which was 10 times more potent than the monomer peptides. Under high salt concentrations (150 mM NaCl, 2 mM MgCl2, and 2.5 mM CaCl2) the di-branched lipopeptides retained their antimicrobial activity while the monomer peptides were not active (>100 μM). The di-branched triazole click lipopeptide, Peptide 12, was membrane lytic, showed faster killing kinetics, and exhibited antibiofilm activity against A. baumannii and MRSA and eradicated > 85 % preformed biofilms at low micromolar concentrations. The di-branched analogues were > 30-fold potent than the monomers against Candida albicans. Peptide 12 was not haemolytic (HC10 = 932.12 μM) and showed up to 40-fold higher selectivity against bacteria and fungi than the monomer peptide. Peptide 12 exhibited strong proteolytic stability (>80 % not degraded) in rat serum over 24 h whereas > 95 % of the thiol-maleimide analogue (Peptide 10) was degraded. The tetra-branched peptides showed comparable antibacterial potency to the di-branched analogues. These findings indicate that dual branching using triazole click chemistry is a promising strategy to improve the antimicrobial activity and proteolytic stability of battacin based lipopeptides. The information gathered can be used to build effective antimicrobial dendrimeric peptides as new peptide antibiotics.
Collapse
Affiliation(s)
- Saurabh Lamba
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
| | - Gayan Heruka De Zoysa
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand
| | - Kelvin Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojni
- School of Chemical Sciences and The Centre for Green Chemical Science, University of Auckland, Auckland 1142, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.
| |
Collapse
|
13
|
Liao F, Ye Z, Cheng J, Zhu J, Chen X, Zhou X, Wang T, Jiang Y, Ma C, Zhou M, Chen T, Shaw C, Wang L. Discovery and engineering of a novel peptide, Temporin-WY2, with enhanced in vitro and in vivo efficacy against multi-drug resistant bacteria. Sci Rep 2024; 14:18769. [PMID: 39138237 PMCID: PMC11322164 DOI: 10.1038/s41598-024-67777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Infections by drug-resistant microorganisms are a threat to global health and antimicrobial peptides are considered to be a new hope for their treatment. Temporin-WY2 was identified from the cutaneous secretion of the Ranidae frog, Amolops wuyiensis. It presented with a potent anti-Gram-positive bacterial efficacy, but its activity against Gram-negative bacteria and cancer cell lines was unremarkable. Also, it produced a relatively high lytic effect on horse erythrocytes. For further improvement of its functions, a perfect amphipathic analogue, QUB-1426, and two lysine-clustered analogues, 6K-WY2 and 6K-1426, were synthesised and investigated. The modified peptides were found to be between 8- and 64-fold more potent against Gram-negative bacteria than the original peptide. Additionally, the 6K analogues showed a rapid killing rate. Also, their antiproliferation activities were more than 100-fold more potent than the parent peptide. All of the peptides that were examined demonstrated considerable biofilm inhibition activity. Moreover, QUB-1426, 6K-WY2 and 6K-1426, demonstrated in vivo antimicrobial activity against MRSA and E. coli in an insect larvae model. Despite observing a slight increase in the hemolytic activity and cytotoxicity of the modified peptides, they still demonstrated a improved therapeutic index. Overall, QUB-1426, 6K-WY2 and 6K-1426, with dual antimicrobial and anticancer functions, are proposed as putative drug candidates for the future.
Collapse
Affiliation(s)
- Fengting Liao
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, ShaoGuan University, Shaoguan, China
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Zhuming Ye
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, ShaoGuan University, Shaoguan, China
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jinsheng Cheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, ShaoGuan University, Shaoguan, China
| | - Jianhua Zhu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, ShaoGuan University, Shaoguan, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Xiaowei Zhou
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, ShaoGuan University, Shaoguan, China.
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Tao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Yangyang Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
14
|
Lai Z, Yuan X, Chen W, Chen H, Li B, Bi Z, Lyu Y, Shan A. Design of Proteolytic-Resistant Antifungal Peptides by Utilizing Minimum d-Amino Acid Ratios. J Med Chem 2024; 67:10891-10905. [PMID: 38934239 DOI: 10.1021/acs.jmedchem.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Antifungal peptides are an appealing alternative to standard antifungal medicines due to their unique mechanism of action and low-level resistance. However, their susceptibility to protease degradation keeps hindering their future development. Herein, a library was established to design peptides with protease resistance and high antifungal activity. The peptides were incorporated with minimal D-amino acids to further improve the protease stability. The most active peptide, IR3, demonstrated good antifungal activity and low toxicity, and its molecular integrity was maintained after protease hydrolysis for 8 h at 2 mg/mL. Furthermore, IR3 could permeate the fungal cell wall, disrupt the cell membrane, produce reactive oxygen species, and induce apoptosis in fungal cells. In vivo experiments confirmed that IR3 could effectively treat fungal keratitis. Collectively, these findings suggest that IR3 is a promising antifungal agent and may be beneficial in the design and development of protease-resistant antifungal peptides.
Collapse
Affiliation(s)
- Zhenheng Lai
- The College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaojie Yuan
- The College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenwen Chen
- The College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hongyu Chen
- The College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Bowen Li
- The College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhongpeng Bi
- The College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yinfeng Lyu
- The College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- The College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
15
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
16
|
Akinwale AD, Parang K, Tiwari RK, Yamaki J. Mechanistic Study of Antimicrobial Effectiveness of Cyclic Amphipathic Peptide [R 4W 4] against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Antibiotics (Basel) 2024; 13:555. [PMID: 38927221 PMCID: PMC11201061 DOI: 10.3390/antibiotics13060555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are being explored as a potential strategy to combat antibiotic resistance due to their ability to reduce susceptibility to antibiotics. This study explored whether the [R4W4] peptide mode of action is bacteriostatic or bactericidal using modified two-fold serial dilution and evaluating the synergism between gentamicin and [R4W4] against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) by a checkered board assay. [R4W4] exhibited bactericidal activity against bacterial isolates (MBC/MIC ≤ 4), with a synergistic effect with gentamicin against E. coli (FICI = 0.3) but not against MRSA (FICI = 0.75). Moreover, we investigated the mechanism of action of [R4W4] against MRSA by applying biophysical assays to evaluate zeta potential, cytoplasmic membrane depolarization, and lipoteichoic acid (LTA) binding affinity. [R4W4] at a 16 mg/mL concentration stabilized the zeta potential of MRSA -31 ± 0.88 mV to -8.37 mV. Also, [R4W4] at 2 × MIC and 16 × MIC revealed a membrane perturbation process associated with concentration-dependent effects. Lastly, in the presence of BODIPY-TR-cadaverine (BC) fluorescence dyes, [R4W4] exhibited binding affinity to LTA comparable with melittin, the positive control. In addition, the antibacterial activity of [R4W4] against MRSA remained unchanged in the absence and presence of LTA, with an MIC of 8 µg/mL. Therefore, the [R4W4] mechanism of action is deemed bactericidal, involving interaction with bacterial cell membranes, causing concentration-dependent membrane perturbation. Additionally, after 30 serial passages, there was a modest increment of MRSA strains resistant to [R4W4] and a change in antibacterial effectiveness MIC [R4W4] and vancomycin by 8 and 4 folds with a slight change in Levofloxacin MIC 1 to 2 µg/mL. These data suggest that [R4W4] warrants further consideration as a potential AMP.
Collapse
Affiliation(s)
- Ajayi David Akinwale
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA (K.P.)
- Department of Pharmacy Practice, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA (K.P.)
| | - Rakesh Kumar Tiwari
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific–Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Jason Yamaki
- Department of Pharmacy Practice, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
17
|
Hernández-Arvizu EE, Asada M, Kawazu SI, Vega CA, Rodríguez-Torres A, Morales-García R, Pavón-Rocha AJ, León-Ávila G, Rivas-Santiago B, Mosqueda J. Antiparasitic Evaluation of Aquiluscidin, a Cathelicidin Obtained from Crotalus aquilus, and the Vcn-23 Derivative Peptide against Babesia bovis, B. bigemina and B. ovata. Pathogens 2024; 13:496. [PMID: 38921794 PMCID: PMC11206629 DOI: 10.3390/pathogens13060496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Babesiosis is a growing concern due to the increased prevalence of this infectious disease caused by Babesia protozoan parasites, affecting various animals and humans. With rising worries over medication side effects and emerging drug resistance, there is a notable shift towards researching babesiacidal agents. Antimicrobial peptides, specifically cathelicidins known for their broad-spectrum activity and immunomodulatory functions, have emerged as potential candidates. Aquiluscidin, a cathelicidin from Crotalus aquilus, and its derivative Vcn-23, have been of interest due to their previously observed antibacterial effects and non-hemolytic activity. This work aimed to characterize the effect of these peptides against three Babesia species. Results showed Aquiluscidin's significant antimicrobial effects on Babesia species, reducing the B. bigemina growth rate and exhibiting IC50 values of 14.48 and 20.70 μM against B. ovata and B. bovis, respectively. However, its efficacy was impacted by serum presence in culture, and it showed no inhibition against a B. bovis strain grown in serum-supplemented medium. Conversely, Vcn-23 did not demonstrate babesiacidal activity. In conclusion, Aquiluscidin shows antibabesia activity in vitro and its efficacy is affected by the presence of serum in the culture medium. Nevertheless, this peptide represents a candidate for further investigation of its antiparasitic properties and provides insights into potential alternatives for the treatment of babesiosis.
Collapse
Affiliation(s)
- Edwin Esaú Hernández-Arvizu
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (E.E.H.-A.); (R.M.-G.); (A.J.P.-R.)
- PhD Program in Natural Sciences, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medcine, Inadacho, Nishi 2-13, Obihiro 080-8555, Hokkaido, Japan; (M.A.); (S.-I.K.)
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medcine, Inadacho, Nishi 2-13, Obihiro 080-8555, Hokkaido, Japan; (M.A.); (S.-I.K.)
| | - Carlos Agustín Vega
- Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (C.A.V.); (A.R.-T.)
| | - Angelina Rodríguez-Torres
- Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (C.A.V.); (A.R.-T.)
| | - Rodrigo Morales-García
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (E.E.H.-A.); (R.M.-G.); (A.J.P.-R.)
| | - Aldo J. Pavón-Rocha
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (E.E.H.-A.); (R.M.-G.); (A.J.P.-R.)
| | - Gloria León-Ávila
- Department of Zoology, National School of Biological Sciences, National Polytechnic Institute, Carpio y Plan de Ayala S/N, C.P. 11340, Casco de Santo Tomas, Mexico City 11340, Mexico;
| | - Bruno Rivas-Santiago
- Medical Research Unit Zacatecas-Instituto Mexicano del Seguro Social, Zacatecas 98053, Mexico;
| | - Juan Mosqueda
- Immunology and Vaccine Research Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76230, Mexico; (E.E.H.-A.); (R.M.-G.); (A.J.P.-R.)
| |
Collapse
|
18
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
19
|
Bae DH, Bae H, Yu HS, Dorjsembe B, No YH, Kim T, Kim NH, Kim JW, Kim J, Lee BS, Kim YJ, Park S, Khaleel ZH, Sa DH, Lee EC, Lee J, Ham J, Kim JC, Kim YH. Peptide-Drug Conjugate with Statistically Designed Transcellular Peptide for Psoriasis-Like Inflammation. Adv Healthc Mater 2024; 13:e2303480. [PMID: 38421096 DOI: 10.1002/adhm.202303480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Peptide-drug conjugates (PDCs) are a promising class of drug delivery systems that utilize covalently conjugated carrier peptides with therapeutic agents. PDCs offer several advantages over traditional drug delivery systems including enhanced target engagement, improved bioavailability, and increased cell permeability. However, the development of efficient transcellular peptides capable of effectively transporting drugs across biological barriers remains an unmet need. In this study, physicochemical criteria based on cell-penetrating peptides are employed to design transcellular peptides derived from an antimicrobial peptides library. Among the statistically designed transcellular peptides (SDTs), SDT7 exhibits higher skin permeability, faster kinetics, and improved cell permeability in human keratinocyte cells compared to the control peptide. Subsequently, it is found that 6-Paradol (PAR) exhibits inhibitory activity against phosphodiesterase 4, which can be utilized for an anti-inflammatory PDC. The transcellular PDC (SDT7-conjugated with PAR, named TM5) is evaluated in mouse models of psoriasis, exhibiting superior therapeutic efficacy compared to PAR alone. These findings highlight the potential of transcellular PDCs (TDCs) as a promising approach for the treatment of inflammatory skin disorders.
Collapse
Affiliation(s)
- Do Hyun Bae
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Hayeon Bae
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyung-Seok Yu
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Banzragch Dorjsembe
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Young Hyun No
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Taejung Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jin-Woo Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jiyool Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Bok-Soo Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seongchan Park
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Zinah Hilal Khaleel
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Deok Hyang Sa
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Eui-Chul Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- IMNEWRUN Inc., Suwon, 16419, Republic of Korea
| | - Jungyeob Ham
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jin-Chul Kim
- Natural Products Research Institute, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yong Ho Kim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- IMNEWRUN Inc., Suwon, 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
20
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
21
|
Li B, Ouyang X, Liu Y, Ba Z, Yang Y, Zhang J, Yang P, Yang T, Wang Y, Zhao Y, Mao W, Zhong C, Liu H, Zhang Y, Gou S, Ni J. Novel β-Hairpin Antimicrobial Peptide Containing the β-Turn Sequence of -NG- and the Tryptophan Zippers Facilitate Self-Assembly into Nanofibers, Exhibiting Excellent Antimicrobial Performance. J Med Chem 2024; 67:6365-6383. [PMID: 38436574 DOI: 10.1021/acs.jmedchem.3c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Antimicrobial peptides (AMPs) have emerged as promising agents to combat the antibiotic resistance crisis due to their rapid bactericidal activity and low propensity for drug resistance. However, AMPs face challenges in terms of balancing enhanced antimicrobial efficacy with increased toxicity during modification processes. In this study, de novo d-type β-hairpin AMPs are designed. The conformational transformation of self-assembling peptide W-4 in the environment of the bacterial membrane and the erythrocyte membrane affected its antibacterial activity and hemolytic activity and finally showed a high antibacterial effect and low toxicity. Furthermore, W-4 displays remarkable stability, minimal occurrence of drug resistance, and synergistic effects when combined with antibiotics. The in vivo studies confirm its high safety and potent wound-healing properties at the sites infected by bacteria. This study substantiates that nanostructured AMPs possess enhanced biocompatibility. These advances reveal the superiority of self-assembled AMPs and contribute to the development of nanoantibacterial materials.
Collapse
Affiliation(s)
- Beibei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Ouyang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yao Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zufang Ba
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yinyin Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tingting Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuhuan Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Hui Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Yun Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
22
|
Blomstrand E, Posch E, Stepulane A, Rajasekharan AK, Andersson M. Antibacterial and Hemolytic Activity of Antimicrobial Hydrogels Utilizing Immobilized Antimicrobial Peptides. Int J Mol Sci 2024; 25:4200. [PMID: 38673786 PMCID: PMC11050424 DOI: 10.3390/ijms25084200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are viewed as potential compounds for the treatment of bacterial infections. Nevertheless, the successful translation of AMPs into clinical applications has been impeded primarily due to their low stability in biological environments and potential toxicological concerns at higher concentrations. The covalent attachment of AMPs to a material's surface has been sought to improve their stability. However, it is still an open question what is required to best perform such an attachment and the role of the support. In this work, six different AMPs were covalently attached to a long-ranged ordered amphiphilic hydrogel, with their antibacterial efficacy evaluated and compared to their performance when free in solution. Among the tested AMPs were four different versions of synthetic end-tagged AMPs where the sequence was altered to change the cationic residue as well as to vary the degree of hydrophobicity. Two previously well-studied AMPs, Piscidin 1 and Omiganan, were also included as comparisons. The antibacterial efficacy against Staphylococcus aureus remained largely consistent between free AMPs and those attached to surfaces. However, the activity pattern against Pseudomonas aeruginosa on hydrogel surfaces displayed a marked contrast to that observed in the solution. Additionally, all the AMPs showed varying degrees of hemolytic activity when in solution. This activity was entirely diminished, and all the AMPs were non-hemolytic when attached to the hydrogels.
Collapse
Affiliation(s)
- Edvin Blomstrand
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden;
| | - Elin Posch
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden;
| | - Annija Stepulane
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), SE-405 30 Gothenburg, Sweden
| | - Anand K. Rajasekharan
- Amferia AB, Astra Zeneca BioVentureHub c/o Astra Zeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden;
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, SE-412 96 Göteborg, Sweden; (E.B.); (E.P.); (A.S.)
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), SE-405 30 Gothenburg, Sweden
| |
Collapse
|
23
|
Chen P, Ye T, Li C, Praveen P, Hu Z, Li W, Shang C. Embracing the era of antimicrobial peptides with marine organisms. Nat Prod Rep 2024; 41:331-346. [PMID: 37743806 DOI: 10.1039/d3np00031a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Covering: 2018 to Jun of 2023The efficiency of traditional antibiotics has been undermined by the proliferation of antibiotic-resistant pathogenic microorganisms, necessitating the pursuit of innovative therapeutic agents. Antimicrobial peptides (AMPs), which are part of host defence peptides found ubiquitously in nature, exhibiting a wide range of activity towards bacteria, fungi, and viruses, offer a highly promising candidate solution. The efficacy of AMPs can frequently be augmented via alterations to their amino acid sequences or structural adjustments. Given the vast reservoir of marine life forms and their distinctive ecosystems, marine AMPs stand as a burgeoning focal point in the quest for alternative peptide templates extracted from natural sources. Advances in identification and characterization techniques have accelerated the discoveries of marine AMPs, thereby stimulating AMP customization, optimization, and synthesis research endeavours. This review presents an overview of recent discoveries related to the intriguing qualities of marine AMPs. Emphasis will be placed upon post-translational modifications (PTMs) of marine AMPs and how they may impact functionality and potency. Additionally, this review considers ways in which marine PTM might support larger-scale, heterologous AMP manufacturing initiatives, providing insights into translational applications of these important biomolecules.
Collapse
Affiliation(s)
- Pengyu Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Ye
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Chunyuan Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Praveen Praveen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University, Victoria, 3086, Australia.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science La Trobe University, Victoria, 3086, Australia.
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
24
|
Lee MF, Anasir MI, Poh CL. Serum Stabilities and Antiviral Activities of Chemically Modified Peptides Against Dengue Serotypes 1-4. J Pharm Sci 2024; 113:587-595. [PMID: 38103687 DOI: 10.1016/j.xphs.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Dengue presents a major public health concern in over 100 countries due to the absence of an effective vaccine and antiviral therapy against all four dengue virus (DENV) serotypes. Several antiviral peptides were previously reported to inhibit at least three or all four DENV serotypes. Chemical modifications such as d-amino acid substitutions, polyethylene glycol (PEG)ylation, and cyclization could be applied to peptides to improve their biological activities and stability in serum. The PEGylated peptide 3 (PEG-P3) was identified to be the most promising antiviral candidate as it demonstrated good inhibitory effects against all four DENV serotypes during the pre- and post-infection stages, Based on the RP-HPLC and LC/MS analysis, peptide 4 was identified to be more stable in human serum than peptide 3, with 78.9 % and 41.6 % of the peptides remaining after 72 h of incubation in human serum, respectively. Both peptides were also able to retain their antiviral activities against specific DENV serotypes after 72 h incubation in human serum. PEG-P3 was found to be more stable than the unmodified peptide 3 with 89.4 % of PEG-P3 remaining in the human serum after 72 h of incubation. PEG-P3 was able to retain its inhibitory effects against DENV-1 to 4 after 72 h of incubation in human serum. This study provided insights into the antiviral activities and stabilities of the unmodified and chemically modified peptides in human serum.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Bandar Sunway, Selangor 47500, Malaysia
| | - Mohd Ishtiaq Anasir
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, Shah Alam, Selangor Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Bandar Sunway, Selangor 47500, Malaysia.
| |
Collapse
|
25
|
D'Aloisio V, Schofield A, Kendall DA, Hutcheon GA, Coxon CR. The development and optimisation of an HPLC-based in vitro serum stability assay for a calcitonin gene-related peptide receptor antagonist peptide. J Pept Sci 2024; 30:e3539. [PMID: 37605343 DOI: 10.1002/psc.3539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023]
Abstract
Evaluation of the stability of peptide drug candidates in biological fluids, such as blood serum, is of high importance during the lead optimisation phase. Here, we describe the optimisation and validation of a method for the evaluation of the stability of a lead calcitonin gene-related peptide antagonist peptide (P006) in blood serum. After initially determining appropriate peptide and human serum concentrations and selection of the quenching reagent, the HPLC method optimisation used two experimental designs, Plackett-Burman design and Taguchi design. The analytical method was validated as complying with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. The optimised method allowed the successful resolution of the parent peptide from its metabolites using RP-HPLC and identification of the major metabolites of P006 by mass spectrometry. This paradigm may be widely adopted as a robust early-stage platform for screening peptide stability to rule out candidates with low in vitro stability, which would likely translate into poor in vivo pharmacokinetics.
Collapse
Affiliation(s)
- Vera D'Aloisio
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
- EaStChem School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh, UK
| | - Adam Schofield
- EaStChem School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh, UK
| | | | - Gillian A Hutcheon
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, The University of Edinburgh, Joseph Black Building, Edinburgh, UK
| |
Collapse
|
26
|
Masadeh MM, Alshogran H, Alsaggar M, Sabi SH, Al Momany EM, Masadeh MM, Alrabadi N, Alzoubi KH. Evaluation of Novel HLM Peptide Activity and Toxicity against Planktonic and Biofilm Bacteria: Comparison to Standard Antibiotics. Curr Protein Pept Sci 2024; 25:826-843. [PMID: 38910428 DOI: 10.2174/0113892037291252240528110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Antibiotic resistance is one of the main concerns of public health, and the whole world is trying to overcome such a challenge by finding novel therapeutic modalities and approaches. This study has applied the sequence hybridization approach to the original sequence of two cathelicidin natural parent peptides (BMAP-28 and LL-37) to design a novel HLM peptide with broad antimicrobial activity. METHODS The physicochemical characteristics of the newly designed peptide were determined. As well, the new peptide's antimicrobial activity (Minimum Inhibitory Concentration (MIC), Minimum Bacterial Eradication Concentration (MBEC), and antibiofilm activity) was tested on two control (Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922) and two resistant (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC BAA41, New Delhi metallo-beta- lactamase-1 Escherichia coli ATCC BAA-2452) bacterial strains. Furthermore, synergistic studies have been applied to HLM-hybridized peptides with five conventional antibiotics by checkerboard assays. Also, the toxicity of HLM-hybridized peptide was studied on Vero cell lines to obtain the IC50 value. Besides the percentage of hemolysis action, the peptide was tested in freshly heparinized blood. RESULTS The MIC values for the HLM peptide were obtained as 20, 10, 20, and 20 μM, respectively. Also, the results showed no hemolysis action, with low to slightly moderate toxicity action against mammalian cells, with an IC50 value of 10.06. The Biomatik corporate labs, where HLM was manufactured, determined the stability results of the product by Mass Spectrophotometry (MS) and High-performance Liquid Chromatography (HPLC) methods. The HLM-hybridized peptide exhibited a range of synergistic to additive antimicrobial activities upon combination with five commercially available different antibiotics. It has demonstrated the biofilm-killing effects in the same concentration required to eradicate the control strains. CONCLUSION The results indicated that HLM-hybridized peptide displayed a broad-spectrum activity toward different bacterial strains in planktonic and biofilm forms. It showed synergistic or additive antimicrobial activity upon combining with commercially available different antibiotics.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Haneen Alshogran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Alsaggar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Enaam M Al Momany
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. box 330127, Zarqa 13133, Jordan
| | - Majd M Masadeh
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, University Sains Malaysia, 11800, Penang, Malaysia
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
27
|
Thakur A, Ganesan R, Ray Dutta J. Antimicrobial Peptide-Based Nanomaterials in Combating Multidrug-Resistant Bacteria. NANOTECHNOLOGY BASED STRATEGIES FOR COMBATING ANTIMICROBIAL RESISTANCE 2024:177-201. [DOI: 10.1007/978-981-97-2023-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Chang DH, Lee MR, Wang N, Lynn DM, Palecek SP. Establishing Quantifiable Guidelines for Antimicrobial α/β-Peptide Design: A Partial Least-Squares Approach to Improve Antimicrobial Activity and Reduce Mammalian Cell Toxicity. ACS Infect Dis 2023; 9:2632-2651. [PMID: 38014670 PMCID: PMC10807133 DOI: 10.1021/acsinfecdis.3c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Antimicrobial peptides (AMPs) are promising candidates to combat pathogens that are resistant to conventional antimicrobial drugs because they operate through mechanisms that involve membrane disruption. However, the use of AMPs in clinical settings has been limited, at least in part, by their susceptibility to proteolytic degradation and their lack of selectivity toward pathogenic microbes vs mammalian cells. We recently reported on the design of α- and β-peptide oligomers structurally templated upon the naturally occurring α-helical AMP aurein 1.2. These α/β-peptide oligomers are more proteolytically stable than aurein 1.2 and have several other attributes that render them attractive as alternatives to conventional AMPs. This study describes the influence of peptide physicochemical properties on the broad-spectrum activity of aurein 1.2-based α/β-peptide mimics against nine bacterial, fungal, and mammalian cell lines. We used a partial least-squares regression (PLSR)-supervised machine learning model to quantify and visualize relationships between experimentally determined physicochemical properties (e.g., hydrophobicity, charge, and helicity) and experimentally measured cell-type-specific activities of 21 peptides in a 149-member α/β-peptide library. Using this approach, we identified several peptides that were predicted to exhibit enhanced broad-spectrum selectivity, a measure that evaluates antimicrobial activity relative to mammalian cell toxicity compared to aurein 1.2. Experimental validation demonstrated high model predictive performance, and characterization of compounds with the highest broad-spectrum selectivity revealed peptide hydrophobicity, helicity, and helical rigidity to be strong predictors of broad-spectrum selectivity. The most selective peptide identified from the model prediction has more than a 13-fold improvement in broad-spectrum selectivity than that of aurein 1.2, demonstrating the ability of using PLSR models to identify quantitative structure-function relationships for nonstandard amino acid-containing peptides. Overall, this work establishes quantifiable guidelines for the rational design of helical antimicrobial α/β-peptides and identifies promising new α/β-peptides with significantly reduced mammalian toxicities and improved antifungal and antibacterial activities relative to aurein 1.2.
Collapse
Affiliation(s)
- Douglas H. Chang
- Department of Chemical & Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Myung-Ryul Lee
- Department of Chemical & Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Nathan Wang
- Department of Chemical & Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - David M. Lynn
- Department of Chemical & Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Sean P. Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin–Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| |
Collapse
|
29
|
Diaz J, Pellois JP. Deciphering variations in the endocytic uptake of a cell-penetrating peptide: the crucial role of cell culture protocols. Cytotechnology 2023; 75:473-490. [PMID: 37841959 PMCID: PMC10575844 DOI: 10.1007/s10616-023-00591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Delivery tools, including cell-penetrating peptides (CPPs), are often inefficient due to a combination of poor endocytosis and endosomal escape. Aspects that impact the delivery of CPPs are typically characterized using tissue culture models. One problem of using cell culture is that cell culture protocols have the potential to contribute to endosomal uptake and endosomal release of CPPs. Hence, a systematic study to identify which aspects of cell culturing techniques impact the endocytic uptake of a typical CPP, the TMR-TAT peptide (peptide sequence derived from HIV1-TAT with the N-terminus labeled with tetramethylrhodamine), was conducted. Aspects of cell culturing protocols previously found to generally modulate endocytosis, such as cell density, washing steps, and cell aging, did not affect TMR-TAT endocytosis. In contrast, cell dissociation methods, media, temperature, serum starvation, and media composition all contributed to changes in uptake. To establish a range of endocytosis achievable by different cell culture protocols, TMR-TAT uptake was compared among protocols. These protocols led to changes in uptake of more than 13-fold, indicating that differences in cell culturing techniques have a cumulative effect on CPP uptake. Taken together this study highlights how different protocols can influence the amount of endocytic uptake of TMR-TAT. Additionally, parameters that can be exploited to improve CPP accumulation in endosomes were identified. The protocols identified herein have the potential to be paired with other delivery enhancing strategies to improve overall delivery efficiency of CPPs. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00591-1.
Collapse
Affiliation(s)
- Joshua Diaz
- Department of Biochemistry and Biophysics, Texas A&M University, Room 430, 300 Olsen Blvd, College Station, TX 77843-2128 USA
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, Room 430, 300 Olsen Blvd, College Station, TX 77843-2128 USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
30
|
Wang Z, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. A cleavable chimeric peptide with targeting and killing domains enhances LPS neutralization and antibacterial properties against multi-drug resistant E. coli. Commun Biol 2023; 6:1170. [PMID: 37973936 PMCID: PMC10654507 DOI: 10.1038/s42003-023-05528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Pathogenic Escherichia coli is one of the most common causes of diarrhea diseases and its characteristic component of the outer membrane-lipopolysaccharide (LPS) is a major inducer of sepsis. Few drugs have been proven to kill bacteria and simultaneously neutralize LPS toxicity. Here, the chimeric peptides-R7, A7 and G7 were generated by connecting LBP14 (LPS-targeting domain) with L7 (killing domain) via different linkers to improve antibacterial and anti-inflammatory activities. Compared to parent LBP14-RKRR and L7, the antibacterial activity of R7 with a cleavable "RKRR" linker and the "LBP14-RKRR + L7" cocktail against Escherichia coli, Salmonella typhimurium and Staphylococcus aureus was increased by 2 ~ 4-fold. Both A7 and G7 with non-cleavable linkers almost lost antibacterial activity. The ability of R7 to neutralize LPS was markedly higher than that of LBP14-RKRR and L7. In vivo, R7 could be cleaved by furin in a time-dependent manner, and release L7 and LBP14-RKRR in serum. In vivo, R7 can enhance mouse survival more effectively than L7 and alleviate lung injuries by selective inhibition of the NF-κB signaling pathways and promoting higher IAP activity. It suggests that R7 may be promising dual-function candidates as antibacterial and anti-endotoxin agents.
Collapse
Affiliation(s)
- Zhenlong Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Da Teng
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Xiumin Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Jianhua Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
31
|
Puszko AK, Sosnowski P, Hermine O, Hopfgartner G, Lepelletier Y, Misicka A. Structure-activity relationship studies and biological properties evaluation of peptidic NRP-1 ligands: Investigation of N-terminal cysteine importance. Bioorg Med Chem 2023; 94:117482. [PMID: 37774449 DOI: 10.1016/j.bmc.2023.117482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Neuropilin-1 (NRP-1) is a major co-receptor of vascular endothelial growth factor receptor-2 (VEGFR-2). It may also stimulate tumour growth and metastasis independently of VEGF-A165. These functions make VEGF-A165/NRP-1 complex formation and its inhibition of great interest, where NRP-1 is the target for which effective ligands are sought. Design of peptide-like inhibitors represent a strategy with great potential in the treatment of NRP-1-related disorders. Here, we present the synthesis, molecular modelling, structure-activity relationship studies as well as biological evaluation of peptides with the branched sequences H2N-X-Lys(hArg)-Dab-Oic-Arg-OH and H2N-Lys(X-hArg)-Dab-Oic-Arg-OH. Two of the designed peptides, in which Cys was inserted in X position, expressed high affinity (∼40 nM value) for NRP-1 and were resistant to enzymatic digestion in human serum. Moreover, peptide/NRP-1 complex promoted fast intracytoplasmic protein trafficking towards the plasma membrane in breast cancer cells. Our results suggest that these compounds might be good candidates for further development of VEGF-A165/NRP-1 inhibitors.
Collapse
Affiliation(s)
- Anna K Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland; Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Olivier Hermine
- Université Paris Cité, Imagine Institute, 24 boulevard Montparnasse, 75015 Paris, France; INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Yves Lepelletier
- Université Paris Cité, Imagine Institute, 24 boulevard Montparnasse, 75015 Paris, France; INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
32
|
Meinberger D, Drexelius MG, Grabeck J, Hermes G, Roth A, Elezagic D, Neundorf I, Streichert T, Klatt AR. Modified CLEC3A-Derived Antimicrobial Peptides Lead to Enhanced Antimicrobial Activity against Drug-Resistant Bacteria. Antibiotics (Basel) 2023; 12:1532. [PMID: 37887233 PMCID: PMC10604565 DOI: 10.3390/antibiotics12101532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Antimicrobial peptides (AMPs) represent a promising alternative to conventional antibiotics. Sequence changes can significantly improve the therapeutic properties of antimicrobial peptides. In our study, we apply different sequence modifications to enhance the performance of the CLEC3A-derived AMPs HT-16 and HT-47. We truncated their sequences, inserting a triple-glycine linker, adding an N-terminal tryptophan residue, and generating a D-amino acid variant, resulting in the generation of seven new peptides. We investigated their antimicrobial activity against gram-positive and gram-negative bacteria, their cytotoxicity to murine cells, and the biostability of the modified peptides in serum. We identified a novel antimicrobial peptide, WRK-30, with enhanced antimicrobial potency against S. aureus and MRSA. Additionally, WRK-30 was less cytotoxic to eukaryotic cells, allowing its application in higher concentrations in an in vivo setting. In conclusion, we identified a novel CLEC3A-derived antimicrobial peptide WRK-30 with significantly improved therapeutic properties and the potential to widen the repertoire of conventional antibiotics.
Collapse
Affiliation(s)
- Denise Meinberger
- Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Marco G. Drexelius
- Institute for Biochemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
- Center for Molecular Biosciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Joshua Grabeck
- Institute for Biochemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
- Center for Molecular Biosciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Gabriele Hermes
- Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Annika Roth
- Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Dzemal Elezagic
- Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
- Center for Molecular Biosciences, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| | - Thomas Streichert
- Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Andreas R. Klatt
- Institute for Clinical Chemistry, Medical Faculty, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
33
|
Kumari A, Singh M, Sharma R, Kumar T, Jindal N, Maan S, Joshi VG. Apoptin NLS2 homodimerization strategy for improved antibacterial activity and bio-stability. Amino Acids 2023; 55:1405-1416. [PMID: 37725185 DOI: 10.1007/s00726-023-03321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
The emergence of antibiotic resistance prompts exploration of viable antimicrobial peptides (AMPs) designs. The present study explores the antimicrobial prospects of Apoptin nuclear localization sequence (NLS2)-derived peptide ANLP (PRPRTAKRRIRL). Further, we examined the utility of the NLS dimerization strategy for improvement in antimicrobial activity and sustained bio-stability of AMPs. Initially, the antimicrobial potential of ANLP using antimicrobial peptide databases was analyzed. Then, ANLP along with its two homodimer variants namely ANLP-K1 and ANLP-K2 were synthesized and evaluated for antimicrobial activity against Escherichia coli and Salmonella. Among three AMPs, ANLP-K2 showed efficient antibacterial activity with 12 µM minimum inhibitory concentration (MIC). Slow degradation of ANLP-K1 (26.48%) and ANLP-K2 (13.21%) compared with linear ANLP (52.33%) at 480 min in serum stability assay indicates improved bio-stability of dimeric peptides. The AMPs presented no cytotoxicity in Vero cells. Dye penetration assays confirmed the membrane interacting nature of AMPs. The zeta potential analysis reveals effective charge neutralization of both lipopolysaccharide (LPS) and bacterial cells by dimeric AMPs. The dimeric AMPs on scanning electron microscopy studies showed multiple pore formations on the bacterial surface. Collectively, proposed Lysine scaffold dimerization of Apoptin NLS2 strategy resulted in enhancing antibacterial activity, bio-stability, and could be effective in neutralizing the off-target effect of LPS. In conclusion, these results suggest that nuclear localization sequence with a modified dimeric approach could represent a rich source of template for designing future antimicrobial peptides.
Collapse
Affiliation(s)
- Anu Kumari
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Mahavir Singh
- College Central Laboratory, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Ruchi Sharma
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Tarun Kumar
- Veterinary Clinical Complex, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Sushila Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India.
| |
Collapse
|
34
|
Ghosh S, Chatterjee S, Satpati P. Effect of Spacer Length Modification of the Cationic Side Chain on the Energetics of Antimicrobial Peptide Binding to Membrane-Mimetic Bilayers. J Chem Inf Model 2023; 63:5823-5833. [PMID: 37684221 DOI: 10.1021/acs.jcim.3c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Understanding the mechanism of action of the antimicrobial peptide (AMP) in terms of its structure and energetics is the key to designing new potent and selective AMPs. Recently, we reported a membranolytic 14-residue-long lysine-rich cationic antimicrobial peptide (LL-14: NH3+-LKWLKKLLKWLKKL-CONH2) against Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, which is limited by cytotoxicity and expected to undergo facile protease degradation. Aliphatic side-chain-length modification of the cationic amino-acid residues (Lys and Arg) is a popular strategy for designing protease-resistant AMPs. However, the effect of the peptide side-chain length modifications on the membrane binding affinity and its relation to the atomic structure remain an unsolved problem. We report computer simulations that quantitatively calculated the difference in peptide binding affinity to membrane-mimetic-bilayer models (bacterial: 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)/1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) bilayer and mammalian: 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer) upon decreasing or increasing the spacer length of the cationic lysine residues of LL-14 (as well as their arginine analogues). We show that the peptide/bilayer interaction energetics varies drastically in response to spacer length modification. The strength of peptide discrimination depends strongly on the nature of the bilayer (bacterial or mammalian mimetic model). An increase in the lysine spacer length by one carbon (i.e., homolysine analogue of LL-14) is weakly/strongly disfavored by the bacterial/mammalian-membrane-mimetic bilayer. Recently, we have demonstrated an excellent correlation between the antimicrobial activity of the membranolytic cationic peptides and their binding affinity to membrane-mimetic-bilayer models. Thus, the homolysine analogue of LL-14 is a promising noncytotoxic AMP with conserved activity. On the other hand, homoarginine analogue (arginine spacer length increment by a single carbon) was preferred by both the bacteria and the mammalian mimetic bilayers and displayed the strongest affinity for the former among the peptides studied in this work. Thus, the promising most potent homoarginine analogue is likely to be cytotoxic. Shortening the Lys/Arg side chain to a three-carbon spacer (Dab/Agb) improves the binding affinity to bacterial and mammalian-membrane-mimetic bilayers. Arginine and arginine-derivative peptides exhibited stronger binding affinity to the bilayers relative to the lysine analogue. The results provide a plausible explanation to the previous experimental observations, viz., superior antimicrobial activity of the arginine peptides relative to Lys peptides and the improvement of antimicrobial activity upon substitution of Lys with Dab in the cationic peptides. The simulations revealed that the small change in the peptide hydrophobicity by Lys/Arg spacer length modification could drastically alter the energetics of peptide/bilayer binding by fine-tuning the electrostatic interactions. The energetics underlying the peptide selectivity by simple membrane-mimetic bilayer models may be beneficial for designing new selective and protease-resistant AMPs.
Collapse
Affiliation(s)
- Suvankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
35
|
Tiwari P, Srivastava Y, Sharma A, Vinayagam R. Antimicrobial Peptides: The Production of Novel Peptide-Based Therapeutics in Plant Systems. Life (Basel) 2023; 13:1875. [PMID: 37763279 PMCID: PMC10532476 DOI: 10.3390/life13091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The increased prevalence of antibiotic resistance is alarming and has a significant impact on the economies of emerging and underdeveloped nations. The redundancy of antibiotic discovery platforms (ADPs) and injudicious use of conventional antibiotics has severely impacted millions, across the globe. Potent antimicrobials from biological sources have been extensively explored as a ray of hope to counter the growing menace of antibiotic resistance in the population. Antimicrobial peptides (AMPs) are gaining momentum as powerful antimicrobial therapies to combat drug-resistant bacterial strains. The tremendous therapeutic potential of natural and synthesized AMPs as novel and potent antimicrobials is highlighted by their unique mode of action, as exemplified by multiple research initiatives. Recent advances and developments in antimicrobial discovery and research have increased our understanding of the structure, characteristics, and function of AMPs; nevertheless, knowledge gaps still need to be addressed before these therapeutic options can be fully exploited. This thematic article provides a comprehensive insight into the potential of AMPs as potent arsenals to counter drug-resistant pathogens, a historical overview and recent advances, and their efficient production in plants, defining novel upcoming trends in drug discovery and research. The advances in synthetic biology and plant-based expression systems for AMP production have defined new paradigms in the efficient production of potent antimicrobials in plant systems, a prospective approach to countering drug-resistant pathogens.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Yashdeep Srivastava
- RR Institute of Modern Technology, Dr. A.P.J. Abdul Kalam Technical University, Sitapur Road, Lucknow 226201, Uttar Pradesh, India;
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar 392426, Gujarat, India;
| | - Ramachandran Vinayagam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
36
|
Cavallazzi Sebold B, Li J, Ni G, Fu Q, Li H, Liu X, Wang T. Going Beyond Host Defence Peptides: Horizons of Chemically Engineered Peptides for Multidrug-Resistant Bacteria. BioDrugs 2023; 37:607-623. [PMID: 37300748 PMCID: PMC10432368 DOI: 10.1007/s40259-023-00608-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Multidrug-resistant (MDR) bacteria are considered a health threat worldwide, and this problem is set to increase over the decades. The ESKAPE, a group of six pathogens including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. is the major source of concern due to their high death incidence and nosocomial acquired infection. Host defence peptides (HDPs) are a class of ribosomally synthesised peptides that have shown promising results in combating MDR, including the ESKAPE group, in- and outside bacterial biofilms. However, their poor pharmacokinetics in physiological mediums may impede HDPs from becoming viable clinical candidates. To circumvent this problem, chemical engineering of HDPs has been seen as an emergent approach to not only improve their pharmacokinetics but also their efficacy against pathogens. In this review, we explore several chemical modifications of HDPs that have shown promising results, especially against ESKAPE pathogens, and provide an overview of the current findings with respect to each modification.
Collapse
Affiliation(s)
- Bernardo Cavallazzi Sebold
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Quanlan Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China.
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
37
|
Kim EY, Kumar SD, Bang JK, Ajish C, Yang S, Ganbaatar B, Kim J, Lee CW, Cho SJ, Shin SY. Evaluation of deoxythymidine-based cationic amphiphiles as antimicrobial, antibiofilm, and anti-inflammatory agents. Int J Antimicrob Agents 2023; 62:106909. [PMID: 37419291 DOI: 10.1016/j.ijantimicag.2023.106909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
OBJECTIVES We recently designed a series of cationic deoxythymidine-based amphiphiles that mimic the cationic amphipathic structure of antimicrobial peptides (AMPs). Among these amphiphiles, ADG-2e and ADL-3e displayed the highest selectivity against bacterial cells. In this study, ADG-2e and ADL-3e were evaluated for their potential as novel classes of antimicrobial, antibiofilm, and anti-inflammatory agents. METHODS Minimum inhibitory concentrations of ADG-2e and ADL-3e against bacteria were determined using the broth microdilution method. Proteolytic resistance against pepsin, trypsin, α-chymotrypsin, and proteinase K was determined by radial diffusion and HPLC analysis. Biofilm activity was investigated using the broth microdilution and confocal microscopy. The antimicrobial mechanism was investigated by membrane depolarization, cell membrane integrity analysis, scanning electron microscopy (SEM), genomic DNA influence and genomic DNA binding assay. Synergistic activity was evaluated using checkerboard method. Anti-inflammatory activity was investigated using ELISA and RT-PCR. RESULTS ADG-2e and ADL-3e showed good resistance to physiological salts and human serum, and a low incidence of drug resistance. Moreover, they exhibit proteolytic resistance against pepsin, trypsin, α-chymotrypsin, and proteinase K. ADG-2e and ADL-3e were found to kill bacteria by an intracellular target mechanism and bacterial cell membrane-disrupting mechanism, respectively. Furthermore, ADG-2e and ADL-3e showed effective synergistic effects when combined with several conventional antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Importantly, ADG-2e and ADL-3e not only suppressed MDRPA biofilm formation but also effectively eradicated mature MDRPA biofilms. Furthermore, ADG-2e and ADL-3e drastically decreased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) gene expression and protein secretion in lipopolysaccharide (LPS)-stimulated macrophages, implying potent anti-inflammatory activity in LPS-induced inflammation. CONCLUSION Our findings suggest that ADG-2e and ADL-3e could be further developed as novel antimicrobial, antibiofilm, and anti-inflammatory agents to combat bacterial infections.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - S Dinesh Kumar
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk, Republic of Korea
| | - Chelladurai Ajish
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Sungtae Yang
- Department of Microbiology, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | | | - Jeongeun Kim
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
38
|
Chen N, Jiang C. Antimicrobial peptides: Structure, mechanism, and modification. Eur J Med Chem 2023; 255:115377. [PMID: 37099837 DOI: 10.1016/j.ejmech.2023.115377] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Na Chen
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
39
|
Zhao S, Zhang Y, Xu Z, Wang H, Xu L, Wu Y, Zeng X, Luo X. A low-fouling electrochemical biosensor for biomarker detection in serum based on designed α/β-peptides with anti-enzymolysis and antifouling capabilities. Anal Chim Acta 2023; 1263:341244. [PMID: 37225330 DOI: 10.1016/j.aca.2023.341244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023]
Abstract
The zwitterionic peptides, especially those composed of glutamic (E) and lysine (K) groups have drawn enormous attention as antifouling biomaterials owing to their strong hydration capability and biocompatibility. However, the susceptibility of α-amino acid K to the proteolytic enzymes in human serum limited the broad application of such peptides in biological media. Herein, a new multifunctional peptide with favorable stability in human serum was designed, and it was composed of three sections with immobilizing, recognizing and antifouling capabilities, respectively. The antifouling section was composed of alternating E and K amino acids, but the enzymolysis-susceptive amino acid α-K was replaced by the unnatural β-K. Compared with the conventional peptide composed of all α-amino acids, the α/β-peptide exhibited significantly enhanced stability and longer antifouling performance in human serum and blood. The electrochemical biosensor based on the α/β-peptide showed a favorable sensitivity to its target IgG, with a quite wide linear range from 100 pg mL-1 to 10 μg mL-1 and a low detection limit (33.7 pg mL-1, S/N = 3), and it was promising for the detection of IgG in complex human serum. The tactic of designing antifouling α/β-peptides offered an efficient way to develop low-fouling biosensors with robust operation in complex body fluids.
Collapse
Affiliation(s)
- Shuju Zhao
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yuxi Zhang
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhenying Xu
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Hao Wang
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Liang Xu
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yumin Wu
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xianghua Zeng
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
40
|
Szaryńska M, Olejniczak-Kęder A, Podpłońska K, Prahl A, Iłowska E. Bradykinin and Neurotensin Analogues as Potential Compounds in Colon Cancer Therapy. Int J Mol Sci 2023; 24:ijms24119644. [PMID: 37298595 DOI: 10.3390/ijms24119644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal malignancies worldwide, so the attempts to find novel therapeutic approaches are necessary. The aim of our study was to analyze how chemical modifications influence physical, chemical, and biological properties of the two peptides, namely, bradykinin (BK) and neurotensin (NT). For this purpose, we used fourteen modified peptides, and their anti-cancers features were analyzed on the HCT116 CRC cell line. Our results confirmed that the spherical mode of a CRC cell line culture better reflects the natural tumour microenvironment. We observed that the size of the colonospheres was markedly reduced following treatment with some BK and NT analogues. The proportion of CD133+ cancer stem cells (CSCs) in colonospheres decreased following incubation with the aforementioned peptides. In our research, we found two groups of these peptides. The first group influenced all the analyzed cellular features, while the second seemed to include the most promising peptides that lowered the count of CD133+ CSCs with parallel substantial reduction in CRC cells viability. These analogues need further analysis to uncover their overall anti-cancer potential.
Collapse
Affiliation(s)
- Magdalena Szaryńska
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Agata Olejniczak-Kęder
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Kamila Podpłońska
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Adam Prahl
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Emilia Iłowska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
41
|
He S, Yang Z, Li X, Wu H, Zhang L, Shan A, Wang J. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine. Acta Biomater 2023; 164:175-194. [PMID: 37100185 DOI: 10.1016/j.actbio.2023.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Recently, much emphasis has been placed on solving the intrinsic defects of antimicrobial peptides (AMPs), especially their susceptibility to protease digestion for the systemic application of antibacterial biomaterials. Although many strategies have increased the protease stability of AMPs, antimicrobial activity was severely compromised, thereby substantially weakening their therapeutic effect. To address this issue, we introduced hydrophobic group modifications at the N-terminus of proteolysis-resistant AMPs D1 (AArIIlrWrFR) through end-tagging with stretches of natural amino acids (W and I), unnatural amino acid (Nal) and fatty acids. Of these peptides, N1 tagged with a Nal at N-terminus showed the highest selectivity index (GMSI = 19.59), with a 6.73-fold improvement over D1. In addition to potent broad-spectrum antimicrobial activity, N1 also exhibited high antimicrobial stability toward salts, serum and proteases in vitro and ideal biocompatibility and therapeutic efficacy in vivo. Furthermore, N1 killed bacteria through multiple mechanisms, involving disruption of bacterial membranes and inhibition of bacterial energy metabolism. Indeed, appropriate terminal hydrophobicity modification opens up new avenues for developing and applying high-stability peptide-based antibacterial biomaterials. STATEMENT OF SIGNIFICANCE: To improve the potency and stability of proteolysis-resistant antimicrobial peptides (AMPs) without increasing toxicity, we constructed a convenient and tunable platform based on different compositions and lengths of hydrophobic end modifications. By tagging an Nal at the N-terminal, the obtained target compound N1 exhibited strong antimicrobial activity and desirable stability under multifarious environments in vitro (protease, salts and serum), and also showed favorable biocompatibility and therapeutic efficacy in vivo. Notably, N1exerted its bactericidal effect by damaging bacterial cell membranes and inhibiting bacterial energy metabolism in a dual mode. The findings provide a potential method for designing or optimizing proteolysis-resistant AMPs thus promoting the development and application of peptide-based antibacterial biomaterial.
Collapse
Affiliation(s)
- Shiqi He
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhanyi Yang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuefeng Li
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hua Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Licong Zhang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
42
|
Ghimire J, Hart RJ, Soldano A, Chen CH, Guha S, Hoffmann JP, Hall KM, Sun L, Nelson BJ, Lu TK, Kolls JK, Rivera M, Morici LA, Wimley WC. Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria. ACS Infect Dis 2023; 9:952-965. [PMID: 36961222 PMCID: PMC10111420 DOI: 10.1021/acsinfecdis.2c00640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Indexed: 03/25/2023]
Abstract
Here, we describe the continued synthetic molecular evolution of a lineage of host-compatible antimicrobial peptides (AMP) intended for the treatment of wounds infected with drug-resistant, biofilm-forming bacteria. The peptides tested are variants of an evolved AMP called d-amino acid CONsensus with Glycine Absent (d-CONGA), which has excellent antimicrobial activities in vitro and in vivo. In this newest generation of rational d-CONGA variants, we tested multiple sequence-structure-function hypotheses that had not been tested in previous generations. Many of the peptide variants have lower antibacterial activity against Gram-positive or Gram-negative pathogens, especially variants that have altered hydrophobicity, secondary structure potential, or spatial distribution of charged and hydrophobic residues. Thus, d-CONGA is generally well tuned for antimicrobial activity. However, we identified a variant, d-CONGA-Q7, with a polar glutamine inserted into the middle of the sequence, that has higher activity against both planktonic and biofilm-forming bacteria as well as lower cytotoxicity against human fibroblasts. Against clinical isolates of Klebsiella pneumoniae, innate resistance to d-CONGA was surprisingly common despite a lack of inducible resistance in Pseudomonas aeruginosa reported previously. Yet, these same isolates were susceptible to d-CONGA-Q7. d-CONGA-Q7 is much less vulnerable to AMP resistance in Gram-negative bacteria than its predecessor. Consistent with the spirit of synthetic molecular evolution, d-CONGA-Q7 achieved a critical gain-of-function and has a significantly better activity profile.
Collapse
Affiliation(s)
- Jenisha Ghimire
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Robert J. Hart
- Department
of Microbiology and Immunology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - Anabel Soldano
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Charles H. Chen
- Synthetic
Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Shantanu Guha
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Joseph P. Hoffmann
- Department
of Microbiology and Immunology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalen M. Hall
- Department
of Microbiology and Immunology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - Leisheng Sun
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Benjamin J. Nelson
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Timothy K. Lu
- Synthetic
Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Jay K. Kolls
- Department
of Medicine, Tulane University School of
Medicine, New Orleans, Louisiana 70112, United States
| | - Mario Rivera
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lisa A. Morici
- Department
of Microbiology and Immunology, Tulane University
School of Medicine, New Orleans, Louisiana 70112, United States
| | - William C. Wimley
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
43
|
Lyu Y, Tan M, Xue M, Hou W, Yang C, Shan A, Xiang W, Cheng B. Broad-spectrum hybrid antimicrobial peptides derived from PMAP-23 with potential LPS binding ability. Biochem Pharmacol 2023; 210:115500. [PMID: 36921633 DOI: 10.1016/j.bcp.2023.115500] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Antimicrobial peptides, as an integral part of the innate immune system, kill bacteria through a special mechanism of action, making them less susceptible to drug resistance. However, Lipopolysaccharide (LPS) as the permeation barrier on the bacterial membrane, inhibits the antibacterial activity of antimicrobial peptides and triggers the inflammatory response. GWKRKRFG is an LPS binding sequence with a β-boomerang motif that can be linked to antimicrobial peptides to enhance their LPS affinity and reduce the possibility of LPS-induced inflammatory responses. In this study, a series of hybrid peptides were designed by conjugating the reported LPS binding sequence to the C-/N-terminal sequences of the natural porcine antimicrobial peptide PMAP-23 to increase the LPS affinity of peptides. Among all the designed hybrid peptides, 4R-PP-G8 showed the best antibacterial activity, nonhemolytic activity, and excellent cell selectivity. The presence of LPS not only induced the secondary structure transformation of 4R-PP-G8 from a random structure to an α-helical structure but also reduced the antibacterial activity of 4R-PP-G8 in a dose-dependent manner, indicating the excellent binding ability of 4R-PP-G8 to LPS. The LPS/LTA binding assay further verified the interaction between the peptide and LPS. The membrane permeability test verified that 4R-PP-G8 possessed a strong capability to penetrate the bacterial membrane after interacting with LPS. More direct membrane disruption was observed under FE-SEM and TEM. In conclusion, we provided a simple and efficient method to improve the LPS binding ability of antimicrobial peptides and enhance their antimicrobial activity, resulting in the peptide 4R-PP-G8 with clinical application potential.
Collapse
Affiliation(s)
- Yinfeng Lyu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Meishu Tan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Meng Xue
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Wenjing Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Chengyi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China.
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Baojing Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
44
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
45
|
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023; 16:757-777. [PMID: 36705032 PMCID: PMC10034643 DOI: 10.1111/1751-7915.14213] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
46
|
Chowdhary S, Pelzer T, Saathoff M, Quaas E, Pendl J, Fulde M, Koksch B. Fine‐tuning the antimicrobial activity of β‐hairpin peptides with fluorinated amino acids. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Suvrat Chowdhary
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Tim Pelzer
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Mareike Saathoff
- Institute of Microbiology and Epizootics, Centre of Infection Medicine Freie Universität Berlin Berlin Germany
| | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Core Facility SupraFAB Freie Universität Berlin Berlin Germany
| | - Johanna Pendl
- Institute of Veterinary Anatomy Freie Universität Berlin Berlin Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Centre of Infection Medicine Freie Universität Berlin Berlin Germany
- Veterinary Centre for Resistance Research (TZR) Freie Universität Berlin Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| |
Collapse
|
47
|
Development of a Novel Antibacterial Peptide, PAM-5, via Combination of Phage Display Selection and Computer-Assisted Modification. Biomolecules 2023; 13:biom13030466. [PMID: 36979401 PMCID: PMC10046784 DOI: 10.3390/biom13030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Antibacterial peptides (ABPs) have been proposed as potential candidates for alternative antibacterial agents due to the extensive dissemination of antibiotic resistance. However, ABP isolation from natural resources can be tedious without consistent yield. Moreover, many natural ABPs are not developed for clinical application due to potential toxicity to mammalian cells. Therefore, the objective of this study was to develop a potent ABP with minimal toxicity via phage display selection followed by computer-assisted modification. Briefly, a 12-mer phage-displayed peptide library was used to isolate peptides that bound to the cell surface of Pseudomonas aeruginosa with high affinity. The affinity-selected peptide with the highest selection frequency was modified to PAM-5 (KWKWRPLKRKLVLRM) with enhanced antibacterial features by using an online peptide database. Using in vitro microbroth dilution assay, PAM-5 was shown to be active against a panel of Gram-negative bacteria and selected Gram-positive bacteria. Interestingly, the peptide was stable in human plasma by exhibiting a similar bactericidal effect via ex vivo assay. Scanning electron microscopy and SYTOX Green uptake assay revealed that PAM-5 was able to cause membrane disruption and permeabilization of the bacteria. Additionally, the peptide was also able to bind to bacterial DNA as demonstrated by gel retardation assay. In the time-kill assay, PAM-5 was shown to kill the bacteria rapidly in 10 min. More importantly, PAM-5 was non-cytotoxic to Vero cells and non-haemolytic to human erythrocytes at all concentrations tested for the antibacterial assays. Thus, this study showed that the combination of phage display screening and computer-assisted modification could be used to develop potent novel ABPs, and PAM-5 derived from these approaches is worth to be further elucidated for its potential clinical use.
Collapse
|
48
|
Bermúdez-Puga S, Morán-Marcillo G, Espinosa de Los Monteros-Silva N, Naranjo RE, Toscano F, Vizuete K, Torres Arias M, Almeida JR, Proaño-Bolaños C. Inspiration from cruzioseptin-1: membranolytic analogue with improved antibacterial properties. Amino Acids 2023; 55:113-124. [PMID: 36609571 DOI: 10.1007/s00726-022-03209-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/25/2022] [Indexed: 01/09/2023]
Abstract
Peptide engineering has gained attraction as a source of new cationicity-enhanced analogues with high potential for the design of next-generation antibiotics. In this context, cruzioseptin-1 (CZS-1), a peptide identified from Cruziohyla calcarifer, is recognized for its antimicrobial potency. However, this amidated-peptide is moderately hemolytic. In order to reduce toxicity and increase antimicrobial potency, 3 peptide analogues based on cruzioseptin-1 were designed and evaluated. [K4K15]CZS-1, an analogue with increased cationicity and reduced hydrophobicity, showed antibacterial, antifungal and antiproliferative properties. In addition, [K4K15]CZS-1 is less hemolytic than CZS-1. The in silico and scanning electron microscopy analysis reveal that [K4K15]CZS-1 induces a membranolytic effect on bacteria. Overall, these results confirm the potential of CZS-1 as source of inspiration for design new selective antimicrobial analogues useful for development of new therapeutic agents.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador
| | - Giovanna Morán-Marcillo
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador
| | - Nina Espinosa de Los Monteros-Silva
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador
| | - Renato E Naranjo
- Dirección Nacional de Biodiversidad, Ministerio del Ambiente, Agua y Transición Ecológica, Madrid 1159 y Andalucía, Quito, 170525, Ecuador
| | - Fernanda Toscano
- Departamento de Ciencias de la Vida y Agricultura, Laboratorio de Inmunología y Virología, Universidad de las Fuerzas Armadas ESPE, CENCINAT, GISAH Av. Gral. Rumiñahui S/N, P.O. Box 171, -5-231B, Sangolquí, Ecuador
| | - Karla Vizuete
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí, 170501, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Laboratorio de Inmunología y Virología, Universidad de las Fuerzas Armadas ESPE, CENCINAT, GISAH Av. Gral. Rumiñahui S/N, P.O. Box 171, -5-231B, Sangolquí, Ecuador
| | - José R Almeida
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador
| | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Km 7 ½ Vía Muyuna, Tena, Napo, 150150, Ecuador.
| |
Collapse
|
49
|
Corman HN, Ross JN, Fields FR, Shoue DA, McDowell MA, Lee SW. Rationally Designed Minimal Bioactive Domains of AS-48 Bacteriocin Homologs Possess Potent Antileishmanial Properties. Microbiol Spectr 2022; 10:e0265822. [PMID: 36342284 PMCID: PMC9769502 DOI: 10.1128/spectrum.02658-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Leishmaniasis, a category I neglected tropical disease, is a group of diseases caused by the protozoan parasite Leishmania species with a wide range of clinical manifestations. Current treatment options can be highly toxic and expensive, with drug relapse and the emergence of resistance. Bacteriocins, antimicrobial peptides ribosomally produced by bacteria, are a relatively new avenue for potential antiprotozoal drugs. Particular interest has been focused on enterocin AS-48, with previously proven efficacy against protozoan species, including Leishmania spp. Sequential characterization of enterocin AS-48 has illustrated that antibacterial bioactivity is preserved in linearized, truncated forms; however, minimal domains of AS-48 bacteriocins have not yet been explored against protozoans. Using rational design techniques to improve membrane penetration activity, we designed peptide libraries using the minimal bioactive domain of AS-48 homologs. Stepwise changes to the charge (z), hydrophobicity (H), and hydrophobic dipole moment (μH) were achieved through lysine and tryptophan substitutions and the inversion of residues within the helical wheel, respectively. A total of 480 synthetic peptide variants were assessed for antileishmanial activity against Leishmania donovani. One hundred seventy-two peptide variants exhibited 50% inhibitory concentration (IC50) values below 20 μM against axenic amastigotes, with 60 peptide variants in the nanomolar range. Nine peptide variants exhibited potent activity against intracellular amastigotes with observed IC50 values of <4 μM and limited in vitro host cell toxicity, making them worthy of further drug development. Our work demonstrates that minimal bioactive domains of naturally existing bacteriocins can be synthetically engineered to increase membrane penetration against Leishmania spp. with minimal host cytotoxicity, holding the promise of novel, potent antileishmanial therapies. IMPORTANCE Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. There are three primary clinical forms, cutaneous, mucocutaneous, and visceral, with visceral leishmaniasis being fatal if left untreated. Current drug treatments are less than ideal, especially in resource-limited areas, due to the difficult administration and treatment regimens as well as the high cost and the emergence of drug resistance. Identifying potent antileishmanial agents is of the utmost importance. We utilized rational design techniques to synthesize enterocin AS-48 and AS-48-like bacteriocin-based peptides and screened these peptides against L. donovani using a fluorescence-based phenotypic assay. Our results suggest that bacteriocins, specifically these rationally designed AS-48-like peptides, are promising leads for further development as antileishmanial drugs.
Collapse
Affiliation(s)
- Hannah N. Corman
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | - Jessica N. Ross
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | | | - Douglas A. Shoue
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | - Mary Ann McDowell
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | - Shaun W. Lee
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| |
Collapse
|
50
|
Zhang F, Yang P, Mao W, Zhong C, Zhang J, Chang L, Wu X, Liu H, Zhang Y, Gou S, Ni J. Short, mirror-symmetric antimicrobial peptides centered on "RRR" have broad-spectrum antibacterial activity with low drug resistance and toxicity. Acta Biomater 2022; 154:145-167. [PMID: 36241015 DOI: 10.1016/j.actbio.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
The increasingly severe bacterial resistance worldwide pushes people to discover and design potential antibacterial drugs unavoidably. In this work, a series of short, mirror-symmetric peptides were designed and successfully synthesized, centered on "RRR" and labeled with hydrophobic amino acids at both ends. Based on the structure-activity relationship analysis, LWWR (LWWRRRWWL-NH2) was screened as a desirable mirror-symmetric peptide for further study. As expected, LWWR displayed broad-spectrum antibacterial activity against the standard bacteria and antibiotic-resistant strains. Undoubtedly, the high stability of LWWR in a complex physiological environment was an essential guarantee to maximizing its antibacterial activity. Indeed, LWWR also exhibited a rapid bactericidal speed and a low tendency to develop bacterial resistance, based on the multiple actions of non-receptor-mediated membrane actions and intra-cellular mechanisms. Surprisingly, although LWWR showed similar in vivo antibacterial activity compared with Polymyxin B and Melittin, the in vivo safety of LWWR was far higher than that of them, so LWWR had better therapeutic potential. In summary, the desirable mirror-symmetric peptide LWWR was promised as a potential antibacterial agent to confront the antibiotics resistance crisis. STATEMENT OF SIGNIFICANCE: Witnessing the growing problem of antibiotic resistance, a series of short, mirror-symmetric peptides based on the symmetric center "RRR" and hydrophobic terminals were designed and synthesized in this study. Among, LWWR (LWWRRRWWL-NH2) presented broad-spectrum antibacterial activity both in vitro and in vivo due to its multiple mechanisms and good stability. Meanwhile, the low drug resistance and toxicity of LWWR also suggested its potential for clinical application. The findings of this study will provide some inspiration for the design and development of potential antibacterial agents, and contribute to the elimination of bacterial infections worldwide as soon as possible.
Collapse
Affiliation(s)
- Fangyan Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linlin Chang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|