1
|
Sakimoto N, Imanaka H, Tomita-Sudo E, Akita T, Kawakami J. L-Histidine Modulates the Catalytic Activity and Conformational Changes of the HD3 Deoxyribozyme. Genes (Basel) 2024; 15:1481. [PMID: 39596681 PMCID: PMC11594175 DOI: 10.3390/genes15111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Riboswitches are functional nucleic acids that regulate biological processes by interacting with small molecules, such as metabolites, influencing gene expression. Artificial functional nucleic acids, including deoxyribozymes, have been developed through in vitro selection for various catalytic functions. In a previous study, an l-histidine-dependent deoxyribozyme was identified, exhibiting RNA cleavage activity in the presence of l-histidine resembling ribonuclease catalytic mechanisms. This study aims to clarify the role of l-histidine in the activity and structural formation of the l-histidine-dependent deoxyribozyme (HD), focusing on the binding properties and conformational changes of its derivative HD3. Methods: Conformational changes in HD3 were analyzed using circular dichroism (CD) under varying concentrations of l-histidine. Direct binding analysis was conducted using carbon-14 (14C)-labeled l-histidine and a liquid scintillation counter. The catalytic activity of HD3 in the presence of different l-histidine concentrations was measured. Results: The binding constant for l-histidine-induced conformational changes (Ka(CD)) was found to be 2.0 × 103 (M-1), whereas for catalytic activity (Ka(Rxn)) and scintillation counting (Ka(RI)), it was approximately 1.0 × 103 (M-1). Conclusions: l-Histidine plays an essential role in both the catalytic activity and structural formation of the HD3 deoxyribozyme. The consistent binding constants across different experimental methods highlight the significant contribution of l-histidine to the active folding of deoxyribozymes.
Collapse
Affiliation(s)
- Nae Sakimoto
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Hirofumi Imanaka
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Elisa Tomita-Sudo
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Tomoka Akita
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Junji Kawakami
- Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
2
|
Marpaung DSS, Sinaga AOY, Damayanti D, Taharuddin T. Bridging biological samples to functional nucleic acid biosensor applications: current enzymatic-based strategies for single-stranded DNA generation. ANAL SCI 2024; 40:1225-1237. [PMID: 38607600 DOI: 10.1007/s44211-024-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
The escalating threat of emerging diseases, often stemming from contaminants and lethal pathogens, has precipitated a heightened demand for sophisticated diagnostic tools. Within this landscape, the functional nucleic acid (FNA) biosensor, harnessing the power of single-stranded DNA (ssDNA), has emerged as a preeminent choice for target analyte detection. However, the dependence on ssDNA has raised difficulties in realizing it in biological samples. Therefore, the production of high-quality ssDNA from biological samples is critical. This review aims to discuss strategies for generating ssDNA from biological samples for integration into biosensors. Several innovative strategies for ssDNA generation have been deployed, encompassing techniques, such as asymmetric PCR, Exonuclease-PCR, isothermal amplification, biotin-streptavidin PCR, transcription-reverse transcription, ssDNA overhang generation, and urea denaturation PAGE. These approaches have been seamlessly integrated with biosensors for biological sample analysis, ushering in a new era of disease detection and monitoring. This amalgamation of ssDNA generation techniques with biosensing applications holds significant promise, not only in improving the speed and accuracy of diagnostic processes but also in fortifying the global response to deadly diseases, thereby underlining the pivotal role of cutting-edge biotechnology in public health and disease prevention.
Collapse
Affiliation(s)
- David Septian Sumanto Marpaung
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia.
| | - Ayu Oshin Yap Sinaga
- Department of Biology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Damayanti Damayanti
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Taharuddin Taharuddin
- Department of Chemical Engineering, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Lampung, 35141, Indonesia
| |
Collapse
|
3
|
Li Y, Liu W, Xu H, Zhou Y, Xie W, Guo Y, Liao Z, Jiang X, Liu J, Ren C. Aptamers combined with immune checkpoints for cancer detection and targeted therapy: A review. Int J Biol Macromol 2024; 262:130032. [PMID: 38342267 DOI: 10.1016/j.ijbiomac.2024.130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In recent years, remarkable strides have been made in the field of immunotherapy, which has emerged as a standard treatment for many cancers. As a kind of immunotherapy drug, monoclonal antibodies employed in immune checkpoint therapy have proven beneficial for patients with diverse cancer types. However, owing to the extensive heterogeneity of clinical responses and the complexity and variability of the immune system and tumor microenvironment (TME), accurately predicting its efficacy remains a challenge. Recent advances in aptamers provide a promising approach for monitoring alterations within the immune system and TME, thereby facilitating targeted immunotherapy, particularly focused on immune checkpoint blockade, with enhanced antitumor efficiency. Aptamers have been widely used in tumor cell detection, biosensors, drug discovery, and biomarker screening due to their high specificity and high affinity with their targets. This review aims to comprehensively examine the research status and progress of aptamers in cancer diagnosis and immunotherapy, with a specific emphasis on those related to immune checkpoints. Additionally, we will discuss the future research directions and potential therapeutic targets for aptamer-based immune checkpoint therapy, aiming to provide a theoretical basis for targeting immunotherapy molecules and blocking tumor immune escape.
Collapse
Affiliation(s)
- Yihan Li
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Weidong Liu
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Hongjuan Xu
- NHC Key Laboratory of Biological Nanotechnology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Zhou
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Wen Xie
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Youwei Guo
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Ziling Liao
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xingjun Jiang
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Liu
- Department of Critical care medicine, Hainan Hospital of Chinese PLA General Hosptial; project supported by Hainan Province Clinical Medical Center, China.
| | - Caiping Ren
- NHC Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
4
|
Chen J, Xu J, Xiang J, Wan T, Deng H, Li D. A multivalent activatable aptamer probe with ultralow background signal and high sensitivity for diagnosis of lung adenocarcinoma. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Sadi KS, Mahmoudi A, Jaafari MR, Moosavian SA, Malaekeh-Nikouei B. The effect of AS1411 aptamer on anti-tumor effects of dendrimers containing SN38. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
A novel DNA aptamer targeting lung cancer stem cells exerts a therapeutic effect by binding and neutralizing Annexin A2. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:956-968. [PMID: 35211356 PMCID: PMC8829491 DOI: 10.1016/j.omtn.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022]
Abstract
Cancer remains one of the leading causes of death worldwide. Cancer stem cells (CSCs) are the underlying reason for tumor recurrence, progression, and therapeutic resistance. Aptamers are synthetic single-stranded oligonucleotides that can specifically bind to various molecular targets. Here, we aim to develop an effective aptamer-based biomarker and therapeutic tool that targets CSCs for cancer therapy. We perform whole-cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX) to screen DNA aptamers that specifically bound to lung CSCs, modeled by E-cadherin-silenced A549 cells. We develop a CSC-specific aptamer (AP-9R) specifically recognizing lung CSCs with high affinity and identify Annexin A2, a Ca2+-dependent membrane-binding protein, as its target. Annexin A2 expression was upregulated in lung CSCs and involved in cancer stemness. The expression of Annexin A2 was associated with signatures of stemness and metastasis, as well as poor clinical outcomes, in lung cancer in silico. Moreover, AP-9R decreased Annexin A2 expression and suppressed CSC properties in CSCs in vitro and in vivo. The present findings suggest that Annexin A2 is a CSC marker and regulator, and the CSC-specific aptamer AP-9R has potential theranostic applications for lung cancer.
Collapse
|
7
|
Zhang J, Huang Y, Sun M, Wan S, Yang C, Song Y. Recent Advances in Aptamer-Based Liquid Biopsy. ACS APPLIED BIO MATERIALS 2022; 5:1954-1979. [PMID: 35014838 DOI: 10.1021/acsabm.1c01202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy capable of noninvasive and real-time molecular profiling is considered as a breakthrough technology, endowing an opportunity for precise diagnosis of individual patients. Extracellular vesicles (EVs) and circulating tumor cells (CTCs) consisting of substantial disease-related molecular information play an important role in liquid biopsy. Therefore, it is critically significant to exploit high-performance recognition ligands for efficient isolation and analysis of EVs and CTCs from complex body fluids. Aptamers exhibit extraordinary merits of high specificity and affinity, which are considered as superior recognition ligands for liquid biopsy. In this review, we first summarize recent advanced strategies for the evolution of high-performance aptamers and the construction of various aptamer-based recognition elements. Subsequently, we mainly discuss the isolation and analysis of EVs and CTCs based on the aptamer functioned biomaterials/biointerface. Ultimately, we envision major challenges and future direction of aptamer-based liquid biopsy for clinical utilities.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
9
|
Yin F, Li M, Mao X, Li F, Xiang X, Li Q, Wang L, Zuo X, Fan C, Zhu Y. DNA Framework-Based Topological Cell Sorters. Angew Chem Int Ed Engl 2020; 59:10406-10410. [PMID: 32187784 DOI: 10.1002/anie.202002020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Molecular recognition in cell biological process is characterized with specific locks-and-keys interactions between ligands and receptors, which are ubiquitously distributed on cell membrane with topological clustering. Few topologically-engineered ligand systems enable the exploration of the binding strength between ligand-receptor topological organization. Herein, we generate topologically controlled ligands by developing a family of tetrahedral DNA frameworks (TDFs), so the multiple ligands are stoichiometrically and topologically arranged. This topological control of multiple ligands changes the nature of the molecular recognition by inducing the receptor clustering, so the binding strength is significantly improved (ca. 10-fold). The precise engineering of topological complexes formed by the TDFs are readily translated into effective binding control for cell patterning and binding strength control of cells for cell sorting. This work paves the way for the development of versatile design of topological ligands.
Collapse
Affiliation(s)
- Fangfei Yin
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xuelin Xiang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
10
|
Yin F, Li M, Mao X, Li F, Xiang X, Li Q, Wang L, Zuo X, Fan C, Zhu Y. DNA Framework‐Based Topological Cell Sorters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fangfei Yin
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Min Li
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiuhai Mao
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Xuelin Xiang
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Qian Li
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Lihua Wang
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Chunhai Fan
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Ying Zhu
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| |
Collapse
|
11
|
Zhong Y, Zhao J, Li J, Liao X, Chen F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 2020; 598:113620. [PMID: 32087127 DOI: 10.1016/j.ab.2020.113620] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
Aptamers are a class of short artificial single-stranded oligo(deoxy) nucleotides that can bind to different targets, which generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to excellent selectivity and high affinity to targets, aptamers hold considerable potential as molecular probe in diverse applications ranging from ensuring food safety, monitoring environment, disease diagnosis to therapy. This review highlights recent development and challenges about aptamers screened by Cell-SELEX, and its application about cancer diagnostics and therapeutics. Advances about some operation methods such as seperation method and culture method in aptamers selection procedure were summarized in this paper. Some common challenges and technological difficulties such as nonspecific binding and biostability were discussed. Up to now, the recent endeavors about cancer diagnostic and therapeutic applications of aptamers are summarized and expatiated. Most of aptamers screened by Cell-SELEX took tumor cells as target cells, and such aptamers have been assembled to various aptasensor for cancer diagnosis. Aptamers conjugated various drugs or nanomaterials are functioned for cancer target therapy to improve drugs delivery efficiency and reduce side effects. Furthermore, the duplexed aptamer is discussed to be applied for cancer cells detection and some conflicts of theories about duplexed aptamer designs are analyzed.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiayao Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiazhao Li
- Qionglai maternal&Child health care hospital, Chengdu, 611530, Sichuan, China
| | - Xin Liao
- School of laboratory medical and Life science, Wenzhou Medical University, Wenzhou, 325000, Fujian, China
| | - Fengling Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
12
|
Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, Afonin KA. Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology. ACS NANO 2019; 13:12301-12321. [PMID: 31664817 PMCID: PMC7382785 DOI: 10.1021/acsnano.9b06522] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nucleic acids play a central role in all domains of life, either as genetic blueprints or as regulators of various biochemical pathways. The chemical makeup of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), generally represented by a sequence of four monomers, also provides precise instructions for folding and higher-order assembly of these biopolymers that, in turn, dictate biological functions. The sequence-based specific 3D structures of nucleic acids led to the development of the directed evolution of oligonucleotides, SELEX (systematic evolution of ligands by exponential enrichment), against a chosen target molecule. Among the variety of functions, selected oligonucleotides named aptamers also allow targeting of cell-specific receptors with antibody-like precision and can deliver functional RNAs without a transfection agent. The advancements in the field of customizable nucleic acid nanoparticles (NANPs) opened avenues for the design of nanoassemblies utilizing aptamers for triggering or blocking cell signaling pathways or using aptamer-receptor combinations to activate therapeutic functionalities. A recent selection of fluorescent aptamers enables real-time tracking of NANP formation and interactions. The aptamers are anticipated to contribute to the future development of technologies, enabling an efficient assembly of functional NANPs in mammalian cells or in vivo. These research topics are of top importance for the field of therapeutic nucleic acid nanotechnology with the promises to scale up mass production of NANPs suitable for biomedical applications, to control the intracellular organization of biological materials to enhance the efficiency of biochemical pathways, and to enhance the therapeutic potential of NANP-based therapeutics while minimizing undesired side effects and toxicities.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice 04154, Slovak Republic
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jessica McMillan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Ekaterina A. Goncharova
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 191002, Russian Federation
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
13
|
Bing T, Zhang N, Shangguan D. Cell-SELEX, an Effective Way to the Discovery of Biomarkers and Unexpected Molecular Events. ACTA ACUST UNITED AC 2019; 3:e1900193. [PMID: 32648677 DOI: 10.1002/adbi.201900193] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Cell-SELEX can not only generate aptamers for specific cell isolation/detection, diagnosis, and therapy, but also lead to the discovery of biomarkers and unexpected molecular events. However, most cell-SELEX research is concentrated on aptamer generation and applications. In this progress report, recent research progress with cell-SELEX in terms of the discovery of biomarkers and unexpected molecular events is highlighted. In particular, the key technical challenges for cell-SELEX-based biomarker discovery, namely, the methods for identification and validation of target proteins of aptamers, are discussed in detail. Finally, the prospects of the applications of cell-SELEX in this field now and in the near future are described. It is expected that this report will attract attention to the benefit of cell-SELEX and provide a practical reference for biomedical researchers.
Collapse
Affiliation(s)
- Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
15
|
Wu L, Zhu L, Huang M, Song J, Zhang H, Song Y, Wang W, Yang C. Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Zhao Y, Ma W, Zou S, Chen B, Cheng H, He X, Wang K. Terminal deoxynucleotidyl transferase-initiated molecule beacons arrayed aptamer probe for sensitive detection of metastatic colorectal cancer cells. Talanta 2019; 202:152-158. [PMID: 31171163 DOI: 10.1016/j.talanta.2019.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world, which can lead to considerably high mortality rate. It was reported that the prognosis is extremely poor and survival is often measured in months once CRC metastases become clinically evident. Therefore, the development of effective approach for metastatic CRC cells detection and imaging may potentially be significant and helpful for CRC prognosis and treatment. Therefore, we proposed a sensitive and specific approach for high-metastatic CRC LoVo cells detection and imaging by using terminal deoxynucleotidyl transferase (TdT)-initiated molecule beacons (MBs) arrayed fluorescent aptamer probes (denoted as TMAP). In this approach, the aptamer W3 targeting high-metastatic CRC LoVo cells was elongated to form W3-poly A at the 3'-hydroxyl terminus with repeated A bases in the presence of TdT and dATP. The MBs designed with poly T sequence in the loop were then hybridized with the poly A in the aptamer W3. The TMAP was easily constructed without the need of aptamer modification. It was demonstrated that this approach could specifically detect and image the high-metastatic CRC LoVo cells from the mixture of high-metastatic CRC LoVo cells and non-metastatic HCT-8 cells. Compared with 6-carboxyfluorescein (6-FAM) labeled aptamer W3, the TMAP was demonstrated to have a much stronger fluorescence signal on the target cells, realizing a 4-fold increase in signal-to-background ratio (SBR). Determination by flow cytometry allowed for detection of as low as 23 CRC LoVo cells in 200 μL cell culture medium. The high sensitivity and the capability for using in complicate biological samples imply that this approach holds considerable potential for metastatic CRC detection and therapy.
Collapse
Affiliation(s)
- Yujie Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Shanzi Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
17
|
Liu WT, Lee WB, Tsai YC, Chuang YJ, Hsu KF, Lee GB. An automated microfluidic system for selection of aptamer probes against ovarian cancer tissues. BIOMICROFLUIDICS 2019; 13:014114. [PMID: 30867884 PMCID: PMC6404914 DOI: 10.1063/1.5085133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/10/2019] [Indexed: 05/17/2023]
Abstract
Because of the difficulty of treatment in its latest stages, cancer is among the leading causes of death worldwide. Therefore, high-affinity and specificity biomarkers are still in demand for many cancer types, and the utility of aptamers to serve in this regard has been explored recently. Although a process known as "systematic evolution of ligands by exponential enrichment" (SELEX) has been used to generate aptamer-based cancer biomarkers, this approach is complicated, time-consuming, and labor-intensive. An automated microfluidic system was consequently developed herein to screen ovarian cancer-specific aptamers via on-chip SELEX with clinical cancer tissue samples. The integrated microfluidic system consisted of an integrated microfluidic chip, a temperature control module equipped with 12 thermoelectric coolers, and a flow control module for controlling 36 electromagnetic valves such that the entire, tissue-based SELEX process could be fully automated and carried out within 15 h. Highly specific ovarian cancer aptamers with high affinity (dissociation constant of 129 nM) to their cellular targets were screened with this system. Given the comparable specificity to their much more expensive antibody counterparts, these aptamers, when used in conjunction with the developed microfluidic system, may be used to diagnose ovarian cancer in its earliest stages.
Collapse
Affiliation(s)
- Wei-Ting Liu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuan-Jhe Chuang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, Tainan 70403, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, Tainan 70403, Taiwan
| | | |
Collapse
|
18
|
Ahmadyousefi Y, Malih S, Mirzaee Y, Saidijam M. Nucleic acid aptamers in diagnosis of colorectal cancer. Biochimie 2018; 156:1-11. [PMID: 30244135 DOI: 10.1016/j.biochi.2018.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/17/2018] [Indexed: 12/23/2022]
Abstract
Nucleic acid aptamers are promising recognition ligands for diagnostic applications. They are short DNA or RNA molecules isolated from large random libraries through the Systematic Evolution of Ligands by EXponential enrichment (SELEX) procedure. These molecules, with a particular three-dimensional shape, bind to a wide range of targets from small molecules to whole cells with high affinity and specificity. The unique properties of nucleic acid aptamers including high binding affinity and specificity, thermostability, ease of chemical production, ease of chemical modification, target adaptability, simple storage, resistance to denaturation, low immunogenicity, and low cost make them potential diagnostic tools for clinical use. Colorectal cancer is one of the most common types of cancer in humans and the third leading cause of cancer deaths in the world. Due to low response rate to current therapies in advanced stages of the disease, early detection of CRC can be useful in disease management. This review highlights recent advances in the development of nucleic acid aptamer-based methods for diagnosis, prognosis, and theranosis of colorectal cancer.
Collapse
Affiliation(s)
- Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Younes Mirzaee
- Research Deputy of Jahad-e-Daneshgahi Institute, Ilam Branch, Ilam, Iran.
| | - Massoud Saidijam
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
19
|
Hung LY, Fu CY, Wang CH, Chuang YJ, Tsai YC, Lo YL, Hsu PH, Chang HY, Shiesh SC, Hsu KF, Lee GB. Microfluidic platforms for rapid screening of cancer affinity reagents by using tissue samples. BIOMICROFLUIDICS 2018; 12:054108. [PMID: 30344835 PMCID: PMC6170194 DOI: 10.1063/1.5050451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Cancer is the most serious disease worldwide, and ovarian cancer (OvCa) is the second most common type of gynecological cancer. There is consequently an urgent need for early-stage detection of OvCa, which requires affinity reagent biomarkers for OvCa. Systematic evolution of ligands by exponential enrichment (SELEX) and phage display technology are two powerful technologies for identifying affinity reagent biomarkers. However, the benchtop protocols for both screening technologies are relatively lengthy and require well-trained personnel. We therefore developed a novel, integrated microfluidic system capable of automating SELEX and phage display technology. Instead of using cancer cell lines, it is the first work which used tissue slides as screening targets, which possess more complicated and uncovered information for affinity reagents to recognize. This allowed for the identification of aptamer (nucleic acid) and peptide probes specific to OvCa cells and tissues. Furthermore, this developed system could be readily modified to uncover affinity reagents for diagnostics or even target therapy of other cancer cell types in the future.
Collapse
Affiliation(s)
- Lien-Yu Hung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Yu Fu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yuan-Jhe Chuang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Ling Lo
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | - Shu-Chu Shiesh
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, 70101 Tainan, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gwo-Bin Lee
- Author to whom correspondence should be addressed. Electronic mail:
| |
Collapse
|
20
|
Pereira RL, Nascimento IC, Santos AP, Ogusuku IEY, Lameu C, Mayer G, Ulrich H. Aptamers: novelty tools for cancer biology. Oncotarget 2018; 9:26934-26953. [PMID: 29928493 PMCID: PMC6003562 DOI: 10.18632/oncotarget.25260] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
Although the term ‘cancer’ was still over two thousand years away of being coined, the first known cases of the disease date back to about 3000BC, in ancient Egypt. Five thousand years later, still lacking a cure, it has become one of the leading causes of death, killing over half a dozen million people yearly. So far, monoclonal antibodies are the most successful immune-therapy tools when it comes to fighting cancer. The number of clinical trials that use them has been increasing steadily during the past few years, especially since the Food and Drug Administration greenlit the use of the first immune-checkpoint blockade antibodies. However, albeit successful, this approach does come with the cost of auto-inflammatory toxicity. Taking this into account, the development of new therapeutic reagents with low toxicity becomes evident, particularly ones acting in tandem with the tools currently at our disposal. Ever since its discovery in the early nineties, aptamer technology has been used for a wide range of diagnostic and therapeutic applications. With similar properties to those of monoclonal antibodies, such as high-specificity of recognition and high-affinity binding, and the advantages of being developed using in vitro selection procedures, aptamers quickly became convenient building blocks for the generation of multifunctional constructs. In this review, we discuss the steps involved in the in vitro selection process that leads to functional aptamers - known as Systematic Evolution of Ligands by Exponential Enrichment - as well as the most recent applications of this technology in diagnostic and treatment of oncological illnesses. Moreover, we also suggest ways to improve such use.
Collapse
Affiliation(s)
- Ricardo L Pereira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Isis C Nascimento
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Ana P Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Isabella E Y Ogusuku
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121, Bonn, Germany.,Center of Aptamer Research and Development (CARD), University of Bonn, 53121, Bonn, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
21
|
Aptamer-Based Methods for Detection of Circulating Tumor Cells and Their Potential for Personalized Diagnostics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:67-81. [PMID: 28560668 DOI: 10.1007/978-3-319-55947-6_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cancer diagnostics and treatment monitoring rely on sensing and counting of rare cells such as cancer circulating tumor cells (CTCs) in blood. Many analytical techniques have been developed to reliably detect and quantify CTCs using unique physical shape and size of tumor cells and/or distinctive patterns of cell surface biomarkers. Main problems of CTC bioanalysis are in the small number of cells that are present in the circulation and heterogeneity of CTCs. In this chapter, we describe recent progress towards the selection and application of synthetic DNA or RNA aptamers to capture and detect CTCs in blood. Antibody-based approaches for cell isolation and purification are limited because of an antibody's negative effect on cell viability and purity. Aptamers transform cell isolation technology, because they bind and release cells on-demand. The unique feature of anti-CTC aptamers is that the aptamers are selected for cell surface biomarkers in their native state, and conformation without previous knowledge of their biomarkers. Once aptamers are produced, they can be used to identify CTC biomarkers using mass spectrometry. The biomarkers and corresponding aptamers can be exploited to improve cancer diagnostics and therapies .
Collapse
|
22
|
Civit L, Taghdisi SM, Jonczyk A, Haßel SK, Gröber C, Blank M, Stunden HJ, Beyer M, Schultze J, Latz E, Mayer G. Systematic evaluation of cell-SELEX enriched aptamers binding to breast cancer cells. Biochimie 2017; 145:53-62. [PMID: 29054799 DOI: 10.1016/j.biochi.2017.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
The sensitive and specific detection of pathogenic cells is essential in clinical diagnostics. To achieve this, molecular tools are required that unequivocally recognise appropriate cell surface molecules, such as biomarkers that come along with disease onset and progression. Aptamers are short single-stranded oligonucleotides that interact with cognate target molecules with high affinity and specificity. Within the last years they have gained an increased attention as cell-recognition tools. Here, we report a systematic analysis of a cell-SELEX procedure, for the identification of aptamers that recognise breast cancer cells. Besides a comparison of conventional (Sanger) with high-throughput sequencing techniques (next-generation sequencing), three different screening techniques have been applied to characterise the binding properties of selected aptamer candidates. This method has been found to be beneficial in finding DNA aptamers, rarely enriched in the libraries. Finally, four DNA aptamers were identified that exhibit broad-spectrum interaction patterns to different cancer cell lines derived from solid tumours.
Collapse
Affiliation(s)
- Laia Civit
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Seyed Mohammad Taghdisi
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Anna Jonczyk
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Silvana K Haßel
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Carsten Gröber
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg-Martinsried, Germany
| | - Michael Blank
- AptaIT GmbH, Am Klopferspitz 19a, 82152, Planegg-Martinsried, Germany
| | - H James Stunden
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany; Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Joachim Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany; Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Günter Mayer
- Chemical Biology and Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany; Center of Aptamer Research and Development (CARD), University of Bonn, Gerhard-Domagk Str. 1, 53121, Bonn, Germany.
| |
Collapse
|
23
|
Catuogno S, Esposito CL. Aptamer Cell-Based Selection: Overview and Advances. Biomedicines 2017; 5:biomedicines5030049. [PMID: 28805744 PMCID: PMC5618307 DOI: 10.3390/biomedicines5030049] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
Aptamers are high affinity single-stranded DNA/RNA molecules, produced by a combinatorial procedure named SELEX (Systematic Evolution of Ligands by Exponential enrichment), that are emerging as promising diagnostic and therapeutic tools. Among selection strategies, procedures using living cells as complex targets (referred as "cell-SELEX") have been developed as an effective mean to generate aptamers for heavily modified cell surface proteins, assuring the binding of the target in its native conformation. Here we give an up-to-date overview on cell-SELEX technology, discussing the most recent advances with a particular focus on cancer cell targeting. Examples of the different protocol applications and post-SELEX strategies will be briefly outlined.
Collapse
Affiliation(s)
- Silvia Catuogno
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore", CNR, Naples 80100, Italy.
| | - Carla Lucia Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore", CNR, Naples 80100, Italy.
| |
Collapse
|
24
|
Abstract
Aptamers are nucleic acids referred to as chemical antibodies as they bind to their specific targets with high affinity and selectivity. They are selected via an iterative process known as ‘selective evolution of ligands by exponential enrichment’ (SELEX). Aptamers have been developed against numerous cancer targets and among them, many tumor cell-membrane protein biomarkers. The identification of aptamers targeting cell-surface proteins has mainly been performed by two different strategies: protein- and cell-based SELEX, when the targets used for selection were proteins and cells, respectively. This review aims to update the literature on aptamers targeting tumor cell surface protein biomarkers, highlighting potentials, pitfalls of protein- and cell-based selection processes and applications of such selected molecules. Aptamers as promising agents for diagnosis and therapeutic approaches in oncology are documented, as well as aptamers in clinical development.
Collapse
|
25
|
Huang ZX, Xie Q, Guo QP, Wang KM, Meng XX, Yuan BY, Wan J, Chen YY. DNA aptamer selected for specific recognition of prostate cancer cells and clinical tissues. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 2017; 45:2583-602. [PMID: 26954935 DOI: 10.1039/c5cs00645g] [Citation(s) in RCA: 440] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The combination of nanostructures with biomolecules leading to the generation of functional nanosystems holds great promise for biotechnological and biomedical applications. As a naturally occurring biomacromolecule, DNA exhibits excellent biocompatibility and programmability. Also, scalable synthesis can be readily realized through automated instruments. Such unique properties, together with Watson-Crick base-pairing interactions, make DNA a particularly promising candidate to be used as a building block material for a wide variety of nanostructures. In the past few decades, various DNA nanostructures have been developed, including one-, two- and three-dimensional nanomaterials. Aptamers are single-stranded DNA or RNA molecules selected by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), with specific recognition abilities to their targets. Therefore, integrating aptamers into DNA nanostructures results in powerful tools for biosensing and bioimaging applications. Furthermore, owing to their high loading capability, aptamer-modified DNA nanostructures have also been altered to play the role of drug nanocarriers for in vivo applications and targeted cancer therapy. In this review, we summarize recent progress in the design of aptamers and related DNA molecule-integrated DNA nanostructures as well as their applications in biosensing, bioimaging and cancer therapy. To begin with, we first introduce the SELEX technology. Subsequently, the methodologies for the preparation of aptamer-integrated DNA nanostructures are presented. Then, we highlight their applications in biosensing and bioimaging for various targets, as well as targeted cancer therapy applications. Finally, we discuss several challenges and further opportunities in this emerging field.
Collapse
Affiliation(s)
- Hong-Min Meng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China. and Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Liuting Mo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| |
Collapse
|
27
|
Zeng J, Li X, Yuan H, Ma M, Li D, Ma J, Liao S. Screening ssDNA aptamers against HIV P24 antigen using agarose beads as carriers. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170803009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Rong Y, Chen H, Zhou XF, Yin CQ, Wang BC, Peng CW, Liu SP, Wang FB. Identification of an aptamer through whole cell-SELEX for targeting high metastatic liver cancers. Oncotarget 2016; 7:8282-94. [PMID: 26882565 PMCID: PMC4884992 DOI: 10.18632/oncotarget.6988] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/13/2016] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly human cancers due to its ability of invasion and metastasis. Thus, the approaches to identify potential compounds that inhibit invasion and metastasis of HCC are critical for treatment of this disease. In the present study, we used HCCLM9 cells with high metastatic potential and MHCC97L with low metastatic potential as a model system to study the molecular mechanisms of HCC metastasis. By applying cell- Systematic Evolution of Ligands by Exponential enrichment (SELEX) against living cells, we used HCCLM9 as target cells and MHCC97L cells as control to screen a group of HCC metastasis- and cell-specific DNA aptamers. One of selected aptamers, LY-1, could specifically bind to metastatic HCC with a dissociation constant (Kd) in nanomolar range. In vitro studies demonstrated that LY-1 can recognize and bind to membrane protein of metastatic HCC cells. Furthermore, QD605 labeled LY-1 aptamer could recognize HCC cells in both local liver cancer tissues and pulmonary metastatic sites in a xenograft model of HCC with pulmonary metastasis. Further biochemical and immunostaining studies showed that LY-1 could selectively bind to a subpopulation of more metastatic cells in HCCLM9 cells, which express more CK19 and vimentin. Finally, treatment of highly metastatic cells with LY-1 led to reduced migration and invasiveness of HCCLM9 cells in vitro and suppression of xenograft growth in vivo. Taken together, the present study demonstrated the tumor targeting and tumor suppressive effects of LY-1, which could be a promising molecular probe for metastatic HCC and a potential candidate of chemotherapy for metastatic HCC.
Collapse
Affiliation(s)
- Yuan Rong
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Hao Chen
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Xue-Feng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Chang-Qing Yin
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Bi-Cheng Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Chun-Wei Peng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Shao-Ping Liu
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuchang, Wuhan 430071, P.R. China
| | - Fu-Bing Wang
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| |
Collapse
|
29
|
Chen M, Yu Y, Jiang F, Zhou J, Li Y, Liang C, Dang L, Lu A, Zhang G. Development of Cell-SELEX Technology and Its Application in Cancer Diagnosis and Therapy. Int J Mol Sci 2016; 17:ijms17122079. [PMID: 27973403 PMCID: PMC5187879 DOI: 10.3390/ijms17122079] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
SELEX (systematic evolution of ligands by exponential enrichment) is a process involving the progressive isolation of high selective ssDNA/RNA from a combinatorial single-stranded oligonucleotide library through repeated rounds of binding, partitioning and amplification. SELEX-derived single-stranded DNA/RNA molecules, called aptamers, are selected against a wide range of targets, including purified proteins, live cells, tissues, microorganisms, small molecules and so on. With the development of SELEX technology over the last two decades, various modified SELEX processes have been arisen. A majority of aptamers are selected against purified proteins through traditional SELEX. Unfortunately, more and more evidence showed aptamers selected against purified membrane proteins failed to recognize their targets in live cells. Cell-SELEX could develop aptamers against a particular target cell line to discriminate this cell line from others. Therefore, cell-SELEX has been widely used to select aptamers for the application of both diagnosis and therapy of various diseases, especially for cancer. In this review, the advantages and limitations of cell-SELEX and SELEX against purified protein will be compared. Various modified cell-SELEX techniques will be summarized, and application of cell-SELEX in cancer diagnosis and therapy will be discussed.
Collapse
Affiliation(s)
- Man Chen
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Yuanyuan Yu
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
- Shenzhen Lab of Comninatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Feng Jiang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Junwei Zhou
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Yongshu Li
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Chao Liang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Lei Dang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Comninatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Ge Zhang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Comninatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| |
Collapse
|
30
|
Abstract
The reliable targeting of cell surface disease-associated proteins is a major challenge in chemical biology and molecular medicine. In this regard, aptamers represent a very attractive and innovative class of ligand molecules. Aptamers are generated by a reiterated in vitro procedure, named SELEX (Systematic Evolution of Ligands by Exponential enrichment). In order to generate aptamers for heavily modified cell surface-bound proteins and transmembrane receptors, the SELEX procedure has been recently adapted to the use of living cells as complex targets (referred as "cell-SELEX"). Here we give an overview on the most recent advances in the field of cell-SELEX technology, providing a detailed description of the differential cell-SELEX approach that has been developed in our laboratory to identify specific signatures for human malignant glioma and non-small-cell lung cancer. The procedures used for the evaluation of binding specificity and for the preliminary identification of potential target receptors will be also described.
Collapse
|
31
|
Hung LY, Wang CH, Fu CY, Gopinathan P, Lee GB. Microfluidics in the selection of affinity reagents for the detection of cancer: paving a way towards future diagnostics. LAB ON A CHIP 2016; 16:2759-74. [PMID: 27381813 DOI: 10.1039/c6lc00662k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microfluidic technologies have miniaturized a variety of biomedical applications, and these chip-based systems have several significant advantages over their large-scale counterparts. Recently, this technology has been used for automating labor-intensive and time-consuming screening processes, whereby affinity reagents, including aptamers, peptides, antibodies, polysaccharides, glycoproteins, and a variety of small molecules, are used to probe for molecular biomarkers. When compared to conventional methods, the microfluidic approaches are faster, more compact, require considerably smaller quantities of samples and reagents, and can be automated. Furthermore, they allow for more precise control of reaction conditions (e.g., pH, temperature, and shearing forces) such that more efficient screening can be performed. A variety of affinity reagents for targeting cancer cells or cancer biomarkers are now available and will likely replace conventional antibodies. In this review article, the selection of affinity reagents for cancer cells or cancer biomarkers on microfluidic platforms is reviewed with the aim of highlighting the utility of such approaches in cancer diagnostics.
Collapse
MESH Headings
- Animals
- Antibodies, Immobilized/chemistry
- Antibodies, Immobilized/metabolism
- Antibodies, Neoplasm/chemistry
- Antibodies, Neoplasm/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Coculture Techniques
- Humans
- Immobilized Nucleic Acids/chemistry
- Immobilized Nucleic Acids/metabolism
- Immobilized Proteins/metabolism
- Lab-On-A-Chip Devices/trends
- Leukocytes/cytology
- Leukocytes/metabolism
- Ligands
- Mice
- Neoplasms/blood
- Neoplasms/diagnosis
- Neoplasms/metabolism
- Neoplasms/pathology
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/metabolism
Collapse
Affiliation(s)
- Lien-Yu Hung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | | | | | | | | |
Collapse
|
32
|
Ahmadzadeh-Raji M, Ghafar-Zadeh E, Amoabediny G. An Optically-Transparent Aptamer-Based Detection System for Colon Cancer Applications Using Gold Nanoparticles Electrodeposited on Indium Tin Oxide. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1071. [PMID: 27420059 PMCID: PMC4970118 DOI: 10.3390/s16071071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023]
Abstract
In this paper, a label-free aptamer based detection system (apta-DS) was investigated for detecting colon cancer cells. For this purpose, we employed an aptamer specific to colon cancer cells like HCT116 expressing carcinoembryonic antigen (CEA) on their surfaces. Capture aptamers were covalently immobilized on the surface of gold nanoparticles (GNPs) through self-assembly monolayer of 11-mercaptoundecanoic acid (11-MUA) activated with EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide)/N-hydroxysuccinimide (NHS). The cyclic voltammetry (CV) and chronopotentiometry (CP) methods were used for electrodeposition of GNPs on the surface of indium tin oxide (ITO). In this work, the CV method was also used to demonstrate the conjugation of GNPs and aptamers and identify the cancer cell capturing events. Additionally, Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the deposition of GNPs on ITO and the immobilization of aptamer on the apta-DS. The electrodeposited GNPs played the role of nanoprobes for cancer cell targeting without losing the optical transparency of the ITO substrate. A conventional optical microscope also verified the detection of captured cancer cells. Based on this study's results relying on electrochemical and optical microscopic methods, the proposed apta-DS is reliable and high sensitive with a LOD equal to 6 cell/mL for colon cancer detection.
Collapse
Affiliation(s)
- Mojgan Ahmadzadeh-Raji
- Department of Life Science Engineering, Faculty of New Sciences &Technologies, University of Tehran, Tehran 14395-1561, Iran.
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3J1P3, Canada.
| | - Ebrahim Ghafar-Zadeh
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3J1P3, Canada.
| | - Ghasem Amoabediny
- Department of Life Science Engineering, Faculty of New Sciences &Technologies, University of Tehran, Tehran 14395-1561, Iran.
- Department of Biotechnology and Pharmacy Engineering, Faculty of Chemical Engineering, University of Tehran, Tehran 4563-11155, Iran.
| |
Collapse
|
33
|
Cell-targeting aptamers act as intracellular delivery vehicles. Appl Microbiol Biotechnol 2016; 100:6955-69. [PMID: 27350620 DOI: 10.1007/s00253-016-7686-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules. Aptamers can penetrate disease-causing microbial and mammalian cells. Generated aptamers that target surface biomarkers act as cell-targeting agents and intracellular delivery vehicles. Within this context, the "cell-internalizing aptamers" are widely investigated via the process of cell uptake with selective binding during in vivo systematic evolution of ligands by exponential enrichment (SELEX) or by cell-internalization SELEX, which targets cell surface antigens to be receptors. These internalizing aptamers are highly preferable for the localization and functional analyses of multiple targets. In this overview, we discuss the ways by which internalizing aptamers are generated and their successful applications. Furthermore, theranostic approaches featuring cell-internalized aptamers are discussed with the purpose of analyzing and diagnosing disease-causing pathogens.
Collapse
|
34
|
Lyu Y, Chen G, Shangguan D, Zhang L, Wan S, Wu Y, Zhang H, Duan L, Liu C, You M, Wang J, Tan W. Generating Cell Targeting Aptamers for Nanotheranostics Using Cell-SELEX. Am J Cancer Res 2016; 6:1440-52. [PMID: 27375791 PMCID: PMC4924511 DOI: 10.7150/thno.15666] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Detecting and understanding changes in cell conditions on the molecular level is of great importance for the accurate diagnosis and timely therapy of diseases. Cell-based SELEX (Systematic Evolution of Ligands by EXponential enrichment), a foundational technology used to generate highly-specific, cell-targeting aptamers, has been increasingly employed in studies of molecular medicine, including biomarker discovery and early diagnosis/targeting therapy of cancer. In this review, we begin with a mechanical description of the cell-SELEX process, covering aptamer selection, identification and identification, and aptamer characterization; following this introduction is a comprehensive discussion of the potential for aptamers as targeting moieties in the construction of various nanotheranostics. Challenges and prospects for cell-SELEX and aptamer-based nanotheranostic are also discussed.
Collapse
|
35
|
Souza AG, Marangoni K, Fujimura PT, Alves PT, Silva MJ, Bastos VAF, Goulart LR, Goulart VA. 3D Cell-SELEX: Development of RNA aptamers as molecular probes for PC-3 tumor cell line. Exp Cell Res 2016; 341:147-56. [PMID: 26821206 DOI: 10.1016/j.yexcr.2016.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 10/25/2022]
Abstract
Human prostate cancer (PCa) is a highly heterogeneous and multifactorial disease. Current clinical biomarkers are not sufficiently accurate, thus being unable to predict the clinical outcome. Therefore, searching for new biomarkers aiming to improve diagnosis, prognosis and therapy is still required. In this study, we performed 3D Cell-SELEX against PC-3 prostate cancer cell line, a novel strategy to select specific nucleic acid ligands against spheroid cells in 3D cell culture. This original system combines Cell-SELEX, a process that exploits the cellular structure to generate specific ligands, and 3D cell culture, an approach that mimics the tissue microenvironment in vitro. In the first round of 3D Cell-SELEX, a negative selection against RWPE-1, non-tumor cell line, was performed to subtract non-tumor specific aptamers. The supernatant was used in eight additional rounds of selection, which were performed against PC-3 cell line. After nine selection cycles, eight PC-3 specific RNA aptamers were selected and sequenced. The aptamers presented sizes between 20 and 50 nucleotides-long, with low free energy (∆G<-13.6), which contributed for their spontaneous folding and high stability. Furthermore, our results showed the aptamer A4 as a specific ligand to prostate tumor cells, with dissociation constant in the nanomolar scale. Therefore, the novel 3D Cell-SELEX procedure improved the selection of PCa cell-surface ligands and the aptamer A4 has shown potential for the identification of prostate tumor cells, suggesting the application of this molecule in further screening assays for PCa.
Collapse
Affiliation(s)
- Aline G Souza
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil.
| | - Karina Marangoni
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil; Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, University of Campinas, SP, Brazil
| | - Patrícia T Fujimura
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| | - Patrícia T Alves
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| | - Márcio J Silva
- Center of Molecular Biology and Genetic Engineering, University of Campinas, SP, Brazil
| | - Victor Alexandre F Bastos
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| | - Luiz R Goulart
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil; University of California-Davis, Department of Medical Microbiology and Immunology, Davis, CA, USA
| | - Vivian A Goulart
- Laboratory of Nanobiotechnology, Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), 38400-902 Uberlândia, MG, Brazil
| |
Collapse
|
36
|
Wang R, Lu D, Bai H, Jin C, Yan G, Ye M, Qiu L, Chang R, Cui C, Liang H, Tan W. Using modified aptamers for site specific protein-aptamer conjugations. Chem Sci 2015; 7:2157-2161. [PMID: 28044095 PMCID: PMC5201207 DOI: 10.1039/c5sc02631h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have developed a new method for the selective conjugation of target proteins at lysine residues through a protein–aptamer template-directed reaction.
Conjugation of DNA to defined locations on a protein surface will be a powerful tool for positioning functional groups and molecules in biological and biomedical studies. However, tagging protein with DNA is challenging in physiological environments, and requires a bioorthogonal approach. Here, we report a chemical solution to selectively conjugate DNA aptamers with a protein by protein–aptamer template (PAT)-directed reactions. Since protein–aptamer interactions are bioorthogonal, we exploit the PAT as a unique platform for specific DNA–protein cross-linking. We develop a series of modified oligonucleotides for PAT-directed reactions and find an F-carboxyl group as a suitable functionality for selective and site-specific conjugation. The functionality is incorporated into aptamers in our F-carboxyl phosphoramidite with an easy synthesis. We also demonstrate the necessity of a linker between the reactive functionality and the aptamer sequences.
Collapse
Affiliation(s)
- Ruowen Wang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China; Departments of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida32611-7200, United States
| | - Danqing Lu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Huarong Bai
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Cheng Jin
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Guobei Yan
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Mao Ye
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Liping Qiu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China; Departments of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida32611-7200, United States
| | - Rongshan Chang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Cheng Cui
- Departments of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida32611-7200, United States
| | - Hao Liang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China; Departments of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida32611-7200, United States
| |
Collapse
|
37
|
Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H, Gao Y, Jia L. EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 2015; 83:28-35. [PMID: 26690044 DOI: 10.1016/j.ejps.2015.12.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
Abstract
Targeted delivery of anticancer agents by functional nanoparticles is an attractive strategy to increase their therapeutic efficacy while reducing toxicity. In this work, doxorubicin (DOX)-loaded mesoporous silica nanoparticles (MSNs) were modified with aptamer (Ap) against the epithelial cell adhesion molecule (EpCAM) for targeted delivery of DOX to colon cancer cells. These nanoparticles (Ap-MSN-DOX) were characterized by particle size, zeta potential, aptamer conjugation efficiency, drug encapsulation efficiency, and drug release properties. The in vitro cell recognition, cellular uptake, EpCAM protein inhibition efficiency, and cytotoxicity of Ap-MSN-DOX were also studied. Results demonstrated that EpCAM conjugation increased binding of Ap-MSN-DOX to EpCAM over-expressing SW620 colon cancer cells but not EpCAM-negative Ramos cells, resulting in enhanced cellular uptake and increased cytotoxicity of the DOX in SW620 cells when compared to non-Ap-modified nanoparticles (MSN-DOX). Additionally, Ap-MSN-DOX exhibited significant inhibition effects on the expression of EpCAM on SW620 cells. These results suggested that Ap-MSN-DOX has the potential for the targeted delivery of therapeutic agents into EpCAM positive colon cancer cells to improve therapeutic index while reducing side effects.
Collapse
Affiliation(s)
- Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Fengqiao Li
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Huijuan Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yusheng Lu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Shu Lian
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Hang Lin
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
38
|
Li F, Li N. Endoscopic molecular imaging of gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2015; 23:5333-5341. [DOI: 10.11569/wcjd.v23.i33.5333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In China, the incidence and mortality of gastrointestinal cancers are high, and early diagnosis is the key to improving the survival rate. In recent years, endoscopic molecular imaging in tumor diagnosis with its unique advantages has attracted more and more attention. With the rapid development of molecular biology, the mechanism of tumor occurrence and development has been gradually elucidated. The advent of fluorescent labeled molecular probes and targeted binding to molecular targets of gastrointestinal tumors makes it possible achieve real-time endoscopic molecular diagnosis of digestive tract tumors, which has a significant impact on tumor targeted therapy. In this paper, we review the progress in endoscopic molecular imaging of digestive tract tumors.
Collapse
|
39
|
Dickey DD, Giangrande PH. Oligonucleotide aptamers: A next-generation technology for the capture and detection of circulating tumor cells. Methods 2015; 97:94-103. [PMID: 26631715 DOI: 10.1016/j.ymeth.2015.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023] Open
Abstract
A critical challenge for treating cancer is the early identification of those patients who are at greatest risk of developing metastatic disease. The number of circulating tumor cells (CTCs) in cancer patients has recently been shown to be a valuable (and non-invasively accessible) diagnostic indicator of the state of metastatic disease. CTCs are rare cancer cells found in the blood circulation of cancer patients believed to provide a means of diagnosing the likelihood for metastatic spread and assessing response to therapy in advanced, as well as early stage disease settings. Numerous technical efforts have been made to reliably detect and quantify CTCs, but the development of a universal assay has proven quite difficult. Notable challenges for developing a broadly useful CTC-based diagnostic assay are the development of easy-to-operate methods that (1) are sufficiently sensitive to reliably detect the small number of CTCs that are present in the circulation and (2) can capture the molecular heterogeneity of tumor cells. In this review, we describe recent progress towards the application of synthetic oligonucleotide aptamers as promising, novel, robust tools for the isolation and detection of CTCs. Advantages and challenges of the aptamer approach are also discussed.
Collapse
Affiliation(s)
- David D Dickey
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Paloma H Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
40
|
Raji MA, Amara M, Amoabediny G, Tajik P, Barin A, Magierowski S, Ghafar-Zadeh E. Cytotoxicity of synthesized Iron Oxide nanoparticles: toward novel biomarkers of colon cancer. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6179-82. [PMID: 25571408 DOI: 10.1109/embc.2014.6945040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this paper we present the preliminary results of a novel biological analysis platform for early colon cancer detection using magnetic separation of magnetized markers. The platform consists of a microfluidic structure integrated with biosensors. Super-Paramagnetic Iron Oxide nanoparticles (SPIO-NPs) were functionalized with purified DNA Aptamer and their synthesis is described. In this paper, we also present the physicochemical results of the synthesized SPIO/Au-NPs characterized by TEM and XRD. Toxicity of our synthesized biomarkers on HCT116 cell line is discussed. Based on our findings, a concentration of 1mg/ml of our biomarkers added to 5 × 105 cells per well has no effect the viability of the human cells even after 24 hours.
Collapse
|
41
|
Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 2015; 44:1240-56. [PMID: 25561050 DOI: 10.1039/c4cs00357h] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers, identified from a random sequence pool, with the ability to form unique and versatile tertiary structures that bind to cognate molecules with superior specificity. Their small size, excellent chemical stability and low immunogenicity enable them to rival antibodies in cancer imaging and therapy applications. Their facile chemical synthesis, versatility in structural design and engineering, and the ability for site-specific modifications with functional moieties make aptamers excellent recognition motifs for cancer biomarker discovery and detection. Moreover, aptamers can be selected or engineered to regulate cancer protein functions, as well as to guide anti-cancer drug design or screening. This review summarizes their applications in cancer, including cancer biomarker discovery and detection, cancer imaging, cancer therapy, and anti-cancer drug discovery. Although relevant applications are relatively new, the significant progress achieved has demonstrated that aptamers can be promising players in cancer research.
Collapse
Affiliation(s)
- Haitao Ma
- The Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hamula CLA, Peng H, Wang Z, Newbigging AM, Tyrrell GJ, Li XF, Le XC. The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells. J Mol Evol 2015; 81:194-209. [PMID: 26538121 DOI: 10.1007/s00239-015-9711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022]
Abstract
Aptamers of high affinity and specificity have a wide range of analytic and clinical applications. Selection of DNA or RNA aptamer molecules usually involves systematic evolution of ligands via exponential enrichment (SELEX), in which a random DNA or RNA library is incubated with a target molecule, and the oligonucleotides that bind the target are then separated from the nonbinders, PCR amplified, and used as refined libraries in the next round of selection. Conventional SELEX methodologies require the use of purified target molecules and their immobilization onto a solid support. However, purified targets from cells are not always available, and fixing the target to a support may alter its conformation. To overcome these problems, we have developed a SELEX technique using live bacterial cells in suspension as targets, for selecting DNA aptamers specific to cell-surface molecules. Through the selection of aptamers binding to Lactobacillus acidophilus and Streptococcus pyogenes, we report here optimization of this technique and show how varying selection conditions impact the characteristics of resultant aptamer pools, including the binding affinity, selectivity, and the secondary structures. We found that the use of larger starting library sequence diversity, gel purification of the subsequent pools, and the introduction of counter-selection resulted in a more efficient SELEX process and more selective aptamers. A SELEX protocol with lower starting sequence diversity, the use of heat denaturation, and the absence of counter-selection still resulted in high-affinity aptamer sequences specific to the target cell types; however, the SELEX process was inefficient, requiring 20 rounds, and the aptamers were not specific to the strain of the bacterial cells. Strikingly, two different SELEX methodologies yielded the same sequence that bound strongly to the target S. pyogenes cells, suggesting the robustness of the bacterial cell-SELEX technique.
Collapse
Affiliation(s)
- Camille L A Hamula
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.,Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York City, NY, 10029, USA
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Zhixin Wang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Ashley M Newbigging
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Gregory J Tyrrell
- The Provincial Laboratory for Public Health for Alberta, Walter Mackenzie Health Sciences Centre, Edmonton, AB, T6G 2J2, Canada.,Department of Laboratory Medicine and Pathology, 2B3.08 Walter Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
43
|
A Synthetic Aptamer-Drug Adduct for Targeted Liver Cancer Therapy. PLoS One 2015; 10:e0136673. [PMID: 26523833 PMCID: PMC4629891 DOI: 10.1371/journal.pone.0136673] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022] Open
Abstract
AS1411 (previously known as AGRO100) is a 26 nucleotide guanine-rich DNA aptamer which forms a guanine quadruplex structure. AS1411 has shown promising utility as a treatment for cancers in Phase I and Phase II clinical trials without causing major side-effects. AS1411 inhibits tumor cell growth by binding to nucleolin which is aberrantly expressed on the cell membrane of many tumors. In this study, we utilized a simple technique to conjugate a widely-used chemotherapeutic agent, doxorubicin (Dox), to AS1411 to form a synthetic Drug-DNA Adduct (DDA), termed as AS1411-Dox. We demonstrate the utility of AS1411-Dox in the treatment of hepatocellular carcinoma (HCC) by evaluating the targeted delivery of Dox to Huh7 cells in vitro and in a murine xenograft model of HCC.
Collapse
|
44
|
Sun C, Zhang R, Gao M, Zhang X. A rapid and simple method for efficient capture and accurate discrimination of circulating tumor cells using aptamer conjugated magnetic beads and surface-enhanced Raman scattering imaging. Anal Bioanal Chem 2015; 407:8883-92. [PMID: 26449846 DOI: 10.1007/s00216-015-9049-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022]
Abstract
The efficient isolation and the accurate phenotype discrimination of circulating tumor cells (CTCs) are expected to provide much valuable information for the understanding of tumor metastasis and to play an important role in personalized treatment of cancer patients in the future. In this study, we developed a novel, rapid, and simple method for efficient capture and accurate identification of CTCs using aptamer conjugated magnetic beads and surface-enhanced Raman scattering (SERS) imaging technique. Using aptamer conjugated magnetic beads, rare target cancer cells can be captured efficiently from buffer and whole blood sample with capture efficiency of 73 % and 55 %, respectively. Meanwhile, captured cancer cells were labeled by specific SERS probes and can be identified readily and accurately by SERS imaging technique. Results of our experiment demonstrate the potential feasibility of aptamer conjugated magnetic beads coupled with SERS imaging technique for the efficient capture and accurate discrimination of CTCs in clinical whole blood sample. Graphical Abstract Schematic Representation of CTCs Capture and Identification Using Apt-MBs and SERS Imaging.
Collapse
Affiliation(s)
- Changlong Sun
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Ren Zhang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
45
|
An Apta-Biosensor for Colon Cancer Diagnostics. SENSORS 2015; 15:22291-303. [PMID: 26404293 PMCID: PMC4610500 DOI: 10.3390/s150922291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/19/2015] [Accepted: 08/26/2015] [Indexed: 12/20/2022]
Abstract
This paper reports the design and implementation of an aptasensor using a modified KCHA10a aptamer. This aptasensor consists of a functionalized electrodes using various materials including 11-mercaptoandecanoic acid (11-MUA) and modified KCHA10a aptamer. The HCT 116, HT 29 and HEp-2 cell lines are used in this study to demonstrate the functionality of aptasensor for colon cancer detection purposes. Flow cytometry, fluorescence microscopy and electrochemical cyclic voltammetry are used to verify the binding between the target cells and aptamer. The limit of detection (LOD) of this aptasensor is equal to seven cancer cells. Based on the experimental results, the proposed sensor can be employed for point-of-care cancer disease diagnostics.
Collapse
|
46
|
Aptekar S, Arora M, Lawrence CL, Lea RW, Ashton K, Dawson T, Alder JE, Shaw L. Selective Targeting to Glioma with Nucleic Acid Aptamers. PLoS One 2015; 10:e0134957. [PMID: 26252900 PMCID: PMC4529171 DOI: 10.1371/journal.pone.0134957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/16/2015] [Indexed: 12/11/2022] Open
Abstract
Malignant glioma is characterised by a rapid growth rate and high capacity for invasive infiltration to surrounding brain tissue; hence, diagnosis and treatment is difficult and patient survival is poor. Aptamers contribute a promising and unique technology for the in vitro imaging of live cells and tissues, with a potentially bright future in clinical diagnostics and therapeutics for malignant glioma. The binding selectivity, uptake capacity and binding target of two DNA aptamers, SA43 and SA44, were investigated in glioma cells and patient tissues. The binding assay showed that SA43 and SA44 bound with strong affinity (Kd, 21.56 ± 4.60 nM and Kd, 21.11 ± 3.30 nM respectively) to the target U87MG cells. Quantitative analysis by flow cytometry showed that the aptamers were able to actively internalise in U87MG and 1321N1 glioma cells compared to the non-cancerous and non-glioma cell types. Confocal microscopy confirmed staining in the cytoplasm, and co-localisation studies with endoplasmic reticulum, Golgi apparatus and lysosomal markers suggested internalisation and compartmentalisation within the endomembrane system. Both aptamers selectively bound to Ku 70 and Ku 80 DNA repair proteins as determined by aptoprecipitation (AP) followed by mass spectrometry analysis and confirmation by Western blot. In addition, aptohistochemical (AHC) staining on paraffin embedded, formalin fixed patient tissues revealed that the binding selectivity was significantly higher for SA43 aptamer in glioma tissues (grade I, II, III and IV) compared to the non-cancerous tissues, whereas SA44 did not show selectivity towards glioma tissues. The results indicate that SA43 aptamer can differentiate between glioma and non-cancerous cells and tissues and therefore, shows promise for histological diagnosis of glioma.
Collapse
Affiliation(s)
- Shraddha Aptekar
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Mohit Arora
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Clare Louise Lawrence
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Robert William Lea
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Katherine Ashton
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Tim Dawson
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Jane Elizabeth Alder
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Lisa Shaw
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| |
Collapse
|
47
|
Wan J, Ye L, Yang X, Guo Q, Wang K, Huang Z, Tan Y, Yuan B, Xie Q. Cell-SELEX based selection and optimization of DNA aptamers for specific recognition of human cholangiocarcinoma QBC-939 cells. Analyst 2015; 140:5992-7. [PMID: 26181902 DOI: 10.1039/c5an01055a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinoma (CCA) is a very aggressive biliary tract malignancy with no efficient early diagnosis and therapeutics available, so there is a call for effective molecular probes. Herein, we performed cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX) to obtain aptamers for the specific recognition of human cholangiocarcinoma QBC-939 cells. By coordinating sequence homology analysis and secondary structure analysis, we successfully obtained two aptamers with dissociation constants (Kd) in the low nanomolar range. A 23 nt truncated sequence was identified after further analysis on the secondary structure. More importantly, because hepatocellular carcinoma SMMC-7721 cells were employed as the control in the counter selection, the obtained aptamers demonstrated excellent specificity to the target cells, and no binding to several other hepatocellular carcinoma cell lines was observed. Moreover, the aptamers were initially found to recognize membrane proteins, giving them great potential in the field of biomarker discovery. These newly generated aptamers may play a key role in the early diagnosis and clinical treatment of CCA.
Collapse
Affiliation(s)
- Jun Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Moosavian SA, Jaafari MR, Taghdisi SM, Mosaffa F, Badiee A, Abnous K. Development of RNA aptamers as molecular probes for HER2(+) breast cancer study using cell-SELEX. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:576-86. [PMID: 26221481 PMCID: PMC4509953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/11/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Development of molecules that specifically recognize cancer cells is one of the major areas in cancer research. Human epidermal growth factor receptor 2 (HER2) is specifically expressed on the surface of breast cancer cells. HER2 is associated with an aggressive phenotype and poor prognosis. In this study we aimed to isolate RNA aptamers that specifically bind to HER2 overexpressing TUBO cell line. MATERIALS AND METHODS Panel of aptamers was selected using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). RESULTS Binding studies showed that selected aptamers can identify TUBO cell line with high affinity and selectivity. Our preliminary investigation of the target of aptamers suggested that aptamers bind with HER2 proteins on the surface of TUBO cells. CONCLUSION We believe the selected aptamers could be useful ligands for targeted breast cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Alia Moosavian
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Hung LY, Wang CH, Che YJ, Fu CY, Chang HY, Wang K, Lee GB. Screening of aptamers specific to colorectal cancer cells and stem cells by utilizing On-chip Cell-SELEX. Sci Rep 2015; 5:10326. [PMID: 25999049 PMCID: PMC4650677 DOI: 10.1038/srep10326] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/08/2015] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the most frequently diagnosed cancer around the world, causing about 700,000 deaths every year. It is clear now that a small fraction of CRC, named colorectal cancer stem cells (CSCs) exhibiting self-renewal and extensive proliferative activities, are hard to be eradicated. Unfortunately, highly specific biomarkers for colorectal CSC (CR-CSCs) are lacking that prohibits the development of effective therapeutic strategies. This study designed and manufactured a novel microfluidic system capable of performing a fully automated cell-based, systematic evolution of ligands by exponential enrichment (SELEX) process. Eight CR-CSC/CRC-specific aptamers were successfully selected using the microfluidic chip. Three of the aptamers showed high affinities towards their respective target cells with a dissociation constant of 27.4, 28.5 and 12.3 nM, which are comparable to that of antibodies.
Collapse
Affiliation(s)
- Lien-Yu Hung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Yu-Jui Che
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Chien-Yu Fu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Kuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 11529
| | - Gwo-Bin Lee
- 1] Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013 [2] Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan 30013 [3] Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013
| |
Collapse
|
50
|
Xu J, Teng IT, Zhang L, Delgado S, Champanhac C, Cansiz S, Wu C, Shan H, Tan W. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX. PLoS One 2015; 10:e0125863. [PMID: 25938802 PMCID: PMC4418664 DOI: 10.1371/journal.pone.0125863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022] Open
Abstract
Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment), have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.
Collapse
Affiliation(s)
- Jiehua Xu
- Department of Nuclear Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Chemistry, Department of Biochemistry and Molecular Biology and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - I-Ting Teng
- Department of Chemistry, Department of Biochemistry and Molecular Biology and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Liqin Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Stefanie Delgado
- Department of Chemistry, Department of Biochemistry and Molecular Biology and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Carole Champanhac
- Department of Chemistry, Department of Biochemistry and Molecular Biology and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Sena Cansiz
- Department of Chemistry, Department of Biochemistry and Molecular Biology and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Cuichen Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | - Hong Shan
- Interventional Radiology Institute, Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weihong Tan
- Department of Chemistry, Department of Biochemistry and Molecular Biology and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|