1
|
Teng S, Thomson PA, McCarthy S, Kramer M, Muller S, Lihm J, Morris S, Soares DC, Hennah W, Harris S, Camargo LM, Malkov V, McIntosh AM, Millar JK, Blackwood DH, Evans KL, Deary IJ, Porteous DJ, McCombie WR. Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Mol Psychiatry 2018; 23:1270-1277. [PMID: 28630456 PMCID: PMC5984079 DOI: 10.1038/mp.2017.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross P=0.0339). The burden of singleton disruptive variants in the DISC1 Interactome was associated with low cognitive ability at age 11 (FWERacross P=0.0043). These results identify altered regulation of schizophrenia candidate genes by DISC1 and its core Interactome as an alternate pathway for schizophrenia risk, consistent with the emerging effects of rare copy number variants associated with intellectual disability.
Collapse
Affiliation(s)
- S Teng
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Biology, Howard University, Washington DC, USA
| | - P A Thomson
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Muller
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J Lihm
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Morris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D C Soares
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - W Hennah
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - S Harris
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - L M Camargo
- UCB New Medicines, One Broadway, Cambridge, MA, USA
| | - V Malkov
- Genetics and Pharmacogenomics, MRL, Merck & Co, Boston, MA, USA
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J K Millar
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - K L Evans
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - D J Porteous
- Centre for Genomic and Experimental Medicine, MRC/University of Edinburgh Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
2
|
Sialana FJ, Wang AL, Fazari B, Kristofova M, Smidak R, Trossbach SV, Korth C, Huston JP, de Souza Silva MA, Lubec G. Quantitative Proteomics of Synaptosomal Fractions in a Rat Overexpressing Human DISC1 Gene Indicates Profound Synaptic Dysregulation in the Dorsal Striatum. Front Mol Neurosci 2018; 11:26. [PMID: 29467617 PMCID: PMC5808171 DOI: 10.3389/fnmol.2018.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a key protein involved in behavioral processes and various mental disorders, including schizophrenia and major depression. A transgenic rat overexpressing non-mutant human DISC1, modeling aberrant proteostasis of the DISC1 protein, displays behavioral, biochemical and anatomical deficits consistent with aspects of mental disorders, including changes in the dorsal striatum, an anatomical region critical in the development of behavioral disorders. Herein, dorsal striatum of 10 transgenic DISC1 (tgDISC1) and 10 wild type (WT) littermate control rats was used for synaptosomal preparations and for performing liquid chromatography-tandem mass spectrometry (LC-MS)-based quantitative proteomics, using isobaric labeling (TMT10plex). Functional enrichment analysis was generated from proteins with level changes. The increase in DISC1 expression leads to changes in proteins and synaptic-associated processes including membrane trafficking, ion transport, synaptic organization and neurodevelopment. Canonical pathway analysis assigned proteins with level changes to actin cytoskeleton, Gαq, Rho family GTPase and Rho GDI, axonal guidance, ephrin receptor and dopamine-DARPP32 feedback in cAMP signaling. DISC1-regulated proteins proposed in the current study are also highly associated with neurodevelopmental and mental disorders. Bioinformatics analyses from the current study predicted that the following biological processes may be activated by overexpression of DISC1, i.e., regulation of cell quantities, neuronal and axonal extension and long term potentiation. Our findings demonstrate that the effects of overexpression of non-mutant DISC1 or its misassembly has profound consequences on protein networks essential for behavioral control. These results are also relevant for the interpretation of previous as well as for the design of future studies on DISC1.
Collapse
Affiliation(s)
- Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - An-Li Wang
- Center for Behavioral Neuroscience, University of Düsseldorf, Düsseldorf, Germany
| | - Benedetta Fazari
- Center for Behavioral Neuroscience, University of Düsseldorf, Düsseldorf, Germany
| | - Martina Kristofova
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Roman Smidak
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Svenja V Trossbach
- Department of Neuropathology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, University of Düsseldorf, Düsseldorf, Germany
| | | | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| |
Collapse
|
3
|
Tomoda T, Hikida T, Sakurai T. Role of DISC1 in Neuronal Trafficking and its Implication in Neuropsychiatric Manifestation and Neurotherapeutics. Neurotherapeutics 2017; 14:623-629. [PMID: 28664299 PMCID: PMC5509643 DOI: 10.1007/s13311-017-0556-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) was initially identified as a gene disrupted by a translocation mutation co-segregating with a variety of psychotic and mood disorders in a Scottish pedigree. In agreement with this original finding, mouse models that perturb Disc1 display deficits of behaviors in specific dimensions, such as cognition and emotion, but not a motor dimension. Although DISC1 is not a risk gene for sporadic cases of specific psychiatric disorders defined by categorical diagnostic criteria (e.g., schizophrenia and major depressive disorder), DISC1 is now regarded as an important molecular lead to decipher molecular pathology for specific dimensions relevant to major mental illnesses. Emerging evidence points to the role of DISC1 in the regulation of intracellular trafficking of a wide range of neuronal cargoes. We will review recent progress in this aspect of DISC1 biology and discuss how we could utilize this body of knowledge to better understand the pathophysiology of mental illnesses.
Collapse
Affiliation(s)
- Toshifumi Tomoda
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada.
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Tanaka M, Ishizuka K, Nekooki-Machida Y, Endo R, Takashima N, Sasaki H, Komi Y, Gathercole A, Huston E, Ishii K, Hui KKW, Kurosawa M, Kim SH, Nukina N, Takimoto E, Houslay MD, Sawa A. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease. J Clin Invest 2017; 127:1438-1450. [PMID: 28263187 DOI: 10.1172/jci85594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.
Collapse
|
5
|
Fudalej S, Jakubczyk A, Kopera M, Piwonski J, Bielecki W, Drygas W, Wasilewska K, Ilgen M, Bohnert A, Barry K, Płoski R, Blow FC, Wojnar M. DISC1 as a Possible Genetic Contribution to Opioid Dependence in a Polish Sample. J Stud Alcohol Drugs 2016; 77:220-6. [PMID: 26997180 DOI: 10.15288/jsad.2016.77.220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Disrupted-in-schizophrenia 1 (DISC1) has been linked to vulnerability to a variety of psychiatric disorders and neuropsychiatric phenotypes. However, DISC1 has not been frequently examined as a potential risk factor for substance dependence. An association between opioid dependence and DISC1 rs2738888 polymorphism has been recently reported. In addition, opioid dependence was associated with rs6419156 located close to the protein phosphatase 3 catalytic subunit alpha isoform (PPP3CA) gene. The aim of the present study was to examine the associations between opioid dependence with rs2738888 and rs6419156 in an independent sample. METHOD The selected polymorphisms were genotyped in a sample of 392 individuals (69.9% male) diagnosed as alcohol- and/or opioid-dependent. A control group (n = 257; 67.7% male) was derived from the Polish National Health Survey (N = 14,350). RESULTS The frequency of rs2738888 C allele was higher in controls than in opioid-dependent cases (OR = 0.65, p = .045). Phenotypic-oriented analyses performed within opioid-dependent individuals revealed the association between lifetime suicide attempt and rs2738888. The C allele of rs2738888 had a protective effect on lifetime suicide attempt in opioid-dependent patients (OR = 0.25, p = .003). Rs6419156 was not associated with substance dependence in the examined sample. CONCLUSIONS The DISC1 may play an important role in vulnerability to opioid dependence. In addition, DISC1 may also be a genetic risk factor for suicide attempt in opioid-dependent individuals.
Collapse
Affiliation(s)
- Sylwia Fudalej
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Jakubczyk
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Kopera
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Jerzy Piwonski
- Department of Epidemiology, Cardiovascular Disease Prevention, and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Wojciech Bielecki
- Department of Social Pathologies, Medical University of Lodz, Lodz, Poland
| | - Wojciech Drygas
- Department of Epidemiology, Cardiovascular Disease Prevention, and Health Promotion, National Institute of Cardiology, Warsaw, Poland.,Department of Social and Preventive Medicine, Medical University of Lodz, Lodz, Poland
| | - Krystyna Wasilewska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Mark Ilgen
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Department of Veterans Affairs National Serious Mental Illness Treatment Research and Evaluation Center (SMITREC), Ann Arbor, Michigan
| | - Amy Bohnert
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Department of Veterans Affairs National Serious Mental Illness Treatment Research and Evaluation Center (SMITREC), Ann Arbor, Michigan
| | - Kristen Barry
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Department of Veterans Affairs National Serious Mental Illness Treatment Research and Evaluation Center (SMITREC), Ann Arbor, Michigan
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Frederic C Blow
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan.,Department of Veterans Affairs National Serious Mental Illness Treatment Research and Evaluation Center (SMITREC), Ann Arbor, Michigan
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. FRONTIERS IN BIOLOGY 2013; 8:1-31. [PMID: 23550053 PMCID: PMC3580875 DOI: 10.1007/s11515-012-1254-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.
Collapse
Affiliation(s)
- Pippa A Thomson
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
8
|
Thompson SB, Bishop P. Born to yawn? Understanding yawning as a warning of the rise in cortisol levels: randomized trial. Interact J Med Res 2012; 1:e4. [PMID: 23611879 PMCID: PMC3626133 DOI: 10.2196/ijmr.2241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/23/2012] [Accepted: 07/27/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Yawning consistently poses a conundrum to the medical profession and neuroscientists. Despite neurological evidence such as parakinesia brachialis oscitans in stroke patients and thermo-irregulation in multiple sclerosis patients, there is considerable debate over the reasons for yawning with the mechanisms and hormonal pathways still not fully understood. Cortisol is implicated during yawning and may link many neurological disorders. Evidence was found in support of the Thompson cortisol hypothesis that proposes cortisol levels are elevated during yawning just as they tend to rise during stress and fatigue. OBJECTIVES To investigate whether saliva cortisol levels rise during yawning and, therefore, support the Thompson cortisol hypothesis. METHODS We exposed 20 male and female volunteers aged between 18 and 53 years to conditions that provoked a yawning response in a randomized controlled trial. Saliva samples were collected at the start and again after the yawning response, or at the end of the stimuli presentations if the participant did not yawn. In addition, we collected electromyographic data of the jaw muscles to determine rest and yawning phases of neural activity. Yawning susceptibility scale, Hospital Anxiety and Depression Scale, General Health Questionnaire, and demographic and health details were also collected from each participant. A comprehensive data set allowed comparison between yawners and nonyawners, as well as between rest and yawning phases. Collecting electromyographic data from the yawning phase is novel, and we hope this will provide new information about neuromuscular activity related to cortisol levels. Exclusion criteria included chronic fatigue, diabetes, fibromyalgia, heart conditions, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. We compared data between and within participants. RESULTS In the yawning group, there was a significant difference between saliva cortisol samples (t10 = -3.071, P = .01). Power and effect size were computed based on repeated-measures t tests for both the yawning and nonyawning groups. There was a medium effect size for the nonyawners group (r = .467) but low power (36%). Results were similar for the yawners group: medium effect size (r = .440) and low power (33%). CONCLUSIONS There was significant evidence in support of the Thompson cortisol hypothesis that suggests cortisol levels are elevated during yawning. A further longitudinal study is planned to test neurological patients. We intend to devise a diagnostic tool based on changes in cortisol levels that may assist in the early diagnosis of neurological disorders based on the data collected. TRIAL REGISTRATION International Standard Randomized Controlled Trial Number (ISRCTN): 61942768; http://www.controlled-trials.com/ISRCTN61942768/61942768 (Archived by WebCite at http://www.webcitation.org/6A75ZNYvr).
Collapse
Affiliation(s)
- Simon Bn Thompson
- Psychology Research Centre, & Dementia Institute, Bournemouth University, Poole, United Kingdom.
| | | |
Collapse
|
9
|
Schubert KO, Föcking M, Prehn JHM, Cotter DR. Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry 2012; 17:669-81. [PMID: 21986877 DOI: 10.1038/mp.2011.123] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the best-characterized mechanism governing cellular membrane and protein trafficking. In this hypothesis review, we integrate recent evidence implicating CME and related cellular trafficking mechanisms in the pathophysiology of psychotic disorders such as schizophrenia and bipolar disorder. The evidence includes proteomic and genomic findings implicating proteins and genes of the clathrin interactome. Additionally, several important candidate genes for schizophrenia, such as dysbindin, are involved in processes closely linked to CME and membrane trafficking. We discuss that key aspects of psychosis neuropathology such as synaptic dysfunction, white matter changes and aberrant neurodevelopment are all influenced by clathrin-dependent processes, and that other cellular trafficking mechanisms previously linked to psychoses interact with the clathrin interactome in important ways. Furthermore, many antipsychotic drugs have been shown to affect clathrin-interacting proteins. We propose that the targeted pharmacological manipulation of the clathrin interactome may offer fruitful opportunities for novel treatments of schizophrenia.
Collapse
Affiliation(s)
- K O Schubert
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Republic of Ireland
| | | | | | | |
Collapse
|
10
|
Wong KA, Wilson J, Russo A, Wang L, Okur MN, Wang X, Martin NP, Scappini E, Carnegie GK, O'Bryan JP. Intersectin (ITSN) family of scaffolds function as molecular hubs in protein interaction networks. PLoS One 2012; 7:e36023. [PMID: 22558309 PMCID: PMC3338775 DOI: 10.1371/journal.pone.0036023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/28/2012] [Indexed: 11/29/2022] Open
Abstract
Members of the intersectin (ITSN) family of scaffold proteins consist of multiple modular domains, each with distinct ligand preferences. Although ITSNs were initially implicated in the regulation of endocytosis, subsequent studies have revealed a more complex role for these scaffold proteins in regulation of additional biochemical pathways. In this study, we performed a high throughput yeast two-hybrid screen to identify additional pathways regulated by these scaffolds. Although several known ITSN binding partners were identified, we isolated more than 100 new targets for the two mammalian ITSN proteins, ITSN1 and ITSN2. We present the characterization of several of these new targets which implicate ITSNs in the regulation of the Rab and Arf GTPase pathways as well as regulation of the disrupted in schizophrenia 1 (DISC1) interactome. In addition, we demonstrate that ITSN proteins form homomeric and heteromeric complexes with each other revealing an added level of complexity in the function of these evolutionarily conserved scaffolds.
Collapse
Affiliation(s)
- Katy A. Wong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Jessica Wilson
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Angela Russo
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Li Wang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Mustafa Nazir Okur
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Xuerong Wang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Negin P. Martin
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Erica Scappini
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Graeme K. Carnegie
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - John P. O'Bryan
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
11
|
Parikh N, Zollanvari A, Alterovitz G. An automated bayesian framework for integrative gene expression analysis and predictive medicine. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2012; 2012:95-104. [PMID: 22779059 PMCID: PMC3392067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
MOTIVATION This work constructs a closed loop Bayesian Network framework for predictive medicine via integrative analysis of publicly available gene expression findings pertaining to various diseases. RESULTS An automated pipeline was successfully constructed. Integrative models were made based on gene expression data obtained from GEO experiments relating to four different diseases using Bayesian statistical methods. Many of these models demonstrated a high level of accuracy and predictive ability. The approach described in this paper can be applied to any complex disorder and can include any number and type of genome-scale studies.
Collapse
Affiliation(s)
- Neena Parikh
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Amin Zollanvari
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA
- Children’s Hospital Informatics Program at Harvard-MIT Division of Health Science, Boston, MA
| | - Gil Alterovitz
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA
- Children’s Hospital Informatics Program at Harvard-MIT Division of Health Science, Boston, MA
| |
Collapse
|
12
|
Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12:707-22. [PMID: 22095064 DOI: 10.1038/nrn3120] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in our understanding of the underlying genetic architecture of psychiatric disorders has blown away the diagnostic boundaries that are defined by currently used diagnostic manuals. The disrupted in schizophrenia 1 (DISC1) gene was originally discovered at the breakpoint of an inherited chromosomal translocation, which segregates with major mental illnesses. In addition, many biological studies have indicated a role for DISC1 in early neurodevelopment and synaptic regulation. Given that DISC1 is thought to drive a range of endophenotypes that underlie major mental conditions, elucidating the biology of DISC1 may enable the construction of new diagnostic categories for mental illnesses with a more meaningful biological foundation.
Collapse
|
13
|
Soares DC, Carlyle BC, Bradshaw NJ, Porteous DJ. DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness. ACS Chem Neurosci 2011; 2:609-632. [PMID: 22116789 PMCID: PMC3222219 DOI: 10.1021/cn200062k] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/05/2011] [Indexed: 01/09/2023] Open
Abstract
![]()
Disrupted in schizophrenia 1 (DISC1) is well established
as a genetic risk factor across a spectrum of psychiatric disorders,
a role supported by a growing body of biological studies, making the
DISC1 protein interaction network an attractive therapeutic target.
By contrast, there is a relative deficit of structural information
to relate to the myriad biological functions of DISC1. Here, we critically
appraise the available bioinformatics and biochemical analyses on
DISC1 and key interacting proteins, and integrate this with the genetic
and biological data. We review, analyze, and make predictions regarding
the secondary structure and propensity for disordered regions within
DISC1, its protein-interaction domains, subcellular localization motifs,
and the structural and functional implications of common and ultrarare DISC1 variants associated with major mental illness. We
discuss signaling pathways of high pharmacological potential wherein
DISC1 participates, including those involving phosphodiesterase 4
(PDE4) and glycogen synthase kinase 3 (GSK3). These predictions and
priority areas can inform future research in the translational and
potentially guide the therapeutic processes.
Collapse
Affiliation(s)
- Dinesh C. Soares
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Becky C. Carlyle
- Department of Psychiatry, Yale University School of Medicine, 300 George Street,
Suite 901, New Haven, Connecticut 06511, United States
| | - Nicholas J. Bradshaw
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - David J. Porteous
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
14
|
Porteous DJ, Millar JK, Brandon NJ, Sawa A. DISC1 at 10: connecting psychiatric genetics and neuroscience. Trends Mol Med 2011; 17:699-706. [PMID: 22015021 DOI: 10.1016/j.molmed.2011.09.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/12/2011] [Accepted: 09/20/2011] [Indexed: 11/17/2022]
Abstract
Psychiatric genetics research, as exemplified by the DISC1 gene, aspires to inform on mental health etiology and to suggest improved strategies for intervention. DISC1 was discovered in 2000 through the molecular cloning of a chromosomal translocation that segregated with a spectrum of major mental illnesses in a single large Scottish family. Through in vitro experiments and mouse models, DISC1 has been firmly established as a genetic risk factor for a spectrum of psychiatric illness. As a consequence of its protein scaffold function, the DISC1 protein impacts on many aspects of brain function, including neurosignaling and neurodevelopment. DISC1 is a pathfinder for understanding psychopathology, brain development, signaling and circuitry. Although much remains to be learnt and understood, potential targets for drug development are starting to emerge, and in this review, we will discuss the 10 years of research that has helped us understand key roles of DISC1 in psychiatric disease.
Collapse
Affiliation(s)
- David J Porteous
- Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | | | | | | |
Collapse
|