1
|
Sufiyan S, Salam H, Ilyas S, Amin W, Arshad F, Fatima K, Naeem S, Laghari AA, Enam SA, Mughal N. Prognostic implications of DNA methylation machinery (DNMTs and TETs) expression in gliomas: correlations with tumor grading and patient survival. J Neurooncol 2025:10.1007/s11060-025-05032-x. [PMID: 40208514 DOI: 10.1007/s11060-025-05032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE DNA methylation is a crucial epigenetic modification that regulates gene expression and chromatin structure. Its dysregulation is linked to glioma progression and prognosis, particularly through alterations in methylation machinery. DNMTs and TETs play key roles in these processes, but their involvement in gliomagenesis remains complex, especially in the context of IDH mutations. This study examines the expression patterns of DNMT and TET family genes in gliomas to assess their prognostic significance and therapeutic potential. MATERIALS AND METHODS mRNA expression levels of DNMT1, DNMT3A, DNMT3B, DNMT3L, TET1, TET2, TET3, and TDG were analyzed in 75 glioma samples and 10 normal controls using real-time quantitative PCR (qPCR). Statistical analyses and graphical representation were performed using R (v3.3.2) and RStudio (v1.4.1717), with p-values < 0.05 considered significant. Findings were validated using publicly available databases, TCGA and CGGA. RESULTS Compared to normal controls, DNMTs and TETs were significantly downregulated in gliomas, with expression levels inversely correlated with histological grade. Survival analysis using the log-rank test demonstrated a significant association between lower TETs and DNMTs expression and an increased risk of mortality. However, multivariate Cox regression analysis indicated that DNMTs and TETs expression were not independent prognostic markers for patient survival, suggesting their impact may be influenced by other clinical and molecular factors. Validation through online databases (TCGA and CGGA) showed that TET family expression across histological grades was consistent with our samples, whereas TDG and DNMT family expression differed. CONCLUSION Our findings suggest that DNMTs and TETs may serve as therapeutic targets in glioma due to their downregulation and association with survival, with TET family members (TET1, TET2, and TET3) validated through online databases. However, their prognostic value is limited, as other clinical and molecular factors influence patient outcomes. The downregulation of DNMTs in our samples compared to online databases can be attributed to distinct epigenetic mechanisms: in IDH-mutant gliomas, DNMT suppression results from global hypermethylation (G-CIMP) due to 2-HG accumulation, which inhibits TET enzymes and disrupts DNA methylation homeostasis. In contrast, IDH-wildtype high-grade gliomas exhibit global hypomethylation, genomic instability, oncogenic signaling, and dedifferentiation, reducing the demand for active DNA methylation maintenance. These findings underscore the complex regulation of DNMTs and TETs in gliomas and their potential therapeutic implications.
Collapse
Affiliation(s)
- Sufiyan Sufiyan
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Hira Salam
- Department of Oral Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Sahar Ilyas
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Wajiha Amin
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatima Arshad
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, 75300, Pakistan
| | | | - Sana Naeem
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Altaf Ali Laghari
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan.
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan.
| | - Nouman Mughal
- Department of Biological & Biomedical Science, Aga Khan University Hospital, Karachi, Pakistan.
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
2
|
Norollahi SE, Morovat S, Keymoradzadeh A, Hamzei A, Modaeinama M, Soleimanmanesh N, Soleimanmanesh Y, Najafizadeh A, Bakhshalipour E, Alijani B, Samadani AA. Transforming agents: The power of structural modifications in glioblastoma multiforme therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:41-56. [PMID: 39701498 DOI: 10.1016/j.pbiomolbio.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024]
Abstract
Glioblastoma (GBM) is a very deadly type of brain tumor with a poor prognosis and a short survival rate. Recent advancements in understanding GBM's molecular and genetic characteristics have led to the development of various therapeutic and diagnostic strategies. Key elements such as microRNAs, lncRNAs, exosomes, angiogenesis, and chromatin modifications are highlighted, alongside significant epigenetic alterations that impact therapy and diagnosis. Despite these advancements, molecular classifications have not improved patient outcomes due to intratumoral diversity complicating targeted therapies. In this article, it is tried to emphasize the potential of investigating the epigenetic landscape of GBM, particularly identifying patients with diffuse hypermethylation at gene promoters associated with better outcomes. Integrating epigenetic and genetic data has enhanced the identification of glioma subtypes with high diagnostic precision. The reversibility of epigenetic changes offers promising therapeutic prospects, as recent insights into the "epigenetic orchestra" suggest new avenues for innovative treatment modalities for this challenging cancer. In this review article, we focus on the roles of translational elements and their alterations in the context of GBM diagnosis and therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran; Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| | - Saman Morovat
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Arman Keymoradzadeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Hamzei
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Morteza Modaeinama
- Department of Neurosurgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ali Najafizadeh
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Elahe Bakhshalipour
- School of Paramedicine Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Alijani
- Department of Neurosurgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
3
|
Fernandez EG, Mai WX, Song K, Bayley NA, Kim J, Zhu H, Pioso M, Young P, Andrasz CL, Cadet D, Liau LM, Li G, Yong WH, Rodriguez FJ, Dixon SJ, Souers AJ, Li JJ, Graeber TG, Cloughesy TF, Nathanson DA. Integrated molecular and functional characterization of the intrinsic apoptotic machinery identifies therapeutic vulnerabilities in glioma. Nat Commun 2024; 15:10089. [PMID: 39572533 PMCID: PMC11582606 DOI: 10.1038/s41467-024-54138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
Genomic profiling often fails to predict therapeutic outcomes in cancer. This failure is, in part, due to a myriad of genetic alterations and the plasticity of cancer signaling networks. Functional profiling, which ascertains signaling dynamics, is an alternative method to anticipate drug responses. It is unclear whether integrating genomic and functional features of solid tumours can provide unique insight into therapeutic vulnerabilities. We perform combined molecular and functional characterization, via BH3 profiling of the intrinsic apoptotic machinery, in glioma patient samples and derivative models. We identify that standard-of-care therapy rapidly rewires apoptotic signaling in a genotype-specific manner, revealing targetable apoptotic vulnerabilities in gliomas containing specific molecular features (e.g., TP53 WT). However, integration of BH3 profiling reveals high mitochondrial priming is also required to induce glioma apoptosis. Accordingly, a machine-learning approach identifies a composite molecular and functional signature that best predicts responses of diverse intracranial glioma models to standard-of-care therapies combined with ABBV-155, a clinical drug targeting intrinsic apoptosis. This work demonstrates how complementary functional and molecular data can robustly predict therapy-induced cell death.
Collapse
Affiliation(s)
- Elizabeth G Fernandez
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Wilson X Mai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kai Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiyoon Kim
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, Los Angeles, California, USA
| | - Henan Zhu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marissa Pioso
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Pauline Young
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Cassidy L Andrasz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles, CA, 90095-7088, USA
| | - Dimitri Cadet
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Linda M Liau
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gang Li
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, Los Angeles, California, USA
| | - William H Yong
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fausto J Rodriguez
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Andrew J Souers
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Jingyi Jessica Li
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, 90095-7088, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095-1766, USA
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095-1554, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Metabolomics Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy F Cloughesy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Liao X, Zhang S, Li X, Qian W, Li M, Chen S, Wu X, Yu X, Li Z, Tang M, Xu Y, Yu R, Zhang Q, Wu G, Zhang N, Song L, Li J. Dynamic structural remodeling of LINC01956 enhances temozolomide resistance in MGMT-methylated glioblastoma. Sci Transl Med 2024; 16:eado1573. [PMID: 39356744 DOI: 10.1126/scitranslmed.ado1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
The mechanisms underlying stimuli-induced dynamic structural remodeling of RNAs for the maintenance of cellular physiological function and survival remain unclear. Here, we showed that in MGMT promoter-methylated glioblastoma (GBM), the RNA helicase DEAD-box helicase 46 (DDX46) is phosphorylated by temozolomide (TMZ)-activated checkpoint kinase 1 (CHK1), resulting in a dense-to-loose conformational change and an increase in DDX46 helicase activity. DDX46-mediated tertiary structural remodeling of LINC01956 exposes the binding motifs of LINC01956 to the 3' untranslated region of O6-methylguanine DNA methyltransferase (MGMT). This accelerates recruitment of MGMT mRNA to the RNA export machinery and transportation of MGMT mRNA from the nucleus to the cytoplasm, leading to increased MGMT abundance and TMZ resistance. Using patient-derived xenograft (PDX) and tumor organoid models, we found that treatment with the CHK1 inhibitor SRA737abolishes TMZ-induced structural remodeling of LINC01956 and subsequent MGMT up-regulation, resensitizing TMZ-resistant MGMT promoter-methylated GBM to TMZ. In conclusion, these findings highlight a mechanism underlying temozolomide-induced RNA structural remodeling and may represent a potential therapeutic strategy for patients with TMZ-resistant MGMT promoter-methylated GBM.
Collapse
Affiliation(s)
- Xinyi Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Shuxia Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xincheng Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Wanying Qian
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Man Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Suwen Chen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xingui Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Xuexin Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ziwen Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Miaoling Tang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Yingru Xu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Ruyuan Yu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Qiliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Geyan Wu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangdong 510080, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
| | - Jun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangdong 510060, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
| |
Collapse
|
5
|
Yousefi Y, Nejati R, Eslahi A, Alizadeh F, Farrokhi S, Asoodeh A, Mojarrad M. Enhancing Temozolomide (TMZ) chemosensitivity using CRISPR-dCas9-mediated downregulation of O 6-methylguanine DNA methyltransferase (MGMT). J Neurooncol 2024; 169:129-135. [PMID: 38762829 DOI: 10.1007/s11060-024-04708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE Glioblastoma (GBM) stands out as the most prevalent and aggressive intracranial tumor, notorious for its poor prognosis. The current standard-of-care for GBM patients involves surgical resection followed by radiotherapy, combined with concurrent and adjuvant chemotherapy using Temozolomide (TMZ). The effectiveness of TMZ primarily relies on the activity of O6-methylguanine DNA methyltransferase (MGMT), which removes alkyl adducts from the O6 position of guanine at the DNA level, thereby counteracting the toxic effects of TMZ. METHOD In this study, we employed fusions of catalytically-inactive Cas9 (dCas9) to DNA methyltransferases (dCas9-DNMT3A) to selectively downregulation MGMT transcription by inducing methylation at MGMT promoter and K-M enhancer. RESULT Our findings demonstrate a significant reduction in MGMT expression, leading to intensified TMZ sensitivity in the HEK293T cell line. CONCLUSION This study serves as a proof of concept for the utilization of CRISPR-based gene suppression to overcome TMZ resistance and enhance the lethal effect of TMZ in glioblastoma tumor cells.
Collapse
Affiliation(s)
- Yasamin Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Temple University Health System, 19111, Philadelphia, PA, USA
| | - Atiye Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Farrokhi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Ayan S, Rotaru AM, Kaye EG, Juneau G, Das S, Wilds CJ, Beharry AA. A chloromethyl-triazole fluorescent chemosensor for O 6-methylguanine DNA methyltransferase. Org Biomol Chem 2024; 22:2749-2753. [PMID: 38502038 DOI: 10.1039/d4ob00120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Fluorescent chemosensors offer a direct means of measuring enzyme activity for cancer diagnosis, predicting drug resistance, and aiding in the discovery of new anticancer drugs. O6-methylguanine DNA methyltransferase (MGMT) is a predictor of resistance towards anticancer alkylating agents such as temozolomide. Using the fluorescent molecular rotor, 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ), we synthesized, and evaluated a MGMT fluorescent chemosensor derived from a chloromethyl-triazole covalent inhibitor, AA-CW236, a non-pseudosubstrate of MGMT. Our fluorescence probe covalently labelled the MGMT active site C145, producing a 18-fold increase in fluorescence. Compared to previous fluorescent probes derived from a substrate-based inhibitor, our probe had improved binding and reaction rate. Overall, our chloromethyl triazole-based fluorescence MGMT probe is a promising tool for measuring MGMT activity to predict temozolomide resistance.
Collapse
Affiliation(s)
- Seylan Ayan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| | - Adrian M Rotaru
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| | - Esther G Kaye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| | - Gabrielle Juneau
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St W., Montréal, Québec, H4B 1R6, Canada
| | - Sunit Das
- Keenan Chair in Surgery, Division of Neurosurgery, St Michael's Hospital, University of Toronto, Ontario, M5B 1W8, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St W., Montréal, Québec, H4B 1R6, Canada
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada.
| |
Collapse
|
7
|
Gonzalez-Aponte MF, Damato AR, Trebucq LL, Simon T, Cárdenas-García SP, Cho K, Patti GJ, Golombek DA, Chiesa JJ, Rubin JB, Herzog ED. Circadian regulation of MGMT expression and promoter methylation underlies daily rhythms in TMZ sensitivity in glioblastoma. J Neurooncol 2024; 166:419-430. [PMID: 38277015 PMCID: PMC11301575 DOI: 10.1007/s11060-023-04535-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.
Collapse
Affiliation(s)
| | - Anna R Damato
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Lucía Trebucq
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Tatiana Simon
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Kevin Cho
- Departments of Chemistry and Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J Patti
- Departments of Chemistry and Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
| | - Diego A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
- Laboratorio Interdisciplinario del Tiempo (LITERA), Universidad de San Andrés, B1644BID, Victoria, Buenos Aires, Argentina
| | - Juan José Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
8
|
Zappe K, Pühringer K, Pflug S, Berger D, Weis S, Spiegl-Kreinecker S, Cichna-Markl M. Association of MGMT Promoter and Enhancer Methylation with Genetic Variants, Clinical Parameters, and Demographic Characteristics in Glioblastoma. Cancers (Basel) 2023; 15:5777. [PMID: 38136323 PMCID: PMC10742072 DOI: 10.3390/cancers15245777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The response of glioblastoma (GBM) patients to the alkylating agent temozolomide (TMZ) vitally depends on the expression level of the repair protein O6-methylguanine-DNA methyltransferase (MGMT). Since MGMT is strongly regulated by promoter methylation, the methylation status of the MGMT promoter has emerged as a prognostic and predictive biomarker for GBM patients. By determining the methylation levels of the four enhancers located within or close to the MGMT gene, we recently found that enhancer methylation contributes to MGMT regulation. In this study, we investigated if methylation of the four enhancers is associated with SNP rs16906252, TERT promoter mutations C228T and C250T, TERT SNP rs2853669, proliferation index Ki-67, overall survival (OS), age, and sex of the patients. In general, associations with genetic variants, clinical parameters, and demographic characteristics were caused by a complex interplay of multiple CpGs in the MGMT promoter and of multiple CpGs in enhancer regions. The observed associations for intragenic enhancer 4, located in intron 2 of MGMT, differed from associations observed for the three intergenic enhancers. Some findings were restricted to subgroups of samples with either methylated or unmethylated MGMT promoters, underpinning the relevance of the MGMT promoter status in GBMs.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Katharina Pühringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Simon Pflug
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Daniel Berger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| |
Collapse
|
9
|
Zappe K, Pühringer K, Pflug S, Berger D, Böhm A, Spiegl-Kreinecker S, Cichna-Markl M. Association between MGMT Enhancer Methylation and MGMT Promoter Methylation, MGMT Protein Expression, and Overall Survival in Glioblastoma. Cells 2023; 12:1639. [PMID: 37371109 DOI: 10.3390/cells12121639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The repair protein O6-methylguanine-DNA methyltransferase (MGMT) is regulated epigenetically, mainly by the methylation of the MGMT promoter. MGMT promoter methylation status has emerged as a prognostic and predictive biomarker for patients with newly diagnosed glioblastoma (GBM). However, a strong negative correlation between MGMT promoter methylation and MGMT protein expression cannot be applied as a rule for all GBM patients. In order to investigate if the DNA methylation status of MGMT enhancers is associated with MGMT promoter methylation, MGMT expression, and the overall survival (OS) of GBM patients, we established assays based on high-resolution melting analysis and pyrosequencing for one intragenic and three intergenic MGMT enhancers. For CpGs in an enhancer located 560 kb upstream of the MGMT promoter, we found a significant negative correlation between the methylation status and MGMT protein levels of GBM samples expressing MGMT. The methylation status of CpGs in the intragenic enhancer (hs696) was strongly negatively correlated with MGMT promoter methylation and was significantly higher in MGMT-expressing GBM samples than in MGMT-non-expressing GBM samples. Moreover, low methylation of CpGs 01-03 and CpGs 09-13 was associated with the longer OS of the GBM patients. Our findings indicate an association between MGMT enhancer methylation and MGMT promoter methylation, MGMT protein expression, and/or OS.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Katharina Pühringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Simon Pflug
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Daniel Berger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Andreas Böhm
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
Temozolomide combined with ipilimumab plus nivolumab enhances T cell killing of MGMT-expressing, MSS colorectal cancer cells. Am J Cancer Res 2023; 13:216-226. [PMID: 36777499 PMCID: PMC9906078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 02/14/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer and third-deadliest cancer globally. Over 95% of patients with metastatic CRC have tumors that are microsatellite stable (MSS) and do not respond to immune checkpoint inhibitors (ICI). Results from the 2022 MAYA clinical trial suggest that the DNA-damaging agent temozolomide (TMZ), which is usually used to treat glioblastoma (GBM), sensitizes patients with MSS, MGMT-silenced CRC to ipilimumab + nivolumab ICI. The benefit of adding ipilimumab + nivolumab to TMZ and the impact of MGMT silencing remain unclear. Here, we aimed to determine in a controlled in vitro system if adding ICI to TMZ enhances T cell killing of MSS CRC cells. We also aimed to determine the contribution of MGMT to this response. Western blot analysis indicated that CRC cells (n = 4) had significantly elevated MGMT expression as compared to GBM cells (n = 4) likely due to MGMT promoter methylation in GBM cells. In line with this, CRC cells were slightly more resistant to TMZ compared to GBM cells after five days of treatment. TMZ + ICI sensitized MGMT-expressing, MSS CRC cells to T cell killing. TMZ alone did not enhance T cell killing of MSS or MSI CRC cells but did slightly enhance T cell killing of T98G GBM cells. Our results indicate that TMZ sensitizes MSS, MGMT-expressing CRC cells to ipilimumab + nivolumab ICI. Importantly, this suggests that TMZ-mediated sensitization to ipilimumab + nivolumab appears independent of MGMT status and the patient cohort that may benefit from TMZ + ipilimumab + nivolumab may be expanded to CRC patients with MGMT-expressing, MSS tumors.
Collapse
|
11
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
MGMT Promoter Methylation as a Prognostic Factor in Primary Glioblastoma: A Single-Institution Observational Study. Biomedicines 2022; 10:biomedicines10082030. [PMID: 36009577 PMCID: PMC9405779 DOI: 10.3390/biomedicines10082030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most malignant central nervous system tumor, which represents 50% of all glial tumors. The understanding of glioma genesis, prognostic evaluation, and treatment planning has been significantly enhanced by the discovery of molecular genetic biomarkers. This study aimed to evaluate survival in patients with primary glioblastoma concerning O6-methylguanine–DNA methyltransferase (MGMT) promoter methylation and other clinical factors. The study included 41 newly diagnosed glioblastoma patients treated from 2011 to 2014 in the 10th Military Research Hospital and Polyclinic, Poland. All patients underwent surgical resection followed by radiation and chemotherapy with alkylating agents. The MGMT promoter methylation was evaluated in all patients, and 43% were found to be methylated. In 26 and 15 cases, gross total resection and subtotal resection were conducted, respectively. Patients with a methylated MGMT promoter had a median survival of 504 days, while those without methylation had a median survival of 329 days. The group that was examined had a median age of 53. In a patient group younger than 53 years, those with methylation had significantly longer overall survival (639 days), compared to 433.5 days for patients without methylation. The most prolonged survival (551 days) was in patients with MGMT promoter methylation after gross total resection. The value of MGMT promoter methylation as a predictive biomarker is widely acknowledged. However, its prognostic significance remains unclear. Our findings proved that MGMT promoter methylation is also an essential positive prognostic biomarker.
Collapse
|
13
|
Lavogina D, Laasfeld T, Vardja M, Lust H, Jaal J. Viability fingerprint of glioblastoma cell lines: roles of mitotic, proliferative, and epigenetic targets. Sci Rep 2021; 11:20338. [PMID: 34645858 PMCID: PMC8514540 DOI: 10.1038/s41598-021-99630-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
Despite the use of multimodal treatment combinations, the prognosis of glioblastoma (GB) is still poor. To prevent rapid tumor recurrence, targeted strategies for the treatment of GB are widely sought. Here, we compared the efficacy of focused modulation of a set of signaling pathways in two GB cell lines, U-251 MG and T98-G, using a panel of thirteen compounds targeting cell cycle progression, proliferation, epigenetic modifications, and DNA repair mechanism. In parallel, we tested combinations of these compounds with temozolomide and lomustine, the standard chemotherapy agents used in GB treatment. Two major trends were found: within individual compounds, the lowest IC50 values were exhibited by the Aurora kinase inhibitors, whereas in the case of mixtures, the addition of DNA methyltransferase 1 inhibitor azacytidine to lomustine proved the most beneficial. The efficacy of cell cycle-targeting compounds was further augmented by combination with radiation therapy using two different treatment regimes. The potency of azacytidine and lomustine mixtures was validated using a unique assay pipeline that utilizes automated imaging and machine learning-based data analysis algorithm for assessment of cell number and DNA damage extent. Based on our results, the combination of azacytidine and lomustine should be tested in GB clinical trials.
Collapse
Affiliation(s)
- Darja Lavogina
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia ,grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Tõnis Laasfeld
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Tartu, Estonia ,grid.10939.320000 0001 0943 7661Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Markus Vardja
- grid.412269.a0000 0001 0585 7044Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| | - Helen Lust
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia
| | - Jana Jaal
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia ,grid.412269.a0000 0001 0585 7044Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
14
|
Ortiz R, Perazzoli G, Cabeza L, Jiménez-Luna C, Luque R, Prados J, Melguizo C. Temozolomide: An Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications. Curr Neuropharmacol 2021; 19:513-537. [PMID: 32589560 PMCID: PMC8206461 DOI: 10.2174/1570159x18666200626204005] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/22/2022] Open
Abstract
Temozolomide (TMZ), an oral alkylating prodrug which delivers a methyl group to purine bases of DNA (O6-guanine; N7-guanine and N3-adenine), is frequently used together with radiotherapy as part of the first-line treatment of high-grade gliomas. The main advantages are its high oral bioavailability (almost 100% although the concentration found in the cerebrospinal fluid was approximately 20% of the plasma concentration of TMZ), its lipophilic properties, and small size that confer the ability to cross the blood-brain barrier. Furthermore, this agent has demonstrated activity not only in brain tumors but also in a variety of solid tumors. However, conventional therapy using surgery, radiation, and TMZ in glioblastoma results in a median patient survival of 14.6 months. Treatment failure has been associated with tumor drug resistance. This phenomenon has been linked to the expression of O6-methylguanine-DNA methyltransferase, but the mismatch repair system and the presence of cancer stem-like cells in tumors have also been related to TMZ resistance. The understanding of these mechanisms is essential for the development of new therapeutic strategies in the clinical use of TMZ, including the use of nanomaterial delivery systems and the association with other chemotherapy agents. The aim of this review is to summarize the resistance mechanisms of TMZ and the current advances to improve its clinical use.
Collapse
Affiliation(s)
- Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | | | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | - Cristina Jiménez-Luna
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges 1066, Switzerland
| | - Raquel Luque
- Medical Oncology Service, Virgen de las Nieves Hospital, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Centre (CIBM), University of Granada, Spain
| |
Collapse
|
15
|
Lasri A, Sturrock M. The influence of methylation status on a stochastic model of MGMT dynamics in glioblastoma: Phenotypic selection can occur with and without a downshift in promoter methylation status. J Theor Biol 2021; 521:110662. [PMID: 33684406 DOI: 10.1016/j.jtbi.2021.110662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023]
Abstract
Glioblastoma originates in the brain and is one of the most aggressive cancer types. Glioblastoma represents 15% of all brain tumours, with a median survival of 15 months. Although the current standard of care for such a tumour (the Stupp protocol) has shown positive results for the prognosis of patients, O-6-methylguanine-DNA methyltransferase (MGMT) driven drug resistance has been an issue of increasing concern and hence requires innovative approaches. In addition to the well established drug resistance factors such as tumour location and blood brain barriers, it is also important to understand how the genetic and epigenetic dynamics of the glioblastoma cells can play a role. One important aspect of this is the study of methylation status of MGMT following administration of temozolomide. In this paper, we extend our previously published model that simulated MGMT expression in glioblastoma cells to incorporate the promoter methylation status of MGMT. This methylation status has clinical significance and is used as a marker for patient outcomes. Using this model, we investigate the causative relationship between temozolomide treatment and the methylation status of the MGMT promoter in a population of cells. In addition by constraining the model to relevant biological data using Approximate Bayesian Computation, we were able to identify parameter regimes that yield different possible modes of resistances, namely, phenotypic selection of MGMT, a downshift in the methylation status of the MGMT promoter or both simultaneously. We analysed each of the parameter sets associated with the different modes of resistance, presenting representative solutions as well as discovering some similarities between them as well as unique requirements for each of them. Finally, we used them to devise optimal strategies for inhibiting MGMT expression with the aim of minimising live glioblastoma cell numbers.
Collapse
Affiliation(s)
- Ayoub Lasri
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York house, Dublin, Ireland.
| | - Marc Sturrock
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York house, Dublin, Ireland
| |
Collapse
|
16
|
Low MGMT digital expression is associated with a better outcome of IDH1 wildtype glioblastomas treated with temozolomide. J Neurooncol 2021; 151:135-144. [PMID: 33400009 DOI: 10.1007/s11060-020-03675-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the deadliest primary brain tumor. The standard treatment consists of surgery, radiotherapy, and temozolomide (TMZ). TMZ response is heterogeneous, and MGMT promoter (MGMTp) methylation has been the major predictive biomarker. We aimed to describe the clinical and molecular data of GBMs treated with TMZ, compare MGMT methylation with MGMT expression, and further associate with patient's outcome. METHODS We evaluate 112 FFPE adult GBM cases. IDH1 and ATRX expression was analyzed by immunohistochemistry, hotspot TERT promoter (TERTp) mutations were evaluated by Sanger or pyrosequencing, and MGMTp methylation was assessed by pyrosequencing and MGMT mRNA expression using the nCounter® Vantage 3D™ DNA damage and repair panel. RESULTS Of the 112 GBMs, 96 were IDH1WT, and 16 were IDH1MUT. Positive ATRX expression was found in 91.6% (88/96) of IDHWT and 43.7% (7/16) of IDHMUT. TERTp mutations were detected in 70.4% (50/71) of IDHWT. MGMTp methylation was found in 55.5% (35/63) of IDHWT and 84.6% (11/13) of IDHMUT, and as expected, MGMTp methylation was significantly associated with a better response to TMZ. MGMT expression was inversely correlated with MGMTp methylation levels (- 0.506, p < 0.0001), and MGMT low expression were significantly associated with better patient survival. It was also observed that integrating MGMTp methylation and expression, significantly improved the prognostication value. CONCLUSIONS MGMT mRNA levels evaluated by digital expression were associated with the outcome of TMZ-treated GBM patients. The combination of MGMT methylation and mRNA expression may provide a more accurate prediction of TMZ response in GBM patients.
Collapse
|
17
|
Tanaka S, Akimoto J, Narita Y. Determination of the cutoff point of the absolute value of MGMTmRNA for predicting the therapeutic resistance to temozolomide in glioblastoma. J Neurosurg Sci 2020; 64:434-439. [PMID: 33236861 DOI: 10.23736/s0390-5616.17.04209-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND We previously reported that the absolute value of O<sup>6</sup>-methylguanine-DNA methyltransferase (MGMT) messenger RNA (mRNA) obtained using real-time reverse transcription polymerase chain reaction (RT-PCR) might be useful for predicting both the prognosis and the results of therapy for glioblastoma (GB) treated by temozolomide (TMZ). METHODS MGMT mRNA was measured in 55 newly diagnosed cases of GB less than 75 and had a Karnofsky performance status (KPS) of at least 60 by real-time reverse transcription polymerase chain reaction (RT-PCR) using the TaqMan probe. A receiver operating characteristic analysis was performed to determine the cutoff points for progression free survival (PFS) and overall survival (OS). RESULTS In 55 patients with GB, 1200 and 3600 for PFS, 1200, 2100 and 2900 copies/μgRNA for OS were the candidate cutoff points. Significantly longer PFS and OS were observed in patients who did not exceed 1200 copies/μg RNA. CONCLUSIONS One thousand and two hundred copies/μg RNA appeared to be the most reasonable cutoff point of MGMTmRNA in GB for deciding to use other anti-tumor drugs such as Bevacizumab together with TMZ.
Collapse
Affiliation(s)
- Satoshi Tanaka
- Department of Neuro-Oncology and Neurosurgery, Tokyo Nishi Tokushukai Hospital, Akishima, Japan -
| | - Jiro Akimoto
- Department of Neurosurgery, Tokyo Medical University Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Division of Neurosurgery, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
18
|
Xing X, He Z, Wang Z, Mo Z, Chen L, Yang B, Zhang Z, Chen S, Ye L, Zhang R, Zheng Y, Chen W, Li D. Association between H3K36me3 modification and methylation of LINE-1 and MGMT in peripheral blood lymphocytes of PAH-exposed workers. Toxicol Res (Camb) 2020; 9:661-668. [PMID: 33178426 DOI: 10.1093/toxres/tfaa074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 01/24/2023] Open
Abstract
To explore the epigenetic alterations in response to DNA damage following polycyclic aromatic hydrocarbons (PAHs) exposure and the crosstalk between different epigenetic regulations, we examined trimethylated Lys 36 of histone H3 (H3K36me3) and methylation of 'long interspersed element-1 (LINE-1)' and 'O 6-methylguanine-DNA methyltransferase (MGMT)' in peripheral blood lymphocytes (PBLCs) of 173 coke oven workers (PAH-exposed group) and 94 non-exposed workers (control group). The PAH-exposed group showed higher internal PAH exposure level, enhanced DNA damage and increased MGMT expression (all P < 0.001). Notably, the methylation of LINE-1 and MGMT decreased by 3.9 and 40.8%, respectively, while H3K36me3 level was 1.7 times higher in PBLCs of PAH-exposed group compared to control group (all P < 0.001). These three epigenetic marks were significantly associated with DNA damage degree (all P < 0.001) and PAH exposure level in a dose-response manner (all P < 0.001). LINE-1 hypomethylation is correlated with enhanced H3K36me3 modification (β = -0.198, P = 0.002), indicating a synergistic effect between histone modification and DNA methylation at the whole genome level. In addition, MGMT expression was positively correlated with H3K36me3 modification (r = 0.253, P < 0.001), but not negatively correlated with MGMT methylation (r = 0.202, P < 0.05). The in vitro study using human bronchial epithelial cells treated with the organic extract of coke oven emissions confirmed that H3K36me3 is important for MGMT expression following PAH exposure. In summary, our study indicates that histone modification and DNA methylation might have synergistic effects on DNA damage induced by PAH exposure at the whole genome level and H3K36me3 is more essential for MGMT expression during the course.
Collapse
Affiliation(s)
- Xiumei Xing
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhini He
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziwei Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ziying Mo
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Boyi Yang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhengbao Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Lizhu Ye
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University 38 Dengzhou Road, Qingdao 266021, China
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
19
|
Rahimi Koshkaki H, Minasi S, Ugolini A, Trevisi G, Napoletano C, Zizzari IG, Gessi M, Giangaspero F, Mangiola A, Nuti M, Buttarelli FR, Rughetti A. Immunohistochemical Characterization of Immune Infiltrate in Tumor Microenvironment of Glioblastoma. J Pers Med 2020; 10:112. [PMID: 32899203 PMCID: PMC7564919 DOI: 10.3390/jpm10030112] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant brain cancer in adults, with very limited therapeutic options. It is characterized by a severe immunosuppressive milieu mostly triggered by suppressive CD163+ tumor-associated macrophages (TAMs). The efficacy of immune checkpoint inhibitor interventions aimed at rescuing anti-tumor immunity has not been proved to date. Thus, it is critically important to investigate the immunomodulatory mechanisms acting within the GBM microenvironment for the better design of immunotherapeutic strategies. METHODS The immunohistochemical analysis of a panel of immune biomarkers (CD3, FoxP3, CD163, IDO, PDL-1, PD-1 and TIGIT) was performed in paired samples of the tumor core (TC) and peritumoral area (PTA) of nine GBM patients. RESULTS CD163+ cells were the most common cell type in both the PTA and TC. IDO and PDL-1 were expressed in most of the TC samples, frequently accompanied by TIGIT expression; on the contrary, they were almost absent in the PTA. CD3+ cells were present in both the TC and PTA, to a lesser extent than CD163+ cells; they often were accompanied by PD-1 expression, especially in the TC. FoxP3 was scarcely present. CONCLUSION Distinct inhibitory mechanisms can act simultaneously in both the TC and PTA to contribute to the strong immunosuppression observed within the GBM microenvironment. Nevertheless, the PTA shows strongly reduced immunosuppression when compared to the TC, thus representing a potential target for immunotherapies. Moreover, our results support the working hypothesis that immunosuppression and T-cell exhaustion can be simultaneously targeted to rescue anti-tumor immunity in GBM patients.
Collapse
Affiliation(s)
- Hassan Rahimi Koshkaki
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| | - Simone Minasi
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (S.M.); (F.G.); (F.R.B.)
| | - Alessio Ugolini
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| | - Gianluca Trevisi
- Neurosurgical Unit, Ospedale Santo Spirito, Via Fonte Romana, 8-65124 Pescara, Italy; (G.T.); (A.M.)
| | - Chiara Napoletano
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| | - Ilaria G. Zizzari
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| | - Marco Gessi
- Neuropathology Unit, Department of Pathology Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy;
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (S.M.); (F.G.); (F.R.B.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Annunziato Mangiola
- Neurosurgical Unit, Ospedale Santo Spirito, Via Fonte Romana, 8-65124 Pescara, Italy; (G.T.); (A.M.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University, via dei Vestini, 32-66013 Chieti, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| | - Francesca R. Buttarelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (S.M.); (F.G.); (F.R.B.)
| | - Aurelia Rughetti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| |
Collapse
|
20
|
Oldrini B, Vaquero-Siguero N, Mu Q, Kroon P, Zhang Y, Galán-Ganga M, Bao Z, Wang Z, Liu H, Sa JK, Zhao J, Kim H, Rodriguez-Perales S, Nam DH, Verhaak RGW, Rabadan R, Jiang T, Wang J, Squatrito M. MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas. Nat Commun 2020; 11:3883. [PMID: 32753598 PMCID: PMC7403430 DOI: 10.1038/s41467-020-17717-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 07/16/2020] [Indexed: 12/21/2022] Open
Abstract
Temozolomide (TMZ) is an oral alkylating agent used for the treatment of glioblastoma and is now becoming a chemotherapeutic option in patients diagnosed with high-risk low-grade gliomas. The O-6-methylguanine-DNA methyltransferase (MGMT) is responsible for the direct repair of the main TMZ-induced toxic DNA adduct, the O6-Methylguanine lesion. MGMT promoter hypermethylation is currently the only known biomarker for TMZ response in glioblastoma patients. Here we show that a subset of recurrent gliomas carries MGMT genomic rearrangements that lead to MGMT overexpression, independently from changes in its promoter methylation. By leveraging the CRISPR/Cas9 technology we generated some of these MGMT rearrangements in glioma cells and demonstrated that the MGMT genomic rearrangements contribute to TMZ resistance both in vitro and in vivo. Lastly, we showed that such fusions can be detected in tumor-derived exosomes and could potentially represent an early detection marker of tumor recurrence in a subset of patients treated with TMZ.
Collapse
Affiliation(s)
- Barbara Oldrini
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Nuria Vaquero-Siguero
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Quanhua Mu
- Division of Life Science, Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Paula Kroon
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Ying Zhang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, China
| | - Marcos Galán-Ganga
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Zhaoshi Bao
- Division of Life Science, Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.,Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, China
| | - Hanjie Liu
- Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, China
| | - Jason K Sa
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06531, Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Hoon Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06531, Korea
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, China.
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, Center of Systems Biology and Human Health and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, CNIO, 28029, Madrid, Spain.
| |
Collapse
|
21
|
Lasri A, Juric V, Verreault M, Bielle F, Idbaih A, Kel A, Murphy B, Sturrock M. Phenotypic selection through cell death: stochastic modelling of O-6-methylguanine-DNA methyltransferase dynamics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191243. [PMID: 32874597 PMCID: PMC7428254 DOI: 10.1098/rsos.191243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 06/17/2020] [Indexed: 05/11/2023]
Abstract
Glioblastoma (GBM) is the most aggressive malignant primary brain tumour with a median overall survival of 15 months. To treat GBM, patients currently undergo a surgical resection followed by exposure to radiotherapy and concurrent and adjuvant temozolomide (TMZ) chemotherapy. However, this protocol often leads to treatment failure, with drug resistance being the main reason behind this. To date, many studies highlight the role of O-6-methylguanine-DNA methyltransferase (MGMT) in conferring drug resistance. The mechanism through which MGMT confers resistance is not well studied-particularly in terms of computational models. With only a few reasonable biological assumptions, we were able to show that even a minimal model of MGMT expression could robustly explain TMZ-mediated drug resistance. In particular, we showed that for a wide range of parameter values constrained by novel cell growth and viability assays, a model accounting for only stochastic gene expression of MGMT coupled with cell growth, division, partitioning and death was able to exhibit phenotypic selection of GBM cells expressing MGMT in response to TMZ. Furthermore, we found this selection allowed the cells to pass their acquired phenotypic resistance onto daughter cells in a stable manner (as long as TMZ is provided). This suggests that stochastic gene expression alone is enough to explain the development of chemotherapeutic resistance.
Collapse
Affiliation(s)
- Ayoub Lasri
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin, Ireland
| | - Viktorija Juric
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin, Ireland
| | - Maité Verreault
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France
| | - Franck Bielle
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Alexander Kel
- Department of Research and Development, geneXplain GmbH, Wolfenbüttel 38302, Germany
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Brona Murphy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin, Ireland
| | - Marc Sturrock
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York House, Dublin, Ireland
| |
Collapse
|
22
|
Kirstein A, Schmid TE, Combs SE. The Role of miRNA for the Treatment of MGMT Unmethylated Glioblastoma Multiforme. Cancers (Basel) 2020; 12:cancers12051099. [PMID: 32354046 PMCID: PMC7281574 DOI: 10.3390/cancers12051099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common high-grade intracranial tumor in adults. It is characterized by uncontrolled proliferation, diffuse infiltration due to high invasive and migratory capacities, as well as intense resistance to chemo- and radiotherapy. With a five-year survival of less than 3% and an average survival rate of 12 months after diagnosis, GBM has become a focus of current research to urgently develop new therapeutic approaches in order to prolong survival of GBM patients. The methylation status of the promoter region of the O6-methylguanine–DNA methyltransferase (MGMT) is nowadays routinely analyzed since a methylated promoter region is beneficial for an effective response to temozolomide-based chemotherapy. Furthermore, several miRNAs were identified regulating MGMT expression, apart from promoter methylation, by degrading MGMT mRNA before protein translation. These miRNAs could be a promising innovative treatment approach to enhance Temozolomide (TMZ) sensitivity in MGMT unmethylated patients and to increase progression-free survival as well as long-term survival. In this review, the relevant miRNAs are systematically reviewed.
Collapse
Affiliation(s)
- Anna Kirstein
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Stephanie E. Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4501
| |
Collapse
|
23
|
Hübner M, Moellhoff N, Effinger D, Hinske CL, Hirschberger S, Wu T, Müller MB, Strauß G, Kreth FW, Kreth S. MicroRNA-93 acts as an "anti-inflammatory tumor suppressor" in glioblastoma. Neurooncol Adv 2020; 2:vdaa047. [PMID: 32642700 PMCID: PMC7282490 DOI: 10.1093/noajnl/vdaa047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Inflammation is an important driver of malignant glioma disease. Inflammatory mediators are not only produced by immune cells in the tumor microenvironment, but also by glioblastoma (GBM) cells themselves creating a mutually reinforcing loop. We here aimed at identifying an “anti-inflammatory switch” that allows to dampen inflammation in GBM. Methods We used human GBM specimens, primary cultures, and cell lines. The response of GBM cells toward inflammatory stimuli was tested by incubation with supernatant of stimulated human immune cells. Expression levels were measured by whole transcriptome microarrays and qRT-PCR, and protein was quantified by LUMINEX and SDS-PAGE. MicroRNA binding to 3′UTRs was analyzed by luciferase assays. Proliferation rates were determined by flow cytometry, and invasion and angiogenesis were studied using migration and endothelial tube formation assays. Results We demonstrated GBM cells to secrete high amounts of proinflammatory mediators in an inflammatory microenvironment. We found miR-93 as a potential “anti-inflammatory tumor suppressor” dramatically downregulated in GBM. Concordantly, cytokine secretion dropped after miR-93 re-expression. Transfection of miR-93 in GBM cells led to down-regulation of hubs of the inflammatory networks, namely, HIF-1α and MAP3K2 as well as IL-6, G-CSF, IL-8, LIF, IL-1β, COX2, and CXCL5. We showed only COX2 and CXCL5 to be indirectly regulated by miR-93 while all other genes are true targets. Phenotypically, re-expression of miR-93 in GBM cells substantially suppressed proliferation, migration, and angiogenesis. Conclusions Alleviating GBM-derived inflammation by re-expression of miR-93 may be a powerful tool to mitigate these tumors’ aggressiveness and holds promise for new clinical approaches.
Collapse
Affiliation(s)
- Max Hübner
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.,Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - David Effinger
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.,Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Simon Hirschberger
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.,Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Tingting Wu
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Martin Bernhard Müller
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.,Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Gabriele Strauß
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.,Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Simone Kreth
- Walter-Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany.,Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
24
|
Butler M, Pongor L, Su YT, Xi L, Raffeld M, Quezado M, Trepel J, Aldape K, Pommier Y, Wu J. MGMT Status as a Clinical Biomarker in Glioblastoma. Trends Cancer 2020; 6:380-391. [PMID: 32348734 DOI: 10.1016/j.trecan.2020.02.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022]
Abstract
Glioblastoma is the most common primary malignant brain tumor. Although current standard therapy extends median survival to ~15 months, most patients do not have a sustained response to treatment. While O6-methylguanine (O6-MeG)-DNA methyltransferase (MGMT) promoter methylation status is accepted as a prognostic and promising predictive biomarker in glioblastoma, its value in informing treatment decisions for glioblastoma patients remains debatable. Discrepancies between MGMT promoter methylation status and treatment response in some patients may stem from inconsistencies between MGMT methylation and expression levels in glioblastoma. Here, we discuss MGMT as a biomarker and elucidate the discordance between MGMT methylation, expression, and patient outcome, which currently challenges the implementation of this biomarker in clinical practice.
Collapse
Affiliation(s)
- Madison Butler
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yu-Ting Su
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Liqiang Xi
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jane Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Vatrano S, Giorcelli J, Votta A, Capone G, Izzo S, Gatti G, Righi L, Napoli F, Scagliotti G, Papotti M, Volante M, Rapa I. Multiple Assays to Determine Methylguanine-Methyltransferase Status in Lung Carcinoids and Correlation with Clinical and Pathological Features. Neuroendocrinology 2020; 110:1-9. [PMID: 31280263 DOI: 10.1159/000500158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND O6-methylguanine-methyltransferase (MGMT) is a key enzyme for the DNA repair machinery strongly associated with response to alkylating agents in different tumors. Data on its expression and related clinical impact in neuroendocrine tumors are limited to the gastro-entero-pancreatic system, with controversial results in terms of prognostic or predictive value. In lung carcinoids, although clinical efficacy of alkylating agents has been shown in small studies, very few data to date are available on MGMT status. OBJECTIVE To assess MGMT status in lung carcinoids using multiple assays and to compare data with major clinical and pathological features. METHODS A retrospective series of 95 lung carcinoids and 51 control cases of high-grade neuroendocrine lung carcinomas was analyzed for MGMT promoter methylation, MGMT gene expression, and MGMT protein expression using pyrosequencing, quantitative real-time PCR, and immunohistochemistry, respectively. RESULTS MGMT protein expression was inversely correlated with MGMT promoter methylation and positively with MGMT gene expression. MGMT promoter methylation progressively increased from carcinoids to high-grade carcinomas. In the carcinoid group, decreased MGMT gene expression was significantly associated with aggressive features (atypical histotype, grade G2, larger tumor size, higher T stage, and positive nodal status) but not with survival. MGMT promoter methylation was associated with lower stage and negative nodal status. CONCLUSIONS Our study investigated MGMT status in a large series of lung carcinoids in the attempt to move forward a rational use of alkylating agents in these tumors. Interestingly, low MGMT gene expression defines a subgroup of lung carcinoids with aggressive features.
Collapse
Affiliation(s)
- Simona Vatrano
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| | - Jessica Giorcelli
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| | - Arianna Votta
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| | - Guendalina Capone
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| | - Stefania Izzo
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| | - Gaia Gatti
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| | - Giorgio Scagliotti
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy,
| | - Ida Rapa
- Department of Oncology, University of Turin at San Luigi Hospital, Turin, Italy
| |
Collapse
|
26
|
Li G, Zhai Y, Wang Z, Wang Z, Huang R, Jiang H, Li R, Feng Y, Chang Y, Jiang T, Zhang W. Postoperative standard chemoradiotherapy benefits primary glioblastoma patients of all ages. Cancer Med 2019; 9:1955-1965. [PMID: 31851783 PMCID: PMC7064041 DOI: 10.1002/cam4.2754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastoma is the most malignant tumor of the central nervous system. Several prediction models have been produced to aid in prognosis assessment. Age, a primary decision factor for prognosis, is associated with increased genomic alterations, however the exact link between increased age and poor prognosis is unknown. OBJECTIVE In this study, we aimed to reveal the underlying cause of poor prognosis in elderly patients. METHODS This study included data on 616 primary GBM tumor samples from the CGGA and TCGA databases and 41 nontumor brain tissue samples obtained from GSE53890. Hallmarks and clinicopathological characteristics were evaluated in both tumor and nontumor brain tissues. The association between choice of treatment regimen and age was measured using ANOVA and Student's t test. RESULTS Age was a robust predictor of poor prognosis in glioma. No age-related hallmarks of cancer were detected, including pathological characteristics or mutations. However, treatment choice was strongly significantly different between old and young patients. Combined chemo-radiation therapy could benefit old and young GBM patients, however, old patients are currently less likely to choose it. CONCLUSION The vast divergence in prognosis between young and old GBM patients is largely caused by choice of treatment rather than age-related tumor genomic characteristics. Postoperative standard radio- and chemotherapy provide strong benefits to primary glioblastoma patients of all ages.
Collapse
Affiliation(s)
- Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiliang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haoyu Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Renpeng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuemei Feng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuanhao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
27
|
Chai Y, Wang C, Liu W, Fan Y, Zhang Y. MPC1 deletion is associated with poor prognosis and temozolomide resistance in glioblastoma. J Neurooncol 2019; 144:293-301. [PMID: 31236818 DOI: 10.1007/s11060-019-03226-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/19/2019] [Indexed: 11/29/2022]
Abstract
OBJECT Mitochondrial pyruvate carrier (MPC) proteins MPC1 and MPC2 form a transporter complex to control rate-limiting pyruvate transportation through the inner mitochondrial membrane. MPC1 plays a crucial role in the tumor metabolite and biosynthesis process. However, the role of MPC1 in glioblastoma (GBM) is unknown. METHODS The Cancer Genome Atlas (TCGA) data set, which included 631 cases of GBM with genomic and clinical data, was obtained from the UCSC Xena browser. The clinical data set contained demographic, survival rate, and histological and pathological information. The association between MPC1 gene copy number segments and GBM patient overall survival was analyzed by Kaplan-Meier survival analysis, which was performed using the R2 web-based platform to identify the best cut-off. GraphPad Prism 7 was used to compare the differences in MPC1 gene copy number segments between various groups and subtypes. RESULTS A total of 631 patients with glioblastoma (mean age 57.78 ± 14.36 years, 59% of males) were examined in this study, including 438 cases with MPC1 intact (MPC1 copy number segments > - 0.1, 69.4%) and 157 cases with MPC1 deletion (24.9%) tumors. Among the four GBM subtypes, the proneural group had the highest MPC1 copy number segments and GBM patients diagnosed with proneural subtype showed the best outcome. The expression of MPC1 transcripts was different in the TCGA-GBM dataset compared with the GTEx dataset. MPC1 copy number segments showed a significant correlation with MGMT copy number segments (r = 0.1322, p = 0.0012). MGMT gene expression level in MPC1 intact tumors was significantly lower than that in MPC1 deletion tumors (p = 0.0003). Significant relevancy was observed between better OS and the MPC1 intact group compared with the MPC1 deletion group (p = 0.020). Moreover, patients with MPC1 deletion tumors treated with temozolomide (TMZ) had worse survival than patients with MPC1 intact tumors (p = 0.027). CONCLUSIONS Our results suggest a role of decreased MPC1 copy number segments in reducing overall survival in glioblastoma. MPC1 deletion is associated with poor response to TMZ chemotherapy in GBM.
Collapse
Affiliation(s)
- Yi Chai
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China
| | - Caixia Wang
- School of General Practice and Continuing Education, Capital Medical University, Beijing, 100069, China
| | - Wei Liu
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China
| | - Yanghua Fan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Yuqi Zhang
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100040, China.
| |
Collapse
|
28
|
Kan S, Chai S, Chen W, Yu B. DNA methylation profiling identifies potentially significant epigenetically-regulated genes in glioblastoma multiforme. Oncol Lett 2019; 18:1679-1688. [PMID: 31423235 PMCID: PMC6614665 DOI: 10.3892/ol.2019.10512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal and damaging types of human cancer. The current study was conducted to identify differentially methylated genes (DMGs) between GBM and normal controls, and to improve our understanding of GBM at the epigenetic level. The DNA methylation profile of GBM was downloaded from the Gene Expression Omnibus (GEO) database using the accession number GSE50923. The MethyAnalysis package was applied to identify DMGs between GBM and controls, which were then analyzed by functional enrichment analysis. Protein-protein interaction (PPI) networks were constructed using the hypermethylated and hypomethylated genes. Finally, transcription factors (TFs) that can regulate the hypermethylated and hypomethylated genes were predicted, followed by construction of transcriptional regulatory networks. Furthermore, another relevant dataset, GSE22867, was downloaded from the GEO database for data validation. A total of 476 hypermethylated and 850 hypomethylated genes were identified, which were mainly associated with the functions of ‘G-protein-coupled receptors ligand binding’, ‘cytokine activity’, ‘cytokine-cytokine receptor interaction’, and ‘D-glutamine and D-glutamate metabolism’. The hypermethylated gene neuropeptide Y (NPY) and the hypomethylated gene tumor necrosis factor (TNF) demonstrated high degrees in the PPI network. Forkhead box protein A1 (FOXA1), potassium voltage-gated channel subfamily C member 3 (KCNC3) and caspase-8 (CASP8) exhibited high degrees in the transcriptional regulatory networks. In addition, the methylation profiles of NPY, TNF, FOXA1, KCNC3 and CASP8 were confirmed by another dataset. In summary, the present study systematically analyzed the DNA methylation profile of GBM using bioinformatics approaches and identified several abnormally methylated genes, providing insight into the molecular mechanism underlying GBM.
Collapse
Affiliation(s)
- Shifeng Kan
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Song Chai
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Wenhua Chen
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Bo Yu
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| |
Collapse
|
29
|
Nagel ZD, Beharry AA, Mazzucato P, Kitange GJ, Sarkaria JN, Kool ET, Samson LD. Fluorescent reporter assays provide direct, accurate, quantitative measurements of MGMT status in human cells. PLoS One 2019; 14:e0208341. [PMID: 30811507 PMCID: PMC6392231 DOI: 10.1371/journal.pone.0208341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
The DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) strongly influences the effectiveness of cancer treatment with chemotherapeutic alkylating agents, and MGMT status in cancer cells could potentially contribute to tailored therapies for individual patients. However, the promoter methylation and immunohistochemical assays presently used for measuring MGMT in clinical samples are indirect, cumbersome and sometimes do not accurately report MGMT activity. Here we directly compare the accuracy of 6 analytical methods, including two fluorescent reporter assays, against the in vitro MGMT activity assay that is considered the gold standard for measuring MGMT DNA repair capacity. We discuss the relative advantages of each method. Our data indicate that two recently developed fluorescence-based assays measure MGMT activity accurately and efficiently, and could provide a functional dimension to clinical efforts to identify patients who are likely to benefit from alkylating chemotherapy.
Collapse
Affiliation(s)
- Zachary D. Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Andrew A. Beharry
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gaspar J. Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Leona D. Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Sheng KL, Pridham KJ, Sheng Z, Lamouille S, Varghese RT. Functional Blockade of Small GTPase RAN Inhibits Glioblastoma Cell Viability. Front Oncol 2019; 8:662. [PMID: 30671385 PMCID: PMC6331428 DOI: 10.3389/fonc.2018.00662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma, the most common malignant tumor in the brain, lacks effective treatments and is currently incurable. To identify novel drug targets for this deadly cancer, the publicly available results of RNA interference screens from the Project Achilles database were analyzed. Ten candidate genes were identified as survival genes in 15 glioblastoma cell lines. RAN, member RAS oncogene family (RAN) was expressed in glioblastoma at the highest level among all candidates based upon cDNA microarray data. However, Kaplan-Meier survival analysis did not show any correlation between RAN mRNA levels and patient survival. Because RAN is a small GTPase that regulates nuclear transport controlled by karyopherin subunit beta 1 (KPNB1), RAN was further analyzed together with KPNB1. Indeed, GBM patients with high levels of RAN also had more KPNB1 and levels of KPNB1 alone did not relate to patient prognosis. Through a Cox multivariate analysis, GBM patients with high levels of RAN and KPNB1 showed significantly shorter life expectancy when temozolomide and promoter methylation of O6-methylguanine DNA methyltransferase were used as covariates. These results indicate that RAN and KPNB1 together are associated with drug resistance and GBM poor prognosis. Furthermore, the functional blockade of RAN and KPNB1 by importazole remarkably suppressed cell viability and activated apoptosis in GBM cells expressing high levels of RAN, while having a limited effect on astrocytes and GBM cells with undetectable RAN. Together, our results demonstrate that RAN activity is important for GBM survival and the functional blockade of RAN/KPNB1 is an appealing therapeutic approach.
Collapse
Affiliation(s)
- Kevin L Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Kevin J Pridham
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.,Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States.,Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States.,Faculty of Health Science, Virginia Tech, Blacksburg, VA, United States
| | - Samy Lamouille
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States.,Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States.,Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States
| | - Robin T Varghese
- Department of Biological Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| |
Collapse
|
31
|
Schwartz S, Szeto C, Tian Y, Cecchi F, Corallo S, Calegari MA, Di Bartolomeo M, Morano F, Raimondi A, Fucà G, Martinetti A, De Pascalis I, Martini M, Belfiore A, Milione M, Orlandi A, Barault L, Barone C, de Braud F, Di Nicolantonio F, Benz S, Hembrough T, Pietrantonio F. Refining the selection of patients with metastatic colorectal cancer for treatment with temozolomide using proteomic analysis of O6-methylguanine-DNA-methyltransferase. Eur J Cancer 2019; 107:164-174. [DOI: 10.1016/j.ejca.2018.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
|
32
|
Lehrer S, Rheinstein PH, Rosenzweig KE. Glioblastoma Multiforme: Fewer Tumor Copy Number Segments of the SGK1 Gene Are Associated with Poorer Survival. Cancer Genomics Proteomics 2018; 15:273-278. [PMID: 29976632 DOI: 10.21873/cgp.20085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/24/2018] [Accepted: 04/10/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND/AIM Glioblastoma multiforme (GBM) is the most common primary tumor of the central nervous system. The serum and glucocorticoid-regulated kinase SGK1 gene is required for the growth and survival of GBM stem-like cells under both normoxic and hypoxic conditions. It has been reported that oxygenation significantly affects cellular genetic expression; 30% of the genes required in hypoxia were not required under normoxic conditions. Therefore, we examined SGK1 expression to determine if it may be a novel potential drug target for GBM. MATERIALS AND METHODS We assessed the association between SGK1 and glioblastoma patient overall survival using the GBM cohort in TCGA (The Cancer Genome Atlas) database (TCGA-GBM). To access and analyze the data we used the UCSC Xena browser (https://xenabrowser.net). Survival data of the GBM subgroup were extracted for analysis and generation of Kaplan-Meier curves for overall survival. The best cut-off was identified by methods described in the R2 web-based application (http://r2.amc.nl). RESULTS We analyzed patient survival by tumor SGK1 copy number segments after removal of common germ-line copy-number variants (CNVs). Copy number segments (log2 tumor/normal) ≤0.009700 were associated with significantly poorer survival (p=0.016). CONCLUSION Increased median overall survival associated with increased SGK1 copy number segments may be a reflection of better tumor oxygenation. Therefore, besides being a drug target, SGK1 may also be a prognostic marker. Among molecular tumor markers, only the methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) gene has shown a significant association with survival in patients with GBM.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.
| | - Peter H Rheinstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| | - Kenneth E Rosenzweig
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
33
|
Chen L, Zhang H, Lu J, Thung K, Aibaidula A, Liu L, Chen S, Jin L, Wu J, Wang Q, Zhou L, Shen D. Multi-Label Nonlinear Matrix Completion With Transductive Multi-Task Feature Selection for Joint MGMT and IDH1 Status Prediction of Patient With High-Grade Gliomas. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1775-1787. [PMID: 29994582 PMCID: PMC6443241 DOI: 10.1109/tmi.2018.2807590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase 1 (IDH1) mutation in high-grade gliomas (HGG) have proven to be the two important molecular indicators associated with better prognosis. Traditionally, the statuses of MGMT and IDH1 are obtained via surgical biopsy, which has limited their wider clinical implementation. Accurate presurgical prediction of their statuses based on preoperative multimodal neuroimaging is of great clinical value for a better treatment plan. Currently, the available data set associated with this study has several challenges, such as small sample size and complex, nonlinear (image) feature-to-(molecular) label relationship. To address these issues, we propose a novel multi-label nonlinear matrix completion (MNMC) model to jointly predict both MGMT and IDH1 statuses in a multi-task framework. Specifically, we first employ a nonlinear random Fourier feature mapping to improve the linear separability of the data, and then use transductive multi-task feature selection (performed in a nonlinearly transformed feature space) to refine the imputed soft labels, thus alleviating the overfitting problem caused by small sample size. We further design an optimization algorithm with a guaranteed convergence ability based on a block prox-linear method to solve the proposed MNMC model. Finally, by using a single-center, multimodal brain imaging and molecular pathology data set of HGG, we derive brain functional and structural connectomics features to jointly predict MGMT and IDH1 statuses. Results demonstrate that our proposed method outperforms the previously widely used single- and multi-task machine learning methods. This paper also shows the promise of utilizing brain connectomics for HGG prognosis in a non-invasive manner.
Collapse
|
34
|
Chen X, Zhang M, Gan H, Wang H, Lee JH, Fang D, Kitange GJ, He L, Hu Z, Parney IF, Meyer FB, Giannini C, Sarkaria JN, Zhang Z. A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun 2018; 9:2949. [PMID: 30054476 PMCID: PMC6063898 DOI: 10.1038/s41467-018-05373-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/02/2018] [Indexed: 12/26/2022] Open
Abstract
Temozolomide (TMZ) was used for the treatment of glioblastoma (GBM) for over a decade, but its treatment benefits are limited by acquired resistance, a process that remains incompletely understood. Here we report that an enhancer, located between the promoters of marker of proliferation Ki67 (MKI67) and O6-methylguanine-DNA-methyltransferase (MGMT) genes, is activated in TMZ-resistant patient-derived xenograft (PDX) lines and recurrent tumor samples. Activation of the enhancer correlates with increased MGMT expression, a major known mechanism for TMZ resistance. We show that forced activation of the enhancer in cell lines with low MGMT expression results in elevated MGMT expression. Deletion of this enhancer in cell lines with high MGMT expression leads to a dramatic reduction of MGMT and a lesser extent of Ki67 expression, increased TMZ sensitivity, and impaired proliferation. Together, these studies uncover a mechanism that regulates MGMT expression, confers TMZ resistance, and potentially regulates tumor proliferation.
Collapse
Affiliation(s)
- Xiaoyue Chen
- Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Minjie Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Haiyun Gan
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, 430030, Wuhan, China
| | - Jeong-Heon Lee
- Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Dong Fang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Lihong He
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Zeng Hu
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Fredric B Meyer
- Department of Neurologic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA.
| |
Collapse
|
35
|
Yuan GQ, Wei NL, Mu LY, Wang XQ, Zhang YN, Zhou WN, Pan YW. A 4-miRNAs signature predicts survival in glioblastoma multiforme patients. Cancer Biomark 2018; 20:443-452. [PMID: 28869437 DOI: 10.3233/cbm-170205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Although O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation status is an important marker for glioblastoma multiforme (GBM), there is considerable variability in the clinical outcome of patients with similar methylation profles. OBJECTIVE We examined whether a MicroRNA (miRNA) signature can be identified for predicting clinical outcomes and helping in treatment decisions. METHODS The differentially expressed miRNAs were evaluated in 6 pairs of short- (⩽ 450 days) and long-term survivors (> 450 days) by using microarray. Real time quantitative PCR (qRT-PCR) was applied to further verify screened miRNAs with a greater number of samples (n= 48). Meanwhile, functional interpretation of miRNA profile was carried out based on miRNA-target databases. In addition, MGMT promoter methylation status was tested by means of pyrosequencing (PSQ) testing. RESULTS Six miRNAs were upregulated in the long-term survival group (fold change ⩾ 2.0, P< 0.05). The further verification by qRT-PCR indicated that the increase in let-7g-5p, miR-139-5p, miR-17-5p and miR-9-3p level in long-term survivors was statistically significant. Kaplan-Meier survival analysis showed that high expression of a prognostic 4-miRNA signature was significantly associated with good patient survival (p= 0.0012). The signature regulated signaling pathways including Calcium, MAPK, ErbB, mTOR and cell cycle involved in carcinogenesis from glial progenitor cell to primary GBM. CONCLUSIONS The 4-miRNA signature was identified as an independent prognostic biomarker that identified patients who have a favorable outcome.
Collapse
Affiliation(s)
- G Q Yuan
- Institute of Neurology, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - N L Wei
- Department of Neurosurgery, Fudan University Huashan Hospital, Fudan University, Shanghai 20040, China
| | - L Y Mu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - X Q Wang
- Institute of Neurology, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Y N Zhang
- Department of Neurosurgery, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - W N Zhou
- Department of Neurosurgery, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Y W Pan
- Institute of Neurology, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China.,Department of Neurosurgery, The Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| |
Collapse
|
36
|
In primary glioblastoma fewer tumor copy number segments of the F13A1 gene are associated with poorer survival. Thromb Res 2018; 167:12-14. [PMID: 29753279 DOI: 10.1016/j.thromres.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/06/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022]
|
37
|
Abstract
AbstractBackground:Exosomes are small vesicles of sizes between 40 and 100 nm. They are actively segregated by numerous different cell types and they can be found in almost all body fluids. Thus, there is an emerging role of exosomes and exosomal deoxyribonucleic acid (exoDNA) in biomedical research, especially in molecular medicine. Exosomes are assembled and segregated actively and carry distinct surface markers for cellular communication. They are loaded with cargo such as DNA, ribonucleic acid (RNA) and proteins. As there are numerous different exosomal purification methods available, it is of essential need to select an appropriate technique to get reliable results. As neuropathology is faced with the challenge that brain tissue is not accessible in an easy fashion, exosomes represent an ideal tool for molecular neuropathology. Thus, disease-specific molecular alterations will be detectable in a minimally invasive way for early disease diagnosis and surveillance.Summary:The analysis of exoDNA as biomarkers in neuropathology will enable early diagnosis, monitoring and relapse detection of brain tumors and neuropsychiatric disorders.Outlook:It is assumed that the significance of exosomes will increase in the upcoming years. There are powerful approaches in development using exosomes in molecularly targeted therapy to ultimately cure devastating brain diseases.
Collapse
|
38
|
Jiménez D, Matamala JM, Chiti A, Vergara C, Tissera C, Melo R, Cartier L. O 6-methylguanine-DNA-methyltransferase immunostaining intensity in glioblastoma. Neurol Neurochir Pol 2017; 52:116-119. [PMID: 29153917 DOI: 10.1016/j.pjnns.2017.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
Abstract
Immunohistochemistry (IHC) for O6-methylguanine-DNA-methyltransferase (MGMT) has shown heterogeneous results. Cell staining intensity has not been included as a quantifiable variable in IHC analyses. We performed MGMT IHC in 29 patients diagnosed as glioblastoma classifying cells into three categories based on nuclear staining intensity compared with adjacent endothelium. The median proportions of strong-moderate, weak and no staining cells were 10%, 16% and 71%, respectively. The proportion of positive cases for MGMT expression varies from 38% to 52% depending on the classification of weakly stained cells. This letter challenges previous studies that have not included intensity as a variable for IHC analysis.
Collapse
Affiliation(s)
- Daniel Jiménez
- Laboratory of Biomedical Sciences, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Neurology Service, Hospital del Salvador, Santiago, Chile.
| | - José Manuel Matamala
- Laboratory of Biomedical Sciences, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alessandra Chiti
- Laboratory of Biomedical Sciences, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carmen Vergara
- Laboratory of Biomedical Sciences, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Romulo Melo
- Instituto de Neurocirugía Dr. Asenjo, Santiago, Chile; Department of Neurological Science, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Cartier
- Laboratory of Biomedical Sciences, Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Neurology Service, Hospital del Salvador, Santiago, Chile
| |
Collapse
|
39
|
Wang Z, Yang G, Zhang YY, Yao Y, Dong LH. A comparison between oral chemotherapy combined with radiotherapy and radiotherapy for newly diagnosed glioblastoma: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e8444. [PMID: 29095287 PMCID: PMC5682806 DOI: 10.1097/md.0000000000008444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The prognosis of glioblastoma (GBM), a major subtype of grade IV glioma, is rather poor nowadays. The efficiency of chemotherapy serving as the adjunct to radiotherapy (RT) for treating GBM is still controversial. In this study, we aim to investigate the overall survival (OS) and progression-free survival (PFS) in patients with newly diagnosed GBM received RT plus chemotherapy or with RT alone.Literatures were searched from the PubMed, Embase, and Cochrane Library between January 2001 and June 2015. Study selection was conducted based on the following criteria: randomized clinical trial (RCT) of adjuvant RT plus chemotherapy versus RT alone; studies comparing OS and/or PFS; and studies including cases medically confirmed of newly diagnosed GBM.Five RCTs (1655 patients) were eligible in this study. The meta-analysis showed a significant improvement in OS of patients treated with RT plus oral chemotherapy compared with that of RT alone (hazard ratio 0.70; 95% confidence interval, 0.56-0.88, P = .002).Adjuvant chemotherapy confers a survival benefit in patients newly diagnosed with GBM.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Radiotherapy, Norman Bethune First Hospital
| | - Guozi Yang
- Department of Radiotherapy, Norman Bethune First Hospital
| | - Yu-Yu Zhang
- Department of Radiotherapy, Norman Bethune First Hospital
| | - Yan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Li-Hua Dong
- Department of Radiotherapy, Norman Bethune First Hospital
| |
Collapse
|
40
|
TGF-β-mediated repression of MST1 by DNMT1 promotes glioma malignancy. Biomed Pharmacother 2017; 94:774-780. [PMID: 28802229 DOI: 10.1016/j.biopha.2017.07.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/28/2022] Open
Abstract
Human gliomas are related to high rates of morbidity and mortality. TGF-β promotes the growth of glioma cells, and correlate with the degree of malignancy of human gliomas. However, the molecular mechanisms involved in the malignant function of TGF-β are not fully elucidated. Here, we showed that TGF-β induced the downregulation of MST1 expression in U87 and U251 glioma cells. Treatment of glioma cells with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AzadC) prevented the loss of MST1 expression. Addition of 5-AzadC also reduced the TGF-β-stimulated proliferation, migration and invasiveness of glioma cells. Furthermore, Knockdown of DNMT1 upregulated MST1 expression in gliomas cells. In addition, the inhibition of DNMT1 blocked TGF-β-induced proliferation, migration and invasiveness in glioma cells. These results suggest that TGF-β promotes glioma malignancy through DNMT1-mediated loss of MST1 expression.
Collapse
|
41
|
Brain Tumor-Related Epilepsy: a Current Review of the Etiologic Basis and Diagnostic and Treatment Approaches. Curr Neurol Neurosci Rep 2017; 17:70. [DOI: 10.1007/s11910-017-0777-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Saikia S, Rehman AU, Barooah P, Sarmah P, Bhattacharyya M, Deka M, Deka M, Goswami B, Husain SA, Medhi S. Alteration in the expression of MGMT and RUNX3 due to non-CpG promoter methylation and their correlation with different risk factors in esophageal cancer patients. Tumour Biol 2017; 39:1010428317701630. [PMID: 28468586 DOI: 10.1177/1010428317701630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Promoter methylation reflects in the inactivation of different genes like O6-methylguanine-DNA methyltransferase DNA repair gene and runt-related transcription factor 3, a known tumor suppressor gene in various cancers such as esophageal cancer. The promoter methylation was evaluated for O6-methylguanine-DNA methyltransferase and runt-related transcription factor 3 in CpG, CHH, and CHG context (where H is A, T, or C) by next-generation sequencing. The methylation status was correlated with quantitative messenger RNA expression. In addition, messenger RNA expression was correlated with different risk factors like tobacco, alcohol, betel nut consumption, and smoking habit. CpG methylation of O6-methylguanine-DNA methyltransferase promoter had a positive association in the development of esophageal cancer (p < 0.05), whereas runt-related transcription factor 3 promoter methylation showed no significant association (p = 1.0) to develop esophageal cancer. However, the non-CpG methylation, CHH, and CHG were significantly correlated with O6-methylguanine-DNA methyltransferase (p < 0.05) and runt-related transcription factor 3 (p < 0.05) promoters in the development of esophageal cancer. The number of cytosine converted to thymine (C→T) in O6-methylguanine-DNA methyltransferase promoter showed a significant correlation between cases and controls (p < 0.05), but in runt-related transcription factor 3 no such significant correlation was observed. Besides, messenger RNA expression was found to be significantly correlated with promoter hypermethylation of O6-methylguanine-DNA methyltransferase and runt-related transcription factor 3 in the context of CHG and CHH (p < 0.05). The CpG hypermethylation in O6-methylguanine-DNA methyltransferase showed positive (p < 0.05) association, whereas in runt-related transcription factor 3, it showed contrasting negative association (p = 0.23) with their messenger RNA expression. Tobacco, betel nut consumption, and smoking habits were associated with altered messenger RNA expression of O6-methylguanine-DNA methyltransferase (p < 0.05) and betel nut consumption and smoking habits were associated with runt-related transcription factor 3 (p < 0.05). There was no significant association between messenger RNA expression of O6-methylguanine-DNA methyltransferase and runt-related transcription factor 3 with alcohol consumption (p = 0.32 and p = 0.15). In conclusion, our results suggest that an aberrant messenger RNA expression may be the outcome of CpG, CHG, and CHH methylation in O6-methylguanine-DNA methyltransferase, whereas outcome of CHG and CHH methylation in runt-related transcription factor 3 promoters along with risk factors such as consumption of tobacco, betel nut, and smoking habits in esophageal cancer from Northeast India.
Collapse
Affiliation(s)
- Snigdha Saikia
- 1 Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, India.,2 Department of Gastroenterology, Gauhati Medical College and Hospital, Guwahati, India
| | - Asad Ur Rehman
- 3 Department of Bioscience, Jamia Millia Islamia, New Delhi, India
| | - Prajjalendra Barooah
- 1 Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, India.,2 Department of Gastroenterology, Gauhati Medical College and Hospital, Guwahati, India
| | - Preeti Sarmah
- 2 Department of Gastroenterology, Gauhati Medical College and Hospital, Guwahati, India
| | - Mallika Bhattacharyya
- 2 Department of Gastroenterology, Gauhati Medical College and Hospital, Guwahati, India
| | - Muktanjalee Deka
- 4 Department of Pathology, Gauhati Medical College and Hospital, Guwahati, India
| | - Manab Deka
- 1 Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, India
| | - Bhabadev Goswami
- 2 Department of Gastroenterology, Gauhati Medical College and Hospital, Guwahati, India
| | | | - Subhash Medhi
- 1 Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, Gauhati University Institute of Science & Technology, Gauhati University, Guwahati, India
| |
Collapse
|
43
|
Hinske LC, Heyn J, Hübner M, Rink J, Hirschberger S, Kreth S. Intronic miRNA-641 controls its host Gene's pathway PI3K/AKT and this relationship is dysfunctional in glioblastoma multiforme. Biochem Biophys Res Commun 2017; 489:477-483. [PMID: 28576488 DOI: 10.1016/j.bbrc.2017.05.175] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/29/2017] [Indexed: 01/17/2023]
Abstract
MicroRNAs have established their role as important regulators of the epigenome. A considerable number of human miRNA genes are found in intronic regions of protein-coding host genes, in many cases adopting their regulatory circuitry. However, emerging evidence foreshadows an unprecedented importance for this relationship: Intronic miRNAs may protect the cell from overactivation of the respective host pathway, a setting that may trigger tumor development. AKT2 is a well-known proto-oncogene central to the PI3K/AKT pathway. This pathway is known to promote tumor growth and survival, especially in glioblastoma. Its intronic miRNA, hsa-miR-641, is scarcely investigated, however. We hypothesized that miR-641 regulates its host AKT2 and that this regulation may become dysfunctional in glioblastoma. We found that indeed miR-641 expression differs significantly between GBM tissue and normal brain samples, and that transfection of glioma cells with miR-641 antagonizes the PI3K/AKT pathway. Combining clinical samples, cell cultures, and biomolecular methods, we could show that miR-641 doesn't affect AKT2's expression levels, but down-regulates kinases that are necessary for AKT2-activation, thereby affecting its functional state. We also identified NFAT5 as a miR-641 regulated central factor to trigger the expression of these kinases and subsequently activate AKT2. In summary, our study is the first that draws a connecting line between the proto-oncogene AKT2 and its intronic miRNA miR-641 with implication for glioblastoma development.
Collapse
Affiliation(s)
- Ludwig Christian Hinske
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| | - Jens Heyn
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| | - Max Hübner
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany; Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| | - Jessica Rink
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany; Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| | - Simon Hirschberger
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany; Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| | - Simone Kreth
- Department of Anesthesiology, University Hospital of the Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany; Walter-Brendel Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Marchioninistraße 15, D-81377 Munich, Germany.
| |
Collapse
|
44
|
Nagel ZD, Kitange GJ, Gupta SK, Joughin BA, Chaim IA, Mazzucato P, Lauffenburger DA, Sarkaria JN, Samson LD. DNA Repair Capacity in Multiple Pathways Predicts Chemoresistance in Glioblastoma Multiforme. Cancer Res 2016; 77:198-206. [PMID: 27793847 DOI: 10.1158/0008-5472.can-16-1151] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/21/2022]
Abstract
Cancer cells can resist the effects of DNA-damaging therapeutic agents via utilization of DNA repair pathways, suggesting that DNA repair capacity (DRC) measurements in cancer cells could be used to identify patients most likely to respond to treatment. However, the limitations of available technologies have so far precluded adoption of this approach in the clinic. We recently developed fluorescence-based multiplexed host cell reactivation (FM-HCR) assays to measure DRC in multiple pathways. Here we apply a mathematical model that uses DRC in multiple pathways to predict cellular resistance to killing by DNA-damaging agents. This model, developed using FM-HCR and drug sensitivity measurements in 24 human lymphoblastoid cell lines, was applied to a panel of 12 patient-derived xenograft (PDX) models of glioblastoma to predict glioblastoma response to treatment with the chemotherapeutic DNA-damaging agent temozolomide. This work showed that, in addition to changes in O6-methylguanine DNA methyltransferase (MGMT) activity, small changes in mismatch repair (MMR), nucleotide excision repair (NER), and homologous recombination (HR) capacity contributed to acquired temozolomide resistance in PDX models and led to reduced relative survival prolongation following temozolomide treatment of orthotopic mouse models in vivo Our data indicate that measuring the combined status of MMR, HR, NER, and MGMT provided a more robust prediction of temozolomide resistance than assessments of MGMT activity alone. Cancer Res; 77(1); 198-206. ©2016 AACR.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Shiv K Gupta
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Brian A Joughin
- David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
45
|
Ahmed KA, Chinnaiyan P, Fulp WJ, Eschrich S, Torres-Roca JF, Caudell JJ. The radiosensitivity index predicts for overall survival in glioblastoma. Oncotarget 2016; 6:34414-22. [PMID: 26451615 PMCID: PMC4741462 DOI: 10.18632/oncotarget.5437] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022] Open
Abstract
We have previously developed a multigene expression model of tumor radiosensitivity (RSI) with clinical validation in multiple cohorts and disease sites. We hypothesized RSI would identify glioblastoma patients who would respond to radiation and predict treatment outcomes. Clinical and array based gene expression (Affymetrix HT Human Genome U133 Array Plate Set) level 2 data was downloaded from the cancer genome atlas (TCGA). A total of 270 patients were identified for the analysis: 214 who underwent radiotherapy and temozolomide and 56 who did not undergo radiotherapy. Median follow-up for the entire cohort was 9.1 months (range: 0.04–92.2 months). Patients who did not receive radiotherapy were more likely to be older (p < 0.001) and of poorer performance status (p < 0.001). On multivariate analysis, RSI is an independent predictor of OS (HR = 1.64, 95% CI 1.08–2.5; p = 0.02). Furthermore, on subset analysis, radiosensitive patients had significantly improved OS in the patients with high MGMT expression (unmethylated MGMT), 1 year OS 84.1% vs. 53.7% (p = 0.005). This observation held on MVA (HR = 1.94, 95% CI 1.19–3.31; p = 0.008), suggesting that RT has a larger therapeutic impact in these patients. In conclusion, RSI predicts for OS in glioblastoma. These data further confirm the value of RSI as a disease-site independent biomarker.
Collapse
Affiliation(s)
- Kamran A Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI 48073, USA
| | - William J Fulp
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Steven Eschrich
- Department of Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Javier F Torres-Roca
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
46
|
Mujokoro B, Adabi M, Sadroddiny E, Adabi M, Khosravani M. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1092-102. [PMID: 27612807 DOI: 10.1016/j.msec.2016.07.080] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/10/2016] [Accepted: 07/31/2016] [Indexed: 11/18/2022]
Abstract
Glioblastoma is a malignant brain tumor and leads to death in most patients. Chemotherapy is a common method for brain cancer in clinics. However, the recent advancements in the chemotherapy of brain tumors have not been efficient enough. With the advancement of nanotechnology, the used drugs can enhance chemotherapy efficiency and increase the access to brain cancers. Combination of therapeutic agents has been recently attracted great attention for glioblastoma chemotherapy. One of the early benefits of combination therapies is the high potential to provide synergistic effects and decrease adverse side effects associated with high doses of single anticancer drugs. Therefore, brain tumor treatments with combination drugs can be considered as a crucial approach for avoiding tumor growth. This review investigates current progress in nano-mediated co-delivery of therapeutic agents with focus on glioblastoma chemotherapy prognosis.
Collapse
Affiliation(s)
- Basil Mujokoro
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Adabi
- Young Researchers and Elite Club, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Kuroiwa-Trzmielina J, Wang F, Rapkins RW, Ward RL, Buchanan DD, Win AK, Clendenning M, Rosty C, Southey MC, Winship IM, Hopper JL, Jenkins MA, Olivier J, Hawkins NJ, Hitchins MP. SNP rs16906252C>T Is an Expression and Methylation Quantitative Trait Locus Associated with an Increased Risk of Developing MGMT-Methylated Colorectal Cancer. Clin Cancer Res 2016; 22:6266-6277. [PMID: 27267851 DOI: 10.1158/1078-0432.ccr-15-2765] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023]
Abstract
PURPOSE Methylation of the MGMT promoter is the major cause of O6-methylguanine methyltransferase deficiency in cancer and has been associated with the T variant of the promoter enhancer SNP rs16906252C>T. We sought evidence for an association between the rs16906252C>T genotype and increased risk of developing a subtype of colorectal cancer featuring MGMT methylation, mediated by genotype-dependent epigenetic silencing within normal tissues. EXPERIMENTAL DESIGN By applying a molecular pathologic epidemiology case-control study design, associations between rs16906252C>T and risk for colorectal cancer overall, and colorectal cancer stratified by MGMT methylation status, were estimated using multinomial logistic regression in two independent retrospective series of colorectal cancer cases and controls. The test sample comprised 1,054 colorectal cancer cases and 451 controls from Sydney, Australia. The validation sample comprised 612 colorectal cancer cases and 245 controls from the Australasian Colon Cancer Family Registry (ACCFR). To determine whether rs16906252C>T was linked to a constitutively altered epigenetic state, quantitative allelic expression and methylation analyses were performed in normal tissues. RESULTS An association between rs16906252C>T and increased risk of developing MGMT-methylated colorectal cancer in the Sydney sample was observed [OR, 3.3; 95% confidence interval (CI), 2.0-5.3; P < 0.0001], which was replicated in the ACCFR sample (OR, 4.0; 95% CI, 2.4-6.8; P < 0.0001). The T allele demonstrated about 2.5-fold reduced transcription in normal colorectal mucosa from cases and controls and was selectively methylated in a minority of normal cells, indicating that rs16906252C>T represents an expression and methylation quantitative trait locus. CONCLUSIONS We provide evidence that rs16906252C>T is associated with elevated risk for MGMT-methylated colorectal cancer, likely mediated by constitutive epigenetic repression of the T allele. Clin Cancer Res; 22(24); 6266-77. ©2016 AACR.
Collapse
Affiliation(s)
- Joice Kuroiwa-Trzmielina
- Medical Epigenetics Laboratory, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Fan Wang
- Department of Medicine (Oncology), Stanford University, Stanford, California.,School of Public Health (Epidemiology), Harbin Medical University, Harbin, PR China
| | - Robert W Rapkins
- Medical Epigenetics Laboratory, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia.,Cure Brain Cancer Foundation Biomarkers and Translational Research Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Robyn L Ward
- Integrated Cancer Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Australia.,Envoi Specialist Pathologists, Herston, Australia.,School of Medicine, University of Queensland, Herston, Australia
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Ingrid M Winship
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia.,Department of Medicine, The University of Melbourne, Parkville, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,Department of Epidemiology and Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, Korea
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Jake Olivier
- School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
| | - Nicholas J Hawkins
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Megan P Hitchins
- Department of Medicine (Oncology), Stanford University, Stanford, California.
| |
Collapse
|
48
|
Khalil S, Fabbri E, Santangelo A, Bezzerri V, Cantù C, Gennaro GD, Finotti A, Ghimenton C, Eccher A, Dechecchi M, Scarpa A, Hirshman B, Chen C, Ferracin M, Negrini M, Gambari R, Cabrini G. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma. Oncotarget 2016; 7:28195-28206. [PMID: 27057640 PMCID: PMC5053720 DOI: 10.18632/oncotarget.8618] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/25/2016] [Indexed: 11/25/2022] Open
Abstract
The levels of expression of O6-methylguanine-DNA methyltransferase (MGMT) are relevant in predicting the response to the alkylating chemotherapy in patients affected by glioblastoma. MGMT promoter methylation and the published MGMT regulating microRNAs (miRNAs) do not completely explain the expression pattern of MGMT in clinical glioblastoma specimens. Here we used a genome-wide microarray-based approach to identify MGMT regulating miRNAs. Our screen unveiled three novel MGMT regulating miRNAs, miR-127-3p, miR-409-3p, and miR-124-3p, in addition to the previously identified miR-181d-5p. Transfection of these three novel miRNAs into the T98G glioblastoma cell line suppressed MGMT mRNA and protein expression. However, their MGMT- suppressive effects are 30-50% relative that seen with miR-181d-5p transfection. In silico analyses of The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) revealed that miR-181d-5p is the only miRNA that consistently exhibited inverse correlation with MGMT mRNA expression. However, statistical models incorporating both miR-181d-5p and miR-409-3p expression better predict MGMT expression relative to models involving either miRNA alone. Our results confirmed miR-181d-5p as the key MGMT-regulating miRNA. Other MGMT regulating miRNAs, including the miR-409-3p identified in this report, modify the effect of miR-181d-5p on MGMT expression. MGMT expression is, thus, regulated by cooperative interaction between key MGMT-regulating miRNAs.
Collapse
Affiliation(s)
- Susanna Khalil
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University Hospital, Verona, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Alessandra Santangelo
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University Hospital, Verona, Italy
| | - Valentino Bezzerri
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University Hospital, Verona, Italy
| | - Cinzia Cantù
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University Hospital, Verona, Italy
| | - Gianfranco Di Gennaro
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University Hospital, Verona, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Claudio Ghimenton
- Section of Pathology and Histology, University Hospital, Verona, Italy
| | - Albino Eccher
- Section of Pathology and Histology, University Hospital, Verona, Italy
| | - Maria Dechecchi
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University Hospital, Verona, Italy
| | - Aldo Scarpa
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University Hospital, Verona, Italy
- Section of Pathology and Histology, University Hospital, Verona, Italy
- Applied Research on Cancer Network (ARC-NET), University and Hospital Trust, Verona, Italy
| | - Brian Hirshman
- Center for Theoretical and Applied Neuro-oncology, Moores Cancer Center, Department of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Clark Chen
- Center for Theoretical and Applied Neuro-oncology, Moores Cancer Center, Department of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Manuela Ferracin
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Giulio Cabrini
- Department of Pathology and Diagnostics, Laboratory of Molecular Pathology, University Hospital, Verona, Italy
- Section of Pathology and Histology, University Hospital, Verona, Italy
| |
Collapse
|
49
|
Fluorogenic Real-Time Reporters of DNA Repair by MGMT, a Clinical Predictor of Antitumor Drug Response. PLoS One 2016; 11:e0152684. [PMID: 27035132 PMCID: PMC4818092 DOI: 10.1371/journal.pone.0152684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/17/2016] [Indexed: 01/26/2023] Open
Abstract
Common alkylating antitumor drugs, such as temozolomide, trigger their cytotoxicity by methylating the O6-position of guanosine in DNA. However, the therapeutic effect of these drugs is dampened by elevated levels of the DNA repair enzyme, O6-methylguanine DNA methyltransferase (MGMT), which directly reverses this alkylation. As a result, assessing MGMT levels in patient samples provides an important predictor of therapeutic response; however, current methods available to measure this protein are indirect, complex and slow. Here we describe the design and synthesis of fluorescent chemosensors that report directly on MGMT activity in a single step within minutes. The chemosensors incorporate a fluorophore and quencher pair, which become separated by the MGMT dealkylation reaction, yielding light-up responses of up to 55-fold, directly reflecting repair activity. Experiments show that the best-performing probe retains near-native activity at mid-nanomolar concentrations. A nuclease-protected probe, NR-1, was prepared and tested in tumor cell lysates, demonstrating an ability to evaluate relative levels of MGMT repair activity in twenty minutes. In addition, a probe was employed to evaluate inhibitors of MGMT, suggesting utility for discovering new inhibitors in a high-throughput manner. Probe designs such as that of NR-1 may prove valuable to clinicians in selection of patients for alkylating drug therapies and in assessing resistance that arises during treatment.
Collapse
|
50
|
Fogli A, Chautard E, Vaurs-Barrière C, Pereira B, Müller-Barthélémy M, Court F, Biau J, Pinto AA, Kémény JL, Khalil T, Karayan-Tapon L, Verrelle P, Costa BM, Arnaud P. The tumoral A genotype of the MGMT rs34180180 single-nucleotide polymorphism in aggressive gliomas is associated with shorter patients' survival. Carcinogenesis 2015; 37:169-176. [PMID: 26717998 DOI: 10.1093/carcin/bgv251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/19/2015] [Indexed: 01/09/2023] Open
Abstract
Malignant gliomas are the most common primary brain tumors. Grade III and IV gliomas harboring wild-type IDH1/2 are the most aggressive. In addition to surgery and radiotherapy, concomitant and adjuvant chemotherapy with temozolomide (TMZ) significantly improves overall survival (OS). The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) promoter is predictive of TMZ response and a prognostic marker of cancer outcome. However, the promoter regions the methylation of which correlates best with survival in aggressive glioma and whether the promoter methylation status predictive value could be refined or improved by other MGMT-associated molecular markers are not precisely known. In a cohort of 87 malignant gliomas treated with radiotherapy and TMZ-based chemotherapy, we retrospectively determined the MGMT promoter methylation status, genotyped single nucleotide polymorphisms (SNPs) in the promoter region and quantified MGMT mRNA expression level. Each of these variables was correlated with each other and with the patients' OS. We found that methylation of the CpG sites within MGMT exon 1 best correlated with OS and MGMT expression levels, and confirmed MGMT methylation as a stronger independent prognostic factor compared to MGMT transcription levels. Our main finding is that the presence of only the A allele at the rs34180180 SNP in the tumor was significantly associated with shorter OS, independently of the MGMT methylation status. In conclusion, in the clinic, rs34180180 SNP genotyping could improve the prognostic value of the MGMT promoter methylation assay in patients with aggressive glioma treated with TMZ.
Collapse
Affiliation(s)
- Anne Fogli
- INSERM-U1103 and.,CNRS-UMR 6293, Clermont-Ferrand 63001, France.,GReD Laboratory, Clermont Auvergne University, Clermont-Ferrand 63000, France.,Biochemistry and Molecular Biology Department, Clermont-Ferrand Hospital, Clermont-Ferrand 63003, France
| | - Emmanuel Chautard
- Clermont Auvergne University, EA 7283 CREaT, Clermont-Ferrand 63000, France.,Radiotherapy Department, Jean Perrin Center, Clermont-Ferrand 63011, France
| | - Catherine Vaurs-Barrière
- INSERM-U1103 and.,CNRS-UMR 6293, Clermont-Ferrand 63001, France.,GReD Laboratory, Clermont Auvergne University, Clermont-Ferrand 63000, France
| | - Bruno Pereira
- Biostatistics Department , DRCI, Clermont-Ferrand Hospital , Clermont-Ferrand 63003 , France
| | | | - Franck Court
- INSERM-U1103 and.,CNRS-UMR 6293, Clermont-Ferrand 63001, France.,GReD Laboratory, Clermont Auvergne University, Clermont-Ferrand 63000, France
| | - Julian Biau
- Clermont Auvergne University, EA 7283 CREaT, Clermont-Ferrand 63000, France.,Radiotherapy Department, Jean Perrin Center, Clermont-Ferrand 63011, France
| | - Afonso Almeida Pinto
- Department of Neurosurgery , Braga Hospital , Braga 4710-243 São Victor , Portugal
| | - Jean-Louis Kémény
- Department of Anatomopathology , Clermont-Ferrand Hospital , Clermont-Ferrand 63003 , France
| | - Toufic Khalil
- Department of Neurosurgery, Clermont-Ferrand Hospital, Clermont-Ferrand 63003, France.,Clermont Auvergne University, EA 7282 IGCNC, Clermont-Ferrand 63000, France
| | - Lucie Karayan-Tapon
- INSERM-U935, Poitiers 86021, France.,Poitiers University, Poitiers 86000, France.,Cancer Biology Laboratory, Poitiers Hospital, Poitiers 86021, France
| | - Pierre Verrelle
- Clermont Auvergne University, EA 7283 CREaT, Clermont-Ferrand 63000, France.,Radiotherapy Department, Jean Perrin Center, Clermont-Ferrand 63011, France.,INSERM U2021 CNRS UMR3347, Curie Institute, Orsay 91405, France
| | - Bruno Marques Costa
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), Braga 4710-057, Portugal and.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Braga 4710-057, Portugal
| | - Philippe Arnaud
- INSERM-U1103 and.,CNRS-UMR 6293, Clermont-Ferrand 63001, France.,GReD Laboratory, Clermont Auvergne University, Clermont-Ferrand 63000, France
| |
Collapse
|