1
|
Kobylkov D, Rosa-Salva O, Zanon M, Vallortigara G. Innate face-selectivity in the brain of young domestic chicks. Proc Natl Acad Sci U S A 2024; 121:e2410404121. [PMID: 39316055 PMCID: PMC11459190 DOI: 10.1073/pnas.2410404121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Shortly after birth, both naïve animals and newborn babies exhibit a spontaneous attraction to faces and face-like stimuli. While neurons selectively responding to faces have been found in the inferotemporal cortex of adult primates, face-selective domains in the brains of young monkeys seem to develop only later in life after exposure to faces. This has fueled a debate on the role of experience in the development of face-detector mechanisms, since face preferences are well documented in naïve animals, such as domestic chicks reared without exposure to faces. Here, we demonstrate that neurons in a higher-order processing brain area of one-week-old face-naïve domestic chicks selectively respond to a face-like configuration. Our single-cell recordings show that these neurons do not respond to alternative configurations or isolated facial features. Moreover, the population activity of face-selective neurons accurately encoded the face-like stimulus as a unique category. Thus, our findings show that face selectivity is present in the brains of very young animals without preexisting experience.
Collapse
Affiliation(s)
- Dmitry Kobylkov
- Centre for Mind/Brain Science, University of Trento, Rovereto38068, Italy
| | - Orsola Rosa-Salva
- Centre for Mind/Brain Science, University of Trento, Rovereto38068, Italy
| | - Mirko Zanon
- Centre for Mind/Brain Science, University of Trento, Rovereto38068, Italy
| | | |
Collapse
|
2
|
Cavadini T, Riviere E, Gentaz E. An Eye-Tracking Study on Six Early Social-Emotional Abilities in Children Aged 1 to 3 Years. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1031. [PMID: 39201965 PMCID: PMC11352975 DOI: 10.3390/children11081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND The experimental evaluation of young children's socio-emotional abilities is limited by the lack of existing specific measures to assess this population and by the relative difficulty for researchers to adapt measures designed for the general population. METHODS This study examined six early social-emotional abilities in 86 typically developing children aged 1 to 3 years using an eye-tracking-based experimental paradigm that combined visual preference tasks adapted from pre-existing infant studies. OBJECTIVES The aim of this study is to obtain developmental norms in six early social-emotional abilities in typical children aged 1 to 3 years that would be promising for an understanding of disorders of mental development. These developmental standards are essential to enable comparative assessments with children with atypical development, such as children with Profound Intellectual and Multiple Disabilities (PIMD). RESULTS The participants had greater spontaneous visual preferences for biological (vs. non-biological) motion, socially salient (vs. non-social) stimuli, the eye (vs. mouth) area of emotional expressions, angry (vs. happy) faces, and objects of joint attention (vs. non-looked-at ones). Interestingly, although the prosocial (vs. antisocial) scene of the socio-moral task was preferred, both the helper and hinderer characters were equally gazed at. Finally, correlational analyses revealed that performance was neither related to participants' age nor to each other (dismissing the hypothesis of a common underpinning process). CONCLUSION Our revised experimental paradigm is possible in infants aged 1 to 3 years and thus provides additional scientific proof on the direct assessment of these six socio-emotional abilities in this population.
Collapse
Affiliation(s)
- Thalia Cavadini
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland; (T.C.); (E.R.)
| | - Elliot Riviere
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland; (T.C.); (E.R.)
- Univ. Lille, ULR 4072–PSITEC–Psychologie: Interactions Temps Emotions Cognition, F-59000 Lille, France
| | - Edouard Gentaz
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland; (T.C.); (E.R.)
- Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland
- Centre National de la Recherche Scientifique, F-38400 Grenoble, France
| |
Collapse
|
3
|
Kobylkov D, Vallortigara G. Face detection mechanisms: Nature vs. nurture. Front Neurosci 2024; 18:1404174. [PMID: 38812973 PMCID: PMC11133589 DOI: 10.3389/fnins.2024.1404174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
For many animals, faces are a vitally important visual stimulus. Hence, it is not surprising that face perception has become a very popular research topic in neuroscience, with ca. 2000 papers published every year. As a result, significant progress has been made in understanding the intricate mechanisms underlying this phenomenon. However, the ontogeny of face perception, in particular the role of innate predispositions, remains largely unexplored at the neural level. Several influential studies in monkeys have suggested that seeing faces is necessary for the development of the face-selective brain domains. At the same time, behavioural experiments with newborn human babies and newly-hatched domestic chicks demonstrate that a spontaneous preference towards faces emerges early in life without pre-existing experience. Moreover, we were recently able to record face-selective neural responses in the brain of young, face-naïve chicks, thus demonstrating the existence of an innate face detection mechanism. In this review, we discuss these seemingly contradictory results and propose potential experimental approaches to resolve some of the open questions.
Collapse
|
4
|
Camus L, Jones K, O'Dowd E, Auyeung B, Rajendran G, Stewart ME. Autistic Traits and Psychosocial Predictors of Depressive Symptoms. J Autism Dev Disord 2024:10.1007/s10803-024-06361-y. [PMID: 38733500 DOI: 10.1007/s10803-024-06361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Higher rates of depression and of depressed mood are associated with autistic traits, and both are associated with social interaction factors, such as social self-efficacy, social motivation and loneliness. This study examined whether these social factors explain the association between autistic traits and depression. 658 participants (527 women) completed an online survey with measures of autistic traits (AQ), social self-efficacy (Social Self-Efficacy Scale), social motivation (Social Striving Assessment Scale), loneliness (UCLA Loneliness Scale) and depressive symptoms (Beck Depression Inventory-II). A mediation analysis found the relationship between autistic traits and depressive symptoms was fully mediated by the other three factors (β[indirect] = .005, z = 2.63, p < .01; β[direct] = .05, z = 1.58, p > .05), forming a pathway from autistic traits, to social self-efficacy, to social motivation, to loneliness and finally to depressive symptoms. These results suggest that targeting social self-efficacy may break this pathway and disrupt this relationship. Interventions targeting supporting positive social interaction should be considered.
Collapse
Affiliation(s)
- Lorna Camus
- Psychology Department, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
- Division of Psychology, Sociology and Education, Queen Margaret University, Edinburgh, EH21 6UU, UK.
| | - Kirsty Jones
- Psychology Department, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Emily O'Dowd
- Psychology Department, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Bonnie Auyeung
- Psychology Department, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | | | | |
Collapse
|
5
|
Marrus N, Botteron KN, Hawks Z, Pruett JR, Elison JT, Jackson JJ, Markson L, Eggebrecht AT, Burrows CA, Zwaigenbaum L, Dager S, Estes A, Hazlett H, Schultz RT, Piven J, Constantino JN. Social motivation in infancy is associated with familial recurrence of ASD. Dev Psychopathol 2024; 36:101-111. [PMID: 36189644 PMCID: PMC10067534 DOI: 10.1017/s0954579422001006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pre-diagnostic deficits in social motivation are hypothesized to contribute to autism spectrum disorder (ASD), a heritable neurodevelopmental condition. We evaluated psychometric properties of a social motivation index (SMI) using parent-report item-level data from 597 participants in a prospective cohort of infant siblings at high and low familial risk for ASD. We tested whether lower SMI scores at 6, 12, and 24 months were associated with a 24-month ASD diagnosis and whether social motivation's course differed relative to familial ASD liability. The SMI displayed good internal consistency and temporal stability. Children diagnosed with ASD displayed lower mean SMI T-scores at all ages and a decrease in mean T-scores across age. Lower group-level 6-month scores corresponded with higher familial ASD liability. Among high-risk infants, strong decline in SMI T-scores was associated with 10-fold odds of diagnosis. Infant social motivation is quantifiable by parental report, differentiates children with versus without later ASD by age 6 months, and tracks with familial ASD liability, consistent with a diagnostic and susceptibility marker of ASD. Early decrements and decline in social motivation indicate increased likelihood of ASD, highlighting social motivation's importance to risk assessment and clarification of the ontogeny of ASD.
Collapse
Affiliation(s)
- Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine
| | | | - Zoë Hawks
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | - John R. Pruett
- Department of Psychiatry, Washington University School of Medicine
| | - Jed T. Elison
- Institute of Child Development, University of Minnesota
| | - Joshua J. Jackson
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | - Lori Markson
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | | | | | | | - Annette Estes
- Department of Speech and Hearing Sciences, University of Washington
| | - Heather Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill
| | | | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill
| | | | | |
Collapse
|
6
|
Matsushima T, Izumi T, Vallortigara G. The domestic chick as an animal model of autism spectrum disorder: building adaptive social perceptions through prenatally formed predispositions. Front Neurosci 2024; 18:1279947. [PMID: 38356650 PMCID: PMC10864568 DOI: 10.3389/fnins.2024.1279947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Equipped with an early social predisposition immediately post-birth, humans typically form associations with mothers and other family members through exposure learning, canalized by a prenatally formed predisposition of visual preference to biological motion, face configuration, and other cues of animacy. If impaired, reduced preferences can lead to social interaction impairments such as autism spectrum disorder (ASD) via misguided canalization. Despite being taxonomically distant, domestic chicks could also follow a homologous developmental trajectory toward adaptive socialization through imprinting, which is guided via predisposed preferences similar to those of humans, thereby suggesting that chicks are a valid animal model of ASD. In addition to the phenotypic similarities in predisposition with human newborns, accumulating evidence on the responsible molecular mechanisms suggests the construct validity of the chick model. Considering the recent progress in the evo-devo studies in vertebrates, we reviewed the advantages and limitations of the chick model of developmental mental diseases in humans.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Takeshi Izumi
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
| | | |
Collapse
|
7
|
Tsuji Y, Imaizumi S. Autistic traits and speech perception in social and non-social noises. Sci Rep 2024; 14:1414. [PMID: 38228768 PMCID: PMC10791598 DOI: 10.1038/s41598-024-52050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Individuals with the autism spectrum disorder (ASD) experience difficulties in perceiving speech in background noises with temporal dips; they also lack social orienting. We tested two hypotheses: (1) the higher the autistic traits, the lower the performance in the speech-in-noise test, and (2) individuals with high autistic traits experience greater difficulty in perceiving speech, especially in the non-vocal noise, because of their attentional bias toward non-vocal sounds. Thirty-eight female Japanese university students participated in an experiment measuring their ability to perceive speech in the presence of noise. Participants were asked to detect Japanese words embedded in vocal and non-vocal background noises with temporal dips. We found a marginally significant effect of autistic traits on speech perception performance, suggesting a trend that favors the first hypothesis. However, caution is needed in this interpretation because the null hypothesis is not rejected. No significant interaction was found between the types of background noise and autistic traits, indicating that the second hypothesis was not supported. This might be because individuals with high autistic traits in the general population have a weaker attentional bias toward non-vocal sounds than those with ASD or to the explicit instruction given to attend to the target speech.
Collapse
Affiliation(s)
- Yurika Tsuji
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shu Imaizumi
- Institute for Education and Human Development, Ochanomizu University, Tokyo, Japan.
| |
Collapse
|
8
|
Kojovic N, Cekic S, Castañón SH, Franchini M, Sperdin HF, Sandini C, Jan RK, Zöller D, Ben Hadid L, Bavelier D, Schaer M. Unraveling the developmental dynamic of visual exploration of social interactions in autism. eLife 2024; 13:e85623. [PMID: 38192197 PMCID: PMC10876216 DOI: 10.7554/elife.85623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Atypical deployment of social gaze is present early on in toddlers with autism spectrum disorders (ASDs). Yet, studies characterizing the developmental dynamic behind it are scarce. Here, we used a data-driven method to delineate the developmental change in visual exploration of social interaction over childhood years in autism. Longitudinal eye-tracking data were acquired as children with ASD and their typically developing (TD) peers freely explored a short cartoon movie. We found divergent moment-to-moment gaze patterns in children with ASD compared to their TD peers. This divergence was particularly evident in sequences that displayed social interactions between characters and even more so in children with lower developmental and functional levels. The basic visual properties of the animated scene did not account for the enhanced divergence. Over childhood years, these differences dramatically increased to become more idiosyncratic. These findings suggest that social attention should be targeted early in clinical treatments.
Collapse
Affiliation(s)
- Nada Kojovic
- Psychiatry Department, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Sezen Cekic
- Faculte de Psychologie et Science de l’Education, University of GenevaGenevaSwitzerland
| | - Santiago Herce Castañón
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad UniversitariaMexico CityMexico
| | | | - Holger Franz Sperdin
- Psychiatry Department, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Corrado Sandini
- Psychiatry Department, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health SciencesDubaiUnited Arab Emirates
| | | | - Lylia Ben Hadid
- Psychiatry Department, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Daphné Bavelier
- Faculte de Psychologie et Science de l’Education, University of GenevaGenevaSwitzerland
| | - Marie Schaer
- Psychiatry Department, Faculty of Medicine, University of GenevaGenevaSwitzerland
| |
Collapse
|
9
|
Torabian S, Grossman ED. When shapes are more than shapes: perceptual, developmental, and neurophysiological basis for attributions of animacy and theory of mind. Front Psychol 2023; 14:1168739. [PMID: 37744598 PMCID: PMC10513434 DOI: 10.3389/fpsyg.2023.1168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
Among a variety of entities in their environment, what do humans consider alive or animate and how does this attribution of animacy promote development of more abstract levels of mentalizing? By decontextualizing the environment of bodily features, we review how physical movements give rise to perceived animacy in Heider-Simmel style animations. We discuss the developmental course of how perceived animacy shapes our interpretation of the social world, and specifically discuss when and how children transition from perceiving actions as goal-directed to attributing behaviors to unobservable mental states. This transition from a teleological stance, asserting a goal-oriented interpretation to an agent's actions, to a mentalistic stance allows older children to reason about more complex actions guided by hidden beliefs. The acquisition of these more complex cognitive behaviors happens developmentally at the same time neural systems for social cognition are coming online in young children. We review perceptual, developmental, and neural evidence to identify the joint cognitive and neural changes associated with when children begin to mentalize and how this ability is instantiated in the brain.
Collapse
Affiliation(s)
- Sajjad Torabian
- Visual Perception and Neuroimaging Lab, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
10
|
Naïve chicks do not prefer objects with stable body orientation, though they may prefer behavioural variability. Anim Cogn 2023:10.1007/s10071-023-01764-3. [PMID: 36933076 DOI: 10.1007/s10071-023-01764-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023]
Abstract
Domestic chicks (Gallus gallus domesticus) have been widely used as a model to study the motion cues that allow visually naïve organisms to detect animate agents shortly after hatching/birth. Our previous work has shown that chicks prefer to approach agents whose main body axis and motion direction are aligned (a feature typical of creatures whose motion is constrained by a bilaterally symmetric body plan). However, it has never been investigated whether chicks are also sensitive to the fact that an agent maintains a stable front-back body orientation in motion (i.e. consistency in which end is leading and which trailing). This is another feature typical of bilateria, which is also associated with the detection of animate agents in humans. The aim of the present study was to fill this gap. Contrary to our initial expectations, after testing 300 chicks across 3 experimental conditions, we found a recurrent preference for the agent which did not maintain a stable front-back body orientation. Since this preference was limited to female chicks, the results are discussed also in relation to sex differences in the social behaviour of this model. Overall, we show for the first time that chicks can discriminate agents based on the stability of their front-back orientation. The unexpected direction of the effect could reflect a preference for agents' whose behaviour is less predictable. Chicks may prefer agents with greater behavioural variability, a trait which has been associated with animate agents, or have a tendency to explore agents performing "odd behaviours".
Collapse
|
11
|
Passive Grouping Enhances Proto-Arithmetic Calculation for Leftward Correct Responses. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Baby chicks and other animals including human infants master simple arithmetic. They discriminate 2 vs. 3 (1 + 1 vs. 1 + 1 + 1) but fail with 3 vs. 4 (1 + 1 + 1 vs. 1 + 1 + 1 + 1). Performance is restored when elements are grouped as 2 + 1 vs. 2 + 2. Here, we address whether grouping could lead to asymmetric response bias. We recoded behavioural data from a previous study, in which separate groups of four-day-old domestic chicks underwent an arithmetic task: when the objects were presented one-by-one (1 + 1 + 1 vs. 1 + 1 + 1 + 1), chicks failed in locating the larger group irrespective of its position and did not show any side bias; Experiment 1. When the objects were presented as grouped (2 + 1 vs. 2 + 2), chicks succeeded, performing better when the larger set was on their left; Experiment 2. A similar leftward bias was also observed with harder discriminations (4 vs. 5: 3 + 1 vs. 3 + 2), with baby chicks succeeding in the task only when the larger set was on the left (Experiments 3 and 4). A previous study showed a rightward bias, with tasks enhancing individual processing. Despite a similar effect in boosting proto-arithmetic calculations, individual processing (eliciting a right bias) and grouping (eliciting a left bias) seem to depend on distinct cognitive mechanisms.
Collapse
|
12
|
Pardo-Sanchez J, Tibbetts EA. Social experience drives the development of holistic face processing in paper wasps. Anim Cogn 2023; 26:465-476. [PMID: 36066686 PMCID: PMC11500689 DOI: 10.1007/s10071-022-01666-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Most recognition is based on identifying features, but specialization for face recognition in some taxa relies on a different mechanism, termed 'holistic processing' where facial features are bound together into a gestalt which is more than the sum of its parts. Although previous work suggests that extensive experience may be required for the development of holistic processing, we lack experiments that test how age and experience interact to influence holistic processing. Here, we test how age and experience influence the development of holistic face processing in Polistes fuscatus paper wasps. Previous work has shown that P. fuscatus use facial patterns to individually identify conspecifics and wasps use holistic processing to discriminate between conspecific faces. We tested face processing in three groups of P. fuscatus: young (1-week-old), older, experienced (2-weeks-old, normal experience), and older, inexperienced (2-weeks-old, 1 week normal social experience and 1 week social isolation). Older, experienced wasps used holistic processing to discriminate between conspecific faces. In contrast, older inexperienced wasps used featural rather than holistic mechanisms to discriminate between faces. Young wasps show some evidence of holistic face processing, but this ability was less refined than older, experienced wasps. Notably, wasps only required 2 weeks of normal experience to develop holistic processing, while previous work suggests that humans may require years of experience. Overall, P. fuscatus wasps rapidly develop holistic processing for conspecific faces. Experience rather than age facilitates the transition between featural and holistic face processing mechanisms.
Collapse
|
13
|
Loconsole M, Regolin L, Rugani R. Asymmetric number-space association leads to more efficient processing of congruent information in domestic chicks. Front Behav Neurosci 2023; 17:1115662. [PMID: 36818607 PMCID: PMC9935666 DOI: 10.3389/fnbeh.2023.1115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Affiliation(s)
- Maria Loconsole
- Department of General Psychology, University of Padua, Padua, Italy,Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom,*Correspondence: Maria Loconsole ✉ ; ✉
| | - Lucia Regolin
- Department of General Psychology, University of Padua, Padua, Italy
| | - Rosa Rugani
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
14
|
Weichselbaum C, Hendrix N, Albright J, Dougherty JD, Botteron KN, Constantino JN, Marrus N. Social attention during object engagement: toward a cross-species measure of preferential social orienting. J Neurodev Disord 2022; 14:58. [PMID: 36517753 PMCID: PMC9749210 DOI: 10.1186/s11689-022-09467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A central challenge in preclinical research investigating the biology of autism spectrum disorder (ASD) is the translation of ASD-related social phenotypes across humans and animal models. Social orienting, an observable, evolutionarily conserved behavior, represents a promising cross-species ASD phenotype given that disrupted social orienting is an early-emerging ASD feature with evidence for predicting familial recurrence. Here, we adapt a competing-stimulus social orienting task from domesticated dogs to naturalistic play behavior in human toddlers and test whether this approach indexes decreased social orienting in ASD. METHODS Play behavior was coded from the Autism Diagnostic Observation Schedule (ADOS) in two samples of toddlers, each with and without ASD. Sample 1 (n = 16) consisted of community-ascertained research participants, while Sample 2 involved a prospective study of infants at a high or low familial liability for ASD (n = 67). Coding quantified the child's looks towards the experimenter and caregiver, a social stimulus, while playing with high-interest toys, a non-social stimulus. A competing-stimulus measure of "Social Attention During Object Engagement" (SADOE) was calculated by dividing the number of social looks by total time spent playing with toys. SADOE was compared based on ASD diagnosis and differing familial liability for ASD. RESULTS In both samples, toddlers with ASD exhibited significantly lower SADOE compared to toddlers without ASD, with large effect sizes (Hedges' g ≥ 0.92) driven by a lower frequency of child-initiated spontaneous looks. Among toddlers at high familial likelihood of ASD, toddlers with ASD showed lower SADOE than toddlers without ASD, while SADOE did not differ based on presence or absence of familial ASD risk alone. SADOE correlated negatively with ADOS social affect calibrated severity scores and positively with the Communication and Symbolic Behavior Scales social subscale. In a binary logistic regression model, SADOE alone correctly classified 74.1% of cases, which rose to 85.2% when combined with cognitive development. CONCLUSIONS This work suggests that a brief behavioral measure pitting a high-interest nonsocial stimulus against the innate draw of social partners can serve as a feasible cross-species measure of social orienting, with implications for genetically informative behavioral phenotyping of social deficits in ASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Claire Weichselbaum
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Box 8504, St Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Box 8232, St Louis, MO, 63110, USA
| | - Nicole Hendrix
- Department of Pediatrics, Marcus Autism Center, Emory University Pediatric Institute, 1920 Briarcliff Rd, Atlanta, GA, 30329, USA
| | - Jordan Albright
- Virginia Tech Autism Clinic & Center for Autism Research, Virginia Polytechnic Institute and State University, 3110 Prices Fork Rd, Blacksburg, VA, 24060, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Box 8504, St Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Box 8232, St Louis, MO, 63110, USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Box 8504, St Louis, MO, 63110, USA
- Department of Radiology, Washington University School of Medicine, 660 S. Euclid, 35 Ave, St Louis, MO, 63110, USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Box 8504, St Louis, MO, 63110, USA
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Box 8504, St Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Fortier AV, Meisner OC, Nair AR, Chang SWC. Prefrontal Circuits guiding Social Preference: Implications in Autism Spectrum Disorder. Neurosci Biobehav Rev 2022; 141:104803. [PMID: 35908593 PMCID: PMC10122914 DOI: 10.1016/j.neubiorev.2022.104803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Although Autism Spectrum Disorder (ASD) is increasing in diagnostic prevalence, treatment options are inadequate largely due to limited understanding of ASD's underlying neural mechanisms. Contributing to difficulties in treatment development is the vast heterogeneity of ASD, from physiological causes to clinical presentations. Recent studies suggest that distinct genetic and neurological alterations may converge onto similar underlying neural circuits. Therefore, an improved understanding of neural circuit-level dysfunction in ASD may be a more productive path to developing broader treatments that are effective across a greater spectrum of ASD. Given the social preference behavioral deficits commonly seen in ASD, dysfunction in circuits mediating social preference may contribute to the atypical development of social cognition. We discuss some of the animal models used to study ASD and examine the function and effects of dysregulation of the social preference circuits, notably the medial prefrontal cortex-amygdala and the medial prefrontal cortex-nucleus accumbens circuits, in these animal models. Using the common circuits underlying similar behavioral disruptions of social preference behaviors as an example, we highlight the importance of identifying disruption in convergent circuits to improve the translational success of animal model research for ASD treatment development.
Collapse
Affiliation(s)
- Abigail V Fortier
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Molecular, Cellular, Developmental Biology, New Haven, CT 06520, USA
| | - Olivia C Meisner
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
16
|
Loconsole M, Regolin L. Are prime numbers special? Insights from the life sciences. Biol Direct 2022; 17:11. [PMID: 35619145 PMCID: PMC9137056 DOI: 10.1186/s13062-022-00326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Prime numbers have been attracting the interest of scientists since the first formulation of Euclid’s theorem in 300 B.C. Nowadays, physicists and mathematicians continue to formulate new theorems about prime numbers, trying to comprehensively explain their articulated properties. However, evidence from biology and experimental psychology suggest that prime numbers possess distinctive natural properties that pre-exist human grasping. The present work aims at reviewing the existing literature on prime numbers in the life sciences, including some recent experimental contributions employing newly hatched domestic chicks as animal model to test for spontaneous mechanisms allowing discrimination of primes from non-primes. Our overarching goal is that of discussing some instances of prime numbers in nature, with particular reference to their peculiar, non-mathematical, perceptual properties.
Collapse
Affiliation(s)
- Maria Loconsole
- Department of General Psychology, University of Padua, Padua, Italy.
| | - Lucia Regolin
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
17
|
Abstract
Face-selective neurons are observed in the primate visual pathway and are considered as the basis of face detection in the brain. However, it has been debated as to whether this neuronal selectivity can arise innately or whether it requires training from visual experience. Here, using a hierarchical deep neural network model of the ventral visual stream, we suggest a mechanism in which face-selectivity arises in the complete absence of training. We found that units selective to faces emerge robustly in randomly initialized networks and that these units reproduce many characteristics observed in monkeys. This innate selectivity also enables the untrained network to perform face-detection tasks. Intriguingly, we observed that units selective to various non-face objects can also arise innately in untrained networks. Our results imply that the random feedforward connections in early, untrained deep neural networks may be sufficient for initializing primitive visual selectivity.
Collapse
|
18
|
Adiletta A, Pedrana S, Rosa-Salva O, Sgadò P. Spontaneous Visual Preference for Face-Like Stimuli Is Impaired in Newly-Hatched Domestic Chicks Exposed to Valproic Acid During Embryogenesis. Front Behav Neurosci 2021; 15:733140. [PMID: 34858146 PMCID: PMC8632556 DOI: 10.3389/fnbeh.2021.733140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/22/2021] [Indexed: 12/03/2022] Open
Abstract
Faces convey a great amount of socially relevant information related to emotional and mental states, identity and intention. Processing of face information is a key mechanism for social and cognitive development, such that newborn babies are already tuned to recognize and orient to faces and simple schematic face-like patterns since the first hours of life. Similar to neonates, also non-human primates and domestic chicks have been shown to express orienting responses to faces and schematic face-like patterns. More importantly, existing studies have hypothesized that early disturbances of these mechanisms represent one of the earliest biomarker of social deficits in autism spectrum disorders (ASD). We used VPA exposure to induce neurodevelopmental changes associated with ASD in domestic chicks and tested whether VPA could impact the expression of the animals’ approach responses to schematic face-like stimuli. We found that VPA impairs the chicks’ preference responses to these social stimuli. Based on the results shown here and on previous studies, we propose the domestic chick as animal model to investigate the biological mechanisms underlying face processing deficits in ASD.
Collapse
Affiliation(s)
- Alice Adiletta
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Samantha Pedrana
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
19
|
Mulholland MM, Neal Webb SJ, Mareno MC, Schweller KG, Schapiro SJ, Hopkins WD. Are conspecific social videos rewarding to chimpanzees (Pan troglodytes)? A test of the social motivation theory. PLoS One 2021; 16:e0259941. [PMID: 34818358 PMCID: PMC8612576 DOI: 10.1371/journal.pone.0259941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
Many claim that social stimuli are rewarding to primates, but few, if any, studies have explicitly demonstrated their reward value. Here, we examined whether chimpanzees would produce overt responses for the opportunity to view conspecific social, compared to dynamic (video: Experiment 1) and static (picture: Experiment 2) control content. We also explored the relationships between variation in social reward and social behavior and cognition. We provided captive chimpanzees with access to a touchscreen during four, one-hour sessions (two 'conspecific social' and two 'control'). The sessions consisted of ten, 15-second videos (or pictures in Experiment 2) of either chimpanzees engaging in a variety of behaviors (social condition) or vehicles, humans, or other animals engaged in some activity (control condition). For each chimpanzee, we recorded the number of responses to the touchscreen and the frequency of watching the stimuli. Independent t-tests revealed no sex or rearing differences in touching and watching the social or control videos (p>0.05). Repeated measures ANOVAs showed chimpanzees touched and watched the screen significantly more often during the social compared to control video sessions. Furthermore, although chimpanzees did not touch the screen more often during social than control picture sessions in Experiment 2, they did watch the screen more often. Additionally, chimpanzees that previously performed better on a task of social cognition and engaged in more affiliative behavior watched a higher percentage of social videos during the touchscreen task. These results are consistent with the social motivation theory, and indicate social stimuli are intrinsically rewarding, as chimpanzees made more overt responses for the opportunity to view conspecific social, compared to control, content.
Collapse
Affiliation(s)
- Michele M. Mulholland
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
- * E-mail:
| | - Sarah J. Neal Webb
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
| | - Mary Catherine Mareno
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
| | | | - Steven J. Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
- Department of Experimental Medicine, University of Copenhagen, Storm Lake, IA, United States of America
| | - William D. Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States of America
| |
Collapse
|
20
|
Di Giorgio E, Rosa-Salva O, Frasnelli E, Calcagnì A, Lunghi M, Scattoni ML, Simion F, Vallortigara G. Abnormal visual attention to simple social stimuli in 4-month-old infants at high risk for Autism. Sci Rep 2021; 11:15785. [PMID: 34349200 PMCID: PMC8338945 DOI: 10.1038/s41598-021-95418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022] Open
Abstract
Despite an increasing interest in detecting early signs of Autism Spectrum Disorders (ASD), the pathogenesis of the social impairments characterizing ASD is still largely unknown. Atypical visual attention to social stimuli is a potential early marker of the social and communicative deficits of ASD. Some authors hypothesized that such impairments are present from birth, leading to a decline in the subsequent typical functioning of the learning-mechanisms. Others suggested that these early deficits emerge during the transition from subcortically to cortically mediated mechanisms, happening around 2–3 months of age. The present study aimed to provide additional evidence on the origin of the early visual attention disturbance that seems to characterize infants at high risk (HR) for ASD. Four visual preference tasks were used to investigate social attention in 4-month-old HR, compared to low-risk (LR) infants of the same age. Visual attention differences between HR and LR infants emerged only for stimuli depicting a direct eye-gaze, compared to an adverted eye-gaze. Specifically, HR infants showed a significant visual preference for the direct eye-gaze stimulus compared to LR infants, which may indicate a delayed development of the visual preferences normally observed at birth in typically developing infants. No other differences were found between groups. Results are discussed in the light of the hypotheses on the origins of early social visual attention impairments in infants at risk for ASD.
Collapse
Affiliation(s)
- Elisa Di Giorgio
- Dipartimento Di Psicologia Dello Sviluppo E Della Socializzazione, Università Degli Studi Di Padova, Via Venezia 8, 35131, Padova, PD, Italy.
| | - Orsola Rosa-Salva
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Mattarello, Italy
| | | | - Antonio Calcagnì
- Dipartimento Di Psicologia Dello Sviluppo E Della Socializzazione, Università Degli Studi Di Padova, Via Venezia 8, 35131, Padova, PD, Italy
| | - Marco Lunghi
- Dipartimento Di Psicologia Dello Sviluppo E Della Socializzazione, Università Degli Studi Di Padova, Via Venezia 8, 35131, Padova, PD, Italy
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore Di Sanità, Rome, Italy
| | - Francesca Simion
- Dipartimento Di Psicologia Dello Sviluppo E Della Socializzazione, Università Degli Studi Di Padova, Via Venezia 8, 35131, Padova, PD, Italy
| | | |
Collapse
|
21
|
Abstract
Faces hold a substantial value for effective social interactions and sharing. Covering faces with masks, due to COVID-19 regulations, may lead to difficulties in using social signals, in particular, in individuals with neurodevelopmental conditions. Daily-life social participation of individuals who were born preterm is of immense importance for their quality of life. Here we examined face tuning in individuals (aged 12.79 ± 1.89 years) who were born preterm and exhibited signs of periventricular leukomalacia (PVL), a dominant form of brain injury in preterm birth survivors. For assessing the face sensitivity in this population, we implemented a recently developed experimental tool, a set of Face-n-Food images bordering on the style of Giuseppe Arcimboldo. The key benefit of these images is that single components do not trigger face processing. Although a coarse face schema is thought to be hardwired in the brain, former preterms exhibit substantial shortages in the face tuning not only compared with typically developing controls but also with individuals with autistic spectrum disorders. The lack of correlations between the face sensitivity and other cognitive abilities indicates that these deficits are domain-specific. This underscores impact of preterm birth sequelae for social functioning at large. Comparison of the findings with data in individuals with other neurodevelopmental and neuropsychiatric conditions provides novel insights into the origins of deficient face processing.
Collapse
|
22
|
Rubene D, Løvlie H. Red Junglefowl Chicks Seek Contact With Humans During Foraging Task. Front Psychol 2021; 12:675526. [PMID: 34248772 PMCID: PMC8260840 DOI: 10.3389/fpsyg.2021.675526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Contact seeking with humans is documented in some domestic animals, mainly dogs, which have advanced communication skills. Domestication as a companion animal is thought to underlie this ability. However, also domesticated horses and goats display similar human-directed behaviors. This suggests either a broader effect of domestication on contact-seeking behavior, or alternatively, that social interactions with humans can result in the development of human contact seeking. As part of another study, we observed contact-seeking behavior in juvenile red junglefowl (Gallus gallus) chicks exposed to behavioral training since hatching, during a foraging task, where chicks were singly required to collect food rewards in a familiar arena using odor cues. If chicks left the arena, we recorded if they approached and looked up at the experimenter, or if they approached other objects (including another human). Chicks approached the experimenter significantly more often than they approached other objects. This behavior was not linked to a fast performance in the test arena, which gave some birds more time to explore the surroundings, or to learning ability measured in a cognitive task. Yet, the preference for the experimenter was lower for chicks that were handled more prior to the experiment. Also, approach probability was positively correlated with escape attempts in a novel arena test. The observed variation in approach behavior suggests a link to aspects of personality, and exposure to human interactions and experimental procedures. Our observations suggest that, although neither domesticated nor selectively bred, red junglefowl that are socialized with humans can potentially develop behavior used to describe contact seeking. Together with evidence from cognitive and behavioral studies, our results suggest that social experiences, not only domestication, can affect human-animal interactions. We propose how interactions between behavior, cognition and handling could be studied further in controlled settings to validate the preliminary findings of our study and uncover the underlying mechanisms.
Collapse
Affiliation(s)
- Diana Rubene
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, Biology Division, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Buffle P, Cavadini T, Posada A, Gentaz E. A study on visual preference for social stimuli in typical Ecuadorian preschoolers as a contribution to the identification of autism risk factors. Sci Rep 2021; 11:8461. [PMID: 33875728 PMCID: PMC8055895 DOI: 10.1038/s41598-021-87888-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
The goal of this study was to examine the visual preference towards socially salient stimuli, using a low-cost eye-tracking device in a group of typically developing (TD) Ecuadorian preschoolers aged 11 to 60 months, from rural and urban areas, and from families with low to high socioeconomic status (SES). Series of original stimuli inspired by those used in Western experiments on the early detection of Autism Spectrum Disorder (ASD) were proposed in two eye-tracking tasks. Two types of movements (human vs. object) were presented in task 1, and dynamic speaking faces in task 2. Parental perceptions of the adaptability of the low-cost eye-tracking device used here were also investigated through a questionnaire. The analyses of mean fixation times showed a visual preference for human movements compared to moving objects whatever age, residency location or SES. In task 2, visual preference for the mouth's area compared to the eyes' area was observed in specific conditions, modulated by residency location and SES but not by age. The analyses of the parental perception indicated that the eye-tracking technique is well accepted. The findings suggest that these stimuli, along with the experimental procedure and low-cost eye-tracking device used in the present study may be a relevant tool that can be used in clinical settings as a contribution to the early identification of at-risk factors of ASD in low- and middle-income contexts.
Collapse
Affiliation(s)
- Paulina Buffle
- Faculty of Psychology and Educational Sciences, Department of Psychology, University of Geneva, 40 boulevard du Pont-d'Arve, 1211, Geneva 4, Switzerland.
| | - Thalia Cavadini
- Faculty of Psychology and Educational Sciences, Department of Psychology, University of Geneva, 40 boulevard du Pont-d'Arve, 1211, Geneva 4, Switzerland
| | - Andres Posada
- Faculty of Psychology and Educational Sciences, Department of Psychology, University of Geneva, 40 boulevard du Pont-d'Arve, 1211, Geneva 4, Switzerland
| | - Edouard Gentaz
- Faculty of Psychology and Educational Sciences, Department of Psychology, University of Geneva, 40 boulevard du Pont-d'Arve, 1211, Geneva 4, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- CNRS, Grenoble, France
| |
Collapse
|
24
|
Abstract
Face detection is a priority of both the human and primate visual system. However, occasionally we misperceive faces in inanimate objects -- "face pareidolia". A key feature of these 'false positives' is that face perception occurs in the absence of visual features typical of real faces. Human faces are known to be located faster than objects in visual search. Here we used a visual search paradigm to test whether illusory faces share this advantage. Search times were faster for illusory faces than for matched objects amongst both matched (Experiment 1) and diverse (Experiment 2) distractors, however search times for real human faces were faster and more efficient than objects with or without an illusory face. Importantly, this result indicates that illusory faces are processed quickly enough by the human brain to confer a visual search advantage, suggesting the engagement of a broadly-tuned mechanism that facilitates rapid face detection in cluttered environments.
Collapse
|
25
|
Rosa-Salva O, Mayer U, Versace E, Hébert M, Lemaire BS, Vallortigara G. Sensitive periods for social development: Interactions between predisposed and learned mechanisms. Cognition 2021; 213:104552. [PMID: 33402251 DOI: 10.1016/j.cognition.2020.104552] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
We analysed research that makes use of precocial species as animal models to describe the interaction of predisposed mechanisms and environmental factors in early learning, in particular for the development of social cognition. We also highlight the role of sensitive periods in this interaction, focusing on domestic chicks as one of the main animal models for this field. In the first section of the review, we focus on the emergence of early predispositions to attend to social partners. These attentional biases appear before any learning experience about social stimuli. However, non-specific experiences occurring during sensitive periods of the early post-natal life determine the emergence of these predisposed mechanisms for the detection of social partners. Social predispositions have an important role for the development learning-based social cognitive functions, showing the interdependence of predisposed and learned mechanisms in shaping social development. In the second part of the review we concentrate on the reciprocal interactions between filial imprinting and spontaneous (not learned) social predispositions. Reciprocal influences between these two sets of mechanisms ensure that, in the natural environment, filial imprinting will target appropriate social objects. Neural and physiological mechanisms regulating the sensitive periods for the emergence of social predispositions and for filial imprinting learning are also described.
Collapse
Affiliation(s)
- Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Elisabetta Versace
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy; Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, United Kingdom
| | - Marie Hébert
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Bastien S Lemaire
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy.
| |
Collapse
|
26
|
Pavlova MA, Romagnano V, Fallgatter AJ, Sokolov AN. Face pareidolia in the brain: Impact of gender and orientation. PLoS One 2021; 15:e0244516. [PMID: 33382767 PMCID: PMC7774913 DOI: 10.1371/journal.pone.0244516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
Research on face sensitivity is of particular relevance during the rapidly evolving Covid-19 pandemic leading to social isolation, but also calling for intact interaction and sharing. Humans possess high sensitivity even to a coarse face scheme, seeing faces in non-face images where real faces do not exist. The advantage of non-face images is that single components do not trigger face processing. Here by implementing a novel set of Face-n-Thing images, we examined (i) how face tuning alters with changing display orientation, and (ii) whether it is affected by observers’ gender. Young females and males were presented with a set of Face-n-Thing images either with canonical upright orientation or inverted 180° in the image plane. Face impression was substantially impeded by display inversion. Furthermore, whereas with upright display orientation, no gender differences were found, with inversion, Face-n-Thing images elicited face impression in females significantly more often. The outcome sheds light on the origins of the face inversion effect in general. Moreover, the findings open a way for examination of face sensitivity and underwriting brain networks in neuropsychiatric conditions related to the current pandemic (such as depression and anxiety), most of which are gender/sex-specific.
Collapse
Affiliation(s)
- Marina A. Pavlova
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Valentina Romagnano
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas J. Fallgatter
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
- LEAD Graduate School & Research Network, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Disorders (DZNE), Medical School and University Hospital, Tübingen, Germany
| | - Alexander N. Sokolov
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Galigani M, Ronga I, Bruno V, Castellani N, Rossi Sebastiano A, Fossataro C, Garbarini F. Face-like configurations modulate electrophysiological mismatch responses. Eur J Neurosci 2020; 53:1869-1884. [PMID: 33332658 DOI: 10.1111/ejn.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
The human face is one of the most salient stimuli in the environment. It has been suggested that even basic face-like configurations (three dots composing a downward pointing triangle) may convey salience. Interestingly, stimulus salience can be signaled by mismatch detection phenomena, characterized by greater amplitudes of event-related potentials (ERPs) in response to relevant novel stimulation as compared to non-relevant repeated events. Here, we investigate whether basic face-like stimuli are salient enough to modulate mismatch detection phenomena. ERPs are elicited by a pair of sequentially presented visual stimuli (S1-S2), delivered at a constant 1-s interval, representing either a face-like stimulus (Upright configuration) or three neutral configurations (Inverted, Leftwards, and Rightwards configurations), that are obtained by rotating the Upright configuration along the three different axes. In pairs including a canonical face-like stimulus, we observe a more effective mismatch detection mechanism, with significantly larger N270 and P300 components when S2 is different from S1 as compared to when S2 is identical to S1. This ERP modulation, not significant in pairs excluding face-like stimuli, reveals that mismatch detection phenomena are significantly affected by basic face-like configurations. Even though further experiments are needed to ascertain whether this effect is specifically elicited by face-like configuration rather than by particular orientation changes, our findings suggest that face essential, structural attributes are salient enough to affect change detection processes.
Collapse
Affiliation(s)
- Mattia Galigani
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Irene Ronga
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy.,BIP Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Valentina Bruno
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Nicolò Castellani
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | | | - Carlotta Fossataro
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Department of Psychology, University of Turin, Turin, Italy.,Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
28
|
Törnqvist H, Somppi S, Kujala MV, Vainio O. Observing animals and humans: dogs target their gaze to the biological information in natural scenes. PeerJ 2020; 8:e10341. [PMID: 33362955 DOI: 10.7717/peerj.10341/supp-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/20/2020] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND This study examines how dogs observe images of natural scenes containing living creatures (wild animals, dogs and humans) recorded with eye gaze tracking. Because dogs have had limited exposure to wild animals in their lives, we also consider the natural novelty of the wild animal images for the dogs. METHODS The eye gaze of dogs was recorded while they viewed natural images containing dogs, humans, and wild animals. Three categories of images were used: naturalistic landscape images containing single humans or animals, full body images containing a single human or an animal, and full body images containing a pair of humans or animals. The gazing behavior of two dog populations, family and kennel dogs, were compared. RESULTS As a main effect, dogs gazed at living creatures (object areas) longer than the background areas of the images; heads longer than bodies; heads longer than background areas; and bodies longer than background areas. Dogs gazed less at the object areas vs. the background in landscape images than in the other image categories. Both dog groups also gazed wild animal heads longer than human or dog heads in the images. When viewing single animal and human images, family dogs focused their gaze very prominently on the head areas, but in images containing a pair of animals or humans, they gazed more at the body than the head areas. In kennel dogs, the difference in gazing times of the head and body areas within single or paired images failed to reach significance. DISCUSSION Dogs focused their gaze on living creatures in all image categories, also detecting them in the natural landscape images. Generally, they also gazed at the biologically informative areas of the images, such as the head, which supports the importance of the head/face area for dogs in obtaining social information. The natural novelty of the species represented in the images as well as the image category affected the gazing behavior of dogs. Furthermore, differences in the gazing strategy between family and kennel dogs was obtained, suggesting an influence of different social living environments and life experiences.
Collapse
Affiliation(s)
- Heini Törnqvist
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sanni Somppi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miiamaaria V Kujala
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Outi Vainio
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Törnqvist H, Somppi S, Kujala MV, Vainio O. Observing animals and humans: dogs target their gaze to the biological information in natural scenes. PeerJ 2020; 8:e10341. [PMID: 33362955 PMCID: PMC7749655 DOI: 10.7717/peerj.10341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background This study examines how dogs observe images of natural scenes containing living creatures (wild animals, dogs and humans) recorded with eye gaze tracking. Because dogs have had limited exposure to wild animals in their lives, we also consider the natural novelty of the wild animal images for the dogs. Methods The eye gaze of dogs was recorded while they viewed natural images containing dogs, humans, and wild animals. Three categories of images were used: naturalistic landscape images containing single humans or animals, full body images containing a single human or an animal, and full body images containing a pair of humans or animals. The gazing behavior of two dog populations, family and kennel dogs, were compared. Results As a main effect, dogs gazed at living creatures (object areas) longer than the background areas of the images; heads longer than bodies; heads longer than background areas; and bodies longer than background areas. Dogs gazed less at the object areas vs. the background in landscape images than in the other image categories. Both dog groups also gazed wild animal heads longer than human or dog heads in the images. When viewing single animal and human images, family dogs focused their gaze very prominently on the head areas, but in images containing a pair of animals or humans, they gazed more at the body than the head areas. In kennel dogs, the difference in gazing times of the head and body areas within single or paired images failed to reach significance. Discussion Dogs focused their gaze on living creatures in all image categories, also detecting them in the natural landscape images. Generally, they also gazed at the biologically informative areas of the images, such as the head, which supports the importance of the head/face area for dogs in obtaining social information. The natural novelty of the species represented in the images as well as the image category affected the gazing behavior of dogs. Furthermore, differences in the gazing strategy between family and kennel dogs was obtained, suggesting an influence of different social living environments and life experiences.
Collapse
Affiliation(s)
- Heini Törnqvist
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sanni Somppi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miiamaaria V Kujala
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Outi Vainio
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Kasperek K, Zięba G, Pluta A, Ziemiańska A, Rozempolska-Rucińska I. Breed-related differences in the preference for inanimate objects between chicks of laying hens. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Neural basis of unfamiliar conspecific recognition in domestic chicks (Gallus Gallus domesticus). Behav Brain Res 2020; 397:112927. [PMID: 32980353 DOI: 10.1016/j.bbr.2020.112927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/27/2022]
Abstract
Domestic chickens are able to distinguish familiar from unfamiliar conspecifics, however the neuronal mechanisms mediating this behaviour are almost unknown. Moreover, the lateralisation of chicks' social recognition has only been investigated at the behavioural level, but not at the neural level. The aim of the present study was to test the hypothesis that exposure to unfamiliar conspecifics will selectively activate septum, hippocampus or nucleus taeniae of the amygdala of young domestic chicks. Moreover we also wanted to test the lateralisation of this response. For this purpose, we used the immediate early gene product c-Fos to map neural activity. Chicks were housed in pairs for one week. At test, either one of the two chicks was exchanged by an unfamiliar individual (experimental 'unfamiliar' group) or the familiar individual was briefly removed and then placed back in its original cage (control 'familiar' group). Analyses of chicks' interactions with the familiar/unfamiliar social companion revealed a higher number of social pecks directed towards unfamiliar individuals, compared to familiar controls. Moreover, in the group exposed to the unfamiliar individual a significantly higher activation was present in the dorsal and ventral septum of the left hemisphere and in the ventral hippocampus of the right hemisphere, compared to the control condition. These effects were neither present in other subareas of hippocampus or septum, nor in the nucleus taeniae of the amygdala. Our study thus indicates selective lateralised involvement of domestic chicks' septal and hippocampal subregions in responses to unfamiliar conspecific.
Collapse
|
32
|
Donati G, Davis R, Forrester GS. Gaze behaviour to lateral face stimuli in infants who do and do not gain an ASD diagnosis. Sci Rep 2020; 10:13185. [PMID: 32764733 PMCID: PMC7411063 DOI: 10.1038/s41598-020-69898-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022] Open
Abstract
Cerebral lateralisation of function is common characteristic across vertebrate species and is positively associated with fitness of the organism, in humans we hypothesise that it is associated with cognitive fitness. This investigation evaluated the early development of lateralised gaze behaviour for face stimuli in infants at high and low risk for autism from the British Autism Sibling Infant Study (BASIS). The BASIS cohort includes a low risk group and three high-risk groups who at age 3 were developing (i) typically, (ii) atypically or (iii) had received a diagnosis for ASD. Using eye-tracking data derived from a face pop-out task at 6 and 14 months of age, all non-ASD groups showed a bias for stimuli on the left at both timepoints. At 6 months the ASD group demonstrated a preference for stimuli on the right and were slower than their neurotypical counterparts to look at faces on the left. However, by 14 months these differences disappear. Longitudinal associations between lateral looking behaviour at 6 months and language and motor ability at 14 months were also found. Results suggest that infants who go on to be diagnosed with autism exhibit early differences in gaze behaviour that may be associated with subsequent cognitive outcomes.
Collapse
Affiliation(s)
- Georgina Donati
- Department of Psychological Sciences, School of Science, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Rachael Davis
- Psychology Department, University of Edinburgh, Edinburgh, EC1V 0HB, UK
| | - Gillian S Forrester
- Department of Psychological Sciences, School of Science, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
33
|
Valiyamattam GJ, Katti H, Chaganti VK, O’Haire ME, Sachdeva V. Do Animals Engage Greater Social Attention in Autism? An Eye Tracking Analysis. Front Psychol 2020; 11:727. [PMID: 32612549 PMCID: PMC7309441 DOI: 10.3389/fpsyg.2020.00727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Visual atypicalities in autism spectrum disorder (ASD) are a well documented phenomenon, beginning as early as 2-6 months of age and manifesting in a significantly decreased attention to the eyes, direct gaze and socially salient information. Early emerging neurobiological deficits in perceiving social stimuli as rewarding or its active avoidance due to the anxiety it entails have been widely purported as potential reasons for this atypicality. Parallel research evidence also points to the significant benefits of animal presence for reducing social anxiety and enhancing social interaction in children with autism. While atypicality in social attention in ASD has been widely substantiated, whether this atypicality persists equally across species types or is confined to humans has not been a key focus of research insofar. METHODS We attempted a comprehensive examination of the differences in visual attention to static images of human and animal faces (40 images; 20 human faces and 20 animal faces) among children with ASD using an eye tracking paradigm. 44 children (ASD n = 21; TD n = 23) participated in the study (10,362 valid observations) across five regions of interest (left eye, right eye, eye region, face and screen). RESULTS Results obtained revealed significantly greater social attention across human and animal stimuli in typical controls when compared to children with ASD. However in children with ASD, a significantly greater attention allocation was seen to animal faces and eye region and lesser attention to the animal mouth when compared to human faces, indicative of a clear attentional preference to socially salient regions of animal stimuli. The positive attentional bias toward animals was also seen in terms of a significantly greater visual attention to direct gaze in animal images. CONCLUSION Our results suggest the possibility that atypicalities in social attention in ASD may not be uniform across species. It adds to the current neural and biomarker evidence base of the potentially greater social reward processing and lesser social anxiety underlying animal stimuli as compared to human stimuli in children with ASD.
Collapse
Affiliation(s)
| | - Harish Katti
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | | | - Marguerite E. O’Haire
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - Virender Sachdeva
- Child Sight Institute, Nimmagadda Prasad Children’s Eye Care Centre, L V Prasad Eye Institute, GMRV Campus, Visakhapatnam, India
| |
Collapse
|
34
|
Tartaglia N, Howell S, Davis S, Kowal K, Tanda T, Brown M, Boada C, Alston A, Crawford L, Thompson T, van Rijn S, Wilson R, Janusz J, Ross J. Early neurodevelopmental and medical profile in children with sex chromosome trisomies: Background for the prospective eXtraordinarY babies study to identify early risk factors and targets for intervention. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:428-443. [PMID: 32506668 DOI: 10.1002/ajmg.c.31807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023]
Abstract
Sex chromosome trisomies (SCT), including Klinefelter syndrome/XXY, Trisomy X, and XYY syndrome, occur in 1 of every 500 births. The past decades of research have resulted in a broadening of known associated medical comorbidities as well as advances in psychological research. This review summarizes what is known about early neurodevelopmental, behavioral, and medical manifestations in young children with SCT. We focus on recent research and unanswered questions related to the risk for neurodevelopmental disorders that commonly present in the first years of life and discuss the medical and endocrine manifestations of SCT at this young age. The increasing rate of prenatal SCT diagnoses provides the opportunity to address gaps in the existing literature in a new birth cohort, leading to development of the eXtraordinarY Babies Study. This study aims to better describe and compare the natural history of SCT conditions, identify predictors of positive and negative outcomes in SCT, evaluate developmental and autism screening measures commonly used in primary care practices for the SCT population, and build a rich data set linked to a bank of biological samples for future study. Results from this study and ongoing international research efforts will inform evidence-based care and improve health and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Nicole Tartaglia
- eXtraordinarY Kids Clinic, Children's Hospital Colorado, Aurora, Colorado, USA.,Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Susan Howell
- eXtraordinarY Kids Clinic, Children's Hospital Colorado, Aurora, Colorado, USA.,Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Shanlee Davis
- eXtraordinarY Kids Clinic, Children's Hospital Colorado, Aurora, Colorado, USA.,Pediatric Endocrinology, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Karen Kowal
- Department of Pediatric Endocrinology, Nemours-Dupont Hospital for Children, Wilmington, Delaware, USA.,Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tanea Tanda
- Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Mariah Brown
- Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA.,Pediatric Endocrinology, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Cristina Boada
- Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Amanda Alston
- Department of Pediatric Endocrinology, Nemours-Dupont Hospital for Children, Wilmington, Delaware, USA.,Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leah Crawford
- Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Talia Thompson
- Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Sophie van Rijn
- Clinical Neurodevelopment Sciences, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Rebecca Wilson
- eXtraordinarY Kids Clinic, Children's Hospital Colorado, Aurora, Colorado, USA.,Developmental Pediatrics, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Jennifer Janusz
- eXtraordinarY Kids Clinic, Children's Hospital Colorado, Aurora, Colorado, USA.,Neurology and Neuropsychology, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA
| | - Judith Ross
- Pediatric Endocrinology, University of Colorado School of Medicine Department of Pediatrics, Aurora, Colorado, USA.,Department of Pediatric Endocrinology, Nemours-Dupont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
35
|
Le QV, Le QV, Nishimaru H, Matsumoto J, Takamura Y, Hori E, Maior RS, Tomaz C, Ono T, Nishijo H. A Prototypical Template for Rapid Face Detection Is Embedded in the Monkey Superior Colliculus. Front Syst Neurosci 2020; 14:5. [PMID: 32158382 PMCID: PMC7025518 DOI: 10.3389/fnsys.2020.00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/20/2020] [Indexed: 01/30/2023] Open
Abstract
Human babies respond preferentially to faces or face-like images. It has been proposed that an innate and rapid face detection system is present at birth before the cortical visual pathway is developed in many species, including primates. However, in primates, the visual area responsible for this process is yet to be unraveled. We hypothesized that the superior colliculus (SC) that receives direct and indirect retinal visual inputs may serve as an innate rapid face-detection system in primates. To test this hypothesis, we examined the responsiveness of monkey SC neurons to first-order information of faces required for face detection (basic spatial layout of facial features including eyes, nose, and mouth), by analyzing neuronal responses to line drawing images of: (1) face-like patterns with contours and properly placed facial features; (2) non-face patterns including face contours only; and (3) nonface random patterns with contours and randomly placed face features. Here, we show that SC neurons respond stronger and faster to upright and inverted face-like patterns compared to the responses to nonface patterns, regardless of contrast polarity and contour shapes. Furthermore, SC neurons with central receptive fields (RFs) were more selective to face-like patterns. In addition, the population activity of SC neurons with central RFs can discriminate face-like patterns from nonface patterns as early as 50 ms after the stimulus onset. Our results provide strong neurophysiological evidence for the involvement of the primate SC in face detection and suggest the existence of a broadly tuned template for face detection in the subcortical visual pathway.
Collapse
Affiliation(s)
- Quang Van Le
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Quan Van Le
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Etsuro Hori
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Rafael S Maior
- Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasilia, Brazil
| | - Carlos Tomaz
- Laboratory of Neuroscience and Behavior, CEUMA University, São Luis, Brazil
| | - Taketoshi Ono
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
36
|
Vettori S, Dzhelyova M, Van der Donck S, Jacques C, Van Wesemael T, Steyaert J, Rossion B, Boets B. Combined frequency-tagging EEG and eye tracking reveal reduced social bias in boys with autism spectrum disorder. Cortex 2019; 125:135-148. [PMID: 31982699 DOI: 10.1016/j.cortex.2019.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Developmental accounts of autism spectrum disorder (ASD) state that infants and children with ASD are spontaneously less attracted by and less proficient in processing social stimuli such as faces. This is hypothesized to partly underlie social communication difficulties in ASD. While in some studies a reduced preference for social stimuli has been shown in individuals with ASD, effect sizes are moderate and vary across studies, stimuli, and designs. Eye tracking, often the methodology of choice to study social preference, conveys information about overt orienting processes but conceals covert attention, possibly resulting in an underestimation of the effects. In this study, we recorded eye tracking and electroencephalography (EEG) during fast periodic visual stimulation to address this issue. We tested 21 boys with ASD (8-12 years old) and 21 typically developing (TD) control boys, matched for age and IQ. Streams of variable images of faces were presented at 6 Hz alongside images of houses presented at 7.5 Hz or vice versa, while children were engaged in an orthogonal task. While frequency-tagged neural responses were larger in response to faces than simultaneously presented houses in both groups, this effect was much larger in TD boys than in boys with ASD. This group difference in saliency of social versus non-social processing is significant after 5 sec of stimulus presentation and holds throughout the entire trial. Although there was no interaction between group and stimulus category for simultaneously recorded eye-tracking data, eye tracking and EEG measures were strongly correlated. We conclude that frequency-tagging EEG, allowing monitoring of both overt and covert processes, provides a fast, objective and reliable measure of decreased preference for social information in ASD.
Collapse
Affiliation(s)
- Sofie Vettori
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium.
| | - Milena Dzhelyova
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium; Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Belgium
| | - Stephanie Van der Donck
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Corentin Jacques
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Belgium; Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Belgium
| | - Tim Van Wesemael
- Department of Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, Leuven, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Bruno Rossion
- Institute of Research in Psychological Science, Institute of Neuroscience, University of Louvain, Belgium; Université de Lorraine, CNRS, CRAN - UMR 7039, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, France
| | - Bart Boets
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Belgium; Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Harrison AJ, Slane MM. Examining How Types of Object Distractors Distinctly Compete for Facial Attention in Autism Spectrum Disorder Using Eye Tracking. J Autism Dev Disord 2019; 50:924-934. [PMID: 31811617 DOI: 10.1007/s10803-019-04315-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Social motivation theory states that individuals with ASD find social stimuli less rewarding (Chevallier et al. in Trends Cognit Sci 16(4):231-239, 2012). An alternative theory suggests that competition from circumscribed interests (CIs) may better account for diminished social attention (Sasson et al. in Autism Res 1(1):31-42, 2008). This study evaluated both theories in children diagnosed with ASD (n = 16) and a group of TD children (n = 20) using eye tracking and demonstrated that distractor type only impacted the proportion of dwell time on faces in the TD group, but not the ASD group. These results provide support for the social motivation theory because gaze duration for faces among children with ASD was diminished regardless of whether the non-social stimuli presented was a CI or control object.
Collapse
Affiliation(s)
- Ashley J Harrison
- Department of Educational Psychology, University of Georgia, Athens, GA, USA.
| | - Mylissa M Slane
- Department of Educational Psychology, University of Georgia, Athens, GA, USA
| |
Collapse
|
38
|
Badcock PB, Friston KJ, Ramstead MJD, Ploeger A, Hohwy J. The hierarchically mechanistic mind: an evolutionary systems theory of the human brain, cognition, and behavior. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1319-1351. [PMID: 31115833 PMCID: PMC6861365 DOI: 10.3758/s13415-019-00721-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this review was to integrate leading paradigms in psychology and neuroscience with a theory of the embodied, situated human brain, called the Hierarchically Mechanistic Mind (HMM). The HMM describes the brain as a complex adaptive system that functions to minimize the entropy of our sensory and physical states via action-perception cycles generated by hierarchical neural dynamics. First, we review the extant literature on the hierarchical structure of the brain. Next, we derive the HMM from a broader evolutionary systems theory that explains neural structure and function in terms of dynamic interactions across four nested levels of biological causation (i.e., adaptation, phylogeny, ontogeny, and mechanism). We then describe how the HMM aligns with a global brain theory in neuroscience called the free-energy principle, leveraging this theory to mathematically formulate neural dynamics across hierarchical spatiotemporal scales. We conclude by exploring the implications of the HMM for psychological inquiry.
Collapse
Affiliation(s)
- Paul B Badcock
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia.
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Australia.
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Maxwell J D Ramstead
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- Department of Philosophy, McGill University, Montreal, QC, Canada
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Annemie Ploeger
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Jakob Hohwy
- Cognition & Philosophy Lab, Monash University, Clayton, VIC, Australia
| |
Collapse
|
39
|
Rosa-Salva O, Mayer U, Vallortigara G. Unlearned visual preferences for the head region in domestic chicks. PLoS One 2019; 14:e0222079. [PMID: 31479480 PMCID: PMC6719852 DOI: 10.1371/journal.pone.0222079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Unlearned tendencies to approach animate creatures are of great adaptive value, especially for nidifugous social birds that need to react to the presence of potential social companions shortly after hatching. Domestic chicks’ preferences for taxidermized hens provided the first evidence of social predispositions. However, the nature of the stimuli eliciting this predisposition is not completely understood. Here we explore the unlearned preferences of visually naïve domestic chicks for taxidermized animals. Visually naive chicks were tested for their approach preferences between a target stimulus (an intact stuffed animal whose head region was clearly visible) and a control stimulus. After confirming the predisposition for the intact stuffed fowl hen (Exp. 1), we found an analogous preference for a taxidermized, young domestic chick over a severely scrambled version of the same stimulus, whose body structure was completely disrupted, extending to same-age individuals the results that had been obtained with taxidermized hens (Exp. 2). We also directly tested preferences for specimens whose head region is visible compared to ones whose head region was occluded. To clarify whether chicks are sensitive to species-specific information, we employed specimens of female mallard ducks and of a mammalian predator, the polecat. Chicks showed a preference for the duck stimulus whose wings have been covered over a similar stimulus whose head region has been covered, providing direct evidence that the visibility of the head region of taxidermized models drive chicks’ behaviour in this test, and that the attraction for the head region indeed extends to females of other bird species (Exp. 3). However, no similar preference was obtained with the polecat stimuli (Exp. 4). We thus confirmed the presence of unlearned visual preferences for the head region in newly-hatched chicks, though other factors can limit the species-generality of the phenomenon.
Collapse
Affiliation(s)
- Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Rovereto (TN), Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Rovereto (TN), Italy
| | | |
Collapse
|
40
|
Selective response of the nucleus taeniae of the amygdala to a naturalistic social stimulus in visually naive domestic chicks. Sci Rep 2019; 9:9849. [PMID: 31285532 PMCID: PMC6614359 DOI: 10.1038/s41598-019-46322-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023] Open
Abstract
The detection of animate beings at the onset of life is important for phylogenetically distant species, such as birds and primates. Naïve chicks preferentially approach a stimulus resembling a conspecific (a stuffed fowl) over a less naturalistic one (a scrambled version of the stuffed fowl, presenting the same low-level visual features as the fowl in an unnatural configuration). The neuronal mechanisms underlying this behavior are mostly unknown. However, it has been hypothesized that innate social predispositions may involve subpallial brain areas including the amygdala. Here we asked whether a stuffed hen would activate areas of the arcopallium/amygdala complex, in particular the nucleus taeniae of the amygdala (TnA) or septum. We measured brain activity by visualizing the immediate early gene product c-Fos. After exposure to the hen, TnA showed higher density of c-Fos expressing neurons, compared to chicks that were exposed to the scrambled stimulus. A similar trend was present in the lower portion of the arcopallium, but not in the upper portion of the arcopallium or in the septum. This demonstrates that at birth the TnA is already engaged in responses to social visual stimuli, suggesting an important role for this nucleus in the early ontogenetic development of social behavior.
Collapse
|
41
|
Rosa-Salva O, Hernik M, Broseghini A, Vallortigara G. Visually-naïve chicks prefer agents that move as if constrained by a bilateral body-plan. Cognition 2019; 173:106-114. [PMID: 29367016 DOI: 10.1016/j.cognition.2018.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
From the first hours of life, the prompt detection of animate agents allows identification of biologically relevant entities. The motion of most animate agents is constrained by their bilaterally-symmetrical body-plan, and consequently tends to be aligned with the main body-axis. Thus parallelism between the main axis of a moving object and its motion trajectory can signal the presence of animate agents. Here we demonstrated that visually-naïve newborn chicks (Gallus gallus domesticus) are attracted to objects displaying such parallelism, and thus show preference for the same type of motion patterns that elicit perception of animacy in humans. This is the first demonstration of a newborn non-human animal's social preference for a visual cue related to the constraints imposed on behaviour by bilaterian morphology. Chicks also showed preference for rotational movements - a potential manifestation of self-propulsion. Results are discussed in relation to the mechanisms of animacy and agency detection in newborn organisms.
Collapse
Affiliation(s)
- O Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy.
| | - M Hernik
- Cognitive Development Center, Department of Cognitive Science, Central European University, Oktober 6 utca 7, Budapest 1051, Hungary
| | - A Broseghini
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy
| | - G Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy
| |
Collapse
|
42
|
Abstract
Humans are endowed with an exceptional ability for detecting faces, a competence that, in adults, is supported by a set of face-specific cortical patches. Human newborns, already shortly after birth, preferentially orient to faces, even when they are presented in the form of highly schematic geometrical patterns vs. perceptually equivalent nonfacelike stimuli. The neural substrates underlying this early preference are still largely unexplored. Is the adult face-specific cortical circuit already active at birth, or does its specialization develop slowly as a function of experience and/or maturation? We measured EEG responses in 1- to 4-day-old awake, attentive human newborns to schematic facelike patterns and nonfacelike control stimuli, visually presented with slow oscillatory "peekaboo" dynamics (0.8 Hz) in a frequency-tagging design. Despite the limited duration of newborns' attention, reliable frequency-tagged responses could be estimated for each stimulus from the peak of the EEG power spectrum at the stimulation frequency. Upright facelike stimuli elicited a significantly stronger frequency-tagged response than inverted facelike controls in a large set of electrodes. Source reconstruction of the underlying cortical activity revealed the recruitment of a partially right-lateralized network comprising lateral occipitotemporal and medial parietal areas overlapping with the adult face-processing circuit. This result suggests that the cortical route specialized in face processing is already functional at birth.
Collapse
|
43
|
Abstract
Historically, newborns, and especially premature newborns, were thought to "feel nothing." However, over the past decades, a growing body of evidence has shown that newborns are aware of their environment, but the extent and the onset of some sensory capacities remain largely unknown. The goal of this review is to update our current knowledge concerning newborns' perceptual world and how ready they are to cope with an entirely different sensory environment following birth. We aim to establish not only how and when each sensory ability arises during the pre-/postbirth period but also discuss how senses are studied. We conclude that although many studies converge to show that newborns are clearly sentient beings, much is still unknown. Further, we identify a series of internal and external factors that could explain discrepancies between studies, and we propose perspectives for future studies. Finally, through examples from animal studies, we illustrate the importance of this detailed knowledge to pursue the enhancement of newborns' daily living conditions. Indeed, this is a prerequisite for assessing the effects of the physical environment and routine procedures on newborns' welfare.
Collapse
|
44
|
van Rijn S, Urbanus E, Swaab H. Eyetracking measures of social attention in young children: How gaze patterns translate to real‐life social behaviors. SOCIAL DEVELOPMENT 2018. [DOI: 10.1111/sode.12350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sophie van Rijn
- Clinical Child and Adolescent Studies Leiden University Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Evelien Urbanus
- Clinical Child and Adolescent Studies Leiden University Leiden The Netherlands
| | - Hanna Swaab
- Clinical Child and Adolescent Studies Leiden University Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| |
Collapse
|
45
|
Amygdala lesions eliminate viewing preferences for faces in rhesus monkeys. Proc Natl Acad Sci U S A 2018; 115:8043-8048. [PMID: 30012600 DOI: 10.1073/pnas.1807245115] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In free-viewing experiments, primates orient preferentially toward faces and face-like stimuli. To investigate the neural basis of this behavior, we measured the spontaneous viewing preferences of monkeys with selective bilateral amygdala lesions. The results revealed that when faces and nonface objects were presented simultaneously, monkeys with amygdala lesions had no viewing preference for either conspecific faces or illusory facial features in everyday objects. Instead of directing eye movements toward socially relevant features in natural images, we found that, after amygdala loss, monkeys are biased toward features with increased low-level salience. We conclude that the amygdala has a role in our earliest specialized response to faces, a behavior thought to be a precursor for efficient social communication and essential for the development of face-selective cortex.
Collapse
|
46
|
Safra L, Ioannou C, Amsellem F, Delorme R, Chevallier C. Distinct effects of social motivation on face evaluations in adolescents with and without autism. Sci Rep 2018; 8:10648. [PMID: 30006527 PMCID: PMC6045598 DOI: 10.1038/s41598-018-28514-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 06/21/2018] [Indexed: 12/03/2022] Open
Abstract
Individual differences in social motivation have an influence on many behaviours in both clinical and non-clinical populations. As such, social motivation has been identified as a biological trait that is particularly well-suited for dimensional approaches cutting across neuropsychological conditions. In the present paper, we tested whether social motivation had a similar impact in the general population and in a neuropsychological condition characterized by diminished social motivation: Autism Spectrum Disorders (ASD). More precisely, we evaluated the effect of social motivation on face evaluations in 20 adolescents with ASD and 20 matched controls using avatars parametrically varying in dominance and trustworthiness. In line with previous research, we found in the control group that participants with higher levels of social motivation relied more on perceived trustworthiness when producing likeability judgments. However, this pattern was not found in the ASD group. Social motivation thus appears to have a different effect in ASD and control populations, which raises questions about the relevance of subclinical or non-clinical populations to understand ASD.
Collapse
Affiliation(s)
- Lou Safra
- Laboratoire de Neurosciences Cognitives, Inserm unit 960, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, 75005, France.
| | - Christina Ioannou
- Laboratoire de Neurosciences Cognitives, Inserm unit 960, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, 75005, France
| | - Frédérique Amsellem
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Universitaire Robert Debré, Paris, 75019, France.,Génétique Humaine et Fonction Cognitive, Institut Pasteur, Paris, 75015, France
| | - Richard Delorme
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Universitaire Robert Debré, Paris, 75019, France.,Génétique Humaine et Fonction Cognitive, Institut Pasteur, Paris, 75015, France
| | - Coralie Chevallier
- Laboratoire de Neurosciences Cognitives, Inserm unit 960, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, Paris, 75005, France.
| |
Collapse
|
47
|
The left cradling bias: An evolutionary facilitator of social cognition? Cortex 2018; 118:116-131. [PMID: 29961539 DOI: 10.1016/j.cortex.2018.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 01/07/2023]
Abstract
A robust left side cradling bias (LCB) in humans is argued to reflect an evolutionarily old left visual field bias and right hemisphere dominance for processing social stimuli. A left visual field bias for face processing, invoked via the LCB, is known to reflect a human population-level right cerebral hemisphere specialization for processing social stimuli. We explored the relationship between cradling side biases, hand dominance and socio-communicative abilities. Four and five year old typically-developing children (N = 98) participated in a battery of manual motor tasks interspersed by cradling trials comprising a(n): infant human doll, infant primate doll, proto-face pillow and no-face pillow. Mean social and communication ability scores were obtained via a survey completed by each child's key teacher. We found a population-level LCB for holding an infant human doll that was not influenced by hand dominance, sex, age or experience of having a younger sibling. Children demonstrating a LCB, did however, obtain a significantly higher mean social ability score compared with their right side cradling counterparts. Like the infant human doll, the proto-face pillow's schematic face symbol was sufficient to elicit a population-level LCB. By contrast, the infant primate doll elicited a population-level right side cradling bias, influenced by both hand dominance and sex. The findings suggest that the LCB is present and visible early in development and is likely therefore, to represent evolutionarily old domain-specific organization and function of the right cerebral hemisphere. Additionally, results suggest that a LCB requires minimal triggering but can be reversed in some situations, possibly in response to species-type or levels of novelty or stress as perceived by the viewer. Patterns of behavioral biases within the context of social stimuli and their associations with cognitive ability are important for understanding how socio-communication abilities emerge in developing children.
Collapse
|
48
|
Shultz S, Klin A, Jones W. Neonatal Transitions in Social Behavior and Their Implications for Autism. Trends Cogn Sci 2018; 22:452-469. [PMID: 29609895 PMCID: PMC6554740 DOI: 10.1016/j.tics.2018.02.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/18/2023]
Abstract
Within the context of early infant-caregiver interaction, we review a series of pivotal transitions that occur within the first 6 months of typical infancy, with emphasis on behavior and brain mechanisms involved in preferential orientation towards, and interaction with, other people. Our goal in reviewing these transitions is to better understand how they may lay a necessary and/or sufficient groundwork for subsequent phases of development, and also to understand how the breakdown thereof, when development is atypical and those transitions become derailed, may instead yield disability. We review these developmental processes in light of recent studies documenting disruptions to early-emerging brain and behavior mechanisms in infants later diagnosed with autism spectrum disorder, shedding light on the brain-behavior pathogenesis of autism.
Collapse
Affiliation(s)
- Sarah Shultz
- Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA 30329, USA; Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30022, USA.
| | - Ami Klin
- Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA 30329, USA; Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30022, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30022, USA
| | - Warren Jones
- Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA 30329, USA; Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30022, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA 30022, USA.
| |
Collapse
|
49
|
Sgadò P, Rosa-Salva O, Versace E, Vallortigara G. Embryonic Exposure to Valproic Acid Impairs Social Predispositions of Newly-Hatched Chicks. Sci Rep 2018; 8:5919. [PMID: 29650996 PMCID: PMC5897402 DOI: 10.1038/s41598-018-24202-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biological predispositions to attend to visual cues, such as those associated with face-like stimuli or with biological motion, guide social behavior from the first moments of life and have been documented in human neonates, infant monkeys and domestic chicks. Impairments of social predispositions have been recently reported in neonates at high familial risk of Autism Spectrum Disorder (ASD). Using embryonic exposure to valproic acid (VPA), an anticonvulsant associated to increased risk of developing ASD, we modeled ASD behavioral deficits in domestic chicks. We then assessed their spontaneous social predispositions by comparing approach responses to a stimulus containing a face configuration, a stuffed hen, vs. a scrambled version of it. We found that this social predisposition was abolished in VPA-treated chicks, whereas experience-dependent mechanisms associated with filial imprinting were not affected. Our results suggest a specific effect of VPA on the development of biologically-predisposed social orienting mechanisms, opening new perspectives to investigate the neurobiological mechanisms involved in early ASD symptoms.
Collapse
Affiliation(s)
- Paola Sgadò
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy.
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy
| | - Elisabetta Versace
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy.,Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, Rovereto, Italy
| |
Collapse
|
50
|
Sifre R, Olson L, Gillespie S, Klin A, Jones W, Shultz S. A Longitudinal Investigation of Preferential Attention to Biological Motion in 2- to 24-Month-Old Infants. Sci Rep 2018; 8:2527. [PMID: 29410484 PMCID: PMC5802706 DOI: 10.1038/s41598-018-20808-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/23/2018] [Indexed: 01/07/2023] Open
Abstract
Preferential attention to biological motion is an early-emerging mechanism of adaptive action that plays a critical role in social development. The present study provides a comprehensive longitudinal mapping of developmental change in preferential attention to biological motion in 116 infants at 7 longitudinal time points. Tested repeatedly from 2 until 24 months of age, results reveal that preferential attention to biological motion changes considerably during the first months of life. Previously reported preferences in both neonates and older infants are absent in the second month but do reemerge by month 3 and become increasingly pronounced during the subsequent two years. These results highlight the second month of life as a potentially critical transition period in social visual engagement.
Collapse
Affiliation(s)
- Robin Sifre
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, USA
| | - Lindsay Olson
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, San Diego, CA, USA
| | - Scott Gillespie
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA, USA
| | - Ami Klin
- Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Division of Autism & Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA
| | - Warren Jones
- Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Division of Autism & Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA
| | - Sarah Shultz
- Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Division of Autism & Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|