1
|
Grego E, Kelly SM, McGill JL, Wannemuehler M, Narasimhan B. Bovine Respiratory Syncytial Virus Nanovaccine Induces Long-Lasting Humoral Immunity in Mice. ACS Pharmacol Transl Sci 2024; 7:3205-3215. [PMID: 39421663 PMCID: PMC11480889 DOI: 10.1021/acsptsci.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
With limited therapies and vaccines available, human respiratory syncytial virus (HRSV) has a significant negative health impact on all age groups but particularly on infants, young children, and older adults. Bovine respiratory syncytial virus (BRSV) is pathogenically and antigenically similar to HRSV. Building upon previous studies using a BRSV nanovaccine coencapsulating multiple proteins, this work demonstrates the development and comparative evaluation of a coencapsulated nanovaccine to a cocktail nanovaccine formulation composed of polyanhydride nanoparticles encapsulating BRSV postfusion (F) glycoprotein and CpG ODN 1668 coadjuvant delivered simultaneously with nanoparticles encapsulating BRSV attachment glycoprotein (G) and CpG ODN 1668. These nanovaccine formulations were administered to C57BL/6 mice by one of two prime-boost regimens (i.e., intranasal/intranasal or intranasal/subcutaneous) followed by assessment of humoral immunity. The cocktail nanovaccine induced sustained anti-F and anti-G serum IgG antibody responses for 12 weeks postprimary immunization. Using polyanhydride particles to deliver G protein in a prime-boost regime also significantly induced serum anti-G antibodies compared to protein and coadjuvant alone. Serum IgG induced by the nanovaccine demonstrated virus-neutralizing capability from 42 to 119 days postprimary immunization. Further, anti-F IgG antibodies were detected in the bronchoalveolar lavage fluid of vaccinated animals. Finally, the nanovaccine induced long-lived anti-F antibody secreting plasma cells that were detectable in the bone marrow 205 days postprimary immunization. Overall, the BRSV nanovaccine(s) successfully induced long-lived humoral immune responses capable of virus neutralization, making this a promising vaccine candidate for further evaluation in other relevant animal models.
Collapse
Affiliation(s)
- Elizabeth Grego
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| | - Sean M. Kelly
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| | - Jodi L. McGill
- Nanovaccine
Institute, Ames, Iowa 50011, United States
- Veterinary
Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Michael Wannemuehler
- Nanovaccine
Institute, Ames, Iowa 50011, United States
- Veterinary
Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Chemical
& Biological Engineering, Iowa State
University, Ames, Iowa 50011, United States
- Nanovaccine
Institute, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Zhang R, Rygelski BT, Kruse LE, Smith JD, Wang X, Allen BN, Kramer JS, Seim GF, Faulkner TJ, Kuang H, Kokkoli E, Schrum AG, Ulery BD. Adjuvant Delivery Method and Nanoparticle Charge Influence Peptide Amphiphile Micelle Vaccine Bioactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598369. [PMID: 38915689 PMCID: PMC11195052 DOI: 10.1101/2024.06.10.598369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Vaccines are an indispensable public health measure that have enabled the eradication, near elimination, and prevention of a variety of pathogens. As research continues and our understanding of immunization strategies develops, subunit vaccines have emerged as exciting alternatives to existing whole vaccine approaches. Unfortunately, subunit vaccines often possess weak antigenicity, requiring delivery devices and adjuvant supplementation to improve their utility. Peptide amphiphile micelles have recently been shown to function as both delivery devices and self-adjuvanting systems that can be readily associated with molecular adjuvants to further improve vaccine-mediated host immunity. While promising, many design rules associated with the plethora of underlying adjustable parameters in the generation of a peptide amphiphile micelle vaccine have yet to be uncovered. This work explores the impact micellar adjuvant complexation method and incorporated antigen type have on their ability to activate dendritic cells and induce antigen specific responses. Interestingly, electrostatic complexation of CpG to micelles resulted in improved in vitro dendritic cell activation over hydrophobic association and antigen|adjuvant co-localization influenced cell-mediated, but not antibody-mediated immune responses. These exciting results complement those previously published to build the framework of a micelle vaccine toolbox that can be leveraged for future disease specific formulations.
Collapse
|
3
|
Ross KA, Kelly S, Phadke KS, Peroutka-Bigus N, Fasina O, Siddoway A, Mallapragada SK, Wannemuehler MJ, Bellaire BH, Narasimhan B. Next-generation nanovaccine induces durable immunity and protects against SARS-CoV-2. Acta Biomater 2024; 183:318-329. [PMID: 38844193 DOI: 10.1016/j.actbio.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While first generation SARS-CoV-2 vaccines were effective in slowing the spread and severity of disease during the COVID-19 pandemic, there is a need for vaccines capable of inducing durable and broad immunity against emerging variants of concern. Nanoparticle-based vaccines (i.e., "nanovaccines") composed of polyanhydride nanoparticles and pentablock copolymer micelles have previously been shown to protect against respiratory pathogens, including influenza A virus, respiratory syncytial virus, and Yersinia pestis. In this work, a nanovaccine containing SARS-CoV-2 spike and nucleocapsid antigens was designed and optimized. The optimized nanovaccine induced long-lived systemic IgG antibody responses against wild-type SARS-CoV-2 virus. In addition, the nanovaccine induced antibody responses capable of neutralization and cross-reactivity to multiple SARS-CoV-2 variants (including B.1.1.529) and antigen-specific CD4+ and CD8+ T cell responses. Finally, the nanovaccine protected mice against a lethal SARS-CoV-2 challenge, setting the stage for advancing particle-based SARS-CoV-2 nanovaccines. STATEMENT OF SIGNIFICANCE: First-generation SARS-CoV-2 vaccines were effective in slowing the spread and limiting the severity of COVID-19. However, current vaccines target only one antigen of the virus (i.e., spike protein) and focus on the generation of neutralizing antibodies, which may be less effective against new, circulating strains. In this work, we demonstrated the ability of a novel nanovaccine platform, based on polyanhydride nanoparticles and pentablock copolymer micelles, to generate durable and broad immunity against SARS-CoV-2. These nanovaccines induced long-lasting (> 62 weeks) serum antibody responses which neutralized binding to ACE2 receptors and were cross-reactive to multiple SARS-CoV-2 variants. Additionally, mice immunized with the SARS-CoV-2 nanovaccine showed a significant increase of antigen-specific T cell responses in the draining lymph nodes and spleens. Together, these nanovaccine-induced immune responses contributed to the protection of mice against a lethal challenge of live SARS-CoV-2 virus, indicating that this nanovaccine platform is a promising next-generation SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Kathleen A Ross
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
| | - Sean Kelly
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kruttika S Phadke
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nathan Peroutka-Bigus
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Olufemi Fasina
- Veterinary Pathology, Iowa State University, Ames, IA 50011, USA
| | - Alaric Siddoway
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Bryan H Bellaire
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Lopez CE, Zacharias ZR, Ross KA, Narasimhan B, Waldschmidt TJ, Legge KL. Polyanhydride nanovaccine against H3N2 influenza A virus generates mucosal resident and systemic immunity promoting protection. NPJ Vaccines 2024; 9:96. [PMID: 38822003 PMCID: PMC11143372 DOI: 10.1038/s41541-024-00883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 05/07/2024] [Indexed: 06/02/2024] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. The antigenic drift/shift of IAV continually gives rise to new strains and subtypes, aiding IAV in circumventing previously established immunity. As a result, there has been substantial interest in developing a broadly protective IAV vaccine that induces, durable immunity against multiple IAVs. Previously, a polyanhydride nanoparticle-based vaccine or nanovaccine (IAV-nanovax) encapsulating H1N1 IAV antigens was reported, which induced pulmonary B and T cell immunity and resulted in cross-strain protection against IAV. A key feature of IAV-nanovax is its ability to easily incorporate diverse proteins/payloads, potentially increasing its ability to provide broad protection against IAV and/or other pathogens. Due to human susceptibility to both H1N1 and H3N2 IAV, several H3N2 nanovaccines were formulated herein with multiple IAV antigens to examine the "plug-and-play" nature of the polyanhydride nanovaccine platform and determine their ability to induce humoral and cellular immunity and broad-based protection similar to IAV-nanovax. The H3N2-based IAV nanovaccine formulations induced systemic and mucosal B cell responses which were associated with antigen-specific antibodies. Additionally, systemic and lung-tissue resident CD4 and CD8 T cell responses were enhanced post-vaccination. These immune responses corresponded with protection against both homologous and heterosubtypic IAV infection. Overall, these results demonstrate the plug-and-play nature of the polyanhydride nanovaccine platform and its ability to generate immunity and protection against IAV utilizing diverse antigenic payloads.
Collapse
Affiliation(s)
- Christopher E Lopez
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Zeb R Zacharias
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, USA
| | | | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Thomas J Waldschmidt
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Kevin L Legge
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
- Interdisciplinary Immunology Graduate Program, Department of Pathology, University of Iowa, Iowa City, IA, USA.
- Nanovaccine Institute, Iowa State University, Ames, IA, USA.
| |
Collapse
|
5
|
Petro-Turnquist E, Pekarek MJ, Weaver EA. Swine influenza A virus: challenges and novel vaccine strategies. Front Cell Infect Microbiol 2024; 14:1336013. [PMID: 38633745 PMCID: PMC11021629 DOI: 10.3389/fcimb.2024.1336013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Swine Influenza A Virus (IAV-S) imposes a significant impact on the pork industry and has been deemed a significant threat to global public health due to its zoonotic potential. The most effective method of preventing IAV-S is vaccination. While there are tremendous efforts to control and prevent IAV-S in vulnerable swine populations, there are considerable challenges in developing a broadly protective vaccine against IAV-S. These challenges include the consistent diversification of IAV-S, increasing the strength and breadth of adaptive immune responses elicited by vaccination, interfering maternal antibody responses, and the induction of vaccine-associated enhanced respiratory disease after vaccination. Current vaccination strategies are often not updated frequently enough to address the continuously evolving nature of IAV-S, fail to induce broadly cross-reactive responses, are susceptible to interference, may enhance respiratory disease, and can be expensive to produce. Here, we review the challenges and current status of universal IAV-S vaccine research. We also detail the current standard of licensed vaccines and their limitations in the field. Finally, we review recently described novel vaccines and vaccine platforms that may improve upon current methods of IAV-S control.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew J. Pekarek
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric A. Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
Chowdhury N, Kundu A. Nanotechnology Platform for Advancing Vaccine Development against the COVID-19 Virus. Diseases 2023; 11:177. [PMID: 38131983 PMCID: PMC10742622 DOI: 10.3390/diseases11040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact on societies, public health, healthcare systems, and the world economy. With over 771 million people infected worldwide and a staggering death toll exceeding 6,960,783 as of 4 October 2023 (according to the World Health Organization), the urgency for a solution was paramount. Since the outbreak, the demand for immediate treatment for COVID-19 viral infection, as well as for effective vaccination against this virus, was soaring, which led scientists, pharmaceutical/biotech companies, government health agencies, etc., to think about a treatment strategy that could control and minimize this outbreak as soon as possible. Vaccination emerged as the most effective strategy to combat this infectious disease. For vaccination strategies, any conventional vaccine approach using attenuated live or inactivated/engineered virus, as well as other approaches, typically requires years of research and assessment. However, the urgency of the situation promoted a faster and more effective approach to vaccine development against COVID-19. The role of nanotechnology in designing, manufacturing, boosting, and delivering vaccines to the host to counter this virus was unquestionably valued and assessed. Several nanoformulations are discussed here in terms of their composition, physical properties, credibility, and applications in past vaccine development (as well as the possibility of using those used in previous applications for the generation of the COVID-19 vaccine). Controlling and eliminating the spread of the virus and preventing future recurrence requires a safe, tolerable, and effective vaccine strategy. In this review, we discuss the potential of nanoformulations as the basis for an effective vaccine strategy against COVID-19.
Collapse
Affiliation(s)
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| |
Collapse
|
7
|
Zhdanov DD, Ivin YY, Shishparenok AN, Kraevskiy SV, Kanashenko SL, Agafonova LE, Shumyantseva VV, Gnedenko OV, Pinyaeva AN, Kovpak AA, Ishmukhametov AA, Archakov AI. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. BIOMEDITSINSKAIA KHIMIIA 2023; 69:253-280. [PMID: 37937429 DOI: 10.18097/pbmc20236905253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Pinyaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A A Kovpak
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Ross KA, Tingle AM, Senapati S, Holden KG, Wannemuehler MJ, Mallapragada SK, Narasimhan B, Kohut ML. Novel nanoadjuvants balance immune activation with modest inflammation: implications for older adult vaccines. Immun Ageing 2023; 20:28. [PMID: 37344886 DOI: 10.1186/s12979-023-00349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Age-associated impairments of immune response and inflammaging likely contribute to poor vaccine efficacy. An appropriate balance between activation of immune memory and inflammatory response may be more effective in vaccines for older adults; attempts to overcome reduced efficacy have included the addition of adjuvants or increased antigenic dose. Next generation vaccine formulations may also use biomaterials to both deliver and adjuvant vaccine antigens. In the context of aging, it is important to determine the degree to which new biomaterials may enhance antigen-presenting cell (APC) functions without inducing potent inflammatory responses of APCs or other immune cell types (e.g., T cells). However, the effect of newer biomaterials on these cell types from young and older adults remains unknown. RESULTS In this pilot study, cells from young and older adults were used to evaluate the effect of novel biomaterials such as polyanhydride nanoparticles (NP) and pentablock copolymer micelles (Mi) and cyclic dinucleotides (CDN; a STING agonist) on cytokine and chemokine secretion in comparison to standard immune activators such as lipopolysaccharide (LPS) and PMA/ionomycin. The NP treatment showed adjuvant-like activity with induction of inflammatory cytokines, growth factors, and select chemokines in peripheral blood mononuclear cells (PBMCs) of both young (n = 6) and older adults (n = 4), yet the degree of activation was generally less than LPS. Treatment with Mi or CDN resulted in minimal induction of cytokines and chemokine secretion with the exception of increased IFN-α and IL-12p70 by CDN. Age-related decreases were observed across multiple cytokines and chemokines, yet IFN-α, IL-12, and IL-7 production by NP or CDN stimulation was equal to or greater than in cells from younger adults. Consistent with these results in aged humans, a combination nanovaccine composed of NP, Mi, and CDN administered to aged mice resulted in a greater percentage of antigen-specific CD4+ T cells and greater effector memory cells in draining lymph nodes compared to an imiquimod-adjuvanted vaccine. CONCLUSIONS Overall, our novel biomaterials demonstrated a modest induction of cytokine secretion with a minimal inflammatory profile. These findings suggest a unique role for biomaterial nanoadjuvants in the development of next generation vaccines for older adults.
Collapse
Affiliation(s)
- Kathleen A Ross
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - April M Tingle
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Immunobiology, Iowa State University, Ames, IA, 50011, USA
| | - Sujata Senapati
- Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlyn G Holden
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Immunobiology, Iowa State University, Ames, IA, 50011, USA
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
- Immunobiology, Iowa State University, Ames, IA, 50011, USA
- Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Marian L Kohut
- Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
- Immunobiology, Iowa State University, Ames, IA, 50011, USA.
- Kinesiology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Maina TW, Grego EA, Broderick S, Sacco RE, Narasimhan B, McGill JL. Immunization with a mucosal, post-fusion F/G protein-based polyanhydride nanovaccine protects neonatal calves against BRSV infection. Front Immunol 2023; 14:1186184. [PMID: 37359514 PMCID: PMC10289034 DOI: 10.3389/fimmu.2023.1186184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of death in young children and there are no FDA approved vaccines. Bovine RSV (BRSV) is antigenically similar to HRSV, and the neonatal calf model is useful for evaluation of HRSV vaccines. Here, we determined the efficacy of a polyanhydride-based nanovaccine encapsulating the BRSV post-fusion F and G glycoproteins and CpG, delivered prime-boost via heterologous (intranasal/subcutaneous) or homologous (intranasal/intranasal) immunization in the calf model. We compared the performance of the nanovaccine regimens to a modified-live BRSV vaccine, and to non-vaccinated calves. Calves receiving nanovaccine via either prime-boost regimen exhibited clinical and virological protection compared to non-vaccinated calves. The heterologous nanovaccine regimen induced both virus-specific cellular immunity and mucosal IgA, and induced similar clinical, virological and pathological protection as the commercial modified-live vaccine. Principal component analysis identified BRSV-specific humoral and cellular responses as important correlates of protection. The BRSV-F/G CpG nanovaccine is a promising candidate vaccine to reduce RSV disease burden in humans and animals.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Scott Broderick
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
Li Y, Zou H, Zheng Z, Liu Z, Hu H, Wu W, Wang T. Advances in the Study of Bioactive Nanoparticles for the Treatment of HCC and Its Postoperative Residual Cancer. Int J Nanomedicine 2023; 18:2721-2735. [PMID: 37250475 PMCID: PMC10216871 DOI: 10.2147/ijn.s399146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Primary hepatocellular carcinoma (HCC, hepatocellular carcinoma) is the third leading cause of tumor death in the world and the second leading cause in China. The high recurrence rate at 5 years after surgery also seriously affects the long-term survival of HCC patients. For reasons such as poor liver function, large tumors, or vascular invasion, only relatively limited palliative treatment is available. Therefore, effective diagnostic and therapeutic strategies are needed to improve the complex microenvironment and block the mechanism of tumor development in order to treat the tumor and prevent recurrence. A variety of bioactive nanoparticles have been shown to have therapeutic effects on hepatocellular carcinoma and have the advantages of improving drug solubility, reducing drug side effects, preventing degradation in the blood, increasing drug exposure time, and reducing drug resistance. The development of bioactive nanoparticles is expected to complete the current clinical therapeutic approach. In this review, we discuss the therapeutic advances of different nanoparticles for hepatocellular carcinoma and discuss their potential for postoperative applications with respect to possible mechanisms of hepatocellular carcinoma recurrence. We further discuss the limitations regarding the application of NPs and the safety of NPs.
Collapse
Affiliation(s)
- Yanxu Li
- Medical College of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Hao Zou
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zekun Zheng
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zhuoheng Liu
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Huiyuan Hu
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Wei Wu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
11
|
Abstract
Polyanhydrides (PAs) are a class of synthetic biodegradable polymers employed as controlled drug delivery vehicles. They can be synthesized and scaled up from low-cost starting materials. The structure of PAs can be manipulated synthetically to meet desirable characteristics. PAs are biocompatible, biodegradable, and generate nontoxic metabolites upon degradation, which are easily eliminated from the body. The rate of water penetrating into the polyanhydride (PA) matrix is slower than the anhydride bond cleavage. This phenomenon sets PAs as "surface-eroding drug delivery carriers." Consequently, a variety of PA-based drug delivery carriers in the form of solid implants, pasty injectable formulations, microspheres, nanoparticles, etc. have been developed for the sustained release of small molecule drugs, and vaccines, peptide drugs, and nucleic acid-based active agents. The rate of drug delivery is often controlled by the polymer erosion rate, which is influenced by the polymer structure and composition, crystallinity, hydrophobicity, pH of the release medium, device size, configuration, etc. Owing to the above-mentioned interesting physicochemical and mechanical properties of PAs, the present review focuses on the advancements made in the domain of synthetic biodegradable biomedical PAs for therapeutic delivery applications. Various classes of PAs, their structures, their unique characteristics, their physicochemical and mechanical properties, and factors influencing surface erosion are discussed in detail. The review also summarizes various methods involved in the synthesis of PAs and their utility in the biomedical domain as drug, vaccine, and peptide delivery carriers in different formulations are reviewed.
Collapse
Affiliation(s)
- Pulikanti Guruprasad Reddy
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem 9112002, Israel
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, and Centre for Cannabis Research and the Institute of Drug Research, The Alex Grass Centre for Drug Design and Synthesis, Jerusalem 9112002, Israel
| |
Collapse
|
12
|
Phanse Y, Puttamreddy S, Loy D, Ramirez JV, Ross KA, Alvarez-Castro I, Mogler M, Broderick S, Rajan K, Narasimhan B, Bartholomay LC. RNA Nanovaccine Protects against White Spot Syndrome Virus in Shrimp. Vaccines (Basel) 2022; 10:vaccines10091428. [PMID: 36146509 PMCID: PMC9504209 DOI: 10.3390/vaccines10091428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
In the last 15 years, crustacean fisheries have experienced billions of dollars in economic losses, primarily due to viral diseases caused by such pathogens as white spot syndrome virus (WSSV) in the Pacific white shrimp Litopenaeus vannamei and Asian tiger shrimp Penaeus monodon. To date, no effective measures are available to prevent or control disease outbreaks in these animals, despite their economic importance. Recently, double-stranded RNA-based vaccines have been shown to provide specific and robust protection against WSSV infection in cultured shrimp. However, the limited stability of double-stranded RNA is the most significant hurdle for the field application of these vaccines with respect to delivery within an aquatic system. Polyanhydride nanoparticles have been successfully used for the encapsulation and release of vaccine antigens. We have developed a double-stranded RNA-based nanovaccine for use in shrimp disease control with emphasis on the Pacific white shrimp L. vannamei. Nanoparticles based on copolymers of sebacic acid, 1,6-bis(p-carboxyphenoxy)hexane, and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane exhibited excellent safety profiles, as measured by shrimp survival and histological evaluation. Furthermore, the nanoparticles localized to tissue target replication sites for WSSV and persisted through 28 days postadministration. Finally, the nanovaccine provided ~80% protection in a lethal WSSV challenge model. This study demonstrates the exciting potential of a safe, effective, and field-applicable RNA nanovaccine that can be rationally designed against infectious diseases affecting aquaculture.
Collapse
Affiliation(s)
- Yashdeep Phanse
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Pan Genome Systems, Madison, WI 53719, USA
| | - Supraja Puttamreddy
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Merck Animal Health, Ames, IA 50010, USA
| | - Duan Loy
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Veterinary Diagnostics Center, University of Nebraska Lincoln, Lincoln, NE 68583, USA
| | - Julia Vela Ramirez
- Department of Chemical and Biological Engineering, Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
| | - Kathleen A. Ross
- Department of Chemical and Biological Engineering, Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
| | | | - Mark Mogler
- Merck Animal Health, Ames, IA 50010, USA
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Scott Broderick
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, USA
| | - Krishna Rajan
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA
- Correspondence: (B.N.); (L.C.B.); Tel.: +1-515-294-8019 (B.N.); +1-608-890-1965 (L.C.B.)
| | - Lyric C. Bartholomay
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (B.N.); (L.C.B.); Tel.: +1-515-294-8019 (B.N.); +1-608-890-1965 (L.C.B.)
| |
Collapse
|
13
|
Ou BS, Saouaf OM, Baillet J, Appel EA. Sustained delivery approaches to improving adaptive immune responses. Adv Drug Deliv Rev 2022; 187:114401. [PMID: 35750115 DOI: 10.1016/j.addr.2022.114401] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
The immune system is one of the most important, complex biological networks regulating and protecting human health. Its precise modulation can prevent deadly infections and fight cancer. Accordingly, prophylactic vaccines and cancer immunotherapies are some of the most powerful technologies to protect against potential dangers through training of the immune system. Upon immunization, activation and maturation of B and T cells of the adaptive immune system are necessary for development of proper humoral and cellular protection. Yet, the exquisite organization of the immune system requires spatiotemporal control over the exposure of immunomodulatory signals. For example, while the human immune system has evolved to develop immunity to natural pathogenic infections that often last for weeks, current prophylactic vaccination technologies only expose the immune system to immunomodulatory signals for hours to days. It has become clear that leveraging sustained release technologies to prolong immunogen and adjuvant exposure can increase the potency, durability, and quality of adaptive immune responses. Over the past several years, tremendous breakthroughs have been made in the design of novel biomaterials such as nanoparticles, microparticles, hydrogels, and microneedles that can precisely control and the presentation of immunomodulatory signals to the immune system. In this review, we discuss relevant sustained release strategies and their corresponding benefits to cellular and humoral responses.
Collapse
Affiliation(s)
- Ben S Ou
- Department of Bioengineering, Stanford University, Stanford 94305, USA
| | - Olivia M Saouaf
- Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA
| | - Julie Baillet
- Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA; University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac 33600, France
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford 94305, USA; Department of Materials Science & Engineering, Stanford University, Stanford 94305, USA; Department of Pediatrics (Endocrinology), Stanford University, Stanford 94305, USA; ChEM-H Institute, Stanford University, Stanford CA 94305, USA; Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Siddoway AC, Verhoeven D, Ross KA, Wannemuehler MJ, Mallapragada SK, Narasimhan B. Structural Stability and Antigenicity of Universal Equine H3N8 Hemagglutinin Trimer upon Release from Polyanhydride Nanoparticles and Pentablock Copolymer Hydrogels. ACS Biomater Sci Eng 2022; 8:2500-2507. [PMID: 35604784 DOI: 10.1021/acsbiomaterials.2c00219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Seasonal influenza A virus infections present substantial costs to both health and economic resources each year. Current seasonal influenza vaccines provide suboptimal protection and require annual reformulation to match circulating strains. In this work, a recombinant equine H3N8 hemagglutinin trimer (rH33) known to generate cross-protective antibodies and protect animals against sublethal, heterologous virus challenge was used as a candidate vaccine antigen. Nanoadjuvants such as polyanhydride nanoparticles and pentablock copolymer hydrogels have been shown to be effective adjuvants, inducing both rapid and long-lived protective immunity against influenza A virus. In this work, polyanhydride nanoparticles and pentablock copolymer hydrogels were used to provide sustained release of the novel rH33 while also facilitating the retention of its structure and antigenicity. These studies lay the groundwork for the development of a novel universal influenza A virus nanovaccine by combining the equine H3N8 rH33 and polymeric nanoadjuvant platforms.
Collapse
Affiliation(s)
- Alaric C Siddoway
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - David Verhoeven
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States.,Nanovaccine Institute, Ames, Iowa 50011, United States
| | | | - Michael J Wannemuehler
- Department of Veterinary Microbiology & Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States.,Nanovaccine Institute, Ames, Iowa 50011, United States
| | - Surya K Mallapragada
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.,Nanovaccine Institute, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.,Nanovaccine Institute, Ames, Iowa 50011, United States
| |
Collapse
|
15
|
Khandker SS, Godman B, Jawad MI, Meghla BA, Tisha TA, Khondoker MU, Haq MA, Charan J, Talukder AA, Azmuda N, Sharmin S, Jamiruddin MR, Haque M, Adnan N. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines (Basel) 2021; 9:1387. [PMID: 34960133 PMCID: PMC8708628 DOI: 10.3390/vaccines9121387] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 vaccines are indispensable, with the number of cases and mortality still rising, and currently no medicines are routinely available for reducing morbidity and mortality, apart from dexamethasone, although others are being trialed and launched. To date, only a limited number of vaccines have been given emergency use authorization by the US Food and Drug Administration and the European Medicines Agency. There is a need to systematically review the existing vaccine candidates and investigate their safety, efficacy, immunogenicity, unwanted events, and limitations. The review was undertaken by searching online databases, i.e., Google Scholar, PubMed, and ScienceDirect, with finally 59 studies selected. Our findings showed several types of vaccine candidates with different strategies against SARS-CoV-2, including inactivated, mRNA-based, recombinant, and nanoparticle-based vaccines, are being developed and launched. We have compared these vaccines in terms of their efficacy, side effects, and seroconversion based on data reported in the literature. We found mRNA vaccines appeared to have better efficacy, and inactivated ones had fewer side effects and similar seroconversion in all types of vaccines. Overall, global variant surveillance and systematic tweaking of vaccines, coupled with the evaluation and administering vaccines with the same or different technology in successive doses along with homologous and heterologous prime-booster strategy, have become essential to impede the pandemic. Their effectiveness appreciably outweighs any concerns with any adverse events.
Collapse
Affiliation(s)
- Shahad Saif Khandker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK;
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Md. Irfan Jawad
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Bushra Ayat Meghla
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Taslima Akter Tisha
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Mohib Ullah Khondoker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Community Medicine, Gonoshasthaya Samaj Vittik Medical College, Savar 1344, Bangladesh
| | - Md. Ahsanul Haq
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India;
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Nafisa Azmuda
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| | - Shahana Sharmin
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Mohd. Raeed Jamiruddin
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sugai Besi, Kuala Lumpur 57000, Malaysia
| | - Nihad Adnan
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka 1205, Bangladesh; (S.S.K.); (M.U.K.); (M.A.H.); (M.R.J.)
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (M.I.J.); (B.A.M.); (T.A.T.); (A.A.T.); (N.A.)
| |
Collapse
|
16
|
Dassanayake RP, Atkinson BM, Mullis AS, Falkenberg SM, Nicholson EM, Casas E, Narasimhan B, Bearson SMD. Bovine NK-lysin peptides exert potent antimicrobial activity against multidrug-resistant Salmonella outbreak isolates. Sci Rep 2021; 11:19276. [PMID: 34588573 PMCID: PMC8481502 DOI: 10.1038/s41598-021-98860-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
Multidrug-resistant (MDR) Salmonella is a threat to public health. Non-antibiotic therapies could serve as important countermeasures to control MDR Salmonella outbreaks. In this study, antimicrobial activity of cationic α-helical bovine NK-lysin-derived antimicrobial peptides was evaluated against MDR Salmonella outbreak isolates. NK2A and NK2B strongly inhibited MDR Salmonella growth while NK1 and NK2C showed minimum-to-no growth inhibition. Scrambled-NK2A, which is devoid of α-helicity but has the same net positive charge as NK2A, also failed to inhibit bacterial growth. Incubation of negatively charged MDR Salmonella with NK2A showed increased Zeta potential, indicating bacterial-peptide electrostatic attraction. Confocal and transmission electron microscopy studies revealed NK2A-mediated damage to MDR Salmonella membranes. LPS inhibited NK2A-mediated growth suppression in a dose-dependent response, suggesting irreversible NK2A-LPS binding. LPS-NK2A binding and bacterial membrane disruption was also confirmed via electron microscopy using gold nanoparticle-NK2A conjugates. Finally, NK2A-loaded polyanhydride nanoparticles showed sustained peptide delivery and anti-bacterial activity. Together, these findings indicate that NK2A α-helicity and positive charge are prerequisites for antimicrobial activity and that MDR Salmonella killing is mediated by direct interaction of NK2A with LPS and the inner membrane, leading to bacterial membrane permeabilization. With further optimization using nano-carriers, NK2A has the potential to become a potent anti-MDR Salmonella agent.
Collapse
Affiliation(s)
- Rohana P Dassanayake
- Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, USDA, Ames, IA, USA.
| | - Briony M Atkinson
- Agricultural Research Service, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, USDA, Ames, IA, USA
| | - Adam S Mullis
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Shollie M Falkenberg
- Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, USDA, Ames, IA, USA
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Eduardo Casas
- Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, USDA, Ames, IA, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Shawn M D Bearson
- Agricultural Research Service, National Animal Disease Center, Food Safety and Enteric Pathogens Research Unit, USDA, Ames, IA, USA.
| |
Collapse
|
17
|
Seyfoori A, Shokrollahi Barough M, Mokarram P, Ahmadi M, Mehrbod P, Sheidary A, Madrakian T, Kiumarsi M, Walsh T, McAlinden KD, Ghosh CC, Sharma P, Zeki AA, Ghavami S, Akbari M. Emerging Advances of Nanotechnology in Drug and Vaccine Delivery against Viral Associated Respiratory Infectious Diseases (VARID). Int J Mol Sci 2021; 22:6937. [PMID: 34203268 PMCID: PMC8269337 DOI: 10.3390/ijms22136937] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Viral-associated respiratory infectious diseases are one of the most prominent subsets of respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins, the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due to their specific physical and biological properties, nanoparticles hold promising opportunities for both anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties of the respiratory system, there is a significant demand for utilizing nano-designs in the production of vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based medications on similar respiratory viral diseases can identify pathways towards generating novel SARS-CoV-2 nanotherapeutics and/or nano-vaccines.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mahdieh Shokrollahi Barough
- Department of Immunology, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Pooneh Mokarram
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran 1316943551, Iran;
| | - Alireza Sheidary
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (M.A.); (T.M.)
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran;
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
| | - Kielan D. McAlinden
- Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Chandra C. Ghosh
- Roger Williams Medical Center, Immuno-Oncology Institute (Ix2), Providence, RI 02908, USA;
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Amir A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, U.C. Davis Lung Center, Davis School of Medicine, University of California, Davis, CA 95817, USA;
- Veterans Affairs Medical Center, Mather, CA 95817, USA
| | - Saeid Ghavami
- Autophagy Research Center, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (T.W.)
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
18
|
Liu L, Kshirsagar P, Christiansen J, Gautam SK, Aithal A, Gulati M, Kumar S, Solheim JC, Batra SK, Jain M, Wannemuehler MJ, Narasimhan B. Polyanhydride nanoparticles stabilize pancreatic cancer antigen MUC4β. J Biomed Mater Res A 2021; 109:893-902. [PMID: 32776461 PMCID: PMC8100985 DOI: 10.1002/jbm.a.37080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies and represents an increasing and challenging threat, especially with an aging population. The identification of immunogenic PC-specific upregulated antigens and an enhanced understanding of the immunosuppressive tumor microenvironment have provided opportunities to enable the immune system to recognize cancer cells. Due to its differential upregulation and functional role in PC, the transmembrane mucin MUC4 is an attractive target for immunotherapy. In the current study we characterized the antigen stability, antigenicity and release kinetics of a MUC4β-nanovaccine to guide further optimization and, in vivo evaluation. Amphiphilic polyanhydride copolymers based on 20 mol % 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane and 80 mol % 1,6-bis(p-carboxyphenoxy)hexane were used to synthesize nanoparticles. Structurally stable MUC4β protein was released from the particles in a sustained manner and characterized by gel electrophoresis and fluorescence spectroscopy. Modest levels of protein degradation were observed upon release. The released protein was also analyzed by MUC4β-specific monoclonal antibodies using ELISA and showed no significant loss of epitope availability. Further, mice immunized with multiple formulations of combination vaccines containing MUC4β-loaded nanoparticles generated MUC4β-specific antibody responses. These results indicate that polyanhydride nanoparticles are viable MUC4β vaccine carriers, laying the foundation for evaluation of this platform for PC immunotherapy.
Collapse
Affiliation(s)
- Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - John Christiansen
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa
| | - Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joyce C. Solheim
- Nanovaccine Institute, Iowa State University, Ames, Iowa
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Nanovaccine Institute, Iowa State University, Ames, Iowa
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Nanovaccine Institute, Iowa State University, Ames, Iowa
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, Iowa
- Nanovaccine Institute, Iowa State University, Ames, Iowa
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
- Nanovaccine Institute, Iowa State University, Ames, Iowa
| |
Collapse
|
19
|
Stephens LM, Ross KA, Waldstein KA, Legge KL, McLellan JS, Narasimhan B, Varga SM. Prefusion F-Based Polyanhydride Nanovaccine Induces Both Humoral and Cell-Mediated Immunity Resulting in Long-Lasting Protection against Respiratory Syncytial Virus. THE JOURNAL OF IMMUNOLOGY 2021; 206:2122-2134. [PMID: 33827894 DOI: 10.4049/jimmunol.2100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in both young children and in older adults. Despite the morbidity, mortality, and high economic burden caused by RSV worldwide, no licensed vaccine is currently available. We have developed a novel RSV vaccine composed of a prefusion-stabilized variant of the fusion (F) protein (DS-Cav1) and a CpG oligodeoxynucleotide adjuvant encapsulated within polyanhydride nanoparticles, termed RSVNanoVax. A prime-boost intranasal administration of RSVNanoVax in BALB/c mice significantly alleviated weight loss and pulmonary dysfunction in response to an RSV challenge, with protection maintained up to at least 6 mo postvaccination. In addition, vaccinated mice exhibited rapid viral clearance in the lungs as early as 2 d after RSV infection in both inbred and outbred populations. Vaccination induced tissue-resident memory CD4 and CD8 T cells in the lungs, as well as RSV F-directed neutralizing Abs. Based on the robust immune response elicited and the high level of durable protection observed, our prefusion RSV F nanovaccine is a promising new RSV vaccine candidate.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Kody A Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA
| | - Kevin L Legge
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA.,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Ames, IA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA; .,Nanovaccine Institute, Ames, IA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA.,Department of Pathology, University of Iowa, Iowa City, IA; and
| |
Collapse
|
20
|
Stephens LM, Varga SM. Nanoparticle vaccines against respiratory syncytial virus. Future Virol 2020; 15:763-778. [PMID: 33343684 PMCID: PMC7737143 DOI: 10.2217/fvl-2020-0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory disease in infants, the elderly and immunocompromised individuals. Despite the global burden, there is no licensed vaccine for RSV. Recent advances in the use of nanoparticle technology have provided new opportunities to address some of the limitations of conventional vaccines. Precise control over particle size and surface properties enhance antigen stability and prolong antigen release. Particle size can also be modified to target specific antigen-presenting cells in order to induce specific types of effector T-cell responses. Numerous nanoparticle-based vaccines are currently being evaluated for RSV including inorganic, polymeric and virus-like particle-based formulations. Here, we review the potential advantages of using different nanoparticle formulations in a vaccine for RSV, and discuss many examples of safe, and effective vaccines currently in both preclinical and clinical stages of testing.
Collapse
Affiliation(s)
- Laura M Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Biodistribution of degradable polyanhydride particles in Aedes aegypti tissues. PLoS Negl Trop Dis 2020; 14:e0008365. [PMID: 32898130 PMCID: PMC7500644 DOI: 10.1371/journal.pntd.0008365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/18/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
Insecticide resistance poses a significant threat to the control of arthropods that transmit disease agents. Nanoparticle carriers offer exciting opportunities to expand the armamentarium of insecticides available for public health and other pests. Most chemical insecticides are delivered by contact or feeding, and from there must penetrate various biological membranes to reach target organs and kill the pest organism. Nanoparticles have been shown to improve bioactive compound navigation of such barriers in vertebrates, but have not been well-explored in arthropods. In this study, we explored the potential of polyanhydride micro- and nanoparticles (250 nm- 3 μm), labeled with rhodamine B to associate with and/or transit across insect biological barriers, including the cuticle, epithelium, midgut and ovaries, in female Ae. aeygpti mosquitoes. Mosquitoes were exposed using conditions to mimic surface contact with a residual spray or paint, topical exposure to mimic contact with aerosolized insecticide, or per os in a sugar meal. In surface contact experiments, microparticles were sometimes observed in association with the exterior of the insect cuticle. Nanoparticles were more uniformly distributed across exterior tissues and present at higher concentrations. Furthermore, by surface contact, topical exposure, or per os, particles were detected in internal organs. In every experiment, amphiphilic polyanhydride nanoparticles associated with internal tissues to a higher degree than hydrophobic nanoparticles. In vitro, nanoparticles associated with Aedes aegypti Aag2 cells within two hours of exposure, and particles were evident in the cytoplasm. Further studies demonstrated that particle uptake is dependent on caveolae-mediated endocytosis. The propensity of these nanoparticles to cross biological barriers including the cuticle, to localize in target tissue sites of interest, and to reach the cytoplasm of cells, provides great promise for targeted delivery of insecticidal candidates that cannot otherwise reach these cellular and subcellular locations.
Collapse
|
22
|
Darling R, Senapati S, Christiansen J, Liu L, Ramer-Tait AE, Narasimhan B, Wannemuehler M. Polyanhydride Nanoparticles Induce Low Inflammatory Dendritic Cell Activation Resulting in CD8 + T Cell Memory and Delayed Tumor Progression. Int J Nanomedicine 2020; 15:6579-6592. [PMID: 32982219 PMCID: PMC7490050 DOI: 10.2147/ijn.s261041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Adjuvants and immunotherapies designed to activate adaptive immunity to eliminate infectious disease and tumors have become an area of interest aimed at providing a safe and effective strategy to prevent or eliminate disease. Existing approaches would benefit from the development of immunization regimens capable of inducing efficacious cell-mediated immunity directed toward CD8+ T cell-specific antigens. This goal is critically dependent upon appropriate activation of antigen-presenting cells (APCs) most notably dendritic cells (DCs). In this regard, polyanhydride particles have been shown to be effectively internalized by APCs and induce activation. Methods Here, a prophylactic vaccine regimen designed as a single-dose polyanhydride nanovaccine encapsulating antigen is evaluated for the induction of CD8+ T cell memory in a model system where antigen-specific protection is restricted to CD8+ T cells. Bone marrow-derived dendritic cells (BMDCs) are used as an in vitro model system to evaluate the magnitude and phenotype of APC activation. Primary DCs, particularly those with described ability to activate CD8+ T cells, are also evaluated for their in vitro responses to polyanhydride nanoparticles. Results Herein, polyanhydride nanoparticles are shown to induce potent in vitro upregulation of costimulatory molecules on the cell surface of BMDCs. In contrast to the classically used TLR agonists, nanoparticles did not induce large amounts of pro-inflammatory cytokines, did not induce characteristic metabolic response of DCs, nor produce innate antimicrobial effector molecules, such as nitric oxide (NO). The polyanhydride nanovaccine results in protective CD8+ T cell responses as measured by inhibition of tumor progression and survival. Discussion Together, these results suggest that the use of a polyanhydride-based nanovaccine can be an effective approach to inducing antigen-specific CD8+ T cell memory by providing antigen delivery and DC activation while avoiding overt inflammatory responses typically associated with traditional adjuvants.
Collapse
Affiliation(s)
- Ross Darling
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - John Christiansen
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Michael Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
23
|
Irvine DJ, Aung A, Silva M. Controlling timing and location in vaccines. Adv Drug Deliv Rev 2020; 158:91-115. [PMID: 32598970 PMCID: PMC7318960 DOI: 10.1016/j.addr.2020.06.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Vaccines are one of the most powerful technologies supporting public health. The adaptive immune response induced by immunization arises following appropriate activation and differentiation of T and B cells in lymph nodes. Among many parameters impacting the resulting immune response, the presence of antigen and inflammatory cues for an appropriate temporal duration within the lymph nodes, and further within appropriate subcompartments of the lymph nodes- the right timing and location- play a critical role in shaping cellular and humoral immunity. Here we review recent advances in our understanding of how vaccine kinetics and biodistribution impact adaptive immunity, and the underlying immunological mechanisms that govern these responses. We discuss emerging approaches to engineer these properties for future vaccines, with a focus on subunit vaccines.
Collapse
Affiliation(s)
- Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Wu Y, Kelly SH, Sanchez-Perez L, Sampson JH, Collier JH. Comparative study of α-helical and β-sheet self-assembled peptide nanofiber vaccine platforms: influence of integrated T-cell epitopes. Biomater Sci 2020; 8:3522-3535. [PMID: 32452474 DOI: 10.1039/d0bm00521e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several different self-assembling peptide systems that form nanofibers have been investigated as vaccine platforms, but design principles for adjusting the character of the immune responses they raise have yet to be well articulated. Here we compared the immune responses raised by two structurally dissimilar peptide nanofibers, one a β-sheet fibrillar system (Q11), and one an α-helical nanofiber system (Coil29), hypothesizing that integrated T-cell epitopes within the latter would promote T follicular helper (Tfh) cell engagement and lead to improved antibody titers and quality. Despite significantly different internal structures, nanofibers of the two peptides exhibited surprisingly similar nanoscale morphologies, and both were capable of raising strong antibody responses to conjugated peptide epitopes in mice without adjuvant. Both were minimally inflammatory, but as hypothesized Coil29 nanofibers elicited antibody responses with higher titers and avidities against a conjugated model epitope (OVA323-339) and a candidate peptide epitope for vaccination against S. aureus. Subsequent investigation indicated that Coil29 nanofibers possessed internal CD4+ T cell epitopes: whereas Q11 nanofibers required co-assembly of additional CD4+ T cell epitopes to be immunogenic, Coil29 nanofibers did not. Coil29 nanofibers also raised stronger germinal center B cell responses and follicular helper T cell (Tfh) responses relative to Q11 nanofibers, likely facilitating the improvement of the antibody response. These findings illustrate design strategies for improving humoral responses raised by self-assembled peptide nanofibers.
Collapse
Affiliation(s)
- Yaoying Wu
- Biomedical Engineering Department, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
25
|
Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. J Control Release 2020; 321:324-347. [DOI: 10.1016/j.jconrel.2020.02.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
|
26
|
Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater 2020; 108:1-21. [PMID: 32268235 PMCID: PMC7163188 DOI: 10.1016/j.actbio.2020.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Vaccines activate suitable immune responses to fight against diseases but can possess limitations such as compromised efficacy and immunogenic responses, poor stability, and requirement of adherence to multiple doses. ‘Nanovaccines’ have been explored to elicit a strong immune response with the advantages of nano-sized range, high antigen loading, enhanced immunogenicity, controlled antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Various types of nanoparticles with diverse pathogenic or foreign antigens can help to overcome immunotolerance and alleviate the need of booster doses as required with conventional vaccines. Nanovaccines have the potential to induce both cell-mediated and antibody-mediated immunity and can render long-lasting immunogenic memory. With such properties, nanovaccines have shown high potential for the prevention of infectious diseases such as acquired immunodeficiency syndrome (AIDS), malaria, tuberculosis, influenza, and cancer. Their therapeutic potential has also been explored in the treatment of cancer. The various kinds of nanomaterials used for vaccine development and their effects on immune system activation have been discussed with special relevance to their implications in various pathological conditions. Statement of Significance Interaction of nanoparticles with the immune system has opened multiple avenues to combat a variety of infectious and non-infectious pathological conditions. Limitations of conventional vaccines have paved the path for nanomedicine associated benefits with a hope of producing effective nanovaccines. This review highlights the role of different types of nanovaccines and the role of nanoparticles in modulating the immune response of vaccines. The applications of nanovaccines in infectious and non-infectious diseases like malaria, tuberculosis, AIDS, influenza, and cancers have been discussed. It will help the readers develop an understanding of mechanisms of immune activation by nanovaccines and design appropriate strategies for novel nanovaccines.
Collapse
|
27
|
Mullis AS, Jacobson SJ, Narasimhan B. High-Throughput Synthesis and Screening of Rapidly Degrading Polyanhydride Nanoparticles. ACS COMBINATORIAL SCIENCE 2020; 22:172-183. [PMID: 32125826 DOI: 10.1021/acscombsci.9b00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Combinatorial techniques can accelerate the discovery and development of polymeric nanodelivery devices by pairing high-throughput synthesis with rapid materials characterization. Biodegradable polyanhydrides demonstrate tunable release, high cellular internalization, and dose sparing properties when used as nanodelivery devices. This nanoparticle platform shows promising potential for small molecule drug delivery, but the pace of understanding and rational design of these nanomedicines is limited by the low throughput of conventional characterization. This study reports the use of a high-throughput method to synthesize libraries of a newly synthesized, rapidly eroding polyanhydride copolymer based on 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) and sebacic acid (SA) monomers. The high-throughput method enabled efficient screening of copolymer microstructure, revealing weak block-type and alternating architectures. The high-throughput method was adapted to synthesize nanoparticle libraries encapsulating hydrophobic model drugs. Drug release from these nanoparticles was rapid, with a majority of the payload released within 3 days. Drug release was dramatically slowed at acidic pH, which could be useful for oral drug delivery. Rhodamine B (RhoB) release kinetics generally followed patterns of polymer erosion kinetics, while Coomassie brilliant blue (CBB) released the fastest from the slowest degrading polymer chemistry and vice versa. These differences in trends between copolymer chemistry and release kinetics were hypothesized to arise from differences in mixing thermodynamics. A high-throughput method was developed to synthesize polymer-drug film libraries and characterize mixing thermodynamics by melting point depression. Rhodamine B had a negative χ for all copolymers with <30 mol % CPTEG tested, indicating a tendency toward miscibility. By contrast, CBB χ increased, eventually becoming positive near 15:85 CPTEG:SA, with increasing CPTEG content. This indicates an increasing tendency toward phase separation in CPTEG-rich copolymers. These in vitro results screening polymer-drug interactions showed good agreement with in silico predictions from Hansen solubility parameter estimation and were able to explain the observed differences in model drug release trends.
Collapse
Affiliation(s)
- Adam S. Mullis
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Sarah J. Jacobson
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering and Nanovaccine Institute, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
28
|
A single dose polyanhydride-based nanovaccine against paratuberculosis infection. NPJ Vaccines 2020; 5:15. [PMID: 32128256 PMCID: PMC7021715 DOI: 10.1038/s41541-020-0164-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 01/27/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) causes Johne’s disease in ruminants and is characterized by chronic gastroenteritis leading to heavy economic losses to the dairy industry worldwide. The currently available vaccine (inactivated bacterin in oil base) is not effective in preventing pathogen shedding and is rarely used to control Johne’s disease in dairy herds. To develop a better vaccine that can prevent the spread of Johne’s disease, we utilized polyanhydride nanoparticles (PAN) to encapsulate mycobacterial antigens composed of whole cell lysate (PAN-Lysate) and culture filtrate (PAN-Cf) of M. paratuberculosis. These nanoparticle-based vaccines (i.e., nanovaccines) were well tolerated in mice causing no inflammatory lesions at the site of injection. Immunological assays demonstrated a substantial increase in the levels of antigen-specific T cell responses post-vaccination in the PAN-Cf vaccinated group as indicated by high percentages of triple cytokine (IFN-γ, IL-2, TNF-α) producing CD8+ T cells. Following challenge, animals vaccinated with PAN-Cf continued to produce significant levels of double (IFN-γ, TNF-α) and single cytokine (IFN-γ) secreting CD8+ T cells compared with animals vaccinated with an inactivated vaccine. A significant reduction in bacterial load was observed in multiple organs of animals vaccinated with PAN-Cf, which is a clear indication of protection. Overall, the use of polyanhydride nanovaccines resulted in development of protective and sustained immunity against Johne’s disease, an approach that could be applied to counter other intracellular pathogens.
Collapse
|
29
|
Kelly SM, Mitra A, Mathur S, Narasimhan B. Synthesis and Characterization of Rapidly Degrading Polyanhydrides as Vaccine Adjuvants. ACS Biomater Sci Eng 2020; 6:265-276. [PMID: 33463223 DOI: 10.1021/acsbiomaterials.9b01427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a currently a need to develop adjuvants that are best suited to simultaneously enhance immune responses, induce immunologic memory, improve patient compliance (i.e., reduce doses and inflammation), and provide vaccine shelf stability for stockpiling and global deployment to challenging environments. Biodegradable polyanhydrides have been investigated extensively to overcome such challenges. It has been shown that controlling copolymer composition can result in chemistry-dependent immunomodulatory capabilities. These studies have revealed that copolymers rich in sebacic acid (SA) are highly internalized by antigen presenting cells and confer improved shelf stability of encapsulated proteins, while copolymers rich in 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) also exhibit enhanced internalization by and activation of antigen presenting cells (APCs), in addition to providing superior retention of protein stability following encapsulation and release. However, to date, CPTEG:SA copolymers have not been synthesized and described. In this work, we hypothesized that new copolymers composed of CPTEG and SA would combine the advantages of both monomers in terms of enhanced thermal properties, maintaining antigenicity of encapsulated proteins following nanoparticle synthesis, and superior cellular internalization and activation by APCs, demonstrated by the upregulation of costimulatory markers CD80, CD86, and CD40, as well as the secretion of proinflammatory cytokines IL-6, IL-1β, and TNF-α. Herein, we describe the synthesis and design of novel CPTEG:SA nanoparticles with improved thermal properties, payload stability, and internalization by antigen presenting cells for applications in vaccine delivery. The performance of these new CPTEG:SA formulations was compared to that of traditional polyanhydride copolymers.
Collapse
Affiliation(s)
- Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Akash Mitra
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Srishti Mathur
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.,Nanovaccine Institute, Iowa State University, Ames, Iowa 50011-1098, United States
| |
Collapse
|
30
|
Wagner DA, Kelly SM, Petersen AC, Peroutka-Bigus N, Darling RJ, Bellaire BH, Wannemuehler MJ, Narasimhan B. Single-dose combination nanovaccine induces both rapid and long-lived protection against pneumonic plague. Acta Biomater 2019; 100:326-337. [PMID: 31610342 PMCID: PMC7012387 DOI: 10.1016/j.actbio.2019.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/01/2023]
Abstract
Yersinia pestis, the causative agent of pneumonic plague, induces a highly lethal infection if left untreated. Currently, there is no FDA-approved vaccine against this pathogen; however, USAMRIID has developed a recombinant fusion protein, F1-V, that has been shown to induce protection against pneumonic plague. Many F1-V-based vaccine formulations require prime-boost immunization to achieve protective immunity, and there are limited reports of rapid induction of protective immunity (≤ 14 days post-immunization (DPI)). The STimulator of INterferon Genes agonists cyclic dinucleotides (CDNs) have been shown to be promising vaccine adjuvants. Polyanhydride nanoparticle-based vaccines (i.e., nanovaccines) have also shown to enhance immune responses due to their dual functionality as adjuvants and delivery vehicles. In this work, a combination nanovaccine was designed that comprised F1-V-loaded nanoparticles combined with the CDN, dithio-RP,RP-cyclic di-guanosine monophosphate, to induce rapid and long-lived protective immunity against pneumonic plague. All mice immunized with a single dose combination nanovaccine were protected from Y. pestis lethal challenge within 14 DPI and demonstrated enhanced protection over F1-V adjuvanted with CDNs alone at challenge doses ≥7000 CFU Y. pestis CO92. In addition, 75% of mice receiving the single dose of the combination nanovaccine were protected from challenge at 182 DPI, while maintaining high levels of antigen-specific serum IgG. ELISPOT analysis of vaccinated animals at 218 DPI revealed F1-V-specific long-lived plasma cells in bone marrow in mice vaccinated with CDN adjuvanted F1-V or the combination nanovaccine. Microarray analysis of serum from these vaccinated mice revealed the presence of serum antibody that bound to a broad range of F1 and V linear epitopes. These results demonstrate that combining the adjuvanticity of CDNs with a nanovaccine delivery system enables induction of both rapid and long-lived protective immunity against Y. pestis. STATEMENT OF SIGNIFICANCE: • Yersinia pestis, the causative agent of pneumonic plague, induces a highly lethal infection if left untreated. Currently, there is no FDA-approved vaccine against this biodefense pathogen. • We designed a combination nanovaccine comprising of F1-V antigen-loaded polyanhydride nanoparticles and a cyclic dinucleotide adjuvant to induce both rapid and long-lived protective immunity against pneumonic plague. • Animals immunized with the combination nanovaccine maintained high levels of antigen-specific serum IgG and long-lived plasma cells in bone marrow and the serum antibody showed a high affinity for a broad range of F1 and V linear epitopes. • The combination nanovaccine is a promising next-generation vaccine platform against weaponized Y. pestis based on its ability to induce both rapid and long-lived protective immunity.
Collapse
Affiliation(s)
- Danielle A Wagner
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Andrew C Petersen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Nathan Peroutka-Bigus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, United States
| | - Ross J Darling
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Bryan H Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Program, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Iowa State University, Ames, IA, United States.
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States; Nanovaccine Institute, Iowa State University, Ames, IA, United States.
| |
Collapse
|
31
|
Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Vitamin A deficiency impairs the immune response to intranasal vaccination and RSV infection in neonatal calves. Sci Rep 2019; 9:15157. [PMID: 31641172 PMCID: PMC6805856 DOI: 10.1038/s41598-019-51684-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/03/2019] [Indexed: 02/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is a leading cause of severe acute lower respiratory tract infection in infants and children worldwide. Vitamin A deficiency (VAD) is one of the most prevalent nutrition-related health problems in the world and is a significant risk factor in the development of severe respiratory infections in infants and young children. Bovine RSV (BRSV) is a primary cause of lower respiratory tract disease in young cattle. The calf model of BRSV infection is useful to understand the immune response to human RSV infection. We have previously developed an amphiphilic polyanhydride nanoparticle (NP)-based vaccine (i.e., nanovaccine) encapsulating the fusion and attachment proteins from BRSV (BRSV-NP). Calves receiving a single, intranasal dose of the BRSV-NP vaccine are partially protected from BRSV challenge. Here, we evaluated the impact of VAD on the immune response to the BRSV-NP vaccine and subsequent challenge with BRSV. Our results show that VAD calves are unable to respond to the mucosal BRSV-NP vaccine, are afforded no protection from BRSV challenge and have significant abnormalities in the inflammatory response in the infected lung. We further show that acute BRSV infection negatively impacts serum and liver retinol, rendering even well-nourished individuals susceptible to VAD. Our results support the use of the calf model for elucidating the impact of nutritional status on mucosal immunity and respiratory viral infection in infants and underline the importance of VA in regulating immunity in the respiratory mucosa.
Collapse
|
33
|
Boggiatto PM, Schaut RG, Kanipe C, Kelly SM, Narasimhan B, Jones DE, Olsen SC. Sustained antigen release polyanhydride-based vaccine platform for immunization against bovine brucellosis. Heliyon 2019; 5:e02370. [PMID: 31517098 PMCID: PMC6728543 DOI: 10.1016/j.heliyon.2019.e02370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022] Open
Abstract
Brucellosis is a bacterial zoonosis and a significant source of economic loss and a major public health concern, worldwide. Bovine brucellosis, as caused primarily by Brucella abortus, is an important cause of reproductive loss in cattle. Vaccination has been the most effective way to reduce disease prevalence contributing to the success of control and eradication programs. Currently, there are no human vaccines available, and despite the success of commercial vaccines for livestock, such as B. abortus strain RB51 (RB51), there is need for development of novel and safer vaccines against brucellosis. In the current study, we report the fabrication of and immune responses to an implantable single dose polyanhydride-based, methanol-killed RB51 antigen containing delivery platform (VPEAR) in cattle. In contrast to animals vaccinated with RB51, we did not observe measurable RB51-specific IFN-γ or IgG responses in the peripheral blood, following initial vaccination with VPEAR. However, following a subsequent booster vaccination with RB51, we observed an anamnestic response in both vaccination treatments (VPEAR and live RB51). The magnitude and kinetics of CD4+ IFN-γ-mediated responses and circulating memory T cell subpopulations were comparable between the two vaccination treatments. Additionally, IgG titers were significantly increased in animals vaccinated with VPEAR as compared to live RB51- vaccinated animals. These data demonstrate that killed antigen may be utilized to generate and sustain memory, IFN-γ-mediated, CD4+ T cell and humoral responses against Brucella in a natural host. To our knowledge, this novel approach to vaccination against intracellular bacteria, such as Brucella, has not been reported before.
Collapse
Affiliation(s)
- Paola M Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Robert G Schaut
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Carly Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, IA, 50010, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, IA, 50010, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50010, USA
| | - Douglas E Jones
- Department of Veterinary Pathology, Iowa State University, 1800 Christensen Drive, Ames, IA, 50010, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50010, USA
| | - Steven C Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Centers, United States Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, USA
| |
Collapse
|
34
|
Kingstad-Bakke BA, Chandrasekar SS, Phanse Y, Ross KA, Hatta M, Suresh M, Kawaoka Y, Osorio JE, Narasimhan B, Talaat AM. Effective mosaic-based nanovaccines against avian influenza in poultry. Vaccine 2019; 37:5051-5058. [PMID: 31300285 DOI: 10.1016/j.vaccine.2019.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/15/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023]
Abstract
Avian influenza virus (AIV) is an extraordinarily diverse pathogen that causes significant morbidity in domesticated poultry populations and threatens human life with looming pandemic potential. Controlling avian influenza in susceptible populations requires highly effective, economical and broadly reactive vaccines. Several AIV vaccines have proven insufficient despite their wide use, and better technologies are needed to improve their immunogenicity and broaden effectiveness. Previously, we developed a "mosaic" H5 subtype hemagglutinin (HA) AIV vaccine and demonstrated its broad protection against diverse highly pathogenic H5N1 and seasonal H1N1 virus strains in mouse and non-human primate models. There is a significant interest in developing effective and safe vaccines against AIV that cannot contribute to the emergence of new strains of the virus once circulating in poultry. Here, we report on the development of an H5 mosaic (H5M) vaccine antigen formulated with polyanhydride nanoparticles (PAN) that provide sustained release of encapsulated antigens. H5M vaccine constructs were immunogenic whether delivered by the modified virus Ankara (MVA) strain or encapsulated within PAN. Both humoral and cellular immune responses were generated in both specific-pathogen free (SPF) and commercial chicks. Importantly, chicks vaccinated by H5M constructs were protected in terms of viral shedding from divergent challenge with a low pathogenicity avian influenza (LPAI) strain at 8 weeks post-vaccination. In addition, protective levels of humoral immunity were generated against highly pathogenic avian influenza (HPAI) of the similar H5N1 and genetically dissimilar H5N2 viruses. Overall, the developed platform technologies (MVA vector and PAN encapsulation) were safe and provided high levels of sustained protection against AIV in chickens. Such approaches could be used to design more efficacious vaccines against other important poultry infections.
Collapse
Affiliation(s)
- Brock A Kingstad-Bakke
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA; Pan Genome Systems, Madison, WI, USA
| | - Shaswath S Chandrasekar
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Masato Hatta
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - M Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA; Pan Genome Systems, Madison, WI, USA.
| |
Collapse
|
35
|
Espinosa-Cotton M, Rodman Iii SN, Ross KA, Jensen IJ, Sangodeyi-Miller K, McLaren AJ, Dahl RA, Gibson-Corley KN, Koch AT, Fu YX, Badovinac VP, Laux D, Narasimhan B, Simons AL. Interleukin-1 alpha increases anti-tumor efficacy of cetuximab in head and neck squamous cell carcinoma. J Immunother Cancer 2019; 7:79. [PMID: 30890189 PMCID: PMC6425573 DOI: 10.1186/s40425-019-0550-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the high prevalence of epidermal growth factor receptor (EGFR) overexpression in head and neck squamous cell carcinomas (HNSCCs), incorporation of the EGFR inhibitor cetuximab into the clinical management of HNSCC has not led to significant changes in long-term survival outcomes. Therefore, the identification of novel therapeutic approaches to enhance the clinical efficacy of cetuximab could lead to improved long-term survival for HNSCC patients. Our previous work suggests that EGFR inhibition activates the interleukin-1 (IL-1) pathway via tumor release of IL-1 alpha (IL-1α), although the clinical implications of activating this pathway are unclear in the context of cetuximab therapy. Given the role of IL-1 signaling in anti-tumor immune response, we hypothesized that increases in IL-1α levels would enhance tumor response to cetuximab. METHODS Parental and stable myeloid differentiation primary response gene 88 (MyD88) and IL-1 receptor 1 (IL-1R1) knockdown HNSCC cell lines, an IL-1R antagonist (IL-1RA), neutralizing antibodies to IL-1α and IL-1β, and recombinant IL-1α and IL-1β were used to determine cytokine production (using ELISA) in response to cetuximab in vitro. IL-1 pathway modulation in mouse models was accomplished by administration of IL-1RA, stable overexpression of IL-1α in SQ20B cells, administration of rIL-1α, and administration of a polyanhydride nanoparticle formulation of IL-1α. CD4+ and CD8+ T cell-depleting antibodies were used to understand the contribution of T cell-dependent anti-tumor immune responses. Baseline serum levels of IL-1α were measured using ELISA from HNSCC patients treated with cetuximab-based therapy and analyzed for association with progression free survival (PFS). RESULTS Cetuximab induced pro-inflammatory cytokine secretion from HNSCC cells in vitro which was mediated by an IL-1α/IL-1R1/MyD88-dependent signaling pathway. IL-1 signaling blockade did not affect the anti-tumor efficacy of cetuximab, while increased IL-1α expression using polyanhydride nanoparticles in combination with cetuximab safely and effectively induced a T cell-dependent anti-tumor immune response. Detectable baseline serum levels of IL-1α were associated with a favorable PFS in cetuximab-based therapy-treated HNSCC patients compared to HNSCC patients with undetectable levels. CONCLUSIONS Altogether, these results suggest that IL-1α in combination with cetuximab can induce a T cell-dependent anti-tumor immune response and may represent a novel immunotherapeutic strategy for EGFR-positive HNSCCs.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Samuel N Rodman Iii
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, College of Engineering, Iowa State University, Ames, IA, 50011, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Isaac J Jensen
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | | | | | - Rachel A Dahl
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | - Katherine N Gibson-Corley
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | - Adam T Koch
- Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vladimir P Badovinac
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA, 52242, USA.,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Douglas Laux
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.,Department of Internal Medicine - Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, College of Engineering, Iowa State University, Ames, IA, 50011, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Andrean L Simons
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA. .,Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA. .,Department of Pathology, University of Iowa, 1161 Medical Laboratories, Iowa City, IA, 52242, USA.
| |
Collapse
|
36
|
Banerjee K, Gautam SK, Kshirsagar P, Ross KA, Spagnol G, Sorgen P, Wannemuehler MJ, Narasimhan B, Solheim JC, Kumar S, Batra SK, Jain M. Amphiphilic polyanhydride-based recombinant MUC4β-nanovaccine activates dendritic cells. Genes Cancer 2019; 10:52-62. [PMID: 31258832 PMCID: PMC6584211 DOI: 10.18632/genesandcancer.189] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucin 4 (MUC4) is a high molecular weight glycoprotein that is differentially overexpressed in pancreatic cancer (PC), functionally contributes to disease progression, and correlates with poor survival. Further, due to its aberrant glycosylation and extensive splicing, MUC4 is a potential target for cancer immunotherapy. Our previous studies have demonstrated the utility of amphiphilic polyanhydride nanoparticles as a useful platform for the development of protein-based prophylactic and therapeutic vaccines. In the present study, we encapsulated purified recombinant human MUC4-beta (MUC4β) protein in polyanhydride (20:80 CPTEG:CPH) nanoparticles (MUC4β-nanovaccine) and evaluated its ability to activate dendritic cells and induce adaptive immunity. Immature dendritic cells when pulsed with MUC4β-nanovaccine exhibited significant increase in the surface expressions of MHC I and MHC II and costimulatory molecules (CD80 and CD86), as well as, secretion of pro-inflammatory cytokines (IFN-γ, IL-6, and IL-12) as compared to cells exposed to MUC4β alone or MUC4β mixed with blank nanoparticles (MUC4β+NP). Following immunization, as compared to the other formulations, MUC4β-nanovaccine elicited higher IgG2b to IgG1 ratio of anti-MUC4β-antibodies suggesting a predominantly Th1-like class switching. Thus, our findings demonstrate MUC4β-nanovaccine as a novel platform for PC immunotherapy.
Collapse
Affiliation(s)
- Kasturi Banerjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kathleen A Ross
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Ames, IA and Omaha, NE, USA
| | - Balaji Narasimhan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Ames, IA and Omaha, NE, USA
| | - Joyce C Solheim
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Nanovaccine Institute, Ames, IA and Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Nanovaccine Institute, Ames, IA and Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Nanovaccine Institute, Ames, IA and Omaha, NE, USA
| |
Collapse
|
37
|
Marasini N, Kaminskas LM. Subunit-based mucosal vaccine delivery systems for pulmonary delivery - Are they feasible? Drug Dev Ind Pharm 2019; 45:882-894. [PMID: 30767591 DOI: 10.1080/03639045.2019.1583758] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pulmonary infections are the most common cause of death globally. However, the development of mucosal vaccines that provide protective immunity against respiratory pathogens are limited. In contrast to needle-based vaccines, efficient vaccines that are delivered via noninvasive mucosal routes (such as via the lungs and nasal passage) produce both antigen-specific local mucosal IgA and systemic IgG protective antibodies. One major challenge in the development of pulmonary vaccines using subunit antigens however, is the production of optimal immune responses. Subunit vaccines therefore rely upon use of adjuvants to potentiate immune responses. While the lack of suitable mucosal adjuvants has hindered progress in the development of efficient pulmonary vaccines, particle-based systems can provide an alternative approach for the safe and efficient delivery of subunit vaccines. In particular, the rational engineering of particulate vaccines with optimal physicochemical characteristics can produce long-term protective immunity. These protect antigens against enzymatic degradation, target antigen presenting cells and initiate optimal humoral and cellular immunity. This review will discuss our current understanding of pulmonary immunology and developments in fabricating particle characteristics that may evoke potent and durable pulmonary immunity.
Collapse
Affiliation(s)
- Nirmal Marasini
- a School of Biomedical Sciences, Faculty of medicine, The University of Queensland , St Lucia , Australia
| | - Lisa M Kaminskas
- a School of Biomedical Sciences, Faculty of medicine, The University of Queensland , St Lucia , Australia
| |
Collapse
|
38
|
Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-Based Vaccines Against Respiratory Viruses. Front Immunol 2019; 10:22. [PMID: 30733717 PMCID: PMC6353795 DOI: 10.3389/fimmu.2019.00022] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The respiratory mucosa is the primary portal of entry for numerous viruses such as the respiratory syncytial virus, the influenza virus and the parainfluenza virus. These pathogens initially infect the upper respiratory tract and then reach the lower respiratory tract, leading to diseases. Vaccination is an affordable way to control the pathogenicity of viruses and constitutes the strategy of choice to fight against infections, including those leading to pulmonary diseases. Conventional vaccines based on live-attenuated pathogens present a risk of reversion to pathogenic virulence while inactivated pathogen vaccines often lead to a weak immune response. Subunit vaccines were developed to overcome these issues. However, these vaccines may suffer from a limited immunogenicity and, in most cases, the protection induced is only partial. A new generation of vaccines based on nanoparticles has shown great potential to address most of the limitations of conventional and subunit vaccines. This is due to recent advances in chemical and biological engineering, which allow the design of nanoparticles with a precise control over the size, shape, functionality and surface properties, leading to enhanced antigen presentation and strong immunogenicity. This short review provides an overview of the advantages associated with the use of nanoparticles as vaccine delivery platforms to immunize against respiratory viruses and highlights relevant examples demonstrating their potential as safe, effective and affordable vaccines.
Collapse
Affiliation(s)
- Soultan Al-Halifa
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
| | - Laurie Gauthier
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Dominic Arpin
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| | - Denis Archambault
- Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
39
|
Nanotherapeutic provides dose sparing and improved antimicrobial activity against Brucella melitensis infections. J Control Release 2019; 294:288-297. [DOI: 10.1016/j.jconrel.2018.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022]
|
40
|
Smith JD, Cardwell LN, Porciani D, Nguyen JA, Zhang R, Gallazzi F, Tata RR, Burke DH, Daniels MA, Ulery BD. Aptamer-displaying peptide amphiphile micelles as a cell-targeted delivery vehicle of peptide cargoes. Phys Biol 2018; 15:065006. [PMID: 30124431 DOI: 10.1088/1478-3975/aadb68] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peptide amphiphile micelles (PAMs) are attractive vehicles for the delivery of a variety of therapeutic and prophylactic peptides. However, a key limitation of PAMs is their lack of preferential targeting ability. In this paper, we describe our design of a PAM system that incorporates a DNA oligonucleotide amphiphile (antitail amphiphile-AA) to form A/PAMs. A cell-targeting DNA aptamer with a 3' extension sequence (tail) complementary to the AA is annealed to the surface to form aptamer-displaying PAMs (Aptamer~A/PAMs). Aptamer~A/PAMs are small, anionic, stable nanoparticles capable of delivering a large mass percentage peptide amphiphile (PA) compared to targeting DNA components. Aptamer~A/PAMs are stable for over 4 h in the presence of biological fluids. Additionally, the aptamer retains its cell-targeting properties when annealed to the A/PAM, thus leading to enhanced delivery to a specifically-targeted B-cell leukemia cell line. This exciting modular technology can be readily used with a library of different targeting aptamers and PAs, capable of improving the bioavailability and potency of the peptide cargo.
Collapse
Affiliation(s)
- Josiah D Smith
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang R, Kramer JS, Smith JD, Allen BN, Leeper CN, Li X, Morton LD, Gallazzi F, Ulery BD. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity. AAPS JOURNAL 2018; 20:73. [DOI: 10.1208/s12248-018-0233-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
|
42
|
Ghelich P, Salehi Z, Mohajerzedeh S, Jafarkhani M. Experimental and numerical study on a novel microfluidic method to fabricate curcumin loaded calcium alginate microfibres. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pejman Ghelich
- School of Chemical Engineering; College of Chemical Engineering; University of Tehran; 16 Azar Street Tehran Iran
| | - Zeinab Salehi
- School of Chemical Engineering; College of Chemical Engineering; University of Tehran; 16 Azar Street Tehran Iran
| | - Shams Mohajerzedeh
- School of Electrical and Computer Engineering, College of Electrical Engineering; University of Tehran; North Kargar Street Tehran Iran
| | - Mahboubeh Jafarkhani
- School of Chemical Engineering; College of Chemical Engineering; University of Tehran; 16 Azar Street Tehran Iran
| |
Collapse
|
43
|
Wagner-Muñiz DA, Haughney SL, Kelly SM, Wannemuehler MJ, Narasimhan B. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity. Front Immunol 2018; 9:325. [PMID: 29599766 PMCID: PMC5863507 DOI: 10.3389/fimmu.2018.00325] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae is a major causative agent of pneumonia, a debilitating disease particularly in young and elderly populations, and is the leading worldwide cause of death in children under the age of five. While there are existing vaccines against S. pneumoniae, none are protective across all serotypes. Pneumococcal surface protein A (PspA), a key virulence factor of S. pneumoniae, is an antigen that may be incorporated into future vaccines to address the immunological challenges presented by the diversity of capsular antigens. PspA has been shown to be immunogenic and capable of initiating a humoral immune response that is reactive across approximately 94% of pneumococcal strains. Biodegradable polyanhydrides have been studied as a nanoparticle-based vaccine (i.e., nanovaccine) platform to stabilize labile proteins, to provide adjuvanticity, and enhance patient compliance by providing protective immunity in a single dose. In this study, we designed a room temperature stable PspA-based polyanhydride nanovaccine that eliminated the need for a free protein component (i.e., 100% encapsulated within the nanoparticles). Mice were immunized once with the lead nanovaccine and upon challenge, presented significantly higher survival rates than animals immunized with soluble protein alone, even with a 25-fold reduction in protein dose. This lead nanovaccine formulation performed similarly to protein adjuvanted with Alum, however, with much less tissue reactogenicity at the site of immunization. By eliminating the free PspA from the nanovaccine formulation, the lead nanovaccine was efficacious after being stored dry for 60 days at room temperature, breaking the need for maintaining the cold chain. Altogether, this study demonstrated that a single dose PspA-based nanovaccine against S. pneumoniae induced protective immunity and provided thermal stability when stored at room temperature for at least 60 days.
Collapse
Affiliation(s)
- Danielle A. Wagner-Muñiz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Shannon L. Haughney
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Sean M. Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
44
|
Efficacy of mucosal polyanhydride nanovaccine against respiratory syncytial virus infection in the neonatal calf. Sci Rep 2018; 8:3021. [PMID: 29445124 PMCID: PMC5813012 DOI: 10.1038/s41598-018-21292-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of severe acute lower respiratory tract infection in infants and children worldwide. Bovine RSV (BRSV) is closely related to HRSV and a significant cause of morbidity in young cattle. BRSV infection in calves displays many similarities to RSV infection in humans, including similar age dependency and disease pathogenesis. Polyanhydride nanoparticle-based vaccines (i.e., nanovaccines) have shown promise as adjuvants and vaccine delivery vehicles due to their ability to promote enhanced immunogenicity through the route of administration, provide sustained antigen exposure, and induce both antibody- and cell-mediated immunity. Here, we developed a novel, mucosal nanovaccine that encapsulates the post-fusion F and G glycoproteins from BRSV into polyanhydride nanoparticles and determined the efficacy of the vaccine against RSV infection using a neonatal calf model. Calves receiving the BRSV-F/G nanovaccine exhibited reduced pathology in the lungs, reduced viral burden, and decreased virus shedding compared to unvaccinated control calves, which correlated with BRSV-specific immune responses in the respiratory tract and peripheral blood. Our results indicate that the BRSV-F/G nanovaccine is highly immunogenic and, with optimization, has the potential to significantly reduce the disease burden associated with RSV infection in both humans and animals.
Collapse
|
45
|
Schaut RG, Brewer MT, Hostetter JM, Mendoza K, Vela-Ramirez JE, Kelly SM, Jackman JK, Dell'Anna G, Howard JM, Narasimhan B, Zhou W, Jones DE. A single dose polyanhydride-based vaccine platform promotes and maintains anti-GnRH antibody titers. Vaccine 2018; 36:1016-1023. [DOI: 10.1016/j.vaccine.2017.12.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022]
|
46
|
Matías J, Berzosa M, Pastor Y, Irache JM, Gamazo C. Maternal Vaccination. Immunization of Sows during Pregnancy against ETEC Infections. Vaccines (Basel) 2017; 5:vaccines5040048. [PMID: 29211052 PMCID: PMC5748614 DOI: 10.3390/vaccines5040048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 12/18/2022] Open
Abstract
The immunology of pregnancy is an evolving consequence of multiple reciprocal interactions between the maternal and the fetal-placental systems. The immune response must warrant the pregnancy outcome (including tolerance to paternal antigens), but at the same time, efficiently respond to pathogenic challenges. Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of illness and death in neonatal and recently weaned pigs. This review aims to give an overview of the current rationale on the maternal vaccination strategies for the protection of the newborn pig against ETEC. Newborn piglets are immunodeficient and naturally dependent on the maternal immunity transferred by colostrum for protection—a maternal immunity that can be obtained by vaccinating the sow during pregnancy. Our current knowledge of the interactions between the pathogen strategies, virulence factors, and the host immune system is aiding the better design of vaccination strategies in this particular and challenging host status. Challenges include the need for better induction of immunity at the mucosal level with the appropriate use of adjuvants, able to induce the most appropriate and long-lasting protective immune response. These include nanoparticle-based adjuvants for oral immunization. Experiences can be extrapolated to other species, including humans.
Collapse
Affiliation(s)
- Jose Matías
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), C/Irunlarrea, 1, 31080 Pamplona, Spain.
| | - Melibea Berzosa
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), C/Irunlarrea, 1, 31080 Pamplona, Spain.
| | - Yadira Pastor
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), C/Irunlarrea, 1, 31080 Pamplona, Spain.
| | - Juan M Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), C/Irunlarrea, 1, 31080 Pamplona, Spain.
| | - Carlos Gamazo
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (IDISNA), C/Irunlarrea, 1, 31080 Pamplona, Spain.
| |
Collapse
|
47
|
Phanse Y, Carrillo-Conde BR, Ramer-Tait AE, Roychoudhury R, Broderick S, Pohl N, Rajan K, Narasimhan B, Wannemuehler MJ, Bellaire BH. Functionalization promotes pathogen-mimicking characteristics of polyanhydride nanoparticle adjuvants. J Biomed Mater Res A 2017; 105:2762-2771. [PMID: 28556563 DOI: 10.1002/jbm.a.36128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 11/08/2022]
Abstract
Rational design of adjuvants and delivery systems will promote development of next-generation vaccines to control emerging and re-emerging diseases. To accomplish this, understanding the immune-enhancing properties of new adjuvants relative to those induced by natural infections can help with the development of pathogen-mimicking materials that will effectively initiate innate immune signaling cascades. In this work, the surfaces of polyanhydride nanoparticles composed of sebacic acid (SA) and 1,6-bis(p-carboxyphenoxy) hexane were decorated with an ethylene diamine spacer partially modified with either a glycolic acid linker or an α-1,2-linked di-mannopyranoside (di-mannose) to confer "pathogen-like" properties and enhance adjuvanticity. Co-incubation of linker-modified nanoparticles with dendritic cells (DCs) elicited significant increases in surface expression of MHC I, MHC II, CD86, and CD40, and enhanced secretion of IL-6, IL-12p40, and TNF-α. An 800% increase in uptake of ethylene-diamine-spaced, linker and di-mannose functionalized polyanhydride nanoparticles was also observed. Together, our data showed that linker-functionalized polyanhydride nanoparticles demonstrate similar patterns of uptake, intracellular trafficking, particle persistence, and innate activation as did DCs exposed to Yersinia pestis or Escherichia coli. These results set the stage for rational selection of adjuvant chemistries to induce pathogen-mimicking immune responses. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2762-2771, 2017.
Collapse
Affiliation(s)
- Yashdeep Phanse
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Wisconsin-Madison, Wisconsin, 53706
| | | | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Nebraska, 68588
| | - Rajarshi Roychoudhury
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, 47401
| | - Scott Broderick
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, 14260, New York
| | - Nicola Pohl
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, 47401
| | - Krishna Rajan
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, 14260, New York
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Bryan H Bellaire
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
48
|
Wafa EI, Geary SM, Goodman JT, Narasimhan B, Salem AK. The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response. Acta Biomater 2017; 50:417-427. [PMID: 28063991 DOI: 10.1016/j.actbio.2017.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 01/16/2023]
Abstract
The goal of this research was to study the effect of polyanhydride chemistry on the immune response induced by a prophylactic cancer vaccine based on biodegradable polyanhydride particles. To achieve this goal, different compositions of polyanhydride copolymers based on 1,8-bis-(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG), 1,6-bis-(p-carboxyphenoxy)-hexane (CPH), and sebacic anhydride (SA) were synthesized by melt polycondensation, and polyanhydride copolymer particles encapsulating a model antigen, ovalbumin (OVA), were then synthesized using a double emulsion solvent evaporation technique. The ability of three different compositions of polyanhydride copolymers (50:50 CPTEG:CPH, 20:80 CPTEG:CPH, and 20:80 CPH:SA) encapsulating OVA to elicit immune responses was investigated. In addition, the impact of unmethylated oligodeoxynucleotides containing deoxycytidyl-deoxyguanosine dinucleotides (CpG ODN), an immunological adjuvant, on the immune response was also studied. The immune response to cancer vaccines was measured after treatment of C57BL/6J mice with two subcutaneous injections, seven days apart, of 50μg OVA encapsulated in particles composed of different polyanhydride copolymers with or without 25μg CpG ODN. In vivo studies showed that 20:80 CPTEG:CPH particles encapsulating OVA significantly stimulated the highest level of CD8+ T lymphocytes, generated the highest serum titers of OVA-specific IgG antibodies, and provided longer protection against tumor challenge with an OVA-expressing thymoma cell line in comparison to formulations made from other polyanhydride copolymers. The results also revealed that vaccination with CpG ODN along with polyanhydride particles encapsulating OVA did not enhance the immunogenicity of OVA. These results accentuate the crucial role of the copolymer composition of polyanhydrides in stimulating the immune response and provide important insights on rationally designing efficacious cancer vaccines. STATEMENT OF SIGNIFICANCE Compared to soluble cancer vaccine formulations, tumor antigens encapsulated in biodegradable polymeric particles have been shown to sustain antigen release and provide long-term protection against tumor challenge by improving the immune response towards the antigen. Treatment of mice with cancer vaccines based on different polyanhydride copolymers encapsulating OVA resulted in stimulation of tumor-specific immune responses with different magnitudes. This clearly indicates that polyanhydride chemistry plays a substantial role in stimulating the immune response. Vaccination with 20:80 CPTEG:CPH/OVA, the most hydrophobic formulation, stimulated the strongest cellular and humoral immune responses and provided the longest survival outcome without adding any other adjuvant. The most important finding in this study is that the copolymer composition of polyanhydride particle-based vaccines can have a direct effect on the magnitude of the antitumor immune response and should be selected carefully in order to achieve optimal cancer vaccine efficacy.
Collapse
Affiliation(s)
- Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jonathan T Goodman
- Department of Chemical and Biological Engineering, College of Engineering, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, College of Engineering, Iowa State University, Ames, IA 50011, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
49
|
Dhakal S, Goodman J, Bondra K, Lakshmanappa YS, Hiremath J, Shyu DL, Ouyang K, Kang KI, Krakowka S, Wannemuehler MJ, Won Lee C, Narasimhan B, Renukaradhya GJ. Polyanhydride nanovaccine against swine influenza virus in pigs. Vaccine 2017; 35:1124-1131. [DOI: 10.1016/j.vaccine.2017.01.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 11/25/2022]
|
50
|
Shakya AK, Chowdhury MYE, Tao W, Gill HS. Mucosal vaccine delivery: Current state and a pediatric perspective. J Control Release 2016; 240:394-413. [PMID: 26860287 PMCID: PMC5381653 DOI: 10.1016/j.jconrel.2016.02.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/21/2016] [Accepted: 02/05/2016] [Indexed: 12/30/2022]
Abstract
Most childhood infections occur via the mucosal surfaces, however, parenterally delivered vaccines are unable to induce protective immunity at these surfaces. In contrast, delivery of vaccines via the mucosal routes can allow antigens to interact with the mucosa-associated lymphoid tissue (MALT) to induce both mucosal and systemic immunity. The induced mucosal immunity can neutralize the pathogen on the mucosal surface before it can cause infection. In addition to reinforcing the defense at mucosal surfaces, mucosal vaccination is also expected to be needle-free, which can eliminate pain and the fear of vaccination. Thus, mucosal vaccination is highly appealing, especially for the pediatric population. However, vaccine delivery across mucosal surfaces is challenging because of the different barriers that naturally exist at the various mucosal surfaces to keep the pathogens out. There have been significant developments in delivery systems for mucosal vaccination. In this review we provide an introduction to the MALT, highlight barriers to vaccine delivery at different mucosal surfaces, discuss different approaches that have been investigated for vaccine delivery across mucosal surfaces, and conclude with an assessment of perspectives for mucosal vaccination in the context of the pediatric population.
Collapse
Affiliation(s)
| | | | - Wenqian Tao
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|