1
|
Akbar NU, Ahmad S, Khan TA, Tayyeb M, Akhter N, Shafiq L, Khan SN, Alam MM, Abdullah AM, Rehman MFU, Bajaber MA, Akram MS. Consanguineous marriages increase the incidence of recurrent tuberculosis: Evidence from whole exome sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105559. [PMID: 38266757 DOI: 10.1016/j.meegid.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND In this study, we have identified multiple mutations in the IL-12R1 gene among Pakistani patients who have inherited them through consanguineous marriages. These patients have experienced severe Bacille-Calmette-Guérin (BCG) infection as well as recurrent tuberculosis. We will demonstrate the pivotal role of interleukin (IL)-12/interferon (IFN)-γ axis in the regulation of mycobacterial diseases. METHODOLOGY First, we checked the patients' medical records, and then afterward, we assessed interferon-gamma (IFN-γ) production through ELISA. Following that, DNA was extracted to investigate IL-12/IFN- abnormalities. Whole exome sequencing was conducted through Sanger sequencing. Secretory cytokine levels were compared from healthy control of the same age groups and they were found to be considerably less in the disease cohort. To evaluate the probable functional impact of these alterations, an in silico study was performed. RESULTS The study found that the patients' PBMCs produced considerably less IFN-γ than expected. Analysis using flow cytometry showed that activated T cells lacked surface expression of IL-12Rβ1. Exon 7 of the IL-12Rβ1 gene, which encodes a portion of the cytokine binding region (CBR), and exon 10, which encodes the fibronectin-type III (FNIII) domain, were found to have the mutations c.641 A > G; p.Q214R and c.1094 T > C; p.M365T, respectively. In silico analysis showed that these mutations likely to have a deleterious effect on protein function. CONCLUSION Our findings indicate the significant contribution of the IL-12/IFN-γ is in combating infections due to mycobacterium. Among Pakistani patients born to consanguineous marriages, the identified mutations in the IL-12Rβ-1 gene provide insights into the genetic basis of severe BCG infections and recurrent tuberculosis. The study highlights the potential utility of newborn screening in regions with mandatory BCG vaccination, enabling early detection and intervention for primary immunodeficiencies associated with mycobacterial infections. Moreover, the study suggests at the potential role of other related genes such as IL-23Rβ1, TYK2, or JAK2 in IFN-γ production, warranting further investigation.
Collapse
Affiliation(s)
- Noor Ul Akbar
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Sajjad Ahmad
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Muhammad Tayyeb
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan
| | - Naheed Akhter
- Department of Biochemistry, Faculty of life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Laraib Shafiq
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Alduwish Manal Abdullah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Majed A Bajaber
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington DL1 1HG, UK.
| |
Collapse
|
2
|
Huang J, He Q, Huang L, Liu L, Yang P, Chen M. Discovering the link between IL12RB1 gene polymorphisms and tuberculosis susceptibility: a comprehensive meta-analysis. Front Public Health 2024; 12:1249880. [PMID: 38317798 PMCID: PMC10839023 DOI: 10.3389/fpubh.2024.1249880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Numerous studies suggest that the risk of tuberculosis (TB) is linked to gene polymorphisms of the interleukin-12 receptor b subunit 1 (IL12RB1), but the association between IL12RB1 polymorphisms and TB susceptibility has not been thoroughly investigated. Methods A meta-analysis was conducted based on eight case-control studies with 10,112 individuals to further explore this topic. A systematic search of PubMed, Web of Science, Excerpt Medica Database, and Google Scholar up until April 6th, 2023 was performed. ORs and 95% CIs were pooled using the random-effect model. The epidemiological credibility of all significant associations was assessed using the Venice criteria and false-positive report probability (FPRP) analyses. Results The IL12RB1 rs11575934 and rs401502 showed solid evidence of no significant association with TB susceptibility. However, a weak association was observed between the IL12RB1 rs375947 biomarker and pulmonary tuberculosis (PTB) susceptibility (OR = 1.64, 95% CI: 1.22, 2.21). Discussion These findings should be confirmed through larger, better-designed studies to clarify the relationship between biomarkers in IL12RB1 gene and different types of TB susceptibility.
Collapse
Affiliation(s)
- Jie Huang
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiurong He
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Huang
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liping Liu
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Pei Yang
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Min Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Ahmad S, Ahmed J, Khalifa EH, Khattak FA, Khan AS, Farooq SU, Osman SMA, Salih MM, Ullah N, Khan TA. Novel mutations in genes of the IL-12/IFN-γ axis cause susceptibility to tuberculosis. J Infect Public Health 2023; 16:1368-1378. [PMID: 37437430 DOI: 10.1016/j.jiph.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The IL-12/23/ISG15-IFN-γ pathway is the main immunological pathway for controlling intra-macrophagic microorganisms such as Mycobacteria, Salmonella, and Leishmania spp. Consequently, upon mutations in genes of the IL-12/23/ISG15-IFN-γ pathway cause increased susceptibility to intra-macrophagic pathogens, particularly to Mycobacteria. Therefore, the purpose of this study was to characterize the mutations in genes of the IL-12/23/ISG15-IFN-γ pathway in severe tuberculosis (TB) patients. METHODS Clinically suspected TB was initially confirmed in four patients (P) (P1, P2, P3, and P4) using the GeneXpert MTB/RIF and culturing techniques. The patients' Peripheral blood mononuclear cells (PBMCs) were then subjected to ELISA to measure Interleukin 12 (IL-12) and interferon gamma (IFN-γ). Flow cytometry was used to detect the surface expressions of IFN-γR1 and IFN-γR2 as well as IL-12Rβ1and IL-12Rβ2 on monocytes and T lymphocytes, respectively.The phosphorylation of signal transducer and activator of transcription 1(STAT1) on monocytes and STAT4 on T lymphocytes were also detected by flow cytometry. Sanger sequencing was used to identify mutations in the IL-12Rβ1, STAT1, NEMO, and CYBB genes. RESULTS P1's PBMCs exhibited reduced IFN-γ production, while P2's and P3's PBMCs exhibited impaired IL-12 induction. Low IL-12Rβ1 surface expression and reduced STAT4 phosphorylation were demonstrated by P1's T lymphocytes, while impaired STAT1 phosphorylation was detected in P2's monocytes. The impaired IκB-α degradation and abolished H2O2 production in monocytes and neutrophils of P3 and P4 were observed, respectively. Sanger sequencing revealed novel nonsense homozygous mutation: c.191 G>A/p.W64 * in exon 3 of the IL-12Rβ1 gene in P1, novel missense homozygous mutation: c.107 A>T/p.Q36L in exon 3 of the STAT1 gene in P2, missense hemizygous mutation:: c.950 A>C/p.Q317P in exon 8 of the NEMO gene in P3, and nonsense hemizygous mutation: c.868 C>T/p.R290X in exon 8 of CYBB gene in P4. CONCLUSION Our findings broaden the clinical and genetic spectra associated with IL-12/23/ISG15-IFN-γ axis anomalies. Additionally, our data suggest that TB patients in Pakistan should be investigated for potential genetic defects due to high prevalence of parental consanguinity and increased incidence of TB in the country.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Institute of Basic Medical Science, Khyber Medical University, Peshawar, KP, Pakistan
| | - Jawad Ahmed
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Eman H Khalifa
- Al Baha University Faculty of Applied Medical Sciences, Saudi Arabia
| | - Farhad Ali Khattak
- Research & development Cell, Khyber College of Dentistry (KCD), Peshawar, Pakistan
| | - Anwar Sheed Khan
- Provincial TB Reference laboratory, Hayatabad Medical Complex, Peshawar, PK, Pakistan
| | - Syed Umar Farooq
- Department of oral pathology, Khyber College of Dentistry, Peshawar. Pakistan
| | | | | | - Nadeem Ullah
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden.
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan; Division of Infectious Diseases & Global Medicine,Department of Medicine,University of Florida, Gainesville, FL,United States.
| |
Collapse
|
4
|
Kratzer B, Grabmeier-Pfistershammer K, Trapin D, Körmöczi U, Rottal A, Feichter M, Waidhofer-Söllner P, Smogavec M, Laccone F, Hauser M, Winkler S, Pickl WF, Lechner AM. Mycobacterium avium Complex Infections: Detailed Phenotypic and Functional Immunological Work-Up Is Required despite Genetic Analyses. Int Arch Allergy Immunol 2023; 184:914-931. [PMID: 37279717 DOI: 10.1159/000530844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023] Open
Abstract
INTRODUCTION Cervical scrofulous lymphadenitis due to Mycobacterium avium complex (MAC) in immunocompetent adults is a rare disease. The presence of MAC infections demands meticulous clinical evaluation of patients along with detailed phenotypic and functional evaluation of their immune system including next-generation sequencing (NGS) analyses of target genes. METHODS Exact clinical histories of the index patients both suffering from retromandibular/cervical scrofulous lymphadenitis were obtained along with phenotypic and functional immunological evaluations of leukocyte populations followed by targeted NGS-based sequencing of candidate genes. RESULTS Immunological investigations showed normal serum immunoglobulin and complement levels, but lymphopenia, which was caused by significantly reduced CD3+CD4+CD45RO+ memory T-cell and CD19+ B-cell numbers. Despite normal T-cell proliferation to a number of accessory cell-dependent and -independent stimuli, the PBMC of both patients elaborated clearly reduced levels of a number of cytokines, including IFN-γ, IL-10, IL-12p70, IL-1α, IL-1β, and TNF-α upon TCR-dependent T-cell stimulation with CD3-coated beads but also superantigens. The IFN-γ production deficiency was confirmed for CD3+CD4+ helper and CD4+CD8+ cytotoxic T cells on the single-cell level by multiparametric flow cytometry irrespective of whether PMA/ionomycin-stimulated whole blood cells or gradient-purified PBMC was analyzed. In the female patient L1, targeted NGS-based sequencing revealed a homozygous c.110T>C mutation in the interferon-γ receptor type 1 (IFNGR1) leading to significantly reduced receptor expression on both CD14+ monocytes and CD3+ T cells. Patient S2 presented with normal IFNGR1 expression on CD14+ monocytes but significantly reduced IFNGR1 expression on CD3+ T cells, despite the absence of detectable homozygous mutations in the IFNGR1 itself or disease-related target genes. Exogenous addition of increasing doses of IFN-γ resulted in proper upregulation of high-affinity FcγRI (CD64) on monocytes from patient S2, whereas monocytes from patient L1 showed only partial induction of CD64 expression after incubation with high doses of IFN-γ. CONCLUSION A detailed phenotypic and functional immunological examination is urgently required to determine the cause of a clinically relevant immunodeficiency, despite detailed genetic analyses.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | | | - Doris Trapin
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Ulrike Körmöczi
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Arno Rottal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Melanie Feichter
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Mateja Smogavec
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Vienna, Austria
| | - Franco Laccone
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Vienna, Austria
| | - Michael Hauser
- Paris Lodron University Salzburg, Division of Allergy and Immunology, Department of Biosciences, Salzburg, Austria
| | - Stefan Winkler
- Medical University of Vienna, Department of Medicine I, Division of Infectious Diseases and Tropical Medicine Vienna, Vienna, Austria
| | - Winfried F Pickl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
- Karl Landsteiner University, Krems, Austria
| | - Arno M Lechner
- Paracelsus University Salzburg, University Institute for Clinical Microbiology and Hygiene, Salzburg, Austria
| |
Collapse
|
5
|
Errami A, Baghdadi JE, Ailal F, Benhsaien I, Bakkouri JE, Jeddane L, Rada N, Benajiba N, Mokhantar K, Ouazahrou K, Zaidi S, Abel L, Casanova JL, Boisson-Dupuis S, Bustamante J, Bousfiha AA. Mendelian Susceptibility to Mycobacterial Disease (MSMD): Clinical, Immunological, and Genetic Features of 22 Patients from 15 Moroccan Kindreds. J Clin Immunol 2023; 43:728-740. [PMID: 36630059 PMCID: PMC10121882 DOI: 10.1007/s10875-022-01419-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE The first molecular evidence of a monogenic predisposition to mycobacteria came from the study of Mendelian susceptibility to mycobacterial disease (MSMD). We aimed to study this Mendelian susceptibility to mycobacterial diseases in Moroccan kindreds through clinical, immunological, and genetic analysis. METHODS Patients presented with clinical features of MSMD were recruited into this study. We used whole blood samples from patients and age-matched healthy controls. To measure IL-12 and IFN-γ production, samples were activated by BCG plus recombinant human IFN-γ or recombinant human IL-12. Immunological assessments and genetic analysis were also done for patients and their relatives. RESULTS Our study involved 22 cases from 15 unrelated Moroccan kindreds. The average age at diagnosis is 4 years. Fourteen patients (64%) were born to consanguineous parents. All patients were vaccinated with the BCG vaccine, and twelve of them (55%) developed locoregional or disseminated BCG infections. The other symptomatic patients had severe tuberculosis and/or recurrent salmonellosis. Genetic mutations were identified on the following genes: IL12RB1 in 8 patients, STAT1 in 7 patients; SPPL2A, IFNGR1, and TYK2 in two patients each; and TBX21 in one patient, with different modes of inheritance. All identified mutations/variants altered production or response to IFN-γ or both. CONCLUSION Severe forms of tuberculosis and complications of BCG vaccination may imply a genetic predisposition present in the Moroccan population. In the presence of these infections, systematic genetic studies became necessary. BCG vaccination is contraindicated in MSMD patients and should be delayed in newborn siblings until the exclusion of a genetic predisposition to mycobacteria.
Collapse
Affiliation(s)
- Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 19, Rue Tarik Ibnou Ziad, B.P. 9154, Casablanca, Morocco.
- Department of Pediatric Infectious and Immunological Diseases, Abderrahim El Harouchi Children Hospital, University Hospital Center Ibn Rochd, Casablanca, Morocco.
- Genetics Unit, Military Hospital Mohammed V, Rabat, Morocco.
| | | | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 19, Rue Tarik Ibnou Ziad, B.P. 9154, Casablanca, Morocco
- Department of Pediatric Infectious and Immunological Diseases, Abderrahim El Harouchi Children Hospital, University Hospital Center Ibn Rochd, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 19, Rue Tarik Ibnou Ziad, B.P. 9154, Casablanca, Morocco
- Department of Pediatric Infectious and Immunological Diseases, Abderrahim El Harouchi Children Hospital, University Hospital Center Ibn Rochd, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 19, Rue Tarik Ibnou Ziad, B.P. 9154, Casablanca, Morocco
- Immunology Laboratory, IBN Rochd University Hospital, Casablanca, Morocco
| | - Leila Jeddane
- National Reference Laboratory, Mohamed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Noureddine Rada
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 19, Rue Tarik Ibnou Ziad, B.P. 9154, Casablanca, Morocco
- Pediatric Department, University Hospital Med VI, Marrakesh, Morocco
| | - Noufissa Benajiba
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 19, Rue Tarik Ibnou Ziad, B.P. 9154, Casablanca, Morocco
- Department of Pediatrics, Mohammed VI University Hospital, Oujda, Morocco
| | - Khaoula Mokhantar
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 19, Rue Tarik Ibnou Ziad, B.P. 9154, Casablanca, Morocco
| | - Kaoutar Ouazahrou
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 19, Rue Tarik Ibnou Ziad, B.P. 9154, Casablanca, Morocco
| | - Sanae Zaidi
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 19, Rue Tarik Ibnou Ziad, B.P. 9154, Casablanca, Morocco
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, 19, Rue Tarik Ibnou Ziad, B.P. 9154, Casablanca, Morocco
- Department of Pediatric Infectious and Immunological Diseases, Abderrahim El Harouchi Children Hospital, University Hospital Center Ibn Rochd, Casablanca, Morocco
| |
Collapse
|
6
|
Asano T, Utsumi T, Kagawa R, Karakawa S, Okada S. Inborn errors of immunity with loss- and gain-of-function germline mutations in STAT1. Clin Exp Immunol 2023; 212:96-106. [PMID: 36420581 PMCID: PMC10128167 DOI: 10.1093/cei/uxac106] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
STAT1 dysfunction causes a wide range of immune dysregulation phenotypes, which have been classified into four disease types, namely, (i) autosomal recessive (AR) complete STAT1 deficiency, (ii) AR partial STAT1 deficiency, (iii) autosomal dominant (AD) STAT1 deficiency, and (iv) AD STAT1 gain of function (GOF), based on their mode of inheritance and function. Disease types (i, ii, and iii) are caused by STAT1 loss-of-function (LOF) mutations, whereas disease type (iv) is caused by STAT1 GOF mutations. Therefore, the functional analysis of mutations is necessary for the precise diagnosis.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takanori Utsumi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
7
|
Philippot Q, Ogishi M, Bohlen J, Puchan J, Arias AA, Nguyen T, Martin-Fernandez M, Conil C, Rinchai D, Momenilandi M, Mahdaviani A, Keramatipour M, Rosain J, Yang R, Khan T, Neehus AL, Materna M, Han JE, Peel J, Mele F, Weisshaar M, Jovic S, Bastard P, Lévy R, Le Voyer T, Zhang P, Renkilaraj MRLM, Arango-Franco CA, Pelham S, Seeleuthner Y, Pochon M, Ata MMA, Ali FA, Migaud M, Soudée C, Kochetkov T, Molitor A, Carapito R, Bahram S, Boisson B, Fieschi C, Mansouri D, Marr N, Okada S, Shahrooei M, Parvaneh N, Chavoshzadeh Z, Cobat A, Bogunovic D, Abel L, Tangye S, Ma CS, Béziat V, Sallusto F, Boisson-Dupuis S, Bustamante J, Casanova JL, Puel A. Human IL-23 is essential for IFN-γ-dependent immunity to mycobacteria. Sci Immunol 2023; 8:eabq5204. [PMID: 36763636 PMCID: PMC10069949 DOI: 10.1126/sciimmunol.abq5204] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023]
Abstract
Patients with autosomal recessive (AR) IL-12p40 or IL-12Rβ1 deficiency display Mendelian susceptibility to mycobacterial disease (MSMD) due to impaired IFN-γ production and, less commonly, chronic mucocutaneous candidiasis (CMC) due to impaired IL-17A/F production. We report six patients from four kindreds with AR IL-23R deficiency. These patients are homozygous for one of four different loss-of-function IL23R variants. All six patients have a history of MSMD, but only two suffered from CMC. We show that IL-23 induces IL-17A only in MAIT cells, possibly contributing to the incomplete penetrance of CMC in patients unresponsive to IL-23. By contrast, IL-23 is required for both baseline and Mycobacterium-inducible IFN-γ immunity in both Vδ2+ γδ T and MAIT cells, probably contributing to the higher penetrance of MSMD in these patients. Human IL-23 appears to contribute to IL-17A/F-dependent immunity to Candida in a single lymphocyte subset but is required for IFN-γ-dependent immunity to Mycobacterium in at least two lymphocyte subsets.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Julia Puchan
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Andrés Augusto Arias
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, Australia
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clement Conil
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jessica Peel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Simon Pelham
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | | | - Fatima Al Ali
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Tatiana Kochetkov
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, Paris, France
| | - Davood Mansouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha Qatar
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima, Japan
| | | | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Teheran University of Medical Sciences, Teheran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Dusan Bogunovic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Stuart Tangye
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cindy S. Ma
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federica Sallusto
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
8
|
Rabaan AA, Mutair AA, Aljeldah M, Shammari BRA, Sulaiman T, Alshukairi AN, Alfaresi M, Al-Jishi JM, Al Bati NA, Al-Mozaini MA, Bshabshe AA, Almatouq JA, Abuzaid AA, Alfaraj AH, Al-Adsani W, Alabdullah M, Alwarthan S, Alsalman F, Alwashmi ASS, Alhumaid S. Genetic Variants and Protective Immunity against SARS-CoV-2. Genes (Basel) 2022; 13:2355. [PMID: 36553622 PMCID: PMC9778397 DOI: 10.3390/genes13122355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Abeer N. Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Sheikh Khalifa General Hospital, Umm Al Quwain 499, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 35342, Saudi Arabia
| | - Neda A. Al Bati
- Medical and Clinical Affairs, Rural Health Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Maha A. Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal, Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Ali Al Bshabshe
- Adult Critical Care Department of Medicine, Division of Adult Critical Care, College of Medicine, King Khalid University, Abha 62561, Saudi Arabia
| | - Jenan A. Almatouq
- Department of Clinical Laboratory Sciences, Mohammed Al-Mana College of Health Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A. Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Mohammed Alabdullah
- Department of Infectious Diseases, Almoosa Specialist Hospital, Al Mubarraz 36342, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Fatimah Alsalman
- Department of Emergency Medicine, Oyun City Hospital, Al-Ahsa 36312, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
9
|
Ojuawo O, Allen R, Hagan G, Piracha S. Disseminated tuberculosis associated with deficient interleukin-23/tyrosine kinase 2 signalling. BMJ Case Rep 2022; 15:e250479. [PMID: 35999022 PMCID: PMC9403147 DOI: 10.1136/bcr-2022-250479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Tuberculosis (TB) remains a significant cause of morbidity and mortality globally. The disseminated form of the disease has a worse prognosis and is commonly associated with primary and acquired immunodeficiency states such as HIV/AIDS, post-organ transplant and malnutrition. However, disseminated TB in the context of isolated impaired cellular responses to interleukin (IL)-23 due to tyrosine kinase 2 (TYK2) deficiency has been rarely reported. We highlight the case of a young woman with pulmonary and central nervous system TB associated with previously undiagnosed IL-23/TYK2 signalling defects causing impaired response to IL-23. A significant clinical improvement was observed after introduction of adjunctive interferon-gamma therapy to her anti-tuberculous medications. This case emphasises the need to broadly evaluate for potential immune deficiencies in poorly responding patients with fully sensitive TB as well as the potential benefits of interferon-gamma therapy in patients with certain immune defects.
Collapse
Affiliation(s)
- Olutobi Ojuawo
- Respiratory Medicine, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Ryan Allen
- Respiratory Medicine, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Guy Hagan
- Respiratory Medicine, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Shahbaz Piracha
- Respiratory Medicine, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| |
Collapse
|
10
|
Fu Y, Liu L, Wu H. Role of Genetic Polymorphisms in IL12Rβ2 in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:1671-1683. [PMID: 35923356 PMCID: PMC9342432 DOI: 10.2147/copd.s366844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is the most common chronic inflammatory airway disease. Il-12r beta 2 (IL-12Rβ2) is important for the production of pathogenic Th1 cells. We aimed to explore the association between IL-12Rβ2 genetic variants and COPD risk among southern Chinese Han population. Methods We recruited 996 participants to perform an association analysis through SNPStats online software. We used false-positive report probability analysis to detect whether the positive findings were noteworthy. Haploview 4.2 software and SNPStats were used to conduct the haplotype analysis and linkage disequilibrium. Finally, the interaction of SNP-SNP in COPD risk was evaluated by multi-factor dimensionality reduction. Results The study found evidence that genetic loci in IL-12Rβ2 (rs2201584, rs1874791, rs6679356, and rs3790567) were potentially associated with the COPD susceptibility. In particular, IL-12Rβ2-rs2201584 and -rs1874791 showed close associations with COPD risk in both overall and several stratified analyses. Overall analysis or several stratified analyses indicated that allele A or homozygous genotype AA of IL-12Rβ2-rs2201584 were risk factors for COPD (Allele A: OR (95% CI) = 1.23 (1.02–1.48), p = 0.033; genotype AA: OR (95% CI) = 1.76 (1.15–2.69), p = 0.009). The allele A or homozygous genotype AA of IL-12Rβ2- rs1874791 were also risk factors for COPD (Allele A: OR (95% CI) = 1.36 (1.10–1.68), p = 0.004; genotype AA: OR (95% CI) = 2.17 (1.18–3.99), p = 0.013). Conclusion Intronic variants in IL-12Rβ2 (rs2201584, rs1874791, rs6679356, and rs3790567) were associated with the COPD susceptibility. In particular, there were sufficient evidences that IL-12Rβ2-rs2201584 and -rs1874791 were associated with the increasing risk of COPD.
Collapse
Affiliation(s)
- Yihui Fu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, People’s Republic of China
| | - Lirong Liu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, People’s Republic of China
| | - Haihong Wu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, People’s Republic of China
- Correspondence: Haihong Wu, Department of Respiratory and Critical Care Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), #19, Xiuhua Road, Xiuying District, Haikou, 570311, People’s Republic of China, Tel/Fax +86 13976906068, Email
| |
Collapse
|
11
|
Jelassi R, Dhouioui S, Ben Salah H, Saidi N, Mzoughi N, Ammi R, Bouratbine A, Aoun K, Zidi I, Chelbi H. rs401502 and rs11575934 Polymorphisms of the IL-12 Receptor Beta 1 Gene are Protective Against Colorectal Carcinogenesis. Front Genet 2022; 13:864419. [PMID: 35646062 PMCID: PMC9136319 DOI: 10.3389/fgene.2022.864419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a major public health problem worldwide and in Tunisia. It ranks among the main cancers in terms of incidence and cancer-related cause of death. Its pathogenesis is currently considered to be multifactorial involving genetic and environmental factors. Recent studies have suggested that the gene encoding the β1 subunit of the IL-12 receptor, an important pro-inflammatory cytokine of the anti-tumor response, could be involved in the susceptibility to inherited CRC. Hence, it would be interesting to study the role of single nucleotide polymorphisms (SNPs) within the IL-12RB1 gene (rs401502 and rs11575934) in CRC susceptibility. Aim: Our purpose was to assess whether genetic variants IL-12RB1 +1196G/C (rs401502) and IL-12RB1 +705A/G (rs11575934) within the IL-12RB1 gene are associated with the sporadic CRC risk. Methods: A total of 110 Tunisian patients with sporadic CRC and 141 healthy control subjects were included in this study. Genotyping was performed by high-resolution melting (HRM) analysis. All results were confirmed by direct DNA sequencing or PCR-RFLP methods. Later, the allele frequencies and genotype distribution were established and compared between the control group and CRC patients. Results: The obtained results showed that the two target SNPs were in Hardy–Weinberg equilibrium (HWE) in both patients and controls. Minor allele frequencies of rs401502 SNP were 16.4% in CRC cases and 23.8% in controls. Mutant allele of rs11575934 SNP was present with 21.4% in CRC patients and 29.8% in control group. An association study showed a significant association of two target polymorphisms with CRC, according to the dominant genetic model with OR = 0.577, 95% CI = [0.343 to 0.972], p = 0.038 and OR = 0.547, 95% CI = [0.328 to 0.911], p = 0.02, respectively. Conclusion: In this study, we found, for the first time, a potential protective effect of two SNPs in the IL-12RB1 gene, namely rs401502 and rs11575934, in sporadic colorectal cancer in Tunisians.
Collapse
Affiliation(s)
- Refka Jelassi
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Faculty of Sciences Bizerte, University of Carthage, Tunis, Tunisia
| | - Sabrine Dhouioui
- Laboratory Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hamza Ben Salah
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nasreddine Saidi
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Nabiha Mzoughi
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Radhia Ammi
- External Consultants Service Pasteur Institute of Tunis, Tunis, Tunisia
| | - Aida Bouratbine
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Karim Aoun
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Ines Zidi
- Laboratory Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hanen Chelbi
- Laboratory of Medical Parasitology, Biotechnology, and Biomolecules, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- *Correspondence: Hanen Chelbi,
| |
Collapse
|
12
|
Andreakos E, Abel L, Vinh DC, Kaja E, Drolet BA, Zhang Q, O'Farrelly C, Novelli G, Rodríguez-Gallego C, Haerynck F, Prando C, Pujol A, Su HC, Casanova JL, Spaan AN. A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nat Immunol 2022; 23:159-164. [PMID: 34667308 PMCID: PMC8524403 DOI: 10.1038/s41590-021-01030-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2 infections display tremendous interindividual variability, ranging from asymptomatic infections to life-threatening disease. Inborn errors of, and autoantibodies directed against, type I interferons (IFNs) account for about 20% of critical COVID-19 cases among SARS-CoV-2-infected individuals. By contrast, the genetic and immunological determinants of resistance to infection per se remain unknown. Following the discovery that autosomal recessive deficiency in the DARC chemokine receptor confers resistance to Plasmodium vivax, autosomal recessive deficiencies of chemokine receptor 5 (CCR5) and the enzyme FUT2 were shown to underlie resistance to HIV-1 and noroviruses, respectively. Along the same lines, we propose a strategy for identifying, recruiting, and genetically analyzing individuals who are naturally resistant to SARS-CoV-2 infection.
Collapse
Grants
- UM1 HG006504 NHGRI NIH HHS
- UL1 TR001863 NCATS NIH HHS
- UL1 TR001866 NCATS NIH HHS
- R01 AI088364 NIAID NIH HHS
- R01 AI163029 NIAID NIH HHS
- U24 HG008956 NHGRI NIH HHS
- European Union’s Horizon 2020 research and innovation program (Marie Sklodowska-Curie grant No. 789645)
- European Commission’s Horizon 2020 research and innovation program (IMMUNAID, grant No. 779295, CURE, grant No. 767015 and TO_AITION grant No. 848146) and the Hellenic Foundation for Research and Innovation (INTERFLU, no. 1574)
- National Institutes of Health (NIH) (R01AI088364), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1TR001866), a Fast Grant from Emergent Ventures, Mercatus Center at George Mason University, the Yale Center for Mendelian Genomics and the GSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008956), the Fisher Center for Alzheimer’s Research Foundation, the Meyer Foundation, the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the FRM and ANR GENCOVID project (ANR-20-COVI-0003), ANRS-COV05, the Fondation du Souffle, the Square Foundation, Grandir - Fonds de solidarité pour l’enfance, the SCOR Corporate Foundation for Science, the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, Institut National de la Santé et de la Recherche Médicale (INSERM) and the University of Paris
- Science Foundation Ireland COVID-19 Program
- Regione Lazio (Research Group Projects 2020) No. A0375-2020-36663, GecoBiomark
- Horizon 2020 program grant no. 824110 (EasiGenomics grant no. COVID-19/PID12342) and CERCA Program/Generalitat de Catalunya
- Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health
Collapse
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Donald C Vinh
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada
- Infectious Disease Susceptibility Program, Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | | | - Beth A Drolet
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Cliona O'Farrelly
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Las Palmas, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Filomeen Haerynck
- Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPIG), PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases U759 (CIBERER), ISCIII, Barcelona, Spain
| | - Helen C Su
- Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
13
|
van Coller A, Glanzmann B, Cornelissen H, Möller M, Kinnear C, Esser M, Glashoff R. Phenotypic and immune functional profiling of patients with suspected Mendelian Susceptibility to Mycobacterial Disease in South Africa. BMC Immunol 2021; 22:62. [PMID: 34517836 PMCID: PMC8436520 DOI: 10.1186/s12865-021-00452-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Background Mendelian Susceptibility to Mycobacterial Disease (MSMD) is a primary immunodeficiency (PID) characterised by a predisposition to infection by weakly-pathogenic mycobacteria. In countries with a high prevalence of tuberculosis (TB), individuals with MSMD are also prone to infections by Mycobacterium tuberculosis. Several MSMD-associated genes have been described, all resulting in a disruption of IL-12 and IFN-γ cytokine axis, which is essential for control of mycobacterial infections. An accurate molecular diagnosis, confirmed by phenotypic and functional immune investigations, is essential to ensure that the patient receives optimal treatment and prophylaxis for infections. The aim of this study was to implement a set of functional assays to assess the integrity of the IL-12-IFN-γ cytokine pathways in patients presenting with severe, persistent, unusual and/or recurrent TB, mycobacterial infections or other clinical MSMD-defining infections such as Salmonella. Methods Blood was collected for subsequent PBMC isolation from 16 participants with MSMD-like clinical phenotypes. A set of flow cytometry (phenotype and signalling integrity) and ELISA-based (cytokine production) functional assays were implemented to assess the integrity of the IL-12-IFN-γ pathway. Results The combination of the three assays for the assessment of the integrity of the IL-12-IFN-γ pathway was successful in identifying immune deficits in the IL-12-IFN-γ pathway in all of the participants included in this study. Conclusions The data presented here emphasise the importance of investigating PID and TB susceptibility in TB endemic regions such as South Africa as MSMD and other previously described PIDs relating to TB susceptibility may present differently in such regions. It is therefore important to have access to in vitro functional investigations to better understand the immune function of these individuals. Although functional assays alone are unlikely to always provide a clear diagnosis, they do give an overview of the integrity of the IL-12-IFN-γ pathway. It would be beneficial to apply these assays routinely to patients with suspected PID relating to mycobacterial susceptibility. A molecular diagnosis with confirmed functional impairment paves the way for targeted treatment and improved disease management options for these patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00452-6.
Collapse
Affiliation(s)
- Ansia van Coller
- Immunology Unit, Division of Medical Microbiology, National Health Laboratory Service and Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Brigitte Glanzmann
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Genomics Centre, Cape Town, South Africa
| | - Helena Cornelissen
- Division of Haematopathology, National Health Laboratory Services and Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council Genomics Centre, Cape Town, South Africa
| | - Monika Esser
- Immunology Unit, Division of Medical Microbiology, National Health Laboratory Service and Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa.,Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Richard Glashoff
- Immunology Unit, Division of Medical Microbiology, National Health Laboratory Service and Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa.
| |
Collapse
|
14
|
Khattak FA, Akbar NU, Riaz M, Hussain M, Rehman K, Khan SN, Khan TA. Novel IL-β12R1 deficiency-mediates recurrent cutaneous leishmaniasis. Int J Infect Dis 2021; 112:338-345. [PMID: 34438084 DOI: 10.1016/j.ijid.2021.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The IL-12/IFN-γ axis plays a vital role in the control of intramacrophagic pathogens including Leishmania infections. OBJECTIVE The aim of this study was to investigate genetic defects in the IL-12/IFN-γ axis in cutaneous leishmaniasis patients, using immunological and genetic evaluation. METHODS Enzyme-linked immunosorbent assay was used to quantify IFN-γ , while flow cytometry was performed to analyze surface IL-12Rβ1/IL-12Rβ2 expression and phosphorylation of signal transducers as well as the activator of transcription 4 (pSTAT4). Sequencing was carried out for genetic analysis. RESULTS The peripheral blood mononuclear cells from the two patients (P1 and P2) demonstrated impaired production of IFN-γ. Furthermore, abolishment of the surface expression of Il-12Rβ1 was observed in lymphocytes, with consequent impairment of STAT4 phosphorylation in the lymphocytes of P1 and P2. IL-12Rββ1 deficiency was identified, which was caused by a novel homozygous missense mutation (c.485>T/p.P162L) and a novel homozygous nonsense mutation (c.805G>T/P.E269*) in the IL-12Rβ2 gene of P1 and P2, respectively. In silico analyses predicted these novel mutations as being pathogenic, causing truncated proteins, with consequent inactivation. CONCLUSION Our data have expanded the phenotype and mutation spectra associated with IL-12Rβ1 deficiency, and suggest that patients with CL should be screened for mutations in genes of the IL-12/IFN-γ axis.
Collapse
Affiliation(s)
- Farhad Ali Khattak
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan; Khyber College of Dentistry, Peshawar, Pakistan.
| | - Noor Ul Akbar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Maira Riaz
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Mubashir Hussain
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Khalid Rehman
- Institute of Public Health and Social Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan.
| |
Collapse
|
15
|
Boisson-Dupuis S, Bustamante J. Mycobacterial diseases in patients with inborn errors of immunity. Curr Opin Immunol 2021; 72:262-271. [PMID: 34315005 DOI: 10.1016/j.coi.2021.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
Clinical disease caused by the agent of tuberculosis, Mycobacterium tuberculosis, and by less virulent mycobacteria, such as bacillus Calmette-Guérin (BCG) vaccines and environmental mycobacteria, can result from inborn errors of immunity (IEIs). IEIs underlie more than 450 conditions, each associated with an impairment of the development and/or function of hematopoietic and/or non-hematopoietic cells involved in host defense. Only a minority of IEIs confer predisposition to mycobacterial disease. The IEIs underlying susceptibility to bona fide tuberculosis are less well delineated than those responsible for susceptibility to less virulent mycobacteria. However, all these IEIs share a defining feature: the impairment of immunity mediated by interferon gamma (IFN-γ). More profound IFN-γ deficiency is associated with a greater vulnerability to weakly virulent mycobacteria, whereas more selective IFN-γ deficiency is associated with a more selective predisposition to mycobacterial disease. We review here recent progress in the study of IEIs underlying mycobacterial diseases.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France; University of Paris, Imagine Institute, Paris, EU, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France; University of Paris, Imagine Institute, Paris, EU, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.
| |
Collapse
|
16
|
Reactivation of latent tuberculosis with TNF inhibitors: critical role of the beta 2 chain of the IL-12 receptor. Cell Mol Immunol 2021; 18:1644-1651. [PMID: 34021269 PMCID: PMC8245521 DOI: 10.1038/s41423-021-00694-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor (TNF) inhibitors have improved a lot the treatment of numerous diseases, with the well-known example of rheumatoid arthritis (RA). In the early 2000s, postmarketing data quickly revealed an alarming number of severe tuberculosis (TB) under such treatment. These findings were consistent with previous results in mice where TNF is essential for lymph node formation and granuloma organization. The effects of TNF inhibition on RA synovium structure are very similar to those on granuloma, with changes in cellular interactions, cytokine, and chemokine production. In addition to the role of TNF in granuloma, the interleukin (IL)-12/interferon (IFN)-γ pathway is required for an efficient host defense against TB. Primary and secondary immunodeficiencies affecting this pathway lead to severe bacillus Calmette-Guérin (BCG) reaction or full TB. Any chronic inflammation as in RA induces a systemic Th1 defect that predisposes to TB through specific downregulation of the IL-12Rß2 chain. When TNF inhibitors are initiated, this transiently increases this risk of TB, through effects on cellular interactions in a latent TB granuloma. At a later stage, when a better control disease activity is obtained, the risk of TB is reduced but not abrogated. Given the clear benefit from TNF inhibition, latent TB infection screening at baseline is essential for an optimal safety.
Collapse
|
17
|
Casanova JL, Abel L. Lethal Infectious Diseases as Inborn Errors of Immunity: Toward a Synthesis of the Germ and Genetic Theories. ANNUAL REVIEW OF PATHOLOGY 2021; 16:23-50. [PMID: 32289233 PMCID: PMC7923385 DOI: 10.1146/annurev-pathol-031920-101429] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It was first demonstrated in the late nineteenth century that human deaths from fever were typically due to infections. As the germ theory gained ground, it replaced the old, unproven theory that deaths from fever reflected a weak personal or even familial constitution. A new enigma emerged at the turn of the twentieth century, when it became apparent that only a small proportion of infected individuals die from primary infections with almost any given microbe. Classical genetics studies gradually revealed that severe infectious diseases could be driven by human genetic predisposition. This idea gained ground with the support of molecular genetics, in three successive, overlapping steps. First, many rare inborn errors of immunity were shown, from 1985 onward, to underlie multiple, recurrent infections with Mendelian inheritance. Second, a handful of rare and familial infections, also segregating as Mendelian traits but striking humans resistant to other infections, were deciphered molecularly beginning in 1996. Third, from 2007 onward, a growing number of rare or common sporadicinfections were shown to result from monogenic, but not Mendelian, inborn errors. A synthesis of the hitherto mutually exclusive germ and genetic theories is now in view.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
| |
Collapse
|
18
|
Mahdaviani SA, Mansouri D, Jamee M, Zaki-Dizaji M, Aghdam KR, Mortaz E, Khorasanizadeh M, Eskian M, Movahedi M, Ghaffaripour H, Baghaie N, Hassanzad M, Chavoshzadeh Z, Mansouri M, Mesdaghi M, Ghaini M, Noori F, Eskandarzadeh S, Kahkooi S, Poorabdolah M, Tabarsi P, Moniri A, Farnia P, Karimi A, Boisson-Dupuis S, Rezaei N, Marjani M, Casanova JL, Bustamante J, Velayati AA. Mendelian Susceptibility to Mycobacterial Disease (MSMD): Clinical and Genetic Features of 32 Iranian Patients. J Clin Immunol 2020; 40:872-882. [DOI: 10.1007/s10875-020-00813-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/23/2020] [Indexed: 01/24/2023]
|
19
|
Haake K, Neehus AL, Buchegger T, Kühnel MP, Blank P, Philipp F, Oleaga-Quintas C, Schulz A, Grimley M, Goethe R, Jonigk D, Kalinke U, Boisson-Dupuis S, Casanova JL, Bustamante J, Lachmann N. Patient iPSC-Derived Macrophages to Study Inborn Errors of the IFN-γ Responsive Pathway. Cells 2020; 9:E483. [PMID: 32093117 PMCID: PMC7072779 DOI: 10.3390/cells9020483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Interferon γ (IFN-γ) was shown to be a macrophage activating factor already in 1984. Consistently, inborn errors of IFN-γ immunity underlie Mendelian Susceptibility to Mycobacterial Disease (MSMD). MSMD is characterized by genetic predisposition to disease caused by weakly virulent mycobacterial species. Paradoxically, macrophages from patients with MSMD were little tested. Here, we report a disease modeling platform for studying IFN-γ related pathologies using macrophages derived from patient specific induced pluripotent stem cells (iPSCs). We used iPSCs from patients with autosomal recessive complete- and partial IFN-γR2 deficiency, partial IFN-γR1 deficiency and complete STAT1 deficiency. Macrophages from all patient iPSCs showed normal morphology and IFN-γ-independent functionality like phagocytic uptake of bioparticles and internalization of cytokines. For the IFN-γ-dependent functionalities, we observed that the deficiencies played out at various stages of the IFN-γ pathway, with the complete IFN-γR2 and complete STAT1 deficient cells showing the most severe phenotypes, in terms of upregulation of surface markers and induction of downstream targets. Although iPSC-derived macrophages with partial IFN-γR1 and IFN-γR2 deficiency still showed residual induction of downstream targets, they did not reduce the mycobacterial growth when challenged with Bacillus Calmette-Guérin. Taken together, we report a disease modeling platform to study the role of macrophages in patients with inborn errors of IFN-γ immunity.
Collapse
Affiliation(s)
- Kathrin Haake
- REBIRTH Cluster of Excellence, Institute of Experimental Hematology, Hannover Medical School (MHH), 30625 Hannover, Germany; (K.H.)
| | - Anna-Lena Neehus
- REBIRTH Cluster of Excellence, Institute of Experimental Hematology, Hannover Medical School (MHH), 30625 Hannover, Germany; (K.H.)
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris University, 75015 Paris, France
| | - Theresa Buchegger
- REBIRTH Cluster of Excellence, Institute of Experimental Hematology, Hannover Medical School (MHH), 30625 Hannover, Germany; (K.H.)
| | - Mark Philipp Kühnel
- Institute of Pathology, Hannover Medical School (MHH), 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, 30625 Hannover, Germany
| | - Patrick Blank
- REBIRTH Cluster of Excellence, Institute of Experimental Hematology, Hannover Medical School (MHH), 30625 Hannover, Germany; (K.H.)
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between The Helmholtz Centre for Infection Research, Braunschweig, and The Hannover Medical School, 30625 Hannover, Germany
| | - Friederike Philipp
- REBIRTH Cluster of Excellence, Institute of Experimental Hematology, Hannover Medical School (MHH), 30625 Hannover, Germany; (K.H.)
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris University, 75015 Paris, France
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, 89081 Ulm, Germany
| | - Michael Grimley
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30625 Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School (MHH), 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, 30625 Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between The Helmholtz Centre for Infection Research, Braunschweig, and The Hannover Medical School, 30625 Hannover, Germany
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, 75015 Paris, France
| | - Nico Lachmann
- REBIRTH Cluster of Excellence, Institute of Experimental Hematology, Hannover Medical School (MHH), 30625 Hannover, Germany; (K.H.)
| |
Collapse
|
20
|
Boisson-Dupuis S. The monogenic basis of human tuberculosis. Hum Genet 2020; 139:1001-1009. [PMID: 32055999 DOI: 10.1007/s00439-020-02126-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/02/2020] [Indexed: 12/25/2022]
Abstract
The pathogenesis of tuberculosis (TB) remains poorly understood, as no more than 5-10% of individuals infected with Mycobacterium tuberculosis go on developing clinical disease. The contribution of human genetics to TB pathogenesis has been amply documented by means of classic genetics since the turn of the twentieth century. Over the last 20 years, following-up on the study of Mendelian susceptibility to mycobacterial disease (MSMD), monogenic disorders have been found to underlie TB in some patients. Rare inborn errors of immunity, such as autosomal recessive, complete IL-12Rβ1 and TYK2 deficiencies, impairing the IL-12- and IL-23-dependent induction of IFN-γ, were initially identified in a few patients. More recently, homozygosity for a common variant of TYK2 (P1104A) that selectively disrupts cellular responses to IL-23 was found in two cohorts of TB patients. It shows high penetrance in areas endemic for TB and appears to be responsible for about 1% of TB cases in populations of European descent. Both rare and common genetic etiologies of TB affect IFN-γ immunity, providing a rationale for novel preventive and therapeutic approaches for TB control, including the use of recombinant IFN-γ.
Collapse
Affiliation(s)
- Stephanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. .,Paris Descartes University, Imagine Institute, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, USA.
| |
Collapse
|
21
|
ul Akbar N, Khan SN, Amin MU, Ishfaq M, Cabral-Marques O, Schimke LF, Iqbal A, Ullah I, Hussain M, Ali I, Khan N, El Khawanky N, Rahman H, Khan TA. Novel nonsense IL-12Rβ1 mutation associated with recurrent tuberculosis. Immunol Res 2019; 67:408-415. [DOI: 10.1007/s12026-019-09094-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, Lim CK, Krementsov DN, Hernandez N, Ma CS, Zhang Q, Markle J, Martinez-Barricarte R, Payne K, Fisch R, Deswarte C, Halpern J, Bouaziz M, Mulwa J, Sivanesan D, Lazarov T, Naves R, Garcia P, Itan Y, Boisson B, Checchi A, Jabot-Hanin F, Cobat A, Guennoun A, Jackson CC, Pekcan S, Caliskaner Z, Inostroza J, Costa-Carvalho BT, de Albuquerque JAT, Garcia-Ortiz H, Orozco L, Ozcelik T, Abid A, Rhorfi IA, Souhi H, Amrani HN, Zegmout A, Geissmann F, Michnick SW, Muller-Fleckenstein I, Fleckenstein B, Puel A, Ciancanelli MJ, Marr N, Abolhassani H, Balcells ME, Condino-Neto A, Strickler A, Abarca K, Teuscher C, Ochs HD, Reisli I, Sayar EH, El-Baghdadi J, Bustamante J, Hammarström L, Tangye SG, Pellegrini S, Quintana-Murci L, Abel L, Casanova JL. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol 2019; 3:3/30/eaau8714. [PMID: 30578352 DOI: 10.1126/sciimmunol.aau8714] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Inherited IL-12Rβ1 and TYK2 deficiencies impair both IL-12- and IL-23-dependent IFN-γ immunity and are rare monogenic causes of tuberculosis, each found in less than 1/600,000 individuals. We show that homozygosity for the common TYK2 P1104A allele, which is found in about 1/600 Europeans and between 1/1000 and 1/10,000 individuals in regions other than East Asia, is more frequent in a cohort of patients with tuberculosis from endemic areas than in ethnicity-adjusted controls (P = 8.37 × 10-8; odds ratio, 89.31; 95% CI, 14.7 to 1725). Moreover, the frequency of P1104A in Europeans has decreased, from about 9% to 4.2%, over the past 4000 years, consistent with purging of this variant by endemic tuberculosis. Surprisingly, we also show that TYK2 P1104A impairs cellular responses to IL-23, but not to IFN-α, IL-10, or even IL-12, which, like IL-23, induces IFN-γ via activation of TYK2 and JAK2. Moreover, TYK2 P1104A is properly docked on cytokine receptors and can be phosphorylated by the proximal JAK, but lacks catalytic activity. Last, we show that the catalytic activity of TYK2 is essential for IL-23, but not IL-12, responses in cells expressing wild-type JAK2. In contrast, the catalytic activity of JAK2 is redundant for both IL-12 and IL-23 responses, because the catalytically inactive P1057A JAK2, which is also docked and phosphorylated, rescues signaling in cells expressing wild-type TYK2. In conclusion, homozygosity for the catalytically inactive P1104A missense variant of TYK2 selectively disrupts the induction of IFN-γ by IL-23 and is a common monogenic etiology of tuberculosis.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Noe Ramirez-Alejo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Zhi Li
- Cytokine Signaling Unit, Pasteur Institute, Paris, France.,INSERM U1221, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Pasteur Institute, Paris, France.,CNRS UMR2000, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Che Kang Lim
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Nicholas Hernandez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Sidra Medicine, Doha, Qatar
| | - Janet Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Ruben Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Robert Fisch
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Joshua Halpern
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Jeanette Mulwa
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Durga Sivanesan
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rodrigo Naves
- Institute of Biochemical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricia Garcia
- Laboratory of Microbiology, Clinical Laboratory Department School of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Alix Checchi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | | | - Carolyn C Jackson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sevgi Pekcan
- Department of Pediatric Pulmonology, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Zafer Caliskaner
- Meram Faculty of Medicine, Department of Internal Medicine, Division of Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Jaime Inostroza
- Jeffrey Modell Center for Diagnosis and Research in Primary Immunodeficiencies, Faculty of Medicine University of La Frontera, Temuco, Chile
| | | | | | | | - Lorena Orozco
- National Institute of Genomic Medicine, Mexico City, Mexico
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ahmed Abid
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco
| | - Ismail Abderahmani Rhorfi
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco.,Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hicham Souhi
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco
| | | | - Adil Zegmout
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen W Michnick
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | | | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - María Elvira Balcells
- Department of Infectious Diseases, Medical School, Pontifical Catholic University of Chile, Santiago, Chile
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, and Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alexis Strickler
- Department of Pediatrics, San Sebastián University, Santiago, Chile
| | - Katia Abarca
- Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Cory Teuscher
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, VT, USA
| | - Hans D Ochs
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Esra H Sayar
- Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | | | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore.,Beijing Genomics Institute BGI-Shenzhen, Shenzhen, China
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Sandra Pellegrini
- Cytokine Signaling Unit, Pasteur Institute, Paris, France.,INSERM U1221, Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Pasteur Institute, Paris, France.,CNRS UMR2000, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
23
|
Kerner G, Ramirez-Alejo N, Seeleuthner Y, Yang R, Ogishi M, Cobat A, Patin E, Quintana-Murci L, Boisson-Dupuis S, Casanova JL, Abel L. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc Natl Acad Sci U S A 2019; 116:10430-10434. [PMID: 31068474 PMCID: PMC6534977 DOI: 10.1073/pnas.1903561116] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human genetic basis of tuberculosis (TB) has long remained elusive. We recently reported a high level of enrichment in homozygosity for the common TYK2 P1104A variant in a heterogeneous cohort of patients with TB from non-European countries in which TB is endemic. This variant is homozygous in ∼1/600 Europeans and ∼1/5,000 people from other countries outside East Asia and sub-Saharan Africa. We report a study of this variant in the UK Biobank cohort. The frequency of P1104A homozygotes was much higher in patients with TB (6/620, 1%) than in controls (228/114,473, 0.2%), with an odds ratio (OR) adjusted for ancestry of 5.0 [95% confidence interval (CI): 1.96-10.31, P = 2 × 10-3]. Conversely, we did not observe enrichment for P1104A heterozygosity, or for TYK2 I684S or V362F homozygosity or heterozygosity. Moreover, it is unlikely that more than 10% of controls were infected with Mycobacterium tuberculosis, as 97% were of European genetic ancestry, born between 1939 and 1970, and resided in the United Kingdom. Had all of them been infected, the OR for developing TB upon infection would be higher. These findings suggest that homozygosity for TYK2 P1104A may account for ∼1% of TB cases in Europeans.
Collapse
Affiliation(s)
- Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Noe Ramirez-Alejo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France;
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| |
Collapse
|
24
|
Fayez EA, Koohini Z, Koohini Z, Zamanzadeh H, de Boer M, Roos D, Teimourian S. Characterization of two novel mutations in IL-12R signaling in MSMD patients. Pathog Dis 2019; 77:ftz030. [PMID: 31158284 DOI: 10.1093/femspd/ftz030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2023] Open
Abstract
Mendelian Susceptibility to Mycobacterial Disease (MSMD) is a rare syndrome with infections-among other complications-after Bacillus Calmette-Guerin (BCG) vaccination in children. We focused on the IL-12/IFN-γ pathway to identify new mutations in our patients. This study included 20 patients by vulnerability to mycobacteria and clinical manifestations of severe, recurrent infections. Blood samples were activated with BCG, BCG + IL-12 and BCG + IFN-γ. Cytokine levels were analyzed by ELISA. Measurements of IL-12Rβ1 and IL-12Rβ2 on the surface of peripheral blood mononuclear cells were performed by flow cytometry. To detect genetic defects, next-generation sequencing was performed by Thermo Fisher immunodeficiency panel. Flow cytometry analysis of 20 patients indicated reduction in IL-12R (β1/β2) expression in seven patients who showed incomplete production of IFN-γ by ELISA. In the patient with reduced IL-12 production, IFN-γR and IL-12R (β1/β2) expression levels were normal. Mutation analysis showed three previously reported mutations, two novel mutations in IL-12 R (β1/β2), and one previously reported mutation in IL-12.
Collapse
Affiliation(s)
- Elham Alipour Fayez
- Department of Immunology, School of Medicine, Iran University of Medical Sciences Tehran, Iran
| | - Zahra Koohini
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Koohini
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Zamanzadeh
- Department of biology, School of basic sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Molecular, Immunological, and Clinical Features of 16 Iranian Patients with Mendelian Susceptibility to Mycobacterial Disease. J Clin Immunol 2019; 39:287-297. [PMID: 30715640 DOI: 10.1007/s10875-019-0593-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/06/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE Mendelian susceptibility to mycobacterial disease (MSMD) is a rare primary immunodeficiency, triggered by non-tuberculous mycobacteria or Bacillus Calmette-Guérin (BCG) vaccines and characterized by severe diseases. All known genetic etiologies are inborn errors of IFN-γ-mediated immunity. Here, we report the molecular, cellular, and clinical features of patients from 15 Iranian families with disseminated disease without vaccination (2 patients) or following live BCG vaccination (14 patients). METHODS We used whole blood samples from 16 patients and 12 age-matched healthy controls. To measure IL-12 and IFN-γ, samples were activated by BCG plus recombinant human IFN-γ or recombinant human IL-12. Immunological assessments and genetic analysis were also done for the patients. RESULTS Eight patients affected as a result of parental first-cousin marriages. Seven patients originated from multiplex kindred with positive history of death because of tuberculosis or finding the MSMD-related gene mutations. Two patients died due to mycobacterial disease at the ages of 8 months and 3.7 years. The remaining patients were alive at the last follow-up and were aged between 2 and 13 years. Patients suffered from infections including chronic mucocutaneous candidiasis (n = 10), salmonellosis (n = 2), and Leishmania (responsible for visceral form) (n = 2). Thirteen patients presented with autosomal recessive (AR) IL-12Rβ1 deficiency, meaning their cells produced low levels of IFN-γ. Bi-allelic IL12RB1 mutations were detected in nine of patients. Three patients with AR IL-12p40 deficiency (bi-allelic IL12B mutations) produced low levels of both IL-12 and IFN-γ. Overall, we found five mutations in the IL12RB1 gene and three mutations in the IL12B gene. Except one mutation in exon 5 (c.510C>A) of IL12B, all others were previously reported to be loss-of-function mutations. CONCLUSIONS We found low levels of IFN-γ production and failure to respond to IL12 in 13 Iranian MSMD patients. Due to complicated clinical manifestations in affected children, early cellular and molecular diagnostics is crucial in susceptible patients.
Collapse
|
26
|
Al-Kzayer LFY, Yassin AK, Salih KH, Shigemura T, Sano K, Al-Simaani RBY, Tanaka M, Nakazawa Y, Okuno Y. A Syrian Refugee in Iraq Diagnosed as a Case of IL12RB1 Deficiency in Japan Using Dried Blood Spots. Front Immunol 2019; 10:58. [PMID: 30740107 PMCID: PMC6355664 DOI: 10.3389/fimmu.2019.00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare condition of primary immunodeficiency disorder. Interleukin-12 receptor β1 (IL12RB1) deficiency, is the most common genetic etiology of MSMD, which is characterized by the selective predisposition to clinical disease caused by weakly-virulent mycobacteria, such as Bacillus Calmette-Guérin (BCG) vaccines, and environmental non-tuberculous mycobacteria (NTM). To the best of our knowledge, this is the first case of IL12RB1 deficiency to be reported from Iraq. Our case is an 8-year-old Syrian girl, for first-cousin parents, with a refugee-status in the North of Iraq. She had a history of disseminated BCG infection 2 months after receiving BCG vaccine, in addition to repeated episodes of mild or severe illnesses, such as maculopapular skin rash, lymphadenopathy, gastroenteritis, meningitis, and clinically diagnosed tuberculosis (TB) based on local TB-prevalence setting. Because of limited medical facilities in the war-torn countries; in Syria and Iraq, no diagnosis could be reached. We used Flinders Technology Associates (FTA) cards to transfer her bone marrow aspirate to Japan. A homozygous IL12RB1 mutation was detected by whole exome sequencing in Japan, using genomic-DNA extracted from dried bone marrow sample spots on FTA filter paper. In conclusion, diagnosis of MSMD due to IL12RB1 deficiency was possible by transferring the FTA sample of the patient for genetic evaluation in Japan. Our report recalls the need of pediatricians in countries with TB-prevalence and high parental consanguinity, to consider IL12RB1 deficiency in the differential diagnosis of a child with clinical evidence of TB, especially with the history of disseminated BCG disease.
Collapse
Affiliation(s)
| | - Ahmed K Yassin
- Department of Medicine, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Khalid Hama Salih
- Department of Pediatrics, College of Medicine, Sulaymaniyah Medical University, Sulaymaniyah, Iraq
| | - Tomonari Shigemura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenji Sano
- Department of Pathology, Iida Municipal Hospital, Iida, Japan
| | | | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
27
|
Pourakbari B, Hosseinpour Sadeghi R, Mahmoudi S, Parvaneh N, Keshavarz Valian S, Mamishi S. Evaluation of interleukin-12 receptor β1 and interferon gamma receptor 1 deficiency in patients with disseminated BCG infection. Allergol Immunopathol (Madr) 2019; 47:38-42. [PMID: 30268380 DOI: 10.1016/j.aller.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Disseminated BCG infections among other complications of Bacillus Calmette-Guérin (BCG) vaccine are rare and have occurred in children with immunodeficiency disorders such as mendelian susceptibility to mycobacterial disease (MSMD) which could be due to defects in some elements of IL-12/IFN-γ axis. MSMD-causing mutations have been identified in 10 genes during the last two decades. Among them, mutations in the IL12Rβ1 and IFNγR1 genes constitute about 80% of recorded cases of MSMD syndrome. The aim of this study was to investigate IL-12Rβ1 and IFN-γR1 deficiencies in patients with disseminated BCG infection. METHODS This study was performed on 31 children with disseminated BCG infections who referred to children's medical center. Whole blood cell culture was performed in presence of BCG, IL-12 and IFN-γ stimulators. The supernatants were assayed for IFN-γ and IL-12p70 by ELISA method. In order to evaluate IL12Rβ1 and IFN-γR1 receptors expression, flow cytometry staining was performed on the patients' T-cells stimulated with PHA. RESULTS Flow cytometry staining of 31 Iranian patients with disseminated BCG infections with the average age of 43 months showed lack of the expression of IL-12Rβ1 and IFN-γR1 genes in PHA-T-cells of the nine and one patients, respectively in whom the incomplete production of IFN-γ and IL-12 was reported by ELISA. Among these 10 patients, eight cases had related parents (80%). CONCLUSION It is recommended that to avoid BCG complications, screening be performed for MSMD before BCG inoculation in individuals with positive family history of primary immunodeficiency diseases and inhabitants of areas with high frequency of consanguinity.
Collapse
Affiliation(s)
- B Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - R Hosseinpour Sadeghi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - S Mahmoudi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - N Parvaneh
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - S Mamishi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Martínez-Barricarte R, Markle JG, Ma CS, Deenick EK, Ramírez-Alejo N, Mele F, Latorre D, Mahdaviani SA, Aytekin C, Mansouri D, Bryant VL, Jabot-Hanin F, Deswarte C, Nieto-Patlán A, Surace L, Kerner G, Itan Y, Jovic S, Avery DT, Wong N, Rao G, Patin E, Okada S, Bigio B, Boisson B, Rapaport F, Seeleuthner Y, Schmidt M, Ikinciogullari A, Dogu F, Tanir G, Tabarsi P, Bloursaz MR, Joseph JK, Heer A, Kong XF, Migaud M, Lazarov T, Geissmann F, Fleckenstein B, Arlehamn CL, Sette A, Puel A, Emile JF, van de Vosse E, Quintana-Murci L, Di Santo JP, Abel L, Boisson-Dupuis S, Bustamante J, Tangye SG, Sallusto F, Casanova JL. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol 2018; 3:eaau6759. [PMID: 30578351 PMCID: PMC6380365 DOI: 10.1126/sciimmunol.aau6759] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Hundreds of patients with autosomal recessive, complete IL-12p40 or IL-12Rβ1 deficiency have been diagnosed over the last 20 years. They typically suffer from invasive mycobacteriosis and, occasionally, from mucocutaneous candidiasis. Susceptibility to these infections is thought to be due to impairments of IL-12-dependent IFN-γ immunity and IL-23-dependent IL-17A/IL-17F immunity, respectively. We report here patients with autosomal recessive, complete IL-12Rβ2 or IL-23R deficiency, lacking responses to IL-12 or IL-23 only, all of whom, unexpectedly, display mycobacteriosis without candidiasis. We show that αβ T, γδ T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-γ in response to IL-12, whereas NKT cells and MAIT cells preferentially produce IFN-γ in response to IL-23. We also show that the development of IFN-γ-producing CD4+ T cells, including, in particular, mycobacterium-specific TH1* cells (CD45RA-CCR6+), is dependent on both IL-12 and IL-23. Last, we show that IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population. The comparative rarity of symptomatic patients with IL-12Rβ2 or IL-23R deficiency, relative to IL-12Rβ1 deficiency, is, therefore, due to lower clinical penetrance. There are fewer symptomatic IL-23R- and IL-12Rβ2-deficient than IL-12Rβ1-deficient patients, not because these genetic disorders are rarer, but because the isolated absence of IL-12 or IL-23 is, in part, compensated by the other cytokine for the production of IFN-γ, thereby providing some protection against mycobacteria. These experiments of nature show that human IL-12 and IL-23 are both required for optimal IFN-γ-dependent immunity to mycobacteria, both individually and much more so cooperatively.
Collapse
Affiliation(s)
- Rubén Martínez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Janet G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Noé Ramírez-Alejo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federico Mele
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
| | - Daniela Latorre
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Davood Mansouri
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vanessa L Bryant
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Laura Surace
- Innate Immunity Unit, Pasteur Institute, INSERM U1223, Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, and the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Jovic
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Natalie Wong
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Pasteur Institute, Paris, France
- Centre National de la Recherche Scientifique, UMR 2000, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Monika Schmidt
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg,Erlangen, Germany
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Gonul Tanir
- Department of Pediatric Infectious Diseases, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Payam Tabarsi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammed Reza Bloursaz
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia K Joseph
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Avneet Heer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Tomi Lazarov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Bernhard Fleckenstein
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg,Erlangen, Germany
| | | | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-François Emile
- EA4340 and Pathology Department, Ambroise Paré Hospital AP-HP, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Boulogne, France
| | - Esther van de Vosse
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Pasteur Institute, Paris, France
- Centre National de la Recherche Scientifique, UMR 2000, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Pasteur Institute, INSERM U1223, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Study Center of Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Federica Sallusto
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Switzerland
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children AP-HP, Paris, France
| |
Collapse
|
29
|
Marimani M, Ahmad A, Duse A. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:200-214. [PMID: 30514504 DOI: 10.1016/j.tube.2018.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) infection caused by Mycobacterium tuberculosis (Mtb) is still a persistent global health problem, particularly in developing countries. The World Health Organization (WHO) reported a mortality rate of about 1.8 million worldwide due to TB complications in 2015. The Bacillus Calmette-Guérin (BCG) vaccine was introduced in 1921 and is still widely used to prevent TB development. This vaccine offers up to 80% protection against various forms of TB; however its efficacy against lung infection varies among different geographical settings. Devastatingly, the development of various forms of drug-resistant TB strains has significantly impaired the discovery of effective and safe anti-bacterial agents. Consequently, this necessitated discovery of new drug targets and novel anti-TB therapeutics to counter infection caused by various Mtb strains. Importantly, various factors that contribute to TB development have been identified and include bacterial resuscitation factors, host factors, environmental factors and genetics. Furthermore, Mtb-induced epigenetic changes also play a crucial role in evading the host immune response and leads to bacterial persistence and dissemination. Recently, the application of GeneXpert MTB/RIF® to rapidly diagnose and identify drug-resistant strains and discovery of different molecular markers that distinguish between latent and active TB infection has motivated and energised TB research. Therefore, this review article will briefly discuss the current TB state, highlight various mechanisms employed by Mtb to evade the host immune response as well as to discuss some modern molecular techniques that may potentially target and inhibit Mtb replication.
Collapse
Affiliation(s)
- Musa Marimani
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa.
| | - Adriano Duse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa
| |
Collapse
|
30
|
Abolhassani H, Kiaee F, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, Yazdani R, Azizi G, Habibi S, Gharagozlou M, Movahedi M, Hamidieh AA, Behniafard N, Nabavi M, Bemanian MH, Arshi S, Molatefi R, Sherkat R, Shirkani A, Amin R, Aleyasin S, Faridhosseini R, Jabbari-Azad F, Mohammadzadeh I, Ghaffari J, Shafiei A, Kalantari A, Mansouri M, Mesdaghi M, Babaie D, Ahanchian H, Khoshkhui M, Soheili H, Eslamian MH, Cheraghi T, Dabbaghzadeh A, Tavassoli M, Kalmarzi RN, Mortazavi SH, Kashef S, Esmaeilzadeh H, Tafaroji J, Khalili A, Zandieh F, Sadeghi-Shabestari M, Darougar S, Behmanesh F, Akbari H, Zandkarimi M, Abolnezhadian F, Fayezi A, Moghtaderi M, Ahmadiafshar A, Shakerian B, Sajedi V, Taghvaei B, Safari M, Heidarzadeh M, Ghalebaghi B, Fathi SM, Darabi B, Bazregari S, Bazargan N, Fallahpour M, Khayatzadeh A, Javahertrash N, Bashardoust B, Zamani M, Mohsenzadeh A, Ebrahimi S, Sharafian S, Vosughimotlagh A, Tafakoridelbari M, Rahimi M, Ashournia P, Razaghian A, Rezaei A, Mamishi S, Parvaneh N, Rezaei N, Hammarström L, Aghamohammadi A. Fourth Update on the Iranian National Registry of Primary Immunodeficiencies: Integration of Molecular Diagnosis. J Clin Immunol 2018; 38:816-832. [PMID: 30302726 DOI: 10.1007/s10875-018-0556-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The number of inherited diseases and the spectrum of clinical manifestations of primary immunodeficiency disorders (PIDs) are ever-expanding. Molecular diagnosis using genomic approaches should be performed for all PID patients since it provides a resource to improve the management and to estimate the prognosis of patients with these rare immune disorders. METHOD The current update of Iranian PID registry (IPIDR) contains the clinical phenotype of newly registered patients during last 5 years (2013-2018) and the result of molecular diagnosis in patients enrolled for targeted and next-generation sequencing. RESULTS Considering the newly diagnosed patients (n = 1395), the total number of registered PID patients reached 3056 (1852 male and 1204 female) from 31 medical centers. The predominantly antibody deficiency was the most common subcategory of PID (29.5%). The putative causative genetic defect was identified in 1014 patients (33.1%) and an autosomal recessive pattern was found in 79.3% of these patients. Among the genetically different categories of PID patients, the diagnostic rate was highest in defects in immune dysregulation and lowest in predominantly antibody deficiencies and mutations in the MEFV gene were the most frequent genetic disorder in our cohort. CONCLUSIONS During a 20-year registration of Iranian PID patients, significant changes have been observed by increasing the awareness of the medical community, national PID network establishment, improving therapeutic facilities, and recently by inclusion of the molecular diagnosis. The current collective study of PID phenotypes and genotypes provides a major source for ethnic surveillance, newborn screening, and genetic consultation for prenatal and preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Kiaee
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Marzieh Tavakol
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Sima Habibi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Gharagozlou
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Masoud Movahedi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Hematology, Oncology and Stem Cell Transplantation Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Behniafard
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammamd Nabavi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rasol Molatefi
- Department of Pediatrics, Bo-Ali children's Hospital of Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, lsfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Science, School of Medicine, Bushehr, Iran
| | - Reza Amin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Aleyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Faridhosseini
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Iraj Mohammadzadeh
- Noncommunicable Pediatric Diseases Research Center, Amirkola Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Javad Ghaffari
- Department of Pediatrics, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Shafiei
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mansouri
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mehrnaz Mesdaghi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Delara Babaie
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Khoshkhui
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habib Soheili
- Department of Pediatrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Taher Cheraghi
- Department of Pediatrics, 17th Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Dabbaghzadeh
- Noncommunicable Pediatric Diseases Research Center, Amirkola Hospital, Babol University of Medical Sciences, Babol, Iran.,Department of Allergy and Clinical Immunology, Pediatric Infectious Diseases Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Tavassoli
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Nasiri Kalmarzi
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Sara Kashef
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Javad Tafaroji
- Department of Pediatrics, Qom University of Medical Sciences, Qom, Iran
| | - Abbas Khalili
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fariborz Zandieh
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepideh Darougar
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Behmanesh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hedayat Akbari
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farhad Abolnezhadian
- Department of Immunology and Allergy, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Abbas Fayezi
- Department of Immunology and Allergy, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Moghtaderi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Behzad Shakerian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Sajedi
- Department of Immunology and Allergy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behrang Taghvaei
- Department of Immunology and Allergy, Semnan University of Medical Sciences, Semnan, Iran
| | - Mojgan Safari
- Department of Pediatrics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Heidarzadeh
- Department of Immunology and Allergy, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Ghalebaghi
- Department of Pediatrics, 17th Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mohammad Fathi
- Department of Immunology and Allergy, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behzad Darabi
- Department of Immunology and Allergy, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Bazregari
- Allergy and Clinical Immunology Department, Bushehr University of Medical Science, School of Medicine, Bushehr, Iran
| | - Nasrin Bazargan
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khayatzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Javahertrash
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Bashardoust
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Zamani
- Department of Immunology and Allergy, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Azam Mohsenzadeh
- Department of Pediatrics, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sarehsadat Ebrahimi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Ahmad Vosughimotlagh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Mitra Tafakoridelbari
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Maziar Rahimi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Parisa Ashournia
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Anahita Razaghian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran. .,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
31
|
Nekooie-Marnany N, Deswarte C, Ostadi V, Bagherpour B, Taleby E, Ganjalikhani-Hakemi M, Le Voyer T, Rahimi H, Rosain J, Pourmoghadas Z, Sheikhbahaei S, Khoshnevisan R, Petersheim D, Kotlarz D, Klein C, Boisson-Dupuis S, Casanova JL, Bustamante J, Sherkat R. Impaired IL-12- and IL-23-Mediated Immunity Due to IL-12Rβ1 Deficiency in Iranian Patients with Mendelian Susceptibility to Mycobacterial Disease. J Clin Immunol 2018; 38:787-793. [PMID: 30255293 DOI: 10.1007/s10875-018-0548-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Inborn errors of IFN-γ-mediated immunity underlie Mendelian Susceptibility to Mycobacterial Disease (MSMD), which is characterized by an increased susceptibility to severe and recurrent infections caused by weakly virulent mycobacteria, such as Bacillus Calmette-Guérin (BCG) vaccines and environmental, nontuberculous mycobacteria (NTM). METHODS In this study, we investigated four patients from four unrelated consanguineous families from Isfahan, Iran, with disseminated BCG disease. We evaluated the patients' whole blood cell response to IL-12 and IFN-γ, IL-12Rβ1 expression on T cell blasts, and sequenced candidate genes. RESULTS We report four patients from Isfahan, Iran, ranging from 3 months to 26 years old, with impaired IL-12 signaling. All patients suffered from BCG disease. One of them presented mycobacterial osteomyelitis. By Sanger sequencing, we identified three different types of homozygous mutations in IL12RB1. Expression of IL-12Rβ1 was completely abolished in the four patients with IL12RB1 mutations. CONCLUSIONS IL-12Rβ1 deficiency was found in the four MSMD Iranian families tested. It is the first report of an Iranian case with S321* mutant IL-12Rβ1 protein. Mycobacterial osteomyelitis is another type of location of BCG infection in an IL-12Rβ1-deficient patient, notified for the first time in this study.
Collapse
Affiliation(s)
- Nioosha Nekooie-Marnany
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France
| | - Vajiheh Ostadi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elaheh Taleby
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France
| | - Hamid Rahimi
- Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France.,Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, EU, France
| | - Zahra Pourmoghadas
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Sheikhbahaei
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Khoshnevisan
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daniel Petersheim
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, EU, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, EU, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, EU, Germany
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA.,Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, EU, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France.,Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
32
|
Nahid P, Jarlsberg LG, Kato-Maeda M, Segal MR, Osmond DH, Gagneux S, Dobos K, Gold M, Hopewell PC, Lewinsohn DM. Interplay of strain and race/ethnicity in the innate immune response to M. tuberculosis. PLoS One 2018; 13:e0195392. [PMID: 29787561 PMCID: PMC5963792 DOI: 10.1371/journal.pone.0195392] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/21/2018] [Indexed: 11/19/2022] Open
Abstract
Background The roles of host and pathogen factors in determining innate immune responses to M. tuberculosis are not fully understood. In this study, we examined host macrophage immune responses of 3 race/ethnic groups to 3 genetically and geographically diverse M. tuberculosis lineages. Methods Monocyte-derived macrophages from healthy Filipinos, Chinese and non-Hispanic White study participants (approximately 45 individuals/group) were challenged with M. tuberculosis whole cell lysates of clinical strains Beijing HN878 (lineage 2), Manila T31 (lineage 1), CDC1551 (lineage 4), the reference strain H37Rv (lineage 4), as well as with Toll-like receptor 2 agonist lipoteichoic acid (TLR2/LTA) and TLR4 agonist lipopolysaccharide (TLR4/LPS). Following overnight incubation, multiplex assays for nine cytokines: IL-1β, IL-2, IL-6, IL-8, IL-10, IL-12p70, IFNγ, TNFα, and GM-CSF, were batch applied to supernatants. Results Filipino macrophages produced less IL-1, IL-6, and more IL-8, compared to macrophages from Chinese and Whites. Race/ethnicity had only subtle effects or no impact on the levels of IL-10, IL-12p70, TNFα and GM-CSF. In response to the Toll-like receptor 2 agonist lipoteichoic acid (TLR2/LTA), Filipino macrophages again had lower IL-1 and IL-6 responses and a higher IL-8 response, compared to Chinese and Whites. The TLR2/LTA-stimulated Filipino macrophages also produced lower amounts of IL-10, TNFα and GM-CSF. Race/ethnicity had no impact on IL-12p70 levels released in response to TLR2/LTA. The responses to TLR4 agonist lipopolysaccharide (TLR4/LPS) were similar to the TLR2/LTA responses, for IL-1, IL-6, IL-8, and IL-10. However, TLR4/LPS triggered the release of less IL-12p70 from Filipino macrophages, and less TNFα from White macrophages. Conclusions Both host race/ethnicity and pathogen strain influence the innate immune response. Such variation may have implications for the development of new tools across TB therapeutics, immunodiagnostics and vaccines.
Collapse
Affiliation(s)
- P. Nahid
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
- * E-mail: (PN); (DML)
| | - L. G. Jarlsberg
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
| | - M. Kato-Maeda
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
| | - M. R. Segal
- Department of Epidemiology & Biostatistics, University of California, San Francisco, United States of America
| | - D. H. Osmond
- Department of Epidemiology & Biostatistics, University of California, San Francisco, United States of America
| | - S. Gagneux
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Basel, Switzerland
| | - K. Dobos
- Colorado State University, Department of Microbiology, Immunology & Pathology, Fort Collins, CO, United States of America
| | - M. Gold
- Department of Research, Veterans Affairs Portland Health Care Center, Portland, Oregon, United States of America
| | - P. C. Hopewell
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
| | - D. M. Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, Oregon
- Department of Research, Veterans Affairs Portland Health Care Center, Portland, Oregon, United States of America
- * E-mail: (PN); (DML)
| |
Collapse
|
33
|
Esteve-Solé A, Sologuren I, Martínez-Saavedra MT, Deyà-Martínez À, Oleaga-Quintas C, Martinez-Barricarte R, Martinez-Nalda A, Juan M, Casanova JL, Rodriguez-Gallego C, Alsina L, Bustamante J. Laboratory evaluation of the IFN-γ circuit for the molecular diagnosis of Mendelian susceptibility to mycobacterial disease. Crit Rev Clin Lab Sci 2018; 55:184-204. [PMID: 29502462 PMCID: PMC5880527 DOI: 10.1080/10408363.2018.1444580] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The integrity of the interferon (IFN)-γ circuit is necessary to mount an effective immune response to intra-macrophagic pathogens, especially Mycobacteria. Inherited monogenic defects in this circuit that disrupt the production of, or response to, IFN-γ underlie a primary immunodeficiency known as Mendelian susceptibility to mycobacterial disease (MSMD). Otherwise healthy patients display a selective susceptibility to clinical disease caused by poorly virulent mycobacteria such as BCG (bacille Calmette-Guérin) vaccines and environmental mycobacteria, and more rarely by other intra-macrophagic pathogens, particularly Salmonella and M. tuberculosis. There is high genetic and allelic heterogeneity, with 19 genetic etiologies due to mutations in 10 genes that account for only about half of the patients reported. An efficient laboratory diagnostic approach to suspected MSMD patients is important, because it enables the establishment of specific therapeutic measures that will improve the patient's prognosis and quality of life. Moreover, it is essential to offer genetic counseling to affected families. Herein, we review the various genetic and immunological diagnostic approaches that can be used in concert to reach a molecular and cellular diagnosis in patients with MSMD.
Collapse
Affiliation(s)
- Ana Esteve-Solé
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain, EU
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Spain, EU
| | - Ithaisa Sologuren
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain, EU
| | | | - Àngela Deyà-Martínez
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain, EU
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Spain, EU
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, IN-SERM-U1163, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
| | - Rubén Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller branch, Rockefeller University, New York, NY, USA
| | - Andrea Martinez-Nalda
- Pediatric Infectious Disease and Immunodeficiency Unit, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Spain, EU
| | - Manel Juan
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Spain, EU
- Immunology Department. Biomedical Diagnostics Center, Hospital Clinic-IDIBAPS, Barcelona, Spain, EU
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, IN-SERM-U1163, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU
- Howard Hughes Medical Institute, New York, NY, USA
| | - Carlos Rodriguez-Gallego
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain, EU
| | - Laia Alsina
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain, EU
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Spain, EU
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, IN-SERM-U1163, Paris, France, EU
- Paris Descartes University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller branch, Rockefeller University, New York, NY, USA
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for SickChildren, AP-HP, Paris, France, EU
| |
Collapse
|
34
|
Vincent QB, Belkadi A, Fayard C, Marion E, Adeye A, Ardant MF, Johnson CR, Agossadou D, Lorenzo L, Guergnon J, Bole-Feysot C, Manry J, Nitschké P, Theodorou I, Casanova JL, Marsollier L, Chauty A, Abel L, Alcaïs A. Microdeletion on chromosome 8p23.1 in a familial form of severe Buruli ulcer. PLoS Negl Trop Dis 2018; 12:e0006429. [PMID: 29708969 PMCID: PMC5945055 DOI: 10.1371/journal.pntd.0006429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/10/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Buruli ulcer (BU), the third most frequent mycobacteriosis worldwide, is a neglected tropical disease caused by Mycobacterium ulcerans. We report the clinical description and extensive genetic analysis of a consanguineous family from Benin comprising two cases of unusually severe non-ulcerative BU. The index case was the most severe of over 2,000 BU cases treated at the Centre de Dépistage et de Traitement de la Lèpre et de l’Ulcère de Buruli, Pobe, Benin, since its opening in 2003. The infection spread to all limbs with PCR-confirmed skin, bone and joint infections. Genome-wide linkage analysis of seven family members was performed and whole-exome sequencing of both patients was obtained. A 37 kilobases homozygous deletion confirmed by targeted resequencing and located within a linkage region on chromosome 8 was identified in both patients but was absent from unaffected siblings. We further assessed the presence of this deletion on genotyping data from 803 independent local individuals (402 BU cases and 401 BU-free controls). Two BU cases were predicted to be homozygous carriers while none was identified in the control group. The deleted region is located close to a cluster of beta-defensin coding genes and contains a long non-coding (linc) RNA gene previously shown to display highest expression values in the skin. This first report of a microdeletion co-segregating with severe BU in a large family supports the view of a key role of human genetics in the natural history of the disease. Buruli ulcer (BU) is a tropical infectious disease caused by Mycobacterium ulcerans. Although being the third most common mycobacterial disease in the world after tuberculosis and leprosy, BU remains a neglected tropical disease and an emerging health emergency in several developing countries. It causes profound skin ulcerations and eventually bone infections. Life-long functional sequelae are observed in more than 20% of patients, most of whom are children. Several observations, in particular the large variability in the clinical severity of the disease after infection, suggested the role of human genetic factors in the development of BU. We report the case of a 5-year old girl from Benin, born of consanguineous parents, who suffered from extensive dissemination of the mycobacterium in the skin, bones and joints. One of her siblings was also affected. The deep genetic exploration of this family led to the identification of a small deletion on chromosome 8 in both patients but absent from unaffected siblings. Interestingly, the deletion is located within a region containing genes encoding for beta-defensins, a family of antimicrobial peptides involved in both innate immunity and healing process of skin wounds. This first report of a microdeletion associated with severe BU in a large family supports the view of a key role of human genetics in the natural history of the disease.
Collapse
Affiliation(s)
- Quentin B Vincent
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Aziz Belkadi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Cindy Fayard
- Department of Radiology, Kremlin-Bicêtre Hospital, Paris, France
| | - Estelle Marion
- Center for Research in Cancerology & Immunology Nantes-Angers (CRCNA), INSERM, Nantes University, Angers University, Angers, France.,Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Fondation Raoul Follereau, Pobe, Benin
| | - Ambroise Adeye
- Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Fondation Raoul Follereau, Pobe, Benin.,Fondation Raoul Follereau, Paris, France
| | - Marie-Françoise Ardant
- Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Fondation Raoul Follereau, Pobe, Benin.,Fondation Raoul Follereau, Paris, France
| | - Christian R Johnson
- Fondation Raoul Follereau, Paris, France.,Centre Interfacultaire de Formation et de Recherche en Environnement pour le Développement Durable, Université d'Abomey-Calavi, Cotonou, Benin
| | - Didier Agossadou
- Leprosy and Buruli Ulcer national control program, Beninese Ministry of Health, Cotonou, Benin
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Julien Guergnon
- INSERM UMR S 945, Pierre et Marie Curie University, Paris, France
| | - Christine Bole-Feysot
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Genomic Core Facility, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, INSERM UMR-1163, Paris, France
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Patrick Nitschké
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Bioinformatics Core Facility, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, INSERM UMR-1163, Paris, France
| | - Ioannis Theodorou
- Center for Immunology and Infectious Diseases, INSERM UMR S 1135, Pierre et Marie Curie University, Paris, France.,Department of Immunology, Pitié-Salpêtrière Hospital, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America.,Howard Hughes Medical Institute, New York, United States of America.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Laurent Marsollier
- Center for Research in Cancerology & Immunology Nantes-Angers (CRCNA), INSERM, Nantes University, Angers University, Angers, France
| | - Annick Chauty
- Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Fondation Raoul Follereau, Pobe, Benin.,Fondation Raoul Follereau, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | | |
Collapse
|
35
|
Casanova JL, Abel L. Human genetics of infectious diseases: Unique insights into immunological redundancy. Semin Immunol 2018; 36:1-12. [PMID: 29254755 PMCID: PMC5910248 DOI: 10.1016/j.smim.2017.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 01/18/2023]
Abstract
For almost any given human-tropic virus, bacterium, fungus, or parasite, the clinical outcome of primary infection is enormously variable, ranging from asymptomatic to lethal infection. This variability has long been thought to be largely determined by the germline genetics of the human host, and this is increasingly being demonstrated to be the case. The number and diversity of known inborn errors of immunity is continually increasing, and we focus here on autosomal and X-linked recessive traits underlying complete deficiencies of the encoded protein. Schematically, four types of infectious phenotype have been observed in individuals with such deficiencies, each providing information about the redundancy of the corresponding human gene, in terms of host defense in natural conditions. The lack of a protein can confer vulnerability to a broad range of microbes in most, if not all patients, through the disruption of a key immunological component. In such cases, the gene concerned is of low redundancy. However, the lack of a protein may also confer vulnerability to a narrow range of microbes, sometimes a single pathogen, and not necessarily in all patients. In such cases, the gene concerned is highly redundant. Conversely, the deficiency may be apparently neutral, conferring no detectable predisposition to infection in any individual. In such cases, the gene concerned is completely redundant. Finally, the lack of a protein may, paradoxically, be advantageous to the host, conferring resistance to one or more infections. In such cases, the gene is considered to display beneficial redundancy. These findings reflect the current state of evolution of humans and microbes, and should not be considered predictive of redundancy, or of a lack of redundancy, in the distant future. Nevertheless, these observations are of potential interest to present-day biologists testing immunological hypotheses experimentally and physicians managing patients with immunological or infectious conditions.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU.
| |
Collapse
|
36
|
Abel L, Fellay J, Haas DW, Schurr E, Srikrishna G, Urbanowski M, Chaturvedi N, Srinivasan S, Johnson DH, Bishai WR. Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives. THE LANCET. INFECTIOUS DISEASES 2018; 18:e64-e75. [DOI: 10.1016/s1473-3099(17)30623-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
|
37
|
Susceptibility to mycobacterial disease due to mutations in IL-12Rβ1 in three Iranian patients. Immunogenetics 2017; 70:373-379. [PMID: 29256176 PMCID: PMC5943370 DOI: 10.1007/s00251-017-1041-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/26/2017] [Indexed: 10/31/2022]
Abstract
In the last decade, autosomal recessive interleukin-12 receptor β1 (IL-12Rβ1) deficiency, the most common cause of Mendelian susceptibility to mycobacterial disease (MSMD), has been diagnosed in a few children and adults with severe tuberculosis in Iran. Here, we report three cases referred to the Immunology, Asthma and Allergy ward at the National Research Institute of Tuberculosis and Lung Diseases (NRITLD) at Masih Daneshvari Hospital from 2012 to 2017 with Mycobacterium tuberculosis and non-tuberculous mycobacteria infections due to defects in IL-12Rβ1 but with different clinical manifestations. All three were homozygous for either an IL-12Rβ1 missense or nonsense mutation that caused the IL-12Rβ1 protein not to be expressed on the cell membrane and completely abolished the cellular response to recombinant IL-12. Our findings suggest that the presence of IL-12Rβ1 deficiency should be determined in children with mycobacterial infections at least in countries with a high prevalence of parental consanguinity and in areas endemic for TB like Iran.
Collapse
|
38
|
Kumar P. IFNγ-producing CD4 + T lymphocytes: the double-edged swords in tuberculosis. Clin Transl Med 2017; 6:21. [PMID: 28646367 PMCID: PMC5482791 DOI: 10.1186/s40169-017-0151-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/07/2017] [Indexed: 11/30/2022] Open
Abstract
IFNγ-producing CD4+ T cells (IFNγ+CD4+ T cells) are the key orchestrators of protective immunity against Mycobacterium tuberculosis (Mtb). Primarily, these cells act by enabling Mtb-infected macrophages to enforce phagosome-lysosome fusion, produce reactive nitrogen intermediates (RNIs), and activate autophagy pathways. However, TB is a heterogeneous disease and a host of clinical and experimental findings has also implicated IFNγ+CD4+ T cells in TB pathogenesis. High frequency of IFNγ+CD4+ T cells is the most invariable feature of the active disease. Active TB patients mount a heightened IFNγ+CD4+ T cell response to mycobacterial antigens and demonstrate an IFNγ-inducible transcriptomic signature. IFNγ+CD4+ T cells have also been shown to mediate TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) observed in a subset of antiretroviral therapy (ART)-treated HIV- and Mtb-coinfected people. The pathological face of IFNγ+CD4+ T cells during mycobacterial infection is further uncovered by studies in the animal model of TB-IRIS and in Mtb-infected PD-1-/- mice. This manuscript encompasses the evidence supporting the dual role of IFNγ+CD4+ T cells during Mtb infection and sheds light on immune mechanisms involved in protection versus pathogenesis.
Collapse
Affiliation(s)
- Pawan Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
39
|
Hatipoglu N, Güvenç BH, Deswarte C, Koksalan K, Boisson-Dupuis S, Casanova JL, Bustamante J. Inherited IL-12Rβ1 Deficiency in a Child With BCG Adenitis and Oral Candidiasis: A Case Report. Pediatrics 2017; 140:e20161668. [PMID: 29025965 PMCID: PMC5654388 DOI: 10.1542/peds.2016-1668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2017] [Indexed: 11/24/2022] Open
Abstract
Tuberculosis is a major worldwide problem, and protection from it is achieved mainly by live attenuated bacille Calmette-Guérin vaccine, which is capable of causing disease in immunocompromised host. Oral thrush is abnormal in healthy children, which suggests an underlying immunodeficiency. Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by a selective predisposition to weakly virulent Mycobacteria and Salmonella and also predisposition to chronic mucocutaneous candidiasis. Interleukin 12 receptor β1 (IL-12Rβ1) deficiency is the most common disease of Mendelian susceptibility to mycobacterial disease, and to date only 50 IL-12Rβ1 deficient patients with clinical signs of chronic mucocutaneous candidiasis have been reported. We report a 2.5-year-old daughter of consanguineous parents with both regional bacille Calmette-Guérin lymphadenitis and recurrent oral candidiasis carrying biallelic R175W mutation in the IL12RB1 gene, resulting in complete loss of expression of IL-12Rβ1. To our knowledge, this is the first report of bacille Calmette-Guérin lymphadenitis with concurrent oral candidiasis displaying such a mutation. New mutations and wide clinical diversities are the indisputable fact of populations with a high rate of consanguineous marriages.
Collapse
Affiliation(s)
| | - B Haluk Güvenç
- Pediatric Surgery Unit, Bakirkoy Dr Sadi Konuk Education and Training Hospital, Istanbul, Turkey
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute
- Paris Descartes University, Paris, France
| | - Kaya Koksalan
- Laboratory of Molecular Tuberculosis Epidemiology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York; and
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York; and
- Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris AP-HP, and
- Howard Hughes Medical Institute, New York, New York
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York; and
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
40
|
Qrafli M, Najimi M, Elaouad R, Sadki K. Current immunogenetic predisposition to tuberculosis in the Moroccan population. Int J Immunogenet 2017; 44:286-304. [PMID: 29057608 DOI: 10.1111/iji.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/06/2017] [Accepted: 08/27/2017] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) is a serious infectious disease that kills approximately two million people per year, particularly in low- and middle-income countries. Numerous genetic epidemiology studies have been conducted of many ethnic groups worldwide and have highlighted the critical impact of the genetic environment on TB distribution. Many candidate genes associated with resistance or susceptibility to TB have been identified. In Morocco, where TB is still a major public health problem, various observations of clinical, microbiological and incidence distribution are heavily affected by genetic background and external environment. Morocco has almost the same clinical profile as do other North African countries, mainly the increase in more extrapulmonary than pulmonary forms of the diseases, when compared to European, Asian or American populations. In addition, a linkage analysis study that examined Moroccan TB patients identified a unique chromosome region that had a strong association with the risk of contracting TB. Other genes in the Moroccan population that were found to be associated seem to be involved predominantly in modulating the innate immunity. In this review, we appraise the major candidate genes that have been reported in Moroccan immunogenetic studies and discuss their updated role in TB, particularly during the first phase of the immune response to Mycobacterium tuberculosis (Mtb) infection.
Collapse
Affiliation(s)
- M Qrafli
- Physiopathology Team, Immunogenomic and Bioinformatic Unit, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| | - M Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - R Elaouad
- School of Medicine and Pharmacy Sciences, Mohammed V University of Rabat, Rabat, Morocco
| | - K Sadki
- Physiopathology Team, Immunogenomic and Bioinformatic Unit, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
| |
Collapse
|
41
|
Arias AA, Perez-Velez CM, Orrego JC, Moncada-Velez M, Rojas JL, Wilches A, Restrepo A, Trujillo M, Garcés C, Arango-Ferreira C, González N, Oleaga-Quintas C, Fernández D, Isaza-Correa JM, Gongóra DE, Gonzalez-Loaiza D, Sierra JE, Casanova JL, Bustamante J, Franco JL. Severe Enteropathy and Hypogammaglobulinemia Complicating Refractory Mycobacterium tuberculosis Complex Disseminated Disease in a Child with IL-12Rβ1 Deficiency. J Clin Immunol 2017; 37:732-738. [PMID: 28865061 DOI: 10.1007/s10875-017-0435-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 08/16/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Mendelian susceptibility to mycobacterial disease is a rare clinical condition characterized by a predisposition to infectious diseases caused by poorly virulent mycobacteria. Other infections such as salmonellosis and candidiasis are also reported. The purpose of this article is to describe a young boy affected with various infectious diseases caused by Mycobacterium tuberculosis complex, Salmonella sp, Klebsiella pneumonie, Citrobacter sp., and Candida sp, complicated with severe enteropathy and transient hypogammaglobulinemia. METHODS We reviewed medical records and performed flow cytometry staining for lymphocyte populations, lymphocyte proliferation in response to PHA, and intracellular IFN-γ production in T cell PHA blasts in the patient and a healthy control. Sanger sequencing was used to confirm the genetic variants in the patient and relatives. RESULTS Genetic analysis revealed a bi-allelic mutation in IL12RB1 (C291Y) resulting in complete IL-12Rβ1 deficiency. Functional analysis demonstrated the lack of intracellular production of IFN-γ in CD3+ T lymphocytes from the patient in response to rhIL-12p70. CONCLUSIONS To our knowledge, this is the third patient with MSMD due to IL-12Rβ1 deficiency complicated with enteropathy and hypogammaglobulinemia and the first case of this disease to be described in Colombia.
Collapse
Affiliation(s)
- Andrés Augusto Arias
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia.,Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Carlos M Perez-Velez
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia.,Tuberculosis Clinic, Pima County Health Department, Tucson, USA.,Division of Infectious Diseases, University of Arizona College of Medicine, Tucson, USA
| | - Julio César Orrego
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Marcela Moncada-Velez
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Jessica Lineth Rojas
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Alejandra Wilches
- Hospital Universitario San Vicente Fundación, Medellin, Colombia.,Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Andrea Restrepo
- Departamento de Pediatría, Hospital Pablo Tobon Uribe, Medellin, Colombia.,Clínica Universitaria Bolivariana, Medellin, Colombia
| | - Mónica Trujillo
- Departamento de Pediatría, Hospital Pablo Tobon Uribe, Medellin, Colombia
| | - Carlos Garcés
- Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia.,Departamento de Pediatría, Hospital Pablo Tobon Uribe, Medellin, Colombia
| | - Catalina Arango-Ferreira
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia.,Hospital Universitario San Vicente Fundación, Medellin, Colombia.,Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Natalia González
- Hospital Infantil Rafael Henao Toro, Manizales, Colombia.,Fundación Universitaria de las Américas, Pereira, Colombia
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Diana Fernández
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Johana Marcela Isaza-Correa
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Diego Eduardo Gongóra
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Daniel Gonzalez-Loaiza
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Juan Esteban Sierra
- Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia
| | - Jean Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Howard Hughes Medical Institute, New York, USA.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller branch, The Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller branch, The Rockefeller University, New York, NY, USA.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - José Luis Franco
- Grupo de Inmunodeficiencias Primarias, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No, 52-21, Medellín, Colombia.
| |
Collapse
|
42
|
Orlova M, Schurr E. Human Genomics of Mycobacterium tuberculosis Infection and Disease. CURRENT GENETIC MEDICINE REPORTS 2017; 5:125-131. [PMID: 29201558 DOI: 10.1007/s40142-017-0124-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Purpose of review The study of the genetic basis of tuberculosis pathogenesis has benefited from powerful technological innovations, a more structured definition of latent and clinical manifestations of the disease, and the application of functional genomics approaches. This short review aims to summarize recent advances and to provide a link with results of previous human genetic studies of tuberculosis susceptibility. Recent findings Transcriptomics has been shown to be a useful tool to predict progression from latency to clinical disease while functional genomics has traced the molecular events that link pathogen-triggered gene expression and host genetics. Resistance to infection with Mycobacterium tuberculosis has been revealed to be strongly impacted by host genetics. Host genomics of clinical disease has been shown to be most powerful when focusing on carefully selected clinical entities and possibly by considering host pathogen combinations. Summary Future studies need to build on the latest molecular findings to define disease subtypes to successfully elucidate the human genetic component in tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,McGill International TB Centre, McGill University, Montreal, Quebec, Canada.,Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,McGill International TB Centre, McGill University, Montreal, Quebec, Canada.,Departments of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Parvaneh N, Barlogis V, Alborzi A, Deswarte C, Boisson-Dupuis S, Migaud M, Farnaria C, Markle J, Parvaneh L, Casanova JL, Bustamante J. Visceral leishmaniasis in two patients with IL-12p40 and IL-12Rβ1 deficiencies. Pediatr Blood Cancer 2017; 64. [PMID: 27873456 DOI: 10.1002/pbc.26362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022]
Abstract
Mutations of the IL12B and IL12RB1 genes underlie the development of IL-12 p40 and IL-12Rβ1 deficiencies, respectively, both of which cause predisposition to infection with weakly virulent mycobacteria and Salmonella. Infections with other intramacrophagic organisms have only been rarely observed. We identified two patients with visceral leishmaniasis who had autosomal recessive IL-12 p40 and IL-12Rβ1 deficiencies, respectively. This finding demonstrates the importance of IFN-γ immunity in the control of leishmaniasis. We also searched the literature for similar reports in patients with these and other primary immunodeficiencies.
Collapse
Affiliation(s)
- Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran, Iran
| | - Vincent Barlogis
- Pediatric Hematology-Oncology Unit, Timone Hospital for Children, Marseille, France
| | - Abdolvahab Alborzi
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | | | - Janet Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York
| | - Leila Parvaneh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran, Iran
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, New York
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York.,Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris AP-HP, Necker-Enfants Malades Hospital, Paris, France
| |
Collapse
|
44
|
Apt AS, Logunova NN, Kondratieva TK. Host genetics in susceptibility to and severity of mycobacterial diseases. Tuberculosis (Edinb) 2017; 106:1-8. [PMID: 28802396 DOI: 10.1016/j.tube.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 01/05/2023]
Abstract
The genetic analysis of susceptibility to infections has proven to be extremely useful for identification of key cells, molecules, pathways, and genes involved in the battle between two genomes - the essence of the infectious process. This is particularly true for tuberculosis and other mycobacterial infections which traditionally attracted much attention from both immunologists and geneticists. In this short review, we observe results of genetic studies performed in human populations and in animal models and compare relative input of forward and reverse genetic approaches in our knowledge about genetic control of and immune responses to mycobacterial infections.
Collapse
Affiliation(s)
- A S Apt
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia; Department of Immunology, School of Biology, Moscow State M. V. Lomonosov University, Russia.
| | - N N Logunova
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| | - T K Kondratieva
- Laboratory for Immunogenetics, Central Institute for Tuberculosis, Moscow, Russia
| |
Collapse
|
45
|
Louvain de Souza T, de Souza Campos Fernandes RC, Azevedo da Silva J, Gomes Alves Júnior V, Gomes Coelho A, Souza Faria AC, Moreira Salomão Simão NM, Souto Filho JT, Deswarte C, Boisson-Dupuis S, Torgerson D, Casanova JL, Bustamante J, Medina-Acosta E. Microbial Disease Spectrum Linked to a Novel IL-12Rβ1 N-Terminal Signal Peptide Stop-Gain Homozygous Mutation with Paradoxical Receptor Cell-Surface Expression. Front Microbiol 2017; 8:616. [PMID: 28450854 PMCID: PMC5389975 DOI: 10.3389/fmicb.2017.00616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/27/2017] [Indexed: 01/07/2023] Open
Abstract
Patients with Mendelian Susceptibility to Mycobacterial Diseases (MSMD) exhibit variable vulnerability to infections by mycobacteria and other intramacrophagic bacteria (e.g., Salmonella and Klebsiella) and fungi (e.g., Histoplasma, Candida, Paracoccidioides, Coccidioides, and Cryptococcus). The hallmark of MSMD is the inherited impaired production of interferon gamma (IFN-γ) or the lack of response to it. Mutations in the interleukin (IL)-12 receptor subunit beta 1 (IL12RB1) gene accounts for 38% of cases of MSMD. Most IL12RB1 pathogenic allele mutations, including ten known stop-gain variants, cause IL-12Rβ1 complete deficiency (immunodeficiency-30, IMD30) by knocking out receptor cell-surface expression. IL12RB1 loss-of-function genotypes impair both IL-12 and IL-23 responses. Here, we assess the health effects of a rare, novel IL12RB1 stop-gain homozygous genotype with paradoxical IL-12Rβ1 cell-surface expression. We appraise four MSMD children from three unrelated Brazilian kindreds by clinical consultation, medical records, and genetic and immunologic studies. The clinical spectrum narrowed down to Bacillus Calmette-Guerin (BCG) vaccine-related suppurative adenitis in all patients with one death, and recrudescence in two, histoplasmosis, and recurrence in one patient, extraintestinal salmonellosis in one child, and cutaneous vasculitis in another. In three patients, we established the homozygous Trp7Ter predicted loss-of-function inherited genotype and inferred it from the heterozygote parents of the fourth case. The Trp7Ter mutation maps to the predicted IL-12Rβ1 N-terminal signal peptide sequence. BCG- or phytohemagglutinin-blasts from the three patients have reduced cell-surface expression of IL-12Rβ1 with impaired production of IFN-γ and IL-17A. Screening of 227 unrelated healthy subjects from the same geographic region revealed one heterozygous genotype (allele frequency 0.0022) vs. one in over 841,883 public genome/exomes. We also show that the carriers bear European ancestry-informative alleles and share the extended CACCAGTCCGG IL12RB1 haplotype that occurs worldwide with a frequency of 8.4%. We conclude that the novel IL12RB1 N-terminal signal peptide stop-gain loss-of-function homozygous genotype confers IL-12Rβ1 deficiency with varying severity and early-onset age through diminished cell-surface expression of an impaired IL-12Rβ1 polypeptide. We firmly recommend attending to warning signs of IMD30 in children who are HIV-1 negative with a history of adverse effects to the BCG vaccine and presenting with recurrent Histoplasma spp. and extraintestinal Salmonella spp. infections.
Collapse
Affiliation(s)
- Thais Louvain de Souza
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Universidade Estadual do Norte FluminenseCampos dos Goytacazes, Brazil.,Faculdade de Medicina de CamposCampos dos Goytacazes, Brazil
| | - Regina C de Souza Campos Fernandes
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Universidade Estadual do Norte FluminenseCampos dos Goytacazes, Brazil.,Faculdade de Medicina de CamposCampos dos Goytacazes, Brazil
| | - Juliana Azevedo da Silva
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte FluminenseCampos dos Goytacazes, Brazil
| | - Vladimir Gomes Alves Júnior
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Universidade Estadual do Norte FluminenseCampos dos Goytacazes, Brazil.,Faculdade de Medicina de CamposCampos dos Goytacazes, Brazil
| | | | | | | | | | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche MédicaleParis, France.,Laboratory of Human Genetics of Infectious Diseases: Mendelian Predisposition, Imagine Institute, Paris Descartes UniversityParis, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche MédicaleParis, France.,Laboratory of Human Genetics of Infectious Diseases: Mendelian Predisposition, Imagine Institute, Paris Descartes UniversityParis, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller UniversityNew York, NY, USA
| | - Dara Torgerson
- Department of Medicine, University of California San FranciscoSan Francisco, CA, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche MédicaleParis, France.,Laboratory of Human Genetics of Infectious Diseases: Mendelian Predisposition, Imagine Institute, Paris Descartes UniversityParis, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller UniversityNew York, NY, USA.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de ParisParis, France.,Howard Hughes Medical Institute, The Rockefeller UniversityNew York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche MédicaleParis, France.,Laboratory of Human Genetics of Infectious Diseases: Mendelian Predisposition, Imagine Institute, Paris Descartes UniversityParis, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller UniversityNew York, NY, USA.,Study Center of Primary Immunodeficiencies, Assistance Publique Hôpitaux de Paris, Necker Hospital for Sick ChildrenParis, France
| | - Enrique Medina-Acosta
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Universidade Estadual do Norte FluminenseCampos dos Goytacazes, Brazil
| |
Collapse
|
46
|
Association Between IL12A rs568408, IL12B rs3212227 and IL-12 Receptor rs383483 Polymorphisms and Risk of Pulmonary Tuberculosis. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2016. [DOI: 10.5812/archcid.39318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
El Azbaoui S, Alaoui Mrani N, Sabri A, Jouhadi Z, Ailal F, Bousfiha AA, Najib J, El Hafidi N, Deswarte C, Schurr E, Bustamante J, Boisson-Dupuis S, Casanova JL, Abel L, El Baghdadi J. Pott's disease in Moroccan children: clinical features and investigation of the interleukin-12/interferon-γ pathway. Int J Tuberc Lung Dis 2016; 19:1455-62. [PMID: 26614186 DOI: 10.5588/ijtld.15.0290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SETTING Tuberculosis spondylodiscitis (TS), or Pott's disease, an extra-pulmonary form of tuberculosis (TB), is rare and difficult to diagnose in children. Some cases of severe TB in children were recently explained by inborn errors of immunity affecting the interleukin-12/interferon-gamma (IL-12/IFN-γ) axis. OBJECTIVE To analyse clinical data on Moroccan children with TS, and to perform immunological and genetic explorations of the IL-12/IFN-γ axis. DESIGN We studied nine children with TS diagnosed between 2012 and 2014. We investigated the IL-12/IFN-γ circuit by both whole-blood assays and sequencing of the coding regions of 14 core genes of this pathway. RESULTS A diagnosis of TS was based on a combination of clinical, biological, histological and radiological data. QuantiFERON(®)-TB Gold In-Tube results were positive in 75% of patients. Whole-blood assays showed normal IL-12 and IFN-γ production in all but one patient, who displayed impaired decreased response to IL-12. No candidate disease-causing mutations were detected in the exonic regions of the 14 genes. CONCLUSIONS TS diagnosis in children remains challenging, and is based largely on imaging. Further investigations of TS in children are required to determine the role of genetic defects in pathways that may or may not be related to the IL-12/IFN-γ axis.
Collapse
Affiliation(s)
- S El Azbaoui
- Genetics Unit, Military Hospital Mohamed V, Hay Riad, Rabat, Morocco; Faculty of Science-Kenitra, Ibn Tofail University, Kenitra, Morocco
| | - N Alaoui Mrani
- Department of Paediatric Surgery, Rabat Children Hospital, Medical and Pharmacy School of Rabat, Mohamed V University, Rabat, Morocco
| | - A Sabri
- Genetics Unit, Military Hospital Mohamed V, Hay Riad, Rabat, Morocco; Faculty of Science-Kenitra, Ibn Tofail University, Kenitra, Morocco
| | - Z Jouhadi
- Department of Paediatric Infectious Diseases, Ibn Rochd Hospital University Centre, King Hassan II University, Casablanca, Morocco
| | - F Ailal
- Department of Paediatric Infectious Diseases, Ibn Rochd Hospital University Centre, King Hassan II University, Casablanca, Morocco
| | - A A Bousfiha
- Department of Paediatric Infectious Diseases, Ibn Rochd Hospital University Centre, King Hassan II University, Casablanca, Morocco
| | - J Najib
- Department of Paediatric Infectious Diseases, Ibn Rochd Hospital University Centre, King Hassan II University, Casablanca, Morocco
| | - N El Hafidi
- Department of Paediatrics, Medical and Pharmacy School of Rabat, Rabat Children Hospital, Rabat, Morocco
| | - C Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale Unit 1163, Paris, France
| | - E Schurr
- McGill International TB Centre, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - J Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale Unit 1163, Paris, France; Imagine Institute, Paris Descartes University, Paris, France; Centre for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - S Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale Unit 1163, Paris, France; Imagine Institute, Paris Descartes University, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - J-L Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale Unit 1163, Paris, France; Imagine Institute, Paris Descartes University, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Howard Hughes Medical Institute, New York, New York, USA; Paediatric Haematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France, France
| | - L Abel
- Department of Paediatrics, Medical and Pharmacy School of Rabat, Rabat Children Hospital, Rabat, Morocco; Imagine Institute, Paris Descartes University, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - J El Baghdadi
- Genetics Unit, Military Hospital Mohamed V, Hay Riad, Rabat, Morocco
| |
Collapse
|
48
|
Abstract
BACKGROUND Inborn errors of interferon-gamma (IFN-γ)-mediated immunity underlie disseminated disease caused by Mycobacterium bovis Bacillus Calmette-Guérin (BCG) live vaccines. We hypothesized that some patients with osteitis after BCG vaccination may have an impaired IFN-γ immunity. Our aim was to investigate interleukin (IL)-12 and IFN-γ ex vivo production stimulated with BCG and BCG + IFN-γ or BCG + IL-12, respectively, in BCG osteitis survivors. METHODS Fresh blood samples were collected from 132 former BCG osteitis Finnish patients now aged 21-49 years, and IL-12 and IFN-γ were measured in cell cultures with and without stimulation with BCG and with BCG + IFN-γ or BCG + IL-12, respectively. As a pilot study, known disease-causing genes controlling IFN-γ immunity (IFNGR1, IFNGR2, STAT1, IL12B, IL12RB1, ISG15, IRF8, NEMO and CYBB) were investigated in 20 selected patients by whole exome sequencing. RESULTS By the limit of <5th percentile, ex vivo IL-12 concentration and increase in concentration was low in 5 and ex vivo IFN-γ concentration and increase in concentration was low in 6 patients (including 2 samples with both IL-12 and IFN-γ findings). By the limit of <10th percentile, an additional 6 and 4 patients were, respectively, detected (including 2 samples with both findings). With 2 exceptions, low concentrations and low increases in concentrations picked-up the same cases. Mutations in known disease-causing IFN-γ-related genes were not found in any of these patients. CONCLUSION These findings call for searching of mutations in new genes governing IFN-γ-dependent immunity to live BCG vaccine.
Collapse
|
49
|
Mycobacterial disease in patients with chronic granulomatous disease: A retrospective analysis of 71 cases. J Allergy Clin Immunol 2016; 138:241-248.e3. [PMID: 26936803 DOI: 10.1016/j.jaci.2015.11.041] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 11/08/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a rare primary immunodeficiency caused by inborn errors of the phagocyte nicotinamide adenine dinucleotide phosphate oxidase complex. From the first year of life onward, most affected patients display multiple, severe, and recurrent infections caused by bacteria and fungi. Mycobacterial infections have also been reported in some patients. OBJECTIVE Our objective was to assess the effect of mycobacterial disease in patients with CGD. METHODS We analyzed retrospectively the clinical features of mycobacterial disease in 71 patients with CGD. Tuberculosis and BCG disease were diagnosed on the basis of microbiological, pathological, and/or clinical criteria. RESULTS Thirty-one (44%) patients had tuberculosis, and 53 (75%) presented with adverse effects of BCG vaccination; 13 (18%) had both tuberculosis and BCG infections. None of these patients displayed clinical disease caused by environmental mycobacteria, Mycobacterium leprae, or Mycobacterium ulcerans. Most patients (76%) also had other pyogenic and fungal infections, but 24% presented solely with mycobacterial disease. Most patients presented a single localized episode of mycobacterial disease (37%), but recurrence (18%), disseminated disease (27%), and even death (18%) were also observed. One common feature in these patients was an early age at presentation for BCG disease. Mycobacterial disease was the first clinical manifestation of CGD in 60% of these patients. CONCLUSION Mycobacterial disease is relatively common in patients with CGD living in countries in which tuberculosis is endemic, BCG vaccine is mandatory, or both. Adverse reactions to BCG and severe forms of tuberculosis should lead to a suspicion of CGD. BCG vaccine is contraindicated in patients with CGD.
Collapse
|
50
|
Ciancanelli MJ, Abel L, Zhang SY, Casanova JL. Host genetics of severe influenza: from mouse Mx1 to human IRF7. Curr Opin Immunol 2016; 38:109-20. [PMID: 26761402 PMCID: PMC4733643 DOI: 10.1016/j.coi.2015.12.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 12/22/2022]
Abstract
Influenza viruses cause mild to moderate respiratory illness in most people, and only rarely devastating or fatal infections. The virulence factors encoded by viral genes can explain seasonal or geographic differences at the population level but are unlikely to account for inter-individual clinical variability. Inherited or acquired immunodeficiencies may thus underlie severe cases of influenza. The crucial role of host genes was first demonstrated by forward genetics in inbred mice, with the identification of interferon (IFN)-α/β-inducible Mx1 as a canonical influenza susceptibility gene. Reverse genetics has subsequently characterized the in vivo role of other mouse genes involved in IFN-α/β and -λ immunity. A series of in vitro studies with mouse and human cells have also refined the cell-intrinsic mechanisms of protection against influenza viruses. Population-based human genetic studies have not yet uncovered variants with a significant impact. Interestingly, human primary immunodeficiencies affecting T and B cells were also not found to predispose to severe influenza. Recently however, human IRF7 was shown to be essential for IFN-α/β- and IFN-λ-dependent protective immunity against primary influenza in vivo, as inferred from a patient with life-threatening influenza revealed to be IRF7-deficient by whole exome sequencing. Next generation sequencing of human exomes and genomes will facilitate the analysis of the human genetic determinism of severe influenza.
Collapse
Affiliation(s)
- Michael J Ciancanelli
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|