1
|
Theodoridis X, Chourdakis M, Papaemmanouil A, Chaloulakou S, Papageorgiou N, Georgakou AV, Chatzis G, Triantafyllou A. The Association between Food Groups, Nutraceuticals, and Food Supplements Consumption on Vascular Health Outcomes: A Literature Review. Life (Basel) 2024; 14:1210. [PMID: 39337992 PMCID: PMC11433244 DOI: 10.3390/life14091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Vascular aging, marked by alterations in the structure and function of blood vessels, including heightened arterial stiffness and impaired endothelial function, is linked to a higher likelihood of developing cardiovascular and age-associated pathological conditions. Oxidative stress and inflammation are key stimulation factors in vascular aging. Engaging in healthy dietary habits could enhance the functioning of blood vessels. The aim of this study was to conduct a literature review of the evidence regarding the relationship between food regimens, nutraceuticals, and dietary supplements and vascular health. A search of electronic databases, including PubMed, Scopus, and Web of Science Core Collection, was performed. Experimental and observational studies evaluating the association between food groups, nutraceuticals, supplements, and endothelial function and/or arterial stiffness were deemed eligible for this narrative review. Based on the current body of the included studies, food groups, nutraceuticals, and dietary supplements may not demonstrate superiority over placebos in enhancing markers of vascular health. To obtain more reliable evidence on the effectiveness of interventions in vascular health, additional RCTs with larger sample sizes, extended follow-up periods, and multi-center participation are necessary. Enhancing the credibility of these RCTs requires better control of dietary variables and more precise measurement of vascular health markers.
Collapse
Affiliation(s)
- Xenophon Theodoridis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Androniki Papaemmanouil
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Stavroula Chaloulakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Niki Papageorgiou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Athina Vasiliki Georgakou
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (X.T.); (A.P.); (S.C.); (N.P.); (A.V.G.)
| | - Georgios Chatzis
- School of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece;
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| |
Collapse
|
2
|
Kim H, Massett MP. Beneficial effects of rapamycin on endothelial function in systemic lupus erythematosus. Front Physiol 2024; 15:1446836. [PMID: 39234308 PMCID: PMC11372898 DOI: 10.3389/fphys.2024.1446836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Endothelial function is significantly impaired in patients with SLE compared to healthy controls. Elevated activation of the mammalian target of rapamycin complex 1 (mTORC1) is reported in humans and mice with SLE. However, it is unclear if elevated mTORC1 in SLE contributes to impaired mitophagy and endothelial dysfunction. Therefore, we tested the hypothesis that inhibiting mTORC1 with rapamycin would increase mitophagy and attenuate endothelial dysfunction and inflammatory responses in SLE. Methods Nine-week-old female lupus-prone (MRL/lpr) and healthy control (MRL/MpJ) mice were randomly assigned into rapamycin treatment (lpr_Rapamycin and MpJ_Rapamycin) or control (lpr_Control and MpJ_Control) groups. Rapamycin was injected i.p. 3 days per week for 8 weeks. After 8 weeks, endothelium-dependent vasorelaxation to acetylcholine (ACh) and endothelium-independent vasorelaxation to sodium nitroprusside (SNP) were measured in thoracic aortas using a wire myograph. Results MTORC1 activity was increased in aorta from lpr mice as demonstrated by increased phosphorylation of s6rp and p70s6k and significantly inhibited by rapamycin (s6rp, p < 0.0001, p70s6k, p = 0.04, respectively). Maximal responses to Ach were significantly impaired in lpr_Control (51.7% ± 6.6%) compared to MpJ_Control (86.7% ± 3.6%) (p < 0.0001). Rapamycin prevented endothelial dysfunction in the thoracic aorta from lupus mice (lpr_Rapamycin) (79.6% ± 4.2%) compared to lpr_Control (p = 0.002). Maximal responses to SNP were not different across groups. Phosphorylation of endothelial nitric oxide synthase also was 42% lower in lpr_Control than MpJ_Control and 46% higher in lpr_Rapamycin than lpr_Control. The inflammatory marker, vascular cell adhesion protein 1 (Vcam 1), was elevated in aorta from lupus mice compared with healthy mice (p = 0.001), and significantly reduced with Rapamycin treatment (p = 0.0021). Mitophagy markers were higher in lupus mice and reduced by rapamycin treatment, suggesting altered mitophagy in lpr mice. Conclusion Collectively, these results demonstrate the beneficial effects of inhibiting mTORC1 on endothelial function in SLE mice and suggest inflammation and altered mitophagy contribute to endothelial dysfunction in SLE.
Collapse
Affiliation(s)
- Hyoseon Kim
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Michael P Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
3
|
Esposito E, Indolfi C, Bello I, Smimmo M, Vellecco V, Schettino A, Montanaro R, Morroni F, Sita G, Graziosi A, Panza E, Sorrentino R, d'Emmanuele di Villa Bianca R, Mitidieri E. The endocrine disruptor vinclozolin causes endothelial injury via eNOS/Nox4/IRE1α signaling. Eur J Pharmacol 2024; 977:176758. [PMID: 38901528 DOI: 10.1016/j.ejphar.2024.176758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Vinclozolin (VCZ) is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor, and its effects on various organs have been described but its influence on vasculature has not yet been addressed. This study focuses on the potential mechanism of VCZ-induced vascular injury. The effect of VCZ on vascular function in terms of relaxing and contracting response was evaluated in mice aorta. A short exposure to VCZ affected the endothelial but not the smooth muscle component. Specifically, it caused a disruption of the eNOS/NO signaling. In line, a short exposure to VCZ in bovine aortic endothelial cells promoted eNOS uncoupling resulting in a reduction of NO bioavailability and eNOS dimer/monomer ratio, and in turn an increase of nitro-tyrosine levels and ROS formation. Prolonging the exposure to VCZ (3 and 6h) an up-regulation of Nox4, enzyme-generating ROS constitutively expressed in endothelial cells, and an increase in ROS and malondialdehyde content coupled with a reduction in NO levels were found. These events were strictly linked to endoplasmic reticulum stress as demonstrated by the phosphorylation of inositol-requiring transmembrane kinase endoribonuclease 1α (IRE1α), a stress sensor and its reversion by using a selective inhibitor. Collectively, these results demonstrated that VCZ provokes endothelial dysfunction by oxidative stress involving eNOS/Nox4/IRE1α axis. The rapid exposure affected the endothelial function promoting eNOS uncoupling while a post-transcriptional modification, involving Nox4/IRE1α signaling, occurred following prolonged exposure. Thus, exposure to VCZ could contribute to the onset and/or progression of cardiovascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Erika Esposito
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Chiara Indolfi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Ivana Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Martina Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Anna Schettino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, Macchia Romana Campus 10, Viale dell'Ateneo Lucano, 85100, Potenza, Italy.
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Giulia Sita
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Agnese Graziosi
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
4
|
Shaikh TB, Chandra Y, Andugulapati SB, Sistla R. Vistusertib improves pulmonary inflammation and fibrosis by modulating inflammatory/oxidative stress mediators via suppressing the mTOR signalling. Inflamm Res 2024; 73:1223-1237. [PMID: 38789791 DOI: 10.1007/s00011-024-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Inflammation and oxidative stress are key factors in the development of pulmonary fibrosis (PF) by promoting the differentiation of fibroblasts through modulating various pathways including Wnt/β-catenin, TGF-β and mTOR signalling. OBJECTIVE AND METHODS This study aimed to evaluate the effects and elucidate the mechanisms of vistusertib (VSB) in treating pulmonary inflammation/fibrosis, specifically by targeting the mTOR pathway using various in vitro and in vivo models. RESULTS Lipopolysaccharide (LPS)-induced inflammation model in macrophages (RAW 264.7), epithelial (BEAS-2B) and endothelial (HMVEC-L) cells revealed that treatment with VSB significantly reduced the IL-6, TNF-α, CCL2, and CCL7 expression. TGF-β induced differentiation was also significantly reduced upon VSB treatment in fibrotic cells (LL29 and DHLF). Further, bleomycin-induced inflammation and fibrosis models demonstrated that treatment with VSB significantly ameliorated the severe inflammation, and lung architectural distortion, by reducing the inflammatory markers expression/levels, inflammatory cells and oxidative stress indicators. Further, fibrosis model results exhibited that, VSB treatment significantly reduced the α-SMA, collagen and TGF-β expressions, improved the lung architecture and restored lung functions. CONCLUSION Overall, this study uncovers the anti-inflammatory/anti-fibrotic effects of VSB by modulating the mTOR activation. Although VSB was tested for lung fibrosis, it can be tested for other fibrotic disorders to improve the patient's survival and quality of life.
Collapse
Affiliation(s)
- Taslim B Shaikh
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yogesh Chandra
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
5
|
Yadegar S, Mohammadi F, Yadegar A, Mohammadi Naeini A, Ayati A, Milan N, Tayebi A, Seyedi SA, Nabipoorashrafi SA, Rabizadeh S, Esteghamati A, Nakhjavani M. Effects and safety of resveratrol supplementation in older adults: A comprehensive systematic review. Phytother Res 2024; 38:2448-2461. [PMID: 38433010 DOI: 10.1002/ptr.8171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
Resveratrol (RSV) has garnered significant attention in recent years due to its potential benefits against chronic diseases. However, its effects and safety in older adults have not been comprehensively studied. This study aimed to determine the effects and safety of RSV supplementation in older adults. MEDLINE/PubMed, Scopus, and Web of Science databases were comprehensively searched for eligible studies. Studies were enrolled if they were randomized clinical trials and had incorporated RSV supplementation for older adults. Two independent authors conducted the literature search, and eligibility was determined according to the PICOS framework. Study details, intervention specifics, and relevant outcomes were collected during the data collection. The Cochrane RoB-2 tool was used to evaluate the risk of bias. This review included 10 studies. The combination of RSV and exercise improved exercise adaptation and muscle function in healthy older adults and physical performance and mobility measures in individuals with functional limitations. RSV showed potential neuroprotective effects in patients with Alzheimer's disease. In overweight individuals, RSV demonstrated a positive impact on cognitive function, but it increased some biomarkers of cardiovascular disease risk at high doses. In older adults with diabetes and those with peripheral artery disease (PAD), RSV was not more effective than placebo. No study reported significant adverse events following RSV treatment. RSV can improve various health parameters in age-related health conditions. However, the optimal dosage, long-term effects, and potential interactions with medications still need to be investigated through well-designed RCTs.
Collapse
Affiliation(s)
- Sepideh Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Yadegar
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi Naeini
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Ayati
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nesa Milan
- Center for Orthopedic Trans-disciplinary Applied Research (COTAR), Shariaty Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Tayebi
- Cardiovascular Research Center, Alborz University of Medical Sciences, Alborz, Iran
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhang S, Kiarasi F. Therapeutic effects of resveratrol on epigenetic mechanisms in age-related diseases: A comprehensive review. Phytother Res 2024; 38:2347-2360. [PMID: 38421057 DOI: 10.1002/ptr.8176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/28/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
Recently, various studies have shown that epigenetic changes are associated with aging and age-related diseases. Both animal and human models have revealed that epigenetic processes are involved in aging mechanisms. These processes happen at multiple levels and include histone modification, DNA methylation, and changes in noncoding RNA expression. Consequently, changes in the organization of chromatin and DNA accessibility lead to the regulation of gene expression. With increasing awareness of the pivotal function of epigenetics in the aging process, researchers' attention has been drawn to how these epigenetic changes can be modified to prevent, stop, or reverse aging, senescence, and age-related diseases. Among various agents that can affect epigenetic, polyphenols are well-known phytochemicals found in fruits, vegetables, and plants. Polyphenols are found to modify epigenetic-related mechanisms in various diseases and conditions, such as metabolic disorders, obesity, neurodegenerative diseases, cancer, and cardiovascular diseases. Resveratrol (RSV) is a member of the stilbene subgroup of polyphenols which is derived from various plants, such as grapes, apples, and blueberries. Therefore, herein, we aim to summarize how RSV affects different epigenetic processes to change aging-related mechanisms. Furthermore, we discuss its roles in age-related diseases, such as Alzheimer's, Parkinson's, osteoporosis, and cardiovascular diseases.
Collapse
Affiliation(s)
| | - Farzam Kiarasi
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Hwang HJ, Kang D, Kim JR, Choi JH, Ryu JK, Herman AB, Ko YG, Park HJ, Gorospe M, Lee JS. FLRT2 prevents endothelial cell senescence and vascular aging by regulating the ITGB4/mTORC2/p53 signaling pathway. JCI Insight 2024; 9:e172678. [PMID: 38587072 PMCID: PMC11128196 DOI: 10.1172/jci.insight.172678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
The roles of fibronectin leucine-rich transmembrane protein 2 (FLRT2) in physiological and pathological processes are not well known. Here, we identify a potentially novel function of FLRT2 in preventing endothelial cell senescence and vascular aging. We found that FLRT2 expression was lower in cultured senescent endothelial cells as well as in aged rat and human vascular tissues. FLRT2 mediated endothelial cell senescence via the mTOR complex 2, AKT, and p53 signaling pathway in human endothelial cells. We uncovered that FLRT2 directly associated with integrin subunit beta 4 (ITGB4) and thereby promoted ITGB4 phosphorylation, while inhibition of ITGB4 substantially mitigated the induction of senescence triggered by FLRT2 depletion. Importantly, FLRT2 silencing in mice promoted vascular aging, and overexpression of FLRT2 rescued a premature vascular aging phenotype. Therefore, we propose that FLRT2 could be targeted therapeutically to prevent senescence-associated vascular aging.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication and
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
| | - Donghee Kang
- Research Center for Controlling Intercellular Communication and
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology and
| | - Joon Hyuk Choi
- Department of Pathology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Ji-Kan Ryu
- Research Center for Controlling Intercellular Communication and
- Department of Urology, College of Medicine, Inha University, Incheon, Korea
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Heon Joo Park
- Research Center for Controlling Intercellular Communication and
- Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
- Department of Microbiology, College of Medicine, Inha University, Incheon, Korea
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication and
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| |
Collapse
|
8
|
Cimino G, Vaduganathan M, Lombardi CM, Pagnesi M, Vizzardi E, Tomasoni D, Adamo M, Metra M, Inciardi RM. Obesity, heart failure with preserved ejection fraction, and the role of glucagon-like peptide-1 receptor agonists. ESC Heart Fail 2024; 11:649-661. [PMID: 38093506 DOI: 10.1002/ehf2.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 03/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has a high prevalence, affecting more than 50% of patients with heart failure. HFpEF is associated with multiple comorbidities, and obesity is one of the most common. A distinct phenotype has been proposed for obese patients with HFpEF. Recent data show the beneficial role of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) for weight loss in diabetic and non-diabetic patients with obesity or overweight when given as adjunctive therapy to diet and exercise. The mechanisms of action are related to paracrine and endocrine signalling pathways within the gastrointestinal tract, pancreas, and central nervous system that delay gastric emptying, decrease appetite, augment pancreatic beta-cell insulin secretion, and suppress pancreatic glucagon release. These drugs are therefore potentially indicated for treatment of patients with HFpEF and obesity or overweight. Efficacy and safety need to be shown by clinical trials with a first one, Semaglutide Treatment Effect in People with obesity and heart failure with preserved ejection fraction (STEP HFpEF), recently concluded. The aim of the present review is to provide the pathophysiological and pharmacological rationale for GLP-1 RA administration to obese patients with HFpEF.
Collapse
Affiliation(s)
- Giuliana Cimino
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | | | - Carlo M Lombardi
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Matteo Pagnesi
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Enrico Vizzardi
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Daniela Tomasoni
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marianna Adamo
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Marco Metra
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Riccardo M Inciardi
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
9
|
Islam MT, Hall SA, Dutson T, Bloom SI, Bramwell RC, Kim J, Tucker JR, Machin DR, Donato AJ, Lesniewski LA. Endothelial cell-specific reduction in mTOR ameliorates age-related arterial and metabolic dysfunction. Aging Cell 2024; 23:e14040. [PMID: 38017701 PMCID: PMC10861194 DOI: 10.1111/acel.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023] Open
Abstract
Systemic inhibition of the mammalian target of rapamycin (mTOR) delays aging and many age-related conditions including arterial and metabolic dysfunction. However, the mechanisms and tissues involved in these beneficial effects remain largely unknown. Here, we demonstrate that activation of S6K, a downstream target of mTOR, is increased in arteries with advancing age, and that this occurs preferentially in the endothelium compared with the vascular smooth muscle. Induced endothelial cell-specific deletion of mTOR reduced protein expression by 60-70%. Although this did not significantly alter arterial and metabolic function in young mice, endothelial mTOR reduction reversed arterial stiffening and improved endothelium-dependent dilation (EDD) in old mice, indicating an improvement in age-related arterial dysfunction. Improvement in arterial function in old mice was concomitant with reductions in arterial cellular senescence, inflammation, and oxidative stress. The reduction in endothelial mTOR also improved glucose tolerance in old mice, and this was associated with attenuated hepatic gluconeogenesis and improved lipid tolerance, but was independent of alterations in peripheral insulin sensitivity, pancreatic beta cell function, or fasted plasma lipids in old mice. Lastly, we found that endothelial mTOR reduction suppressed gene expression of senescence and inflammatory markers in endothelial-rich (i.e., lung) and metabolically active organs (i.e., liver and adipose tissue), which may have contributed to the improvement in metabolic function in old mice. This is the first evidence demonstrating that reducing endothelial mTOR in old age improves arterial and metabolic function. These findings have implications for future drug development.
Collapse
Affiliation(s)
- Md Torikul Islam
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Shelby A. Hall
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Tavia Dutson
- Division of Geriatrics, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Samuel I. Bloom
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - R. Colton Bramwell
- Division of Geriatrics, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
| | - John Kim
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Jordan R. Tucker
- Division of Geriatrics, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Daniel R. Machin
- Division of Geriatrics, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Anthony J. Donato
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
- Division of Geriatrics, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical CenterSalt Lake CityUtahUSA
- Department of BiochemistryThe University of UtahSalt Lake CityUtahUSA
| | - Lisa A. Lesniewski
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
- Division of Geriatrics, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical CenterSalt Lake CityUtahUSA
| |
Collapse
|
10
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Niu F, Li Z, Ren Y, Li Z, Guan H, Li Y, Zhang Y, Li Y, Yang J, Qian L, Shi W, Fan X, Li J, Shi L, Yu Y, Xiong Y. Aberrant hyper-expression of the RNA binding protein GIGYF2 in endothelial cells modulates vascular aging and function. Redox Biol 2023; 65:102824. [PMID: 37517320 PMCID: PMC10400931 DOI: 10.1016/j.redox.2023.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Vascular endothelial cells (ECs) senescence plays a crucial role in vascular aging that promotes the initiation and progression of cardiovascular disease. The mutation of Grb10-interacting GYF protein 2 (GIGYF2) is strongly associated with the pathogenesis of aging-related diseases, whereas its role in regulating ECs senescence and dysfunction still remains elusive. In this study, we found aberrant hyperexpression of GIGYF2 in senescent human ECs and aortas of old mice. Silencing GIGYF2 in senescent ECs suppressed eNOS-uncoupling, senescence, and endothelial dysfunction. Conversely, in nonsenescent cells, overexpressing GIGYF2 promoted eNOS-uncoupling, cellular senescence, endothelial dysfunction, and activation of the mTORC1-SK61 pathway, which were ablated by rapamycin or antioxidant N-Acetyl-l-cysteine (NAC). Transcriptome analysis revealed that staufen double-stranded RNA binding protein 1 (STAU1) is remarkably downregulated in the GIGYF2-depleted ECs. STAU1 depletion significantly attenuated GIGYF2-induced cellular senescence, dysfunction, and inflammation in young ECs. Furthermore, we disclosed that GIGYF2 acting as an RNA binding protein (RBP) enhances STAU1 mRNA stability, and that the intron region of the late endosomal/lysosomal adaptor MAPK and mTOR activator 4 (LAMTOR4) could bind to STAU1 protein to upregulate LAMTOR4 expression. Immunofluorescence staining showed that GIGYF2 overexpression promoted the translocation of mTORC1 to lysosome. In the mice model, GIGYF2flox/flox Cdh-Cre+ mice protected aged mice from aging-associated vascular endothelium-dependent relaxation and arterial stiffness. Our work discloses that GIGYF2 serving as an RBP enhances the mRNA stability of STAU1 that upregulates LAMTOR4 expression through binding with its intron region, which activates the mTORC1-S6K1 signaling via recruitment of mTORC1 to the lysosomal membrane, ultimately leading to ECs senescence, dysfunction, and vascular aging. Disrupting the GIGYF2-STAU1-mTORC1 signaling cascade may represent a promising therapeutic approach against vascular aging and aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Zi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710018, PR China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yirong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Junle Yang
- Department of Radiology, Xi' an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Lu Qian
- Department of Endocrinology, Xi' an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Wenzhen Shi
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Jinli Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Lele Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, School of Medicine, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, PR China.
| |
Collapse
|
13
|
Georgieva I, Tchekalarova J, Iliev D, Tzoneva R. Endothelial Senescence and Its Impact on Angiogenesis in Alzheimer's Disease. Int J Mol Sci 2023; 24:11344. [PMID: 37511104 PMCID: PMC10379128 DOI: 10.3390/ijms241411344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial cells are constantly exposed to environmental stress factors that, above a certain threshold, trigger cellular senescence and apoptosis. The altered vascular function affects new vessel formation and endothelial fitness, contributing to the progression of age-related diseases. This narrative review highlights the complex interplay between senescence, oxidative stress, extracellular vesicles, and the extracellular matrix and emphasizes the crucial role of angiogenesis in aging and Alzheimer's disease. The interaction between the vascular and nervous systems is essential for the development of a healthy brain, especially since neurons are exceptionally dependent on nutrients carried by the blood. Therefore, anomalies in the delicate balance between pro- and antiangiogenic factors and the consequences of disrupted angiogenesis, such as misalignment, vascular leakage and disturbed blood flow, are responsible for neurodegeneration. The implications of altered non-productive angiogenesis in Alzheimer's disease due to dysregulated Delta-Notch and VEGF signaling are further explored. Additionally, potential therapeutic strategies such as exercise and caloric restriction to modulate angiogenesis and vascular aging and to mitigate the associated debilitating symptoms are discussed. Moreover, both the roles of extracellular vesicles in stress-induced senescence and as an early detection marker for Alzheimer's disease are considered. The intricate relationship between endothelial senescence and angiogenesis provides valuable insights into the mechanisms underlying angiogenesis-related disorders and opens avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 23, 1113 Sofia, Bulgaria
| | - Dimitar Iliev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
14
|
Budamagunta V, Kumar A, Rani A, Bean L, Manohar‐Sindhu S, Yang Y, Zhou D, Foster TC. Effect of peripheral cellular senescence on brain aging and cognitive decline. Aging Cell 2023; 22:e13817. [PMID: 36959691 PMCID: PMC10186609 DOI: 10.1111/acel.13817] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
We examine similar and differential effects of two senolytic treatments, ABT-263 and dasatinib + quercetin (D + Q), in preserving cognition, markers of peripheral senescence, and markers of brain aging thought to underlie cognitive decline. Male F344 rats were treated from 12 to 18 months of age with D + Q, ABT-263, or vehicle, and were compared to young (6 months). Both senolytic treatments rescued memory, preserved the blood-brain barrier (BBB) integrity, and prevented the age-related decline in hippocampal N-methyl-D-aspartate receptor (NMDAR) function associated with impaired cognition. Senolytic treatments decreased senescence-associated secretory phenotype (SASP) and inflammatory cytokines/chemokines in the plasma (IL-1β, IP-10, and RANTES), with some markers more responsive to D + Q (TNFα) or ABT-263 (IFNγ, leptin, EGF). ABT-263 was more effective in decreasing senescence genes in the spleen. Both senolytic treatments decreased the expression of immune response and oxidative stress genes and increased the expression of synaptic genes in the dentate gyrus (DG). However, D + Q influenced twice as many genes as ABT-263. Relative to D + Q, the ABT-263 group exhibited increased expression of DG genes linked to cell death and negative regulation of apoptosis and microglial cell activation. Furthermore, D + Q was more effective at decreasing morphological markers of microglial activation. The results indicate that preserved cognition was associated with the removal of peripheral senescent cells, decreasing systemic inflammation that normally drives neuroinflammation, BBB breakdown, and impaired synaptic function. Dissimilarities associated with brain transcription indicate divergence in central mechanisms, possibly due to differential access.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Linda Bean
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Sahana Manohar‐Sindhu
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Yang Yang
- Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Daohong Zhou
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleFloridaUSA
- Genetics and Genomics Graduate Program, Genetics InstituteUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
15
|
Ajoolabady A, Pratico D, Vinciguerra M, Lip GYH, Franceschi C, Ren J. Inflammaging: mechanisms and role in the cardiac and vasculature. Trends Endocrinol Metab 2023; 34:373-387. [PMID: 37076375 DOI: 10.1016/j.tem.2023.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
Aging triggers a wide range of cellular and molecular aberrations in the body, giving rise to inflammation and associated diseases. In particular, aging is associated with persistent low-grade inflammation even in absence of inflammatory stimuli, a phenomenon commonly referred to as 'inflammaging'. Accumulating evidence has revealed that inflammaging in vascular and cardiac tissues is associated with the emergence of pathological states such as atherosclerosis and hypertension. In this review we survey molecular and pathological mechanisms of inflammaging in vascular and cardiac aging to identify potential targets, natural therapeutic compounds, and other strategies to suppress inflammaging in the heart and vasculature, as well as in associated diseases such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Manlio Vinciguerra
- Liverpool Centre for Cardiovascular Science, Liverpool Johns Moore University, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Claudio Franceschi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Alzayadneh EM, Shatanawi A, Caldwell RW, Caldwell RB. Methylglyoxal-Modified Albumin Effects on Endothelial Arginase Enzyme and Vascular Function. Cells 2023; 12:795. [PMID: 36899931 PMCID: PMC10001288 DOI: 10.3390/cells12050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Advanced glycation end products (AGEs) contribute significantly to vascular dysfunction (VD) in diabetes. Decreased nitric oxide (NO) is a hallmark in VD. In endothelial cells, NO is produced by endothelial NO synthase (eNOS) from L-arginine. Arginase competes with NOS for L-arginine to produce urea and ornithine, limiting NO production. Arginase upregulation was reported in hyperglycemia; however, AGEs' role in arginase regulation is unknown. Here, we investigated the effects of methylglyoxal-modified albumin (MGA) on arginase activity and protein expression in mouse aortic endothelial cells (MAEC) and on vascular function in mice aortas. Exposure of MAEC to MGA increased arginase activity, which was abrogated by MEK/ERK1/2 inhibitor, p38 MAPK inhibitor, and ABH (arginase inhibitor). Immunodetection of arginase revealed MGA-induced protein expression for arginase I. In aortic rings, MGA pretreatment impaired acetylcholine (ACh)-induced vasorelaxation, which was reversed by ABH. Intracellular NO detection by DAF-2DA revealed blunted ACh-induced NO production with MGA treatment that was reversed by ABH. In conclusion, AGEs increase arginase activity probably through the ERK1/2/p38 MAPK pathway due to increased arginase I expression. Furthermore, AGEs impair vascular function that can be reversed by arginase inhibition. Therefore, AGEs may be pivotal in arginase deleterious effects in diabetic VD, providing a novel therapeutic target.
Collapse
Affiliation(s)
- Ebaa M. Alzayadneh
- Department of Physiology and Biochemistry, School of Medicine, University of Jordan, Amman 11942, Jordan
| | - Alia Shatanawi
- Department of Pharmacology, School of Medicine, University of Jordan, Amman 11942, Jordan
| | - R. William Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
17
|
Myo1b Promotes Premature Endothelial Senescence and Dysfunction via Suppressing Autophagy: Implications for Vascular Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4654083. [PMID: 36654782 PMCID: PMC9842418 DOI: 10.1155/2023/4654083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Endothelial cell (EC) senescence characterized by an irreversible growth arrest leading to endothelial dysfunction has been implicated in vascular aging and aging-associated cardiovascular diseases. Autophagy plays a crucial role in the modulation of cellular senescence. Our previous showed that myosin 1b (Myo1b), one family of nonfilamentous class-1 myosin, was reported to be involved in the modulation of human smooth muscle cell senescence. However, the role of Myo1b in the modulation of EC senescence with links to autophagy has yet to be elucidated. In this study, we sought to explore the role of Myo1b in endothelial senescence and further elucidate the underlying mechanisms. Here, we show prominent upregulation of Myo1b in senescent ECs in comparison with nonsenescence ECs in both mRNA and protein expression levels. Silencing Myo1b in senescent cells ameliorates endothelial dysfunctions and reverses endothelial senescence phenotypic changes such as senescence-associated-β-galactosidase activity, cyclin-dependent kinase inhibitor p21WAF1, expression of vascular adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1), and the senescence-associated cytokines. In contrast, in nonsenescent cells, overexpressing Myo1b promotes endothelial senescence and suppresses autophagy through the impairment of autophagosome and lysosome fusion. The interaction between Myo1b and LRRK2 through Myo1b tail domain promotes intracellular calcium elevation, which results in the inhibition of autophagic flux. In vitro and in vivo aging models, Myo1b knockdown in senescent ECs and wild type-aged mice is able to enhance autophagy and ameliorate aging-associated endothelial dysfunction. Taken together, our studies reveal a new function for Myo1b, that is, to couple LRRK2 assembly to promote an increase in intracellular calcium level, which impairs the autophagosome-lysosome fusion, and ultimately the promotion of EC senescence and vascular aging.
Collapse
|
18
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
19
|
Hwang HJ, Kim N, Herman AB, Gorospe M, Lee JS. Factors and Pathways Modulating Endothelial Cell Senescence in Vascular Aging. Int J Mol Sci 2022; 23:ijms231710135. [PMID: 36077539 PMCID: PMC9456027 DOI: 10.3390/ijms231710135] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Aging causes a progressive decline in the structure and function of organs. With advancing age, an accumulation of senescent endothelial cells (ECs) contributes to the risk of developing vascular dysfunction and cardiovascular diseases, including hypertension, diabetes, atherosclerosis, and neurodegeneration. Senescent ECs undergo phenotypic changes that alter the pattern of expressed proteins, as well as their morphologies and functions, and have been linked to vascular impairments, such as aortic stiffness, enhanced inflammation, and dysregulated vascular tone. Numerous molecules and pathways, including sirtuins, Klotho, RAAS, IGFBP, NRF2, and mTOR, have been implicated in promoting EC senescence. This review summarizes the molecular players and signaling pathways driving EC senescence and identifies targets with possible therapeutic value in age-related vascular diseases.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Nayeon Kim
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon 22212, Korea
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon 22212, Korea
- Correspondence:
| |
Collapse
|
20
|
Zhang M, Shu H, Chen C, He Z, Zhou Z, Wang DW. Epoxyeicosatrienoic acid: A potential therapeutic target of heart failure with preserved ejection fraction. Biomed Pharmacother 2022; 153:113326. [PMID: 35759865 DOI: 10.1016/j.biopha.2022.113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) reduces the quality of life, costs substantial medical resources, and has a high mortality. However, we lack an effective therapy for HFpEF due to our limited knowledge of its mechanism. Therefore, it is crucial to explore novel therapeutics, such as those with endogenous protective roles, and seek new targeted therapies. Epoxyeicosatrienoic acids (EETs) are endogenous bioactive metabolites of arachidonic acids produced by cytochrome P450 (CYP) epoxygenases. EETs can function as endogenous cardioprotective factors with potent inhibitory roles in inflammation, endothelial dysfunction, cardiac remodeling, and fibrosis, which are the fundamental mechanisms of HFpEF. This suggests that EETs have the potential function to protect against HFpEF. Therefore, we present an overview of the ever-expanding world of EETs and how they might help alleviate the pathophysiology underlying HFpEF to provide new insights for research in this field.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
21
|
Kemps H, Dessy C, Dumas L, Sonveaux P, Alders L, Van Broeckhoven J, Font LP, Lambrichts S, Foulquier S, Hendrix S, Brône B, Lemmens R, Bronckaers A. Extremely low frequency electromagnetic stimulation reduces ischemic stroke volume by improving cerebral collateral blood flow. J Cereb Blood Flow Metab 2022; 42:979-996. [PMID: 35209740 PMCID: PMC9125494 DOI: 10.1177/0271678x221084410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extremely low frequency electromagnetic stimulation (ELF-EMS) has been considered as a neuroprotective therapy for ischemic stroke based on its capacity to induce nitric oxide (NO) signaling. Here, we examined whether ELF-EMS reduces ischemic stroke volume by stimulating cerebral collateral perfusion. Moreover, the pathway responsible for ELF-EMS-induced NO production was investigated. ELF-EMS diminished infarct growth following experimental stroke in collateral-rich C57BL/6 mice, but not in collateral-scarce BALB/c mice, suggesting that decreased lesion sizes after ELF-EMS results from improved collateral blood flow. In vitro analysis demonstrated that ELF-EMS increased endothelial NO levels by stimulating the Akt-/eNOS pathway. Furthermore, ELF-EMS augmented perfusion in the hind limb of healthy mice, which was mediated by enhanced Akt-/eNOS signaling. In healthy C57BL/6 mouse brains, ELF-EMS treatment increased cerebral blood flow in a NOS-dependent manner, whereas no improvement in cerebrovascular perfusion was observed in collateral-sparse BALB/c mice. In addition, ELF-EMS enhanced cerebral blood flow in both the contra- and ipsilateral hemispheres of C57BL/6 mice subjected to experimental ischemic stroke. In conclusion, we showed that ELF-EMS enhances (cerebro)vascular perfusion by stimulating NO production, indicating that ELF-EMS could be an attractive therapeutic strategy for acute ischemic stroke by improving cerebral collateral blood flow.
Collapse
Affiliation(s)
- Hannelore Kemps
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laurent Dumas
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lotte Alders
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Jana Van Broeckhoven
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Lena Perez Font
- Centro Nacional de Electromagnetismo Aplicado (CNEA), Universidad de Oriente, Santiago de Cuba, Cuba
| | - Sara Lambrichts
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands.,CARIM, School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Sven Hendrix
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Bert Brône
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium
| | - Robin Lemmens
- KU Leuven, - University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Hasselt University (UHasselt), Diepenbeek, Belgium
| |
Collapse
|
22
|
AKINCI UYSAL Ç, TEMİZ REŞİTOĞLU M, GÜDEN DS, ŞENOL SP, VEZİR Ö, SUCU N, TUNÇTAN B, MALİK KU, FIRAT S. Inhibition of mTOR protects against skeletal muscle and kidney injury following hindlimb ischemia-reperfusion in rats by regulating MERK1/ERK1/2 activity. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1021518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Rocca A, van Heeswijk RB, Richiardi J, Meyer P, Hullin R. The Cardiomyocyte in Heart Failure with Preserved Ejection Fraction-Victim of Its Environment? Cells 2022; 11:867. [PMID: 35269489 PMCID: PMC8909081 DOI: 10.3390/cells11050867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 12/07/2022] Open
Abstract
Heart failure (HF) with preserved left ventricular ejection fraction (HFpEF) is becoming the predominant form of HF. However, medical therapy that improves cardiovascular outcome in HF patients with almost normal and normal systolic left ventricular function, but diastolic dysfunction is missing. The cause of this unmet need is incomplete understanding of HFpEF pathophysiology, the heterogeneity of the patient population, and poor matching of therapeutic mechanisms and primary pathophysiological processes. Recently, animal models improved understanding of the pathophysiological role of highly prevalent and often concomitantly presenting comorbidity in HFpEF patients. Evidence from these animal models provide first insight into cellular pathophysiology not considered so far in HFpEF disease, promising that improved understanding may provide new therapeutical targets. This review merges observation from animal models and human HFpEF disease with the intention to converge cardiomyocytes pathophysiological aspects and clinical knowledge.
Collapse
Affiliation(s)
- Angela Rocca
- Department of Cardiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Ruud B. van Heeswijk
- Department of Diagnostic and Interventional Radiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.v.H.); (J.R.)
| | - Jonas Richiardi
- Department of Diagnostic and Interventional Radiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.v.H.); (J.R.)
| | - Philippe Meyer
- Cardiology Service, Department of Medical Specialties, Faculty of Science, Geneva University Hospital, University of Geneva, 1205 Geneva, Switzerland;
| | - Roger Hullin
- Department of Cardiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
24
|
Temiz-Resitoglu M, Guden DS, Senol SP, Vezir O, Sucu N, Kibar D, Yılmaz SN, Tunctan B, Malik KU, Sahan-Firat S. Pharmacological Inhibition of Mammalian Target of Rapamycin Attenuates Deoxycorticosterone Acetate Salt-Induced Hypertension and Related Pathophysiology: Regulation of Oxidative Stress, Inflammation, and Cardiovascular Hypertrophy in Male Rats. J Cardiovasc Pharmacol 2022; 79:355-367. [PMID: 34840266 DOI: 10.1097/fjc.0000000000001187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The present study aimed to explore the contribution of mammalian target of rapamycin (mTOR) in deoxycorticosterone acetate (DOCA) salt-induced hypertension and related pathophysiological changes in cardiovascular and renal tissues. DOCA salt loading resulted in an increase in systolic blood pressure, diastolic blood pressure, and mean blood pressure along with the activity of ribosomal protein S6, the effector protein of mTOR. Treatment with rapamycin, the selective inhibitor of mTOR, initiated at the fourth week of DOCA- salt administration normalized the systolic blood pressure and attenuated ribosomal protein S6 activity in the heart, aorta, and kidney. Cardiac and vascular hypertrophy, oxidative stress, and infiltration of macrophages (CD68+), the marker of inflammation, were also reduced in rapamycin-treated, DOCA-salt, hypertensive rats. In addition, renal hypertrophy and dysfunction were also reduced with rapamycin-treated hypertensive rats. Moreover, these pathophysiological changes in DOCA-salt hypertensive rats were associated with increased NADPH oxidase (NOX) activity, gp91phox (formerly NOX2) expression, ERK1/2, and p38 MAPK activities in the heart, aorta, and kidney were minimized by rapamycin. These data indicate that mTOR plays an important role in regulating blood pressure and the development of cardiovascular and renal pathophysiological changes, most likely due to increased NOX expression/activity, ERK1/2, and p38 MAPK activity with macrophages infiltration in the heart, kidney, and aorta. Pharmacological inhibition of mTOR and related signaling pathways could serve as a novel target for the treatment of hypertension.
Collapse
Affiliation(s)
| | - Demet S Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Sefika P Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Ozden Vezir
- Department of Cardiovascular Surgery, Mersin State Hospital, Mersin, Turkey
| | - Nehir Sucu
- Departments of Cardiovascular Surgery; and
| | - Deniz Kibar
- Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey ; and
| | - Sakir N Yılmaz
- Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey ; and
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
25
|
Fan L, Niu H, Zhao L, Yao R, He X, Lu B, Pang Z. Purendan alleviates non-alcoholic fatty liver disease in aged type 2 diabetic rats via regulating mTOR/S6K1/SREBP-1c signaling pathway. Pharmacotherapy 2022; 148:112697. [PMID: 35176709 DOI: 10.1016/j.biopha.2022.112697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
Older people are more likely to develop insulin resistance and lipid metabolism disorders. Purendan (PRD) is a clinically verified traditional Chinese medicine compound, which plays an obvious role in regulating lipid metabolism disorder and improving insulin sensitivity. Our study aimed to investigate the efficacy and mechanism of PRD on aged type 2 diabetes mellitus (T2DM) complicated with non-alcoholic fatty liver disease (NAFLD) rats. Sprague-Dawley rats (13 months) were fed with high-fat diet (HFD) and injected with low-dose STZ to replicate T2DM model. PRD was treated at three concentrations with metformin as a positive control. After administration, blood and liver tissue samples were collected to measure glucose metabolism indexes such as serum glucose and insulin, as well as lipid metabolism indexes such as TC, TG, LDL, HDL and FFA. Liver fat accumulation was observed by HE staining and oil red O staining. And protein expression levels of mTOR, p-mTOR, S6K1, p-S6K1 and SREBP-1c were detected by western blot. After PRD treatment, not only the insulin sensitivity and insulin resistance were significantly improved, but also the TC, TG, LDL, FFA, AST and ALT in serum and the lipid accumulation in liver tissue were significantly decreased. Moreover, PRD significantly down-regulated the expression of p-mTOR, p-S6K1 and SREBP-1c in liver tissues. In conclusion, PRD can alleviate NAFLD in aged T2DM rats by inhibiting the mTOR /S6K1/ SREBP-1c pathway.
Collapse
Affiliation(s)
- Lu Fan
- School of Pharmacy, Minzu University of China, Beijing, PR China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, PR China.
| | - Hongjuan Niu
- School of Pharmacy, Minzu University of China, Beijing, PR China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, PR China.
| | - Linyi Zhao
- School of Pharmacy, Minzu University of China, Beijing, PR China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, PR China.
| | - Rongfei Yao
- School of Pharmacy, Minzu University of China, Beijing, PR China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, PR China.
| | - Xu He
- School of Pharmacy, Minzu University of China, Beijing, PR China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, PR China.
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, PR China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, PR China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, PR China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, PR China.
| |
Collapse
|
26
|
Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022; 13:1057349. [PMID: 36465616 PMCID: PMC9713703 DOI: 10.3389/fendo.2022.1057349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.
Collapse
Affiliation(s)
- Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- *Correspondence: Mario Chiong,
| |
Collapse
|
27
|
La Favor JD, Pierre CJ, Bivalacqua TJ, Burnett AL. Rapamycin Suppresses Penile NADPH Oxidase Activity to Preserve Erectile Function in Mice Fed a Western Diet. Biomedicines 2021; 10:biomedicines10010068. [PMID: 35052748 PMCID: PMC8773370 DOI: 10.3390/biomedicines10010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a nutrient-sensitive cellular signaling kinase that has been implicated in the excess production of reactive oxygen species (ROS). NADPH oxidase-derived ROS have been implicated in erectile dysfunction pathogenesis. The objective of this study was to determine if mTOR is an activator of NADPH oxidase in the penis and to determine the functional relevance of this pathway in a translationally relevant model of diet-induced erectile dysfunction. Male mice were fed a control diet or a high-fat, high-sucrose Western style diet (WD) for 12 weeks and treated with vehicle or rapamycin for the final 4 weeks of the dietary intervention. Following the intervention, erectile function was assessed by cavernous nerve-stimulated intracavernous pressure measurement, in vivo ROS production was measured in the penis using a microdialysis approach, and relative protein contents from the corpus cavernosum were determined by Western blot. Erectile function was impaired in vehicle treated WD-mice and was preserved in rapamycin treated WD-mice. Penile NADPH oxidase-mediated ROS were elevated in WD-mice and suppressed by rapamycin treatment. Western blot analysis suggests mTOR activation with WD by increased active site phosphorylation of mTOR and p70S6K, and increased expression of NADPH oxidase subunits, all of which were suppressed by rapamycin. These data suggest that mTOR is an upstream mediator of NADPH oxidase in the corpus cavernosum in response to a chronic Western diet, which has an adverse effect on erectile function.
Collapse
Affiliation(s)
- Justin D. La Favor
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence: ; Tel.: +1-850-644-3149
| | - Clifford J. Pierre
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Trinity J. Bivalacqua
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.J.B.); (A.L.B.)
| | - Arthur L. Burnett
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.J.B.); (A.L.B.)
| |
Collapse
|
28
|
Merdji H, Schini-Kerth V, Meziani F, Toti F. Long-term cardiovascular complications following sepsis: is senescence the missing link? Ann Intensive Care 2021; 11:166. [PMID: 34851467 PMCID: PMC8636544 DOI: 10.1186/s13613-021-00937-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Among the long-term consequences of sepsis (also termed “post-sepsis syndrome”) the increased risk of unexplained cardiovascular complications, such as myocardial infarction, acute heart failure or stroke, is one of the emerging specific health concerns. The vascular accelerated ageing also named premature senescence is a potential mechanism contributing to atherothrombosis, consequently leading to cardiovascular events. Indeed, vascular senescence-associated major adverse cardiovascular events (MACE) are a potential feature in sepsis survivors and of the elderly at cardiovascular risk. In these patients, accelerated vascular senescence could be one of the potential facilitating mechanisms. This review will focus on premature senescence in sepsis regardless of age. It will highlight and refine the potential relationships between sepsis and accelerated vascular senescence. In particular, key cellular mechanisms contributing to cardiovascular events in post-sepsis syndrome will be highlighted, and potential therapeutic strategies to reduce the cardiovascular risk will be further discussed. With improved management of patients, sepsis survivors are increasing each year. Early cardiovascular complications, of yet undeciphered mechanisms, are an emerging health issue in post-sepsis syndrome. Premature senescence of endothelium and vascular tissue is proven an accelerated process of atherogenesis in young septic rats. An increasing body of clinical evidence point at endothelial senescence in the initiation and development of atherosclerosis. Prevention of premature senescence by senotherapy and cardiological follow-up could improve long-term septic patients’ outcomes.
Collapse
Affiliation(s)
- Hamid Merdji
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France.,Department of Intensive Care (Service de Médecine Intensive-Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, 1, place de l'Hôpital, 67091, Strasbourg Cedex, France
| | - Valérie Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France.,Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | - Ferhat Meziani
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France. .,Department of Intensive Care (Service de Médecine Intensive-Réanimation), Nouvel Hôpital Civil, Hôpital Universitaire de Strasbourg, 1, place de l'Hôpital, 67091, Strasbourg Cedex, France.
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), CRBS (Centre de Recherche en Biomédecine de Strasbourg), FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg, Strasbourg, France.,Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
29
|
Adekunle AO, Adzika GK, Mprah R, Ndzie Noah ML, Adu-Amankwaah J, Rizvi R, Akhter N, Sun H. Predominance of Heart Failure With Preserved Ejection Fraction in Postmenopausal Women: Intra- and Extra-Cardiomyocyte Maladaptive Alterations Scaffolded by Estrogen Deficiency. Front Cell Dev Biol 2021; 9:685996. [PMID: 34660569 PMCID: PMC8511782 DOI: 10.3389/fcell.2021.685996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains a public health concern as it is associated with high morbidity and death rates. In particular, heart failure with preserved ejection fraction (HFpEF) represents the dominant (>50%) form of HF and mostly occurring among postmenopausal women. Hence, the initiation and progression of the left ventricular diastolic dysfunctions (LVDD) (a typically clinical manifestation of HFpEF) in postmenopausal women have been attributed to estrogen deficiency and the loss of its residue cardioprotective effects. In this review, from a pathophysiological and immunological standpoint, we discuss the probable multiple pathomechanisms resulting in HFpEF, which are facilitated by estrogen deficiency. The initial discussions recap estrogen and estrogen receptors (ERs) and β-adrenergic receptors (βARs) signaling under physiological/pathological states to facilitate cardiac function/dysfunction, respectively. By reconciling these prior discussions, attempts were made to explain how the loss of estrogen facilitates the disruptions both ERs and βARs-mediated signaling responsible for; the modulation of intra-cardiomyocyte calcium homeostasis, maintenance of cardiomyocyte cytoskeletal and extracellular matrix, the adaptive regulation of coronary microvascular endothelial functions and myocardial inflammatory responses. By scaffolding the disruption of these crucial intra- and extra-cardiomyocyte physiological functions, estrogen deficiency has been demonstrated to cause LVDD and increase the incidence of HFpEF in postmenopausal women. Finally, updates on the advancements in treatment interventions for the prevention of HFpEF were highlighted.
Collapse
Affiliation(s)
| | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | | | - Nazma Akhter
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
30
|
Sridharan B, Lee MJ. Ketogenic diet: A promising neuroprotective composition for managing Alzheimer's diseases and its pathological mechanisms. Curr Mol Med 2021; 22:640-656. [PMID: 34607541 DOI: 10.2174/1566524021666211004104703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022]
Abstract
Ketogenic diet and ketone bodies gained significant attention in recent years due to their ability to influence the specific energy metabolism and restoration of mitochondrial homeostasis that can help in hindering the progression of many metabolic diseases including diabetes and neurodegenerative diseases. Ketogenic diet consists of high fat and low carbohydrate contents which makes the body glucose deprived and rely on alternative sources (ketone bodies) for energy. It has been initially designed and supplemented for the treatment of epilepsy and later its influence on many energy-deriving biochemical pathways made it a highly sorted food supplement for many metabolic diseases and even by healthy individuals for body building and calorie restriction. Among the reported therapeutic action over a range of diseases, neurodegenerative disorders especially Alzheimer's disease gained the attention of many researchers and clinicians because of its potency and its easier supplementation as a food additive. Complex pathology and multiple influencing factors of Alzheimer's disease make exploration of its therapeutic strategies a demanding task. It was a common phenomenon that energy deprivation in neurological disorders including Alzheimer's disease, to progress rapidly. The ability of ketone bodies to stabilize the mitochondrial energy metabolism makes it a suitable intervening agent. In this review, we will discuss various research progress made with regards to ketone bodies/ketogenic diet for management of Alzheimer's disease and elaborate in detail about the mechanisms that are influenced during their therapeutic action.
Collapse
Affiliation(s)
- Badrinathan Sridharan
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung. Taiwan
| | - Meng-Jen Lee
- Department of Applied Chemistry, Chaoyang University of Technology, 168 Jifeng East Road, Taichung. Taiwan
| |
Collapse
|
31
|
Zhou DD, Luo M, Huang SY, Saimaiti A, Shang A, Gan RY, Li HB. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932218. [PMID: 34336123 PMCID: PMC8289612 DOI: 10.1155/2021/9932218] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
The aging of population has become an issue of great concern because of its rapid increase. Aging is an important risk factor of many chronic diseases. Resveratrol could be found in many foods, such as grapes, red wine, peanuts, and blueberries. Many studies reported that resveratrol possessed various bioactivities, such as antioxidant, anti-inflammatory, cardiovascular protection, anticancer, antidiabetes mellitus, antiobesity, neuroprotection, and antiaging effects. The antiaging mechanisms of resveratrol were mainly ameliorating oxidative stress, relieving inflammatory reaction, improving mitochondrial function, and regulating apoptosis. Resveratrol could be an effective and safe compound for the prevention and treatment of aging and age-related diseases. In this review, we summarize the effects of resveratrol on aging, life extension, and several age-related diseases, with special attention paid to the mechanisms of antiaging action.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
32
|
Mammedova JT, Sokolov AV, Freidlin IS, Starikova EA. The Mechanisms of L-Arginine Metabolism Disorder in Endothelial Cells. BIOCHEMISTRY (MOSCOW) 2021; 86:146-155. [PMID: 33832413 DOI: 10.1134/s0006297921020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
L-arginine is a key metabolite for nitric oxide production by endothelial cells, as well as signaling molecule of the mTOR signaling pathway. mTOR supports endothelial cells homeostasis and regulates activity of L-arginine-metabolizing enzymes, endothelial nitric oxide synthase, and arginase II. Disruption of the L-arginine metabolism in endothelial cells leads to the development of endothelial dysfunction. Conflicting results of the use of L-arginine supplement to improve endothelial function reveals a controversial role of the amino acid in the endothelial cell biology. The review is aimed at analysis of the current data on the role of L-arginine metabolism in the development of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Alexey V Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Irina S Freidlin
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | | |
Collapse
|
33
|
Hu D, Xie F, Xiao Y, Lu C, Zhong J, Huang D, Chen J, Wei J, Jiang Y, Zhong T. Metformin: A Potential Candidate for Targeting Aging Mechanisms. Aging Dis 2021; 12:480-493. [PMID: 33815878 PMCID: PMC7990352 DOI: 10.14336/ad.2020.0702] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is a universal phenomenon in all biological organisms, defined by the loss of reproductive capacity and a progressive decline in fitness. In humans, aging is further associated with an increased incidence of disease conditions. The current aging population has become a primary public burden of the 21st century. Therefore, to delay the aging process and maintain fitness in the aging population, the discovery of novel anti-aging drugs remains an urgent need. In recent years, metformin, a widely used hypoglycemic drug, has attracted growing attention in the field of anti-aging research. Reportedly, numerous studies have indicated that metformin regulates aging-related pathways, possibly delaying the aging process by modulating these pathways. The elucidation of these anti-aging effects may provide insights into the age-retarding potential of metformin. The present review focuses on the predominant molecular mechanisms associated with aging, as well as the anti-aging effects of metformin.
Collapse
Affiliation(s)
- Die Hu
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangfang Xie
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yongwei Xiao
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Chen Lu
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,3Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Defa Huang
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,4Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jifu Wei
- 4Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Jiang
- 5Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tianyu Zhong
- 1The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,2Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,4Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
34
|
Di Pietrantonio N, Palmerini C, Pipino C, Baldassarre MPA, Bologna G, Mohn A, Giannini C, Lanuti P, Chiarelli F, Pandolfi A, Di Pietro N. Plasma from obese children increases monocyte-endothelial adhesion and affects intracellular insulin signaling in cultured endothelial cells: Potential role of mTORC1-S6K1. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166076. [PMID: 33422633 DOI: 10.1016/j.bbadis.2021.166076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Childhood obesity is characterized by the loss of vascular insulin sensitivity along with altered oxidant-antioxidant state and chronic inflammation, which play a key role in the onset of endothelial dysfunction. We previously demonstrated a reduced insulin-stimulated Nitric Oxide (NO) bioavailability in Human Umbilical Vein Endothelial cells (HUVECs) cultured with plasma from obese pre-pubertal children (OB) compared to those cultured with plasma of normal-weight children (CTRL). However, mechanisms underlying endothelial dysfunction in childhood obesity remains poorly understood. Hence, the present study aimed to better investigate these mechanisms, also considering a potential involvement of mammalian Target Of Rapamycin Complex1 (mTORC1)-ribosomal protein S6 Kinase beta1 (S6K1) pathway. OB-children (N = 32, age: 9.2 ± 1.7; BMI z-score: 2.72 ± 0.31) had higher fasting insulin levels and increased HOMA-IR than CTRL-children (N = 32, age: 8.8 ± 1.2; BMI z-score: 0.33 ± 0.75). In vitro, HUVECs exposed to OB-plasma exhibited significant increase in Reactive Oxygen Species (ROS) levels, higher vascular and intercellular adhesion molecules exposure, together with increased monocytes-endothelial interaction. This was associated with unbalanced pro- and anti-atherogenic endothelial insulin stimulated signaling pathways, as measured by increased Mitogen Activated Protein Kinase (MAPK) and decreased Insulin Receptor Substrate-1 (IRS-1)/protein kinase B (Akt)/ endothelial NO Synthase (eNOS) phosphorylation levels, together with augmented S6K1 activation. Interestingly, inhibition of mTORC1-S6K1 pathway using rapamycin significantly restored the IRS-1/Akt/eNOS activation, suggesting a feedback regulation of IRS-1/Akt signal through S6K1. Overall, our in vitro data shed light on new mechanisms underlying the onset of endothelial dysfunction in childhood obesity.
Collapse
Affiliation(s)
- Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, Italy; Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Italy
| | - Carola Palmerini
- Department of Medical, Oral and Biotechnological Sciences, Italy; Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, Italy; Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Italy
| | - Maria Pompea Antonia Baldassarre
- Department of Medicine and Aging Sciences, Italy; Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Italy
| | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, Italy; Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Italy
| | - Angelika Mohn
- Pediatrics Division, Hospital SS. Annunziata, Chieti, Italy
| | - Cosimo Giannini
- Department of Medicine and Aging Sciences, Italy; Pediatrics Division, Hospital SS. Annunziata, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Italy; Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Italy
| | - Francesco Chiarelli
- Department of Medicine and Aging Sciences, Italy; Pediatrics Division, Hospital SS. Annunziata, Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Italy; Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, Italy; Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University G. d'Annunzio of Chieti-Pescara, Italy.
| |
Collapse
|
35
|
Plant Polyphenols-Biofortified Foods as a Novel Tool for the Prevention of Human Gut Diseases. Antioxidants (Basel) 2020; 9:antiox9121225. [PMID: 33287404 PMCID: PMC7761854 DOI: 10.3390/antiox9121225] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Plant food biofortification is recently receiving remarkable attention, as it aims to increase the intake of minerals, vitamins, or antioxidants, crucial for their contribution to the general human health status and disease prevention. In this context, the study of the plant’s secondary metabolites, such as polyphenols, plays a pivotal role for the development of a new generation of plant crops, compensating, at least in part, the low nutritional quality of Western diets with a higher quality of dietary sources. Due to the prevalent immunomodulatory activity at the intestinal level, polyphenols represent a nutritionally relevant class of plant secondary metabolites. In this review, we focus on the antioxidant and anti-inflammatory properties of different classes of polyphenols with a specific attention to their potential in the prevention of intestinal pathological processes. We also discuss the latest biotechnology strategies and new advances of genomic techniques as a helpful tool for polyphenols biofortification and the development of novel, healthy dietary alternatives that can contribute to the prevention of inflammatory bowel diseases.
Collapse
|
36
|
Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev 2020; 64:101194. [PMID: 33091597 PMCID: PMC7710569 DOI: 10.1016/j.arr.2020.101194] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
The progressive increase in lifespan over the past century carries with it some adversity related to the accompanying burden of debilitating diseases prevalent in the older population. This review focuses on oxidative stress as a major mechanism limiting longevity in general, and healthful aging, in particular. Accordingly, the first goal of this review is to discuss the role of oxidative stress in limiting longevity, and compare healthful aging and its mechanisms in different longevity models. Secondly, we discuss common signaling pathways involved in protection against oxidative stress in aging and in the associated diseases of aging, e.g., neurological, cardiovascular and metabolic diseases, and cancer. Much of the literature has focused on murine models of longevity, which will be discussed first, followed by a comparison with human models of longevity and their relationship to oxidative stress protection. Finally, we discuss the extent to which the different longevity models exhibit the healthful aging features through physiological protective mechanisms related to exercise tolerance and increased β-adrenergic signaling and also protection against diabetes and other metabolic diseases, obesity, cancer, neurological diseases, aging-induced cardiomyopathy, cardiac stress and osteoporosis.
Collapse
Affiliation(s)
- Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA.
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Marko Oydanich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Tolga Berkman
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA
| | - Rotem Naftalovich
- Department of Anesthesiology, New Jersey Medical School, Newark, New Jersey, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
37
|
Huang Y, Wang J, Luo M, Yan D, Zhang C. Carnosine attenuates vascular smooth muscle cells calcification through mTOR signaling pathway. Aging Med (Milton) 2020; 3:153-158. [PMID: 33103035 PMCID: PMC7574631 DOI: 10.1002/agm2.12125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/23/2020] [Accepted: 08/23/2020] [Indexed: 01/10/2023] Open
Abstract
Objective Vascular calcification is prevalent in the aging population, as we know that arterial calcification is associated with aging. Recent studies have demonstrated that carnosine, a naturally occurring dipeptide, performs the treatment of aging‐related diseases, such as atherosclerosis and type 2 diabetes. Here, we investigated the role of carnosine in a calcification model of vascular smooth muscle cells (VSMCs). Methods In this research, we used an in vitro model of VSMC calcification to investigate the role of carnosine in the progression of rat VSMC calcification. Results Carnosine treatment attenuated calcium deposition in a dose‐dependent manner, detected by Alizarin Red S staining and calcium content assay. Carnosine also reduced the protein level of Runx2, bone morphogenetic protein 2 (BMP‐2), and cellular reactive oxygen species (ROS) production. Further, carnosine inhibited the activation of the mammalian target of rapamycin (mTOR) pathway. Conclusion Carnosine attenuated the VSMC calcification via inhibition of osteoblastic transdifferentiation and the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yi Huang
- Department of Geriatrics Institute of Gerontology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jinli Wang
- Department of Geriatrics Institute of Gerontology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Mandi Luo
- Department of Geriatrics Institute of Gerontology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dan Yan
- Department of Geriatrics Institute of Gerontology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Cuntai Zhang
- Department of Geriatrics Institute of Gerontology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
38
|
Shi HZ, Zeng JC, Shi SH, Giannakopoulos H, Zhang QZ, Le AD. Extracellular Vesicles of GMSCs Alleviate Aging-Related Cell Senescence. J Dent Res 2020; 100:283-292. [PMID: 33073684 DOI: 10.1177/0022034520962463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Healthy aging is a complex biological process with progressive accumulation of senescent cells characterized by stable cell cycle arrest, resulting in impaired homeostasis, regenerative potential, and gradual functional decline in multiple tissues and organs, whereby the aberrant activation of mammalian target of rapamycin (mTOR) signaling networks plays a central role. Herein, we explored the effects of extracellular vesicles (EVs) released by gingiva-derived mesenchymal stem cells (GMSC-EVs) on oxidative stress-induced cellular senescence in human endothelial cells and skin fibroblasts and their antiaging potentials. Our results showed that GMSC-EVs robustly abrogated oxidative stress-induced upregulation in the expression of cellular senescence-related genes, such as β-galactosidase, p21, p53, and γH2AX, and mTOR/pS6 signaling pathway, in human umbilical vein endothelial cells (HUVECs) and skin fibroblasts. Meanwhile, GMSC-EVs restored oxidative stress-induced impairment in proliferation and tube formation by HUVECs. Systemic administration of GMSC-EVs attenuated aging-associated elevation in the expression levels of p21, mTOR/pS6, interleukin 6, and tumor necrosis factor α in skin and heart tissues of aged mice. These findings suggest that GMSC-EVs could be a potential alternative source of cell-free product for attenuation of aging-related skin and vascular dysfunctions due to their potent inhibitory effects on oxidative stress-induced cellular senescence in endothelial cells and skin fibroblasts.
Collapse
Affiliation(s)
- H Z Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Health Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - J C Zeng
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - S H Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - H Giannakopoulos
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | - Q Z Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| |
Collapse
|
39
|
Yin Z, Park R, Choi BM. Isoparvifuran isolated from Dalbergia odorifera attenuates H 2O 2-induced senescence of BJ cells through SIRT1 activation and AKT/mTOR pathway inhibition. Biochem Biophys Res Commun 2020; 533:925-931. [PMID: 33010892 DOI: 10.1016/j.bbrc.2020.09.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023]
Abstract
Isoparvifuran is a benzofuran compound isolated from the heartwood of Dalbergia odorifera. Related research reported that isoparvifuran has antioxidant property. However, it is unclear whether isoparvifuran has anti-aging effects. In this research, we established an aging model, hydrogen peroxide (H2O2)-induced BJ cell senescence, to explore the protective effect of isoparvifuran on cell senescence and its related mechanisms. Our results revealed that isoparvifuran obviously attenuated H2O2-induced cell senescence, increased the cell proliferation rate,and reversed senescence-associated molecular markers expression such as cyclin D1, pRb, caveolin-1, ace-p53, p21 and p16. Moreover, isoparvifuran dose and time dependently increased the expression level of Sirtuin 1 (SIRT1) in BJ cells. The inhibition of SIRT1 obviously reversed the reduction of SA-β-gal activity and the alteration of senescence-associated molecular markers induced by isoparvifuran. Additionally, isoparvifuran also inhibited H2O2-induced AKT and S6 phosphorylation and increase of SA-β-gal activity. In summary, isoparvifuran protects BJ cells from H2O2-induced premature senescence, the anti-senescence effect of isoparvifuran is associated with the activation of SIRT1 and the suppression of AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zengsheng Yin
- Department of Anesthesiology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China; Department of Biochemistry, School of Medicine, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Byung-Min Choi
- Department of Biochemistry, School of Medicine, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
40
|
Lee HY, Kim HK, Hoang TH, Yang S, Kim HR, Chae HJ. The correlation of IRE1α oxidation with Nox4 activation in aging-associated vascular dysfunction. Redox Biol 2020; 37:101727. [PMID: 33010578 PMCID: PMC7530295 DOI: 10.1016/j.redox.2020.101727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress attributable to the activation of a Nox4-containing NADPH oxidase is involved in aging-associated vascular dysfunction. However, the Nox4-induced signaling mechanism for the vascular alteration in aging remains unclear. In an aged aorta, the expression of Nox4 mRNA and protein by Nox family of genes was markedly increased compared with a young aorta. Nox4 localization mainly to ER was also established. In the aorta of Nox4 WT mice aged 23–24 months (aged), reactive oxygen species (ROS) and endoplasmic reticulum (ER)/oxidative stress were markedly increased compared with the counter KO mice. Furthermore, endothelial functions including eNOS coupling process and acetylcholine-induced vasodilation were significantly disturbed in the aged WT, slightly affected in the counter KO aorta. Consistently, in d-galactose-induced in vitro aging condition, ER-ROS and its associated ER Nox4 expression and activity were highly increased. Also, in chronic d-galactose-treated condition, IRE1α phosphorylation and XBP-1 splicing and were transiently increased, but IRE1α sulfonation was robustly increased in the aging Nox4 WT condition when compared to the counter KO condition. In vitro D-gal-induced aging study, the phenomenon were abrogated with Nox4 knock-down condition and was significantly decreased in GKT, Nox4 inhibitor and 4-PBA, ER chemical chaperone-treated human umbilical vein endothelial cells. The state of Nox4-based ER redox imbalance/ROS accumulation is suggested to determine the pathway “the UPR; IRE1α phosphorylation and XBP-1 splicing and the UPR failure; IRE1α cysteine-based oxidation, especially sulfonation, finally controlling aging-associated vascular dysfunction.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea; Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea
| | - Hyun-Kyoung Kim
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - The-Hiep Hoang
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea; Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan, 152, Republic of Korea
| | - Han-Jung Chae
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea; School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54907, Republic of Korea.
| |
Collapse
|
41
|
Castillo EC, Vázquez-Garza E, Yee-Trejo D, García-Rivas G, Torre-Amione G. What Is the Role of the Inflammation in the Pathogenesis of Heart Failure? Curr Cardiol Rep 2020; 22:139. [PMID: 32910299 PMCID: PMC7481763 DOI: 10.1007/s11886-020-01382-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW In heart failure, whether it is associated with reduced or preserved ejection fraction, the immune system is activated and contributes to heart remodeling and impaired function. RECENT FINDINGS Studies indicate that cells of the immune system not only play a role in the pathology but are also critical regulators of heart function. Knowledge about the role of the immune system driving heart failure will lead to the development of new targets to this system, particularly in those patients that, despite the apparent wellness, relapse and worsen. In this review, we will address the diverse mechanisms that trigger inflammation and their impact on heart failure progression.
Collapse
Affiliation(s)
- Elena C. Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - Eduardo Vázquez-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - David Yee-Trejo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garza García, NL Mexico
- Tecnologico de Monterrey, Centro de Medicina Funcional, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garzar García, NL Mexico
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710 Monterrey, NL Mexico
- Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, 66278 San Pedro Garza García, NL Mexico
- De Bakey CRC, The Methodist Hospital, Cornell University, Houston, TX USA
| |
Collapse
|
42
|
Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan. Ageing Res Rev 2020; 62:101119. [PMID: 32603841 DOI: 10.1016/j.arr.2020.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Protein aggregation is a phenomenon of major relevance in neurodegenerative and neuromuscular disorders, cataracts, diabetes and many other diseases. Research has unveiled that proteins also aggregate in multiple tissues during healthy aging yet, the biological and biomedical relevance of this apparently asymptomatic phenomenon remains to be understood. It is known that proteome homeostasis (proteostasis) is maintained by a balanced protein synthesis rate, high protein synthesis accuracy, efficient protein folding and continual tagging of damaged proteins for degradation, suggesting that protein aggregation during healthy aging may be associated with alterations in both protein synthesis and the proteostasis network (PN) pathways. In particular, dysregulation of protein synthesis and alterations in translation fidelity are hypothesized to lead to the production of misfolded proteins which could explain the occurrence of age-related protein aggregation. Nevertheless, some data on this topic is controversial and the biological mechanisms that lead to widespread protein aggregation remain to be elucidated. We review the recent literature about the age-related decline of proteostasis, highlighting the need to build an integrated view of protein synthesis rate, fidelity and quality control pathways in order to better understand the proteome alterations that occur during aging and in age-related diseases.
Collapse
|
43
|
Reho JJ, Guo DF, Rahmouni K. Mechanistic Target of Rapamycin Complex 1 Signaling Modulates Vascular Endothelial Function Through Reactive Oxygen Species. J Am Heart Assoc 2020; 8:e010662. [PMID: 31020916 PMCID: PMC6512105 DOI: 10.1161/jaha.118.010662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The mechanistic target of rapamycin complex 1 (mTORC1) is an important intracellular energy sensor that regulates gene expression and protein synthesis through its downstream signaling components, the S6‐kinase and the ribosomal S6 protein. Recently, signaling arising from mTORC1 has been implicated in regulation of the cardiovascular system with implications for disease. Here, we examined the contribution of mTORC1 signaling to the regulation of vascular function. Methods and Results Activation of mTORC1 pathway in aortic rings with leucine or an adenoviral vector expressing a constitutively active S6‐kinase reduces endothelial‐dependent vasorelaxation in an mTORC1‐dependent manner without affecting smooth muscle relaxation responses. Moreover, activation of mTORC1 signaling in endothelial cells increases reactive oxygen species (ROS) generation and ROS gene expression resulting in a pro‐oxidant gene environment. Blockade of ROS signaling with Tempol restores endothelial function in vascular rings with increased mTORC1 activity indicating a crucial interaction between mTORC1 and ROS signaling. We then tested the role of nuclear factor‐κB transcriptional complex in connecting mTORC1 and ROS signaling in endothelial cells. Blockade of inhibitor of nuclear factor κ‐B kinase subunit β activity with BMS‐345541 prevented the increased ROS generation associated with increased mTORC1 activity in endothelial cells but did not improve vascular endothelial function in aortic rings with increased mTORC1 and ROS signaling. Conclusions These results implicate mTORC1 as a critical molecular signaling hub in the vascular endothelium in mediating vascular endothelial function through modulation of ROS signaling.
Collapse
Affiliation(s)
- John J Reho
- 1 Department of Pharmacology University of Iowa Carver College of Medicine Iowa City IA
| | - Deng-Fu Guo
- 1 Department of Pharmacology University of Iowa Carver College of Medicine Iowa City IA
| | - Kamal Rahmouni
- 1 Department of Pharmacology University of Iowa Carver College of Medicine Iowa City IA.,2 Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,3 Fraternal Order of Eagles Diabetes Research Center University of Iowa Iowa City IA
| |
Collapse
|
44
|
Khor ES, Wong PF. The roles of MTOR and miRNAs in endothelial cell senescence. Biogerontology 2020; 21:517-530. [PMID: 32246301 DOI: 10.1007/s10522-020-09876-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Accumulation of senescent cells in vascular endothelium is known to contribute to vascular aging and increases the risk of developing cardiovascular diseases. The involvement of classical pathways such as p53/p21 and p16/pRB in cellular senescence are well described but there are emerging evidence supporting the increasingly important role of mammalian target of rapamycin (MTOR) as driver of cellular senescence via these pathways or other effector molecules. MicroRNAs (miRNAs) are a highly conserved group of small non-coding RNAs (18-25 nucleotides), instrumental in modulating the expression of target genes associated with various biological and cellular processes including cellular senescence. The inhibition of MTOR activity is predominantly linked to cellular senescence blunting and prolonged lifespan in model organisms. To date, known miRNAs regulating MTOR in endothelial cell senescence remain limited. Herein, this review discusses the roles of MTOR and MTOR-associated miRNAs in regulating endothelial cell senescence, including the crosstalk between MTOR Complex 1 (MTORC1) and cell cycle pathways and the emerging role of MTORC2 in cellular senescence. New insights on how MTOR and miRNAs coordinate underlying molecular mechanisms of endothelial senescence will provide deeper understanding and clarity to the complexity of the regulation of cellular senescence.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
45
|
Liu Z, Liao W, Yin X, Zheng X, Li Q, Zhang H, Zheng L, Feng X. Resveratrol-induced brown fat-like phenotype in 3T3-L1 adipocytes partly via mTOR pathway. Food Nutr Res 2020; 64:3656. [PMID: 32047421 PMCID: PMC6983979 DOI: 10.29219/fnr.v64.3656] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Background Browning of white adipose tissues (WAT) is recognized as a novel way to combat obesity and its related comorbidities. Thus, a lot of dietary agents contributing to browning of WAT have been identified. Objective In this study, we try to explore the mechanism of the browning of WAT induced by resveratrol (Res) in 3T3-L1 adipocytes. Methods The levels of cell viability and lipid accumulation were evaluated under different concentrations of Res. Cell signaling pathway analysis was performed to investigate the possible mechanisms of the WAT browning effect of Res in 3T3-L1 cells. Results We found that Res induced the brown fat-like phenotype by activating protein expressions of brown adipocyte-specific markers, such as peroxisome proliferator-activated receptor gamma (PPAR-γ), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), and uncoupling protein 1 (UCP1). Besides, Res reduced lipid accumulation, as shown by Oil Red O staining. The increased small lipid droplets implied that Res-treated 3T3-L1 adipocytes had some features of brown adipocytes. The brown fat-like phenotype in 3T3-L1 adipocytes induced by Res was possibly mediated by activation of mammalian target of rapamycin (mTOR), as brown adipocyte-specific markers were decreased by rapamycin, an inhibitor of mTOR and the MHY1485 treatment, an activator of mTOR, showed the similar effect of Res on browning markers. Conclusions Res induced brown-like adipocyte phenotype in 3T3-L1 adipocytes partly via mTOR pathway, which provided new insights into the utilization of Res to prevent obesity and related comorbidities.
Collapse
Affiliation(s)
- Zihui Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Weiyao Liao
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Xiaohan Yin
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Xinjie Zheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Qingrong Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Hongmin Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Lin Zheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| | - Xiang Feng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
| |
Collapse
|
46
|
Shimizu I, Minamino T. Cellular Senescence in Arterial Diseases. J Lipid Atheroscler 2020; 9:79-91. [PMID: 32821723 PMCID: PMC7379072 DOI: 10.12997/jla.2020.9.1.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-proliferation potency is limited, as cells cannot proceed through the cell cycle continually. Instead, they eventually show an irreversible arrest of proliferation, commonly referred to as cellular senescence. Following the initial discovery of this phenomenon by Hayflick et al., studies have indicated that cells are also destined to undergo aging. In addition to the irreversible termination of proliferation, senescent cells are characterized by a flattened and enlarged morphology. Senescent cells become pro-inflammatory and contribute to the initiation and maintenance of sustained chronic sterile inflammation. Aging is associated with the accumulation of senescent cells in the cardiovascular system, and in general these cells are considered to be pathogenic because they mediate vascular remodeling. Recently, genetic and pharmacological approaches have enabled researchers to eliminate senescent cells both in vitro and in vivo. The term “senolysis” is now used to refer to the depletion of senescent cells, and evidence indicates that senolysis contributes to the reversal of age-related pathogenic phenotypes without the risk of tumorigenesis. The concept of senolysis has opened new avenues in research on aging, and senolysis may be a promising therapeutic approach for combating age-related disorders, including arterial diseases.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
47
|
Sanches-Silva A, Testai L, Nabavi SF, Battino M, Pandima Devi K, Tejada S, Sureda A, Xu S, Yousefi B, Majidinia M, Russo GL, Efferth T, Nabavi SM, Farzaei MH. Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol Res 2020; 152:104626. [PMID: 31904507 DOI: 10.1016/j.phrs.2019.104626] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases comprise of non-communicable disorders that involve the heart and/or blood vessels and have become the leading cause of death worldwide with increased prevalence by age. mTOR is a serine/threonine-specific protein kinase which plays a central role in many physiological processes including cardiovascular diseases, and also integrates various proliferative signals, nutrient and energy abundance and stressful situations. mTOR also acts as central regulator during chronic stress, mitochondrial dysfunction and deregulated autophagy which are associated with senescence. Under oxidative stress, mTOR has been reported to exert protective effects regulating apoptosis and autophagy processes and favoring tissue repair. On the other hand, inhibition of mTOR has been suggested to have beneficial effects against atherosclerosis, cardiac hypertrophy and heart failure, and also in extending the lifespan. In this aspect, the use of drugs or natural compounds, which can target mTOR is an interesting approach in order to reduce the number of deaths caused by cardiovascular disease. In the present review, we intend to shed light on the possible effects and molecular mechanism of natural agents like polyphenols via regulating mTOR.
Collapse
Affiliation(s)
- Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Vairão, Vila do Conde, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, Institut d'Investigació Sanitària Illes Balears (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Institut d'Investigació Sanitària Illes Balears (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Farzaei
- Pharmaceutical Sciences Research center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
48
|
Luo W, Wang Y, Yang H, Dai C, Hong H, Li J, Liu Z, Guo Z, Chen X, He P, Li Z, Li F, Jiang J, Liu P, Li Z. Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging (Albany NY) 2019; 10:1722-1744. [PMID: 30048241 PMCID: PMC6075439 DOI: 10.18632/aging.101506] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022]
Abstract
AIM Premature senescence of vascular endothelial cells is a leading cause of various cardiovascular diseases. Therapies targeting endothelial senescence would have important clinical implications. The present study was aimed to evaluate the potential of heme oxygenase-1 (HO-1) as a therapeutic target for endothelial senescence. METHODS AND RESULTS Upregulation of HO-1 by Hemin or adenovirus infection reversed H2O2-induced senescence in human umbilical vein endothelial cells (HUVECs); whereas depletion of HO-1 by siRNA or HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) triggered HUVEC senescence. Mechanistically, overexpression of HO-1 enhanced the interaction between HO-1 and endothelial nitric oxide synthase (eNOS), and promoted the interaction between eNOS and its upstream kinase Akt, thus resulting in an enhancement of eNOS phosphorylation at Ser1177 and a subsequent increase of nitric oxide (NO) production. Moreover, HO-1 induction prevented the decrease of eNOS dimer/monomer ratio stimulated by H2O2 via its antioxidant properties. Contrarily, HO-1 silencing impaired eNOS phosphorylation and accelerated eNOS uncoupling. In vivo, Hemin treatment alleviated senescence of endothelial cells of the aorta from spontaneously hypertensive rats, through upregulating eNOS phosphorylation at Ser1177. CONCLUSIONS HO-1 ameliorated endothelial senescence through enhancing eNOS activation and defending eNOS uncoupling, suggesting that HO-1 is a potential target for treating endothelial senescence.
Collapse
Affiliation(s)
- Wenwei Luo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Wang
- Infinitus (China) Co. Ltd, Guangzhou 510663, China
| | - Hanwei Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunmei Dai
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huiling Hong
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingyan Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiping Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhen Guo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinyi Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping He
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ziqing Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fang Li
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianmin Jiang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
49
|
Majewski M, Ognik K, Juśkiewicz J. The interaction between resveratrol and two forms of copper as carbonate and nanoparticles on antioxidant mechanisms and vascular function in Wistar rats. Pharmacol Rep 2019; 71:862-869. [PMID: 31408785 DOI: 10.1016/j.pharep.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Experimental studies have emphasized that cardiovascular alterations can be improved by the long-term use of resveratrol (trans-3,5,4'-trihydroxystilbene; RSV) as well as dietary copper (Cu) intake. METHODS Male Wistar rats were supplemented for 8 weeks with Cu (6.5 mg/kg diet) as either nanoparticles (40 nm, CuNPs) or carbonate (CuCO3). Half of the studied animals were supplemented with RSV (500 mg/kg diet). Vascular function and blood plasma antioxidant status, expressed as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), lipid hydroperoxides (LOOH) and malondialdehyde (MDA) were analyzed. The activity of ceruloplasmin (Cp), lipid profile, fasting glucose, and concentrations of Cu and zinc (Zn) were analyzed. RESULTS RSV supplementation resulted in the elevated activity of SOD and decreased CAT, GPx and LDL-cholesterol in both groups. RSV supplementation on CuNPs increased the participation of vasoconstrictor prostanoids and decreased ACh-induced vasodilation, while the participation of hyperpolarizing mechanism(s) was restored by activating KATP channels. Blood plasma glucose was decreased. RSV supplementation on CuCO3 enhanced ACh- and SNP-induced vasodilation and decreased NA-induced vasoconstriction. The lipid profile was improved, as well as Zn concentration. Meanwhile, Cu and Cp, and the markers of lipid peroxidation, reflected as LOOH and MDA, were decreased. CONCLUSION The use of RSV during CuCO3 intake improves vascular responses, the lipid profile and the antioxidant mechanism(s). The beneficial role of RSV was not observed in the CuNP group and decreased ACh-induced vasodilation and increased participation of vasoconstrictor prostanoids in the vascular regulation were noticed.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, Olsztyn, Poland.
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
50
|
Screening of Inhibitory Effects of Polyphenols on Akt-Phosphorylation in Endothelial Cells and Determination of Structure-Activity Features. Biomolecules 2019; 9:biom9060219. [PMID: 31195734 PMCID: PMC6627700 DOI: 10.3390/biom9060219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Polyphenols exert beneficial effects in type 2 diabetes mellitus (T2DM). However, their mechanism of action remains largely unknown. Endothelial Akt-kinase plays a key role in the pathogenesis of cardiovascular complications in T2DM and therefore the modulation of its activity is of interest. This work aimed to characterize effects of structurally different polyphenols on Akt-phosphorylation (pAkt) in endothelial cells (Ea.hy926) and to describe structure-activity features. A comprehensive screening via ELISA quantified the effects of 44 polyphenols (10 µM) on pAkt Ser473. The most pronounced inhibitors were luteolin (44 ± 18%), quercetin (36 ± 8%), urolithin A (35 ± 12%), apigenin, fisetin, and resveratrol; (p < 0.01). The results were confirmed by Western blotting and complemented with corresponding experiments in HUVEC cells. A strong positive and statistically significant correlation between the mean inhibitory effects of the tested polyphenols on both Akt-residues Ser473 and Thr308 (r = 0.9478, p = 0.0003) was determined by immunoblotting. Interestingly, the structural characteristics favoring pAkt inhibition partially differed from structural features enhancing the compounds’ antioxidant activity. The present study is the first to quantitatively compare the influence of polyphenols from nine different structural subclasses on pAkt in endothelial cells. These effects might be advantageous in certain T2DM-complications involving over-activation of the Akt-pathway. The suggested molecular mode of action of polyphenols involving Akt-inhibition contributes to understanding their effects on the cellular level.
Collapse
|