1
|
Wu W, Zhang L, Wang C, Xu Z, Feng C, Zhang Z, Qin D, Zhang C, Lin F. The prognostic value of the preoperative albumin/globulin and monocyte ratio in resected early-stage non-small cell lung cancer. Asian J Surg 2024; 47:118-123. [PMID: 37419798 DOI: 10.1016/j.asjsur.2023.06.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVE This study investigated the prognostic value of the preoperative albumin/globulin to monocyte ratio (AGMR) in patients with resected non-small cell lung cancer (NSCLC). METHODS The study retrospectively enrolled patients with resected NSCLC from the Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University from January 2016 to December 2017. Baseline demographic and clinicopathological data were collected. The preoperative AGMR was calculated. Propensity score matching (PSM) analysis was applied. The receiver operating characteristic curve was used to determine the optimal AGMR cut-off value. The Kaplan-Meier method was used to calculate the overall survival (OS) and disease-free survival (DFS). The Cox proportional hazards regression model was used to evaluate the prognostic value of the AGMR. RESULTS A total of 305 NSCLC patients were included. The optimal AGMR value was 2.80. Before PSM. The high AGMR (>2.80) group had a significantly longer OS (41.34 + 11.32 vs. 32.03 + 17.01 months; P < 0.01) and DFS (39.00 + 14.49 vs. 28.78 + 19.13 months; P < 0.01) compared with the low AGMR (≤2.80) group. Multivariate analyses showed that AGMR (P < 0.01) in addition to sex (P < 0.05), body mass index (P < 0.01), history of respiratory diseases (P < 0.01), lymph node metastasis (P < 0.01), and tumor size (P < 0.01) were associated with OS and DFS. After PSM, AGMR remained as an independent prognostic factor for OS (hazard ratio [HR] 2.572, 95% confidence interval [CI]: 1.470-4.502; P = 0.001) and DFS (HR 2.110, 95% CI: 1.228-3.626; P = 0.007). CONCLUSION The preoperative AGMR is a potential prognostic indicator for OS and DFS in resected early-stage NSCLC.
Collapse
Affiliation(s)
- Wenqi Wu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Lening Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Chen Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Zhenan Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Chong Feng
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Zhe Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Dongliang Qin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Chen Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Fengwu Lin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
2
|
Li TT, Yao WQ, Dong HB, Wang ZR, Zhang ZY, Yuan MQ, Shi L, Wang FS. Plasma proteomics-based biomarkers for predicting response to mesenchymal stem cell therapy in severe COVID-19. Stem Cell Res Ther 2023; 14:350. [PMID: 38072927 PMCID: PMC10712100 DOI: 10.1186/s13287-023-03573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The objective of this study was to identify potential biomarkers for predicting response to MSC therapy by pre-MSC treatment plasma proteomic profile in severe COVID-19 in order to optimize treatment choice. METHODS A total of 58 patients selected from our previous RCT cohort were enrolled in this study. MSC responders (n = 35) were defined as whose resolution of lung consolidation ≥ 51.99% (the median value for resolution of lung consolidation) from pre-MSC to 28 days post-MSC treatment, while non-responders (n = 23) were defined as whose resolution of lung consolidation < 51.99%. Plasma before MSC treatment was detected using data-independent acquisition (DIA) proteomics. Multivariate logistic regression analysis was used to identify pre-MSC treatment plasma proteomic biomarkers that might distinguish between responders and non-responders to MSC therapy. RESULTS In total, 1101 proteins were identified in plasma. Compared with the non-responders, the responders had three upregulated proteins (CSPG2, CTRB1, and OSCAR) and 10 downregulated proteins (ANXA1, AGRG6, CAPG, DDX55, KV133, LEG10, OXSR1, PICAL, PTGDS, and S100A8) in plasma before MSC treatment. Using logistic regression model, lower levels of DDX55, AGRG6, PICAL, and ANXA1 and higher levels of CTRB1 pre-MSC treatment were predictors of responders to MSC therapy, with AUC of the ROC at 0.910 (95% CI 0.818-1.000) in the training set. In the validation set, AUC of the ROC was 0.767 (95% CI 0.459-1.000). CONCLUSIONS The responsiveness to MSC therapy appears to depend on baseline level of DDX55, AGRG6, PICAL, CTRB1, and ANXA1. Clinicians should take these factors into consideration when making decision to initiate MSC therapy in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tian-Tian Li
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
| | - Wei-Qi Yao
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, 430030, Hubei, People's Republic of China
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Wuhan, 430030, Hubei, People's Republic of China
| | - Hai-Bo Dong
- Wuhan Optics Valley Vcanbio Cell & Gene Technology Co., Ltd., Wuhan, 430030, Hubei, People's Republic of China
| | - Ze-Rui Wang
- Department of Gastroenterology, First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Zi-Ying Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Meng-Qi Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China
| | - Lei Shi
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China.
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Centre of PLA General Hospital, National Clinical Research Center for Infectious Diseases, No.100 Western 4th Ring Road, Beijing, 100039, People's Republic of China.
- Chinese PLA Medical School, Beijing, 100853, People's Republic of China.
| |
Collapse
|
3
|
Wang S, Zhang J, Zhou H, Lu YC, Jin X, Luo L, You J. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J Control Release 2023; 360:15-43. [PMID: 37328008 DOI: 10.1016/j.jconrel.2023.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, nanodrugs become a hotspot in the high-end medical field. They have the ability to deliver drugs to reach their destination more effectively due to their unique properties and flexible functionalization. However, the fate of nanodrugs in vivo is not the same as those presented in vitro, which indeed influenced their therapeutic efficacy in vivo. When entering the biological organism, nanodrugs will first come into contact with biological fluids and then be covered by some biomacromolecules, especially proteins. The proteins adsorbed on the surface of nanodrugs are known as protein corona (PC), which causes the loss of prospective organ-targeting abilities. Fortunately, the reasonable utilization of PC may determine the organ-targeting efficiency of systemically administered nanodrugs based on the diverse expression of receptors on cells in different organs. In addition, the nanodrugs for local administration targeting diverse lesion sites will also form unique PC, which plays an important role in the therapeutic effect of nanodrugs. This article introduced the formation of PC on the surface of nanodrugs and summarized the recent studies about the roles of diversified proteins adsorbed on nanodrugs and relevant protein for organ-targeting receptor through different administration pathways, which may deepen our understanding of the role that PC played on organ-targeting and improve the therapeutic efficacy of nanodrugs to promote their clinical translation.
Collapse
Affiliation(s)
- Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yi Chao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
4
|
Aryal B, Tillotson J, Ok K, Stoltzfus AT, Michel SLJ, Rao VA. Metal-induced oxidative stress and human plasma protein oxidation after SARS-CoV-2 infection. Sci Rep 2023; 13:2441. [PMID: 36765106 PMCID: PMC9916496 DOI: 10.1038/s41598-023-29119-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Pathogenesis of COVID-19 by SARS-CoV-2 resulted in a global pandemic and public health emergency in 2020. Viral infection can induce oxidative stress through reactive oxygen species (ROS). Inflammation and environmental stress are major sources of oxidative stress after infection. Micronutrients such as iron, copper, zinc, and manganese play various roles in human tissues and their imbalance in blood can impact immune responses against pathogens including SARS CoV-2. We hypothesized that alteration of free metal ions during infection and metal-catalyzed oxidation plays a critical role towards pathogenesis after infection. We analyzed convalescent and hospitalized COVID-19 patient plasma using orthogonal analytical techniques to determine redox active metal concentrations, overall protein oxidation, oxidative modifications, and protein levels via proteomics to understand the consequences of metal-induced oxidative stress in COVID-19 plasma proteins. Metal analysis using ICP-MS showed significantly greater concentrations of copper in COVID-19 plasma compared to healthy controls. We demonstrate significantly greater total protein carbonylation, other oxidative modifications, and deamidation of plasma proteins in COVID-19 plasma compared to healthy controls. Proteomics analysis showed that levels of redox active proteins including hemoglobulin were elevated in COVID-19 plasma. Molecular modeling concurred with potential interactions between iron binding proteins and SARS CoV-2 surface proteins. Overall, increased levels of redox active metals and protein oxidation indicate that oxidative stress-induced protein oxidation in COVID-19 may be a consequence of the interactions of SARS-CoV-2 proteins with host cell metal binding proteins resulting in altered cellular homeostasis.
Collapse
Affiliation(s)
- Baikuntha Aryal
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
| | - Joseph Tillotson
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA
- Pfizer Inc., Cambridge, MA, USA
| | - Kiwon Ok
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - V Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administrations, Silver Spring, MD, 20993, USA.
| |
Collapse
|
5
|
Qi L, Dong YM, Chao H, Zhao P, Ma SL, Li G. Glyphosate based-herbicide disrupts energy metabolism and activates inflammatory response through oxidative stress in mice liver. CHEMOSPHERE 2023; 315:137751. [PMID: 36608876 DOI: 10.1016/j.chemosphere.2023.137751] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Glyphosate, the most widely used herbicide worldwide, has been reported to cause hepatotoxicity. However, these systematic mechanisms remain poorly understood. Here, we investigated the effects of glyphosate-based herbicides (GBH) on liver toxicity in mice exposed to 0, 50, 250, and 500 mg/kg/day GBH for 30 d. Pathological and ultrastructural changes, serum biochemical indicators, oxidative stress state, and transcriptome and key protein alterations were performed to describe the hepatic responses to GBH. GBH induced hepatocytes structural alterations, vacuolation, and inflammatory, mitochondrial swelling and vacuolization; damaged liver function and aggravated oxidative stress; blocked the respiratory chain, promoted gluconeogenesis, fatty acid synthesis and elongation, and activated complement and coagulation cascades system (CCCS) in the liver. Moreover, SOD, H2O2, and MDA were negatively correlated with the CxI and CxIV genes, but positively correlated with the genes in glucolipid metabolism and CCCS pathways; however, the opposite results were observed for CAT, GSH-Px, and T-AOC. Overall, this study revealed the systematic mechanism underlying hepatotoxicity caused by GBH, providing new insights into understanding the hepatotoxicity of organophosphorus pesticide.
Collapse
Affiliation(s)
- Lei Qi
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Yan-Mei Dong
- Department of Nutrition and Food Hygiene, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Hong Chao
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Peng Zhao
- Digital Curriculum Center, Academic Affairs Department, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Shu-Li Ma
- Public Health Experimental Center, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Gang Li
- Department of Preventive Medicine, Public Health College, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China.
| |
Collapse
|
6
|
Johnson A, Townsend M, O’Neill K. Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors. Cells 2022; 11:cells11223626. [PMID: 36429054 PMCID: PMC9688327 DOI: 10.3390/cells11223626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells are an exciting advancement in cancer immunotherapy, with striking success in hematological cancers. However, in solid tumors, the unique immunosuppressive elements of the tumor microenvironment (TME) contribute to the failure of CAR T cells. This review discusses the cell populations, cytokine/chemokine profile, and metabolic immunosuppressive elements of the TME. This immunosuppressive TME causes CAR T-cell exhaustion and influences failure of CAR T cells to successfully infiltrate solid tumors. Recent advances in CAR T-cell development, which seek to overcome aspects of the TME immunosuppression, are also reviewed. Novel discoveries overcoming immunosuppressive limitations of the TME may lead to the success of CAR T cells in solid tumors.
Collapse
|
7
|
Wang Y, Nan X, Zhao Y, Jiang L, Wang H, Zhang F, Hua D, Liu J, Yang L, Yao J, Xiong B. Changes in the Profile of Fecal Microbiota and Metabolites as Well as Serum Metabolites and Proteome After Dietary Inulin Supplementation in Dairy Cows With Subclinical Mastitis. Front Microbiol 2022; 13:809139. [PMID: 35479637 PMCID: PMC9037088 DOI: 10.3389/fmicb.2022.809139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of mastitis is linked to dysbiostic gastrointestinal microbiota. Inulin is a dietary prebiotic that improves the profile of intestinal flora. Our previous study showed that inulin supplementation could improve the ruminal microbes of subclinical mastitis (SCM) cows. The current study attempted to further investigate the response of hindgut (fecal) microbiome and metabolites, serum metabolism, and protein expression to inulin in the in SCM cows. Different levels of inulin (0, 100, 200, 300, and 400 g/day per cow) were supplemented in SCM cows. Compared with control group, Bacteroides and Bifidobacteria were increased, and Paeniclostridium, Ruminococcaceae, Coprococcus, and Clostridia were decreased in the feces of inulin groups, and accompanied with elevated propionate and butyrate concentrations, while secondary bile acid (SBA) metabolites were increased and proinflammatory lipid oxidation products were dropped in both feces and serum. In serum, inulin intake suppressed the levels of triglyceride (TG) and low-density lipoprotein (LDL). Serum proteome analysis found that CD44 antigen, phosphatidylinositol-glycan-specific phospholipase D, apolipoprotein A-II, and superoxide dismutase [Cu-Zn] were upregulated, while cathelicidin-1, haptoglobin, serpin A3, inter-alpha-trypsin inhibitor heavy chain H4 were downregulated in inulin groups. These findings suggested further evidence for inulin supplementation in amelioration of inflammatory symptoms in SCM cows, which might provide alternative treatment for mastitis.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Tong Y, Song Y, Xia C, Deng S. Theoretical and in silico Analyses Reveal MYC as a Dynamic Network Biomarker in Colon and Rectal Cancer. Front Genet 2020; 11:555540. [PMID: 33193630 PMCID: PMC7606845 DOI: 10.3389/fgene.2020.555540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
In this article, we make a theoretical and in silico study for uncovering and evaluating biomarkers in colon and rectal cancer (CRC) by the dynamic network biomarker (DNB) theory. We propose a strategy to employ the theoretical concept of UICC TNM classification in CRC. To reveal the critical transition of CRC, the DNB algorithm was implemented to analyze the genome-wide dynamic network through temporal gene expression data. The relationship between gene sets and clinical features was evaluated by weighted gene co-expression network analysis. The results show that MYC was significantly associated with tumor amplification, tumor immune cells, and survival times. The candidate tumor suppressor genes were ZBTB16, MAL, LIFR, and SLIT2. Protein-protein interaction (PPI) analysis shows that these candidate tumor suppressor genes were significant in immune cells. Data from the Human Protein Atlas showed that a high expression of these candidate tumor suppressor genes was associated with favorable prognosis in TNM stages I-IV. In conclusion, this work provides significant and novel information regarding the TNM stage, cause, and consequences of elevated MYC expression in CRC. MYC expression levels had significant negative correlations with tumor suppressor genes and immune cells.
Collapse
Affiliation(s)
- Yanqiu Tong
- Department of Broadcasting and TV, Chongqing Jiaotong University, Chongqing, China
- Laboratory of Forensic Medicine and Biomedical Informatics, Chongqing Medical University, Chongqing, China
| | - Yang Song
- Department of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Chuanhui Xia
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing, China
| | - Shixiong Deng
- Laboratory of Forensic Medicine and Biomedical Informatics, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Li L, Yu R, Cai T, Chen Z, Lan M, Zou T, Wang B, Wang Q, Zhao Y, Cai Y. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol 2020; 88:106939. [PMID: 33182039 DOI: 10.1016/j.intimp.2020.106939] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation and immune responses are two core element that characterize the tumor microenvironment. A large number of immune/inflammatory cells (including tumor associated macrophages, neutrophils and myeloid derived suppressor cells) as well as cytokines (such as IL-6, IL-10, TGF-β) are present in the tumor microenvironment, which results in both a chronic inflammatory state and immunosuppression. As a consequence tumor cell migration, invasion, metastasis and anticancer drug sensitivity are modulated. On the one hand, secreted cytokines change the function of cytotoxic T lymphocytes and antigen presenting cells, thereby inhibiting tumor specific immune responses and consequently inducing a special immunosuppressive microenvironment for tumor cells. On the other hand, tumor cells change the differentiation and function of immune/inflammatory cells in the tumor microenvironment especially via the NF-κB and STAT3 signaling pathways. This may promote proliferation of tumor cells. Here we review these double edged effects of immune/inflammatory cells and cytokines on tumor cells, and explored their interactions with inflammation, hypoxia, and immune responses in the tumor microenvironment. The tumor inflammatory or immunosuppressive reactions mediated by the high activity of NF-κB or STAT3 can occur alone or simultaneously, and there is a certain connection between them. Inhibiting the NF-κB or STAT3 signaling pathway is likely to curb the growth of tumor cells, reduce the secretion of pro-inflammatory factors, and enhance the anti-tumor immune response.
Collapse
Affiliation(s)
- Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rui Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Zhen Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai 200032, China; Department of Integrative Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Bingyue Wang
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Qi Wang
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Yiye Zhao
- Integrated Hospital of Traditonal Chinese Medicine, Southern Medical University, Guangzhou 510315, China.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Cancer Research Institute of Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Wang X, Shang W, Li X, Chang Y. Methylation signature genes identification of cancers occurrence and pattern recognition. Comput Biol Chem 2020; 85:107198. [PMID: 32120302 DOI: 10.1016/j.compbiolchem.2019.107198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 01/25/2023]
Abstract
In order to identify the signature genes of tumorigenesis, the pattern-recognition method was used to analyze the gene methylation (ME) data which included only normal and cancer samples and was collected from the TCGA (The Cancer Genome Atlas) database. Here, we analyzed the DNA methylation profiles of the six types of cancer and the ME signature genes for each cancer were selected by means of a combination of correlation, student's t-test and Elastic Net. Modeling by support vector machine, the accuracy of ME signature genes can be as high as 98 % for training set and as high as 97 % for the independent test set, the recognition accuracy of stage I is more than 97 % for training set and more than 98 % for test set. Then, the common signature genes and common pathways emerging in multiple cancers were obtained. A functional analysis of these signature genes indicates that the identified signatures have direct relationship with tumorigenesis and is very important for understanding the pathogenesis of cancer and the early therapy.
Collapse
Affiliation(s)
- Xuedong Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Wenhui Shang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoqin Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yu Chang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
11
|
Mass Spectrometry-Based Multivariate Proteomic Tests for Prediction of Outcomes on Immune Checkpoint Blockade Therapy: The Modern Analytical Approach. Int J Mol Sci 2020; 21:ijms21030838. [PMID: 32012941 PMCID: PMC7036840 DOI: 10.3390/ijms21030838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
The remarkable success of immune checkpoint inhibitors (ICIs) has given hope of cure for some patients with advanced cancer; however, the fraction of responding patients is 15-35%, depending on tumor type, and the proportion of durable responses is even smaller. Identification of biomarkers with strong predictive potential remains a priority. Until now most of the efforts were focused on biomarkers associated with the assumed mechanism of action of ICIs, such as levels of expression of programmed death-ligand 1 (PD-L1) and mutation load in tumor tissue, as a proxy of immunogenicity; however, their performance is unsatisfactory. Several assays designed to capture the complexity of the disease by measuring the immune response in tumor microenvironment show promise but still need validation in independent studies. The circulating proteome contains an additional layer of information characterizing tumor-host interactions that can be integrated into multivariate tests using modern machine learning techniques. Here we describe several validated serum-based proteomic tests and their utility in the context of ICIs. We discuss test performances, demonstrate their independence from currently used biomarkers, and discuss various aspects of associated biological mechanisms. We propose that serum-based multivariate proteomic tests add a missing piece to the puzzle of predicting benefit from ICIs.
Collapse
|
12
|
Zhang J, Guo F, Wang L, Zhao W, Zhang D, Yang H, Yu J, Niu L, Yang F, Zheng S, Wang J. Screening and identification of non-inflammatory specific protein markers in Wilms' tumor tissues. Arch Biochem Biophys 2019; 676:108112. [PMID: 31550443 DOI: 10.1016/j.abb.2019.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
Wilms' tumor is one of the most common malignancies in children, and early diagnosis is critical for its subsequent treatment and prognosis. Our previous study employed proteomics to investigate protein markers in the serum of Wilms' tumor children. The present study aimed to identify specific protein markers in Wilms' tumor. Proteomic comparison of Wilms' tumor with normal kidney tissues and the sera of systemic inflammatory response syndrome (SIRS) controls was performed. Surface-enhanced laser desorption ionization time-of-flight (SELDI-TOF-MS) identified a protein with m/z 8350 as specific to Wilms' tumor. The target protein was purified using sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and identified as profilin-1 by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF). Its expression was validated using real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Our data identify profilin-1 as a potential protein marker for Wilms' tumor and demonstrate the feasibility of the above procedures for screening and identification of tumor-specific protein markers.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fei Guo
- Department of Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lei Wang
- Department of Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Zhao
- Department of Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Da Zhang
- Department of Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Heying Yang
- Department of Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiekai Yu
- Institute of Cancer, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Lili Niu
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100000, China
| | - Fuquan Yang
- Proteomic Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100000, China
| | - Shu Zheng
- Institute of Cancer, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Jiaxiang Wang
- Department of Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
13
|
Wang X, Wang X, Li X, Chang Y. Identification of Specific Candidate Diagnostic Biomarkers for Lung Squamous Cell Carcinoma Based on Methylation. J Comput Biol 2019; 27:825-833. [PMID: 31486674 DOI: 10.1089/cmb.2019.0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DNA methylation abnormalities are frequent events in early tumors. DNA methylation is relatively stable over time and can be detected in blood. Therefore, DNA methylation has a great potential to become an early diagnostic biomarker of cancers. To find potential diagnostic markers for lung squamous cell carcinoma (LUSC), a method for identifying LUSC-specific candidate diagnostic markers was proposed. We screened 6 LUSC-specific CpGs by comparing the methylation profiles of 172 samples from LUSC patients, 42 normal lung samples, 1306 samples from patients with other cancers, which was collected from The Cancer Genome Atlas (TCGA) database, and 184 normal blood samples, which was collected from Gene Expression Omnibus (GEO) database. A support vector machine model was built based on the methylation levels of the candidate diagnostic biomarkers, and we optimized the model by sixfold cross-validation. The combination of six sites achieved 93%-99% sensitivity in predicting LUSC, 100% specificity in excluding normal samples, and 99.55% specificity in excluding non-LUSC samples. In addition, a diagnostic model was established by using six LUSC-specific biomarkers, and the sensitivity and specificity of LUSC stage I samples were 95.2% and 99.4%. At the same time, genes for six LUSC-specific CpGs localization are closely related to cancer occurrence, which indicates that six LUSC-specific CpGs can be used as candidate biomarkers for LUSC diagnosis. Overall, our study provides promising biomarkers for the diagnosis of LUSC.
Collapse
Affiliation(s)
- Xuedong Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiaoxi Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiaoqin Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yu Chang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
14
|
Hsu WH, Shen YC, Shiao YJ, Kuo CH, Lu CK, Lin TY, Ku WC, Lin YL. Combined proteomic and metabolomic analyses of cerebrospinal fluid from mice with ischemic stroke reveals the effects of a Buyang Huanwu decoction in neurodegenerative disease. PLoS One 2019; 14:e0209184. [PMID: 30645580 PMCID: PMC6333407 DOI: 10.1371/journal.pone.0209184] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 12/01/2018] [Indexed: 01/11/2023] Open
Abstract
Ischemic stroke is one of the most common causes of death worldwide and is a major cause of acquired disability in adults. However, there is still a need for an effective drug for its treatment. Buyang Huanwu decoction (BHD), a traditional Chinese medicine (TCM) prescription, has long been used clinically to aid neurological recovery after stroke. To establish potential clinical indicators of BHD efficacy in stroke treatment and prognosis, we conducted a combined proteomic and metabolomic analysis of cerebrospinal fluid (CSF) samples in a mouse stroke model. CSF samples were obtained from male mice with acute ischemic stroke induced by middle cerebral ischemic/reperfusion (CI/R) injury, some of which were then treated with BHD. Label-free quantitative proteomics was conducted using nano-LC-MS/MS on an LTQ Orbitrap mass and metabolomic analysis was performed using nanoprobe NMR and UHPLC-QTOF-MS. The results showed that several proteins and metabolites were present at significantly different concentrations in the CSF samples from mice with CI/R alone and those treated with BHD. These belonged to pathways related to energy demand, inflammatory signaling, cytoskeletal regulation, Wnt signaling, and neuroprotection against neurodegenerative diseases. In conclusion, our in silico data suggest that BHD treatment is not only protective but can also ameliorate defects in pathways affected by neurological disorders. These data shed light on the mechanism whereby BHD may be effective in the treatment and prevention of stroke-related neurodegenerative disease.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ching-Hua Kuo
- Department of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Tai-Yuan Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- * E-mail: (YLL); (WCK)
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Department of Pharmacy, National Taiwan University, Taipei, Taiwan
- * E-mail: (YLL); (WCK)
| |
Collapse
|
15
|
Mahmoudi M, Pakpour S, Perry G. Drug-Abuse Nanotechnology: Opportunities and Challenges. ACS Chem Neurosci 2018; 9:2288-2298. [PMID: 29851334 DOI: 10.1021/acschemneuro.8b00127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Opioid drug abuse and dependence/addiction are complex disorders regulated by a wide range of interacting networks of genes and pathways that control a variety of phenotypes. Although the field has been extensively progressed since the birth of the National Institute on Drug Abuse in 1974, the fundamental knowledge and involved mechanisms that lead to drug dependence/addiction are poorly understood, and thus, there has been limited success in the prevention of drug addiction and development of therapeutics for definitive treatment and cure of addiction disease. The lack of success in both identification of addiction in at-risk populations and the development of efficient drugs has resulted in a serious social and economic burden from opioid drug abuse with global increasing rate of mortality from drug overdoses. This perspective aims to draw the attention of scientists to the potential role of nanotechnologies, which might pave the way for the development of more practical platforms for either drug development or identification and screening of patients who may be vulnerable to addiction after using opioid drugs.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sepideh Pakpour
- Infectious Disease & Microbiome, Broad Institute, Cambridge, Massachusetts 02142, United States
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - George Perry
- Neurosciences Institute and Department of Biology, College of Sciences, University of Texas, San Antonio, Texas 78249, United States
| |
Collapse
|
16
|
Molecular phenotyping of laboratory mouse strains using 500 multiple reaction monitoring mass spectrometry plasma assays. Commun Biol 2018; 1:78. [PMID: 30271959 PMCID: PMC6123701 DOI: 10.1038/s42003-018-0087-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 12/18/2022] Open
Abstract
Mouse is the predominant experimental model for the study of human disease due, in part, to phylogenetic relationship, ease of breeding, and the availability of molecular tools for genetic manipulation. Advances in genome-editing methodologies, such as CRISPR-Cas9, enable the rapid production of new transgenic mouse strains, necessitating complementary high-throughput and systematic phenotyping technologies. In contrast to traditional protein phenotyping techniques, multiple reaction monitoring (MRM) mass spectrometry can be highly multiplexed without forgoing specificity or quantitative precision. Here we present MRM assays for the quantitation of 500 proteins and subsequently determine reference concentration values for plasma proteins across five laboratory mouse strains that are typically used in biomedical research, revealing inter-strain and intra-strain phenotypic differences. These 500 MRM assays will have a broad range of research applications including high-throughput phenotypic validation of novel transgenic mice, identification of candidate biomarkers, and general research applications requiring multiplexed and precise protein quantification.
Collapse
|
17
|
Totten SM, Adusumilli R, Kullolli M, Tanimoto C, Brooks JD, Mallick P, Pitteri SJ. Multi-lectin Affinity Chromatography and Quantitative Proteomic Analysis Reveal Differential Glycoform Levels between Prostate Cancer and Benign Prostatic Hyperplasia Sera. Sci Rep 2018; 8:6509. [PMID: 29695737 PMCID: PMC5916935 DOI: 10.1038/s41598-018-24270-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
Currently prostate-specific antigen is used for prostate cancer (PCa) screening, however it lacks the necessary specificity for differentiating PCa from other diseases of the prostate such as benign prostatic hyperplasia (BPH), presenting a clinical need to distinguish these cases at the molecular level. Protein glycosylation plays an important role in a number of cellular processes involved in neoplastic progression and is aberrant in PCa. In this study, we systematically interrogate the alterations in the circulating levels of hundreds of serum proteins and their glycoforms in PCa and BPH samples using multi-lectin affinity chromatography and quantitative mass spectrometry-based proteomics. Specific lectins (AAL, PHA-L and PHA-E) were used to target and chromatographically separate core-fucosylated and highly-branched protein glycoforms for analysis, as differential expression of these glycan types have been previously associated with PCa. Global levels of CD5L, CFP, C8A, BST1, and C7 were significantly increased in the PCa samples. Notable glycoform-specific alterations between BPH and PCa were identified among proteins CD163, C4A, and ATRN in the PHA-L/E fraction and among C4BPB and AZGP1 glycoforms in the AAL fraction. Despite these modest differences, substantial similarities in glycoproteomic profiles were observed between PCa and BPH sera.
Collapse
Affiliation(s)
- Sarah M Totten
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ravali Adusumilli
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Majlinda Kullolli
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Cheylene Tanimoto
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Sharon J Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
18
|
van Ommen B, van den Broek T, de Hoogh I, van Erk M, van Someren E, Rouhani-Rankouhi T, Anthony JC, Hogenelst K, Pasman W, Boorsma A, Wopereis S. Systems biology of personalized nutrition. Nutr Rev 2017; 75:579-599. [PMID: 28969366 PMCID: PMC5914356 DOI: 10.1093/nutrit/nux029] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Personalized nutrition is fast becoming a reality due to a number of technological, scientific, and societal developments that complement and extend current public health nutrition recommendations. Personalized nutrition tailors dietary recommendations to specific biological requirements on the basis of a person's health status and goals. The biology underpinning these recommendations is complex, and thus any recommendations must account for multiple biological processes and subprocesses occurring in various tissues and must be formed with an appreciation for how these processes interact with dietary nutrients and environmental factors. Therefore, a systems biology-based approach that considers the most relevant interacting biological mechanisms is necessary to formulate the best recommendations to help people meet their wellness goals. Here, the concept of "systems flexibility" is introduced to personalized nutrition biology. Systems flexibility allows the real-time evaluation of metabolism and other processes that maintain homeostasis following an environmental challenge, thereby enabling the formulation of personalized recommendations. Examples in the area of macro- and micronutrients are reviewed. Genetic variations and performance goals are integrated into this systems approach to provide a strategy for a balanced evaluation and an introduction to personalized nutrition. Finally, modeling approaches that combine personalized diagnosis and nutritional intervention into practice are reviewed.
Collapse
Affiliation(s)
- Ben van Ommen
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Tim van den Broek
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Iris de Hoogh
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Marjan van Erk
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Eugene van Someren
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Tanja Rouhani-Rankouhi
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | | | - Koen Hogenelst
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Wilrike Pasman
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - André Boorsma
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| | - Suzan Wopereis
- TNO (The Netherlands Organization for Applied Scientific Research), Zeist, the Netherlands
| |
Collapse
|
19
|
Guo LH, Zhao W, Zhang JJ, Zhang Q, Fan YZ, Wang JX. [Screening and identification of apolipoprotein A-I as a potential marker for hepatoblastoma in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:1205-1210. [PMID: 27974108 PMCID: PMC7403094 DOI: 10.7499/j.issn.1008-8830.2016.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To screen and identify serum biomarkers for childhood hepatoblastoma (HB). METHODS The serum samples from 30 children with hepatoblastoma (HB), 20 children with systemic inflammatory response syndrome, and 20 normal children were treated with magnetic bead-based weak cation exchange chromatography. The platform of surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) was used to eliminate the interference of inflammatory factors and to screen out the differentially expressed proteins in serum between tumor group and normal group. After the purification and separation of target proteins were performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption/ionization-time of flight-mass spectrometry was used to determine their amino acid sequences. The SwissProt database was searched for matched proteins. Finally, real-time PCR and ELISA were used to verify and measure the expression of target proteins. RESULTS After SELDI-TOF-MS was used for screening and elimination of the interference of inflammatory factors, a differentially expression protein with a mass-to-charge ratio of 9 348 Da was found in serum between HB group and normal group, and the HB group had significantly lower expression of this protein than the normal group (p<0.05). This protein was identified as apolipoprotein A-1 (Apo A-I). Real-time PCR and ELISA verified the low mRNA and protein expression of Apo A-I in serum in the HB group and high expression in serum in the normal group. CONCLUSIONS Apo A-I can be used as a non-inflammatory protein marker for HB and has a certain value in the early diagnosis of HB.
Collapse
Affiliation(s)
- Li-Hua Guo
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | | | | | | | | | | |
Collapse
|
20
|
Lee SE, West KP, Cole RN, Schulze KJ, Christian P, Wu LSF, Yager JD, Groopman J, Ruczinski I. Plasma Proteome Biomarkers of Inflammation in School Aged Children in Nepal. PLoS One 2015; 10:e0144279. [PMID: 26636573 PMCID: PMC4670104 DOI: 10.1371/journal.pone.0144279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/13/2015] [Indexed: 11/25/2022] Open
Abstract
Inflammation is a condition stemming from complex host defense and tissue repair mechanisms, often simply characterized by plasma levels of a single acute reactant. We attempted to identify candidate biomarkers of systemic inflammation within the plasma proteome. We applied quantitative proteomics using isobaric mass tags (iTRAQ) tandem mass spectrometry to quantify proteins in plasma of 500 Nepalese children 6–8 years of age. We evaluated those that co-vary with inflammation, indexed by α-1-acid glycoprotein (AGP), a conventional biomarker of inflammation in population studies. Among 982 proteins quantified in >10% of samples, 99 were strongly associated with AGP at a family-wise error rate of 0.1%. Magnitude and significance of association varied more among proteins positively (n = 41) than negatively associated (n = 58) with AGP. The former included known positive acute phase proteins including C-reactive protein, serum amyloid A, complement components, protease inhibitors, transport proteins with anti-oxidative activity, and numerous unexpected intracellular signaling molecules. Negatively associated proteins exhibited distinct differences in abundance between secretory hepatic proteins involved in transporting or binding lipids, micronutrients (vitamin A and calcium), growth factors and sex hormones, and proteins of largely extra-hepatic origin involved in the formation and metabolic regulation of extracellular matrix. With the same analytical approach and the significance threshold, seventy-two out of the 99 proteins were commonly associated with CRP, an established biomarker of inflammation, suggesting the validity of the identified proteins. Our findings have revealed a vast plasma proteome within a free-living population of children that comprise functional biomarkers of homeostatic and induced host defense, nutrient metabolism and tissue repair, representing a set of plasma proteins that may be used to assess dynamics and extent of inflammation for future clinical and public health application.
Collapse
Affiliation(s)
- Sun Eun Lee
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Keith P. West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Kerry J. Schulze
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Parul Christian
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lee Shu-Fune Wu
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - James D. Yager
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - John Groopman
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
21
|
Kültz D, Li J, Zhang X, Villarreal F, Pham T, Paguio D. Population-specific plasma proteomes of marine and freshwater three-spined sticklebacks (Gasterosteus aculeatus
). Proteomics 2015. [DOI: 10.1002/pmic.201500132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science; University of California; Davis CA USA
| | - Johnathon Li
- Department of Animal Science; University of California; Davis CA USA
| | - Xuezhen Zhang
- Department of Animal Science; University of California; Davis CA USA
- College of Fisheries; Huazhong Agricultural University; Wuhan P. R. China
| | | | - Tuan Pham
- Department of Animal Science; University of California; Davis CA USA
| | - Darlene Paguio
- Department of Animal Science; University of California; Davis CA USA
| |
Collapse
|
22
|
Zhao W, Li J, Zhang Y, Gao P, Zhang J, Guo F, Yu J, Zheng S, Wang J. Screening and identification of apolipoprotein A-I as a potential hepatoblastoma biomarker in children, excluding inflammatory factors. Oncol Lett 2015; 10:233-239. [PMID: 26171005 DOI: 10.3892/ol.2015.3207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/21/2015] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to identify a child hepatoblastoma serum biomarker that is unaffected by inflammatory factors, with the ultimate aim of finding an effective method for the early diagnosis of hepatoblastoma. The magnetic bead-based weak cation exchange chromatography technique was used to process serum harvested from 30 children with hepatoblastoma, 20 children with systemic inflammatory response syndrome (SIRS) and 20 healthy children. Proteins differentially expressed in SIRS were excluded from consideration as biomarkers for hepatoblastoma. Proteins differentially expressed in hepatoblastoma and healthy controls were screened using surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS). Target proteins were purified by SDS-PAGE, and matrix-assisted laser desorption/ionization (MALDI)-TOF-MS was used to determine their amino acid sequences. Protein matches were searched in the SwissProt database. Quantitative polymerase chain reaction (qPCR) and ELISA were employed to confirm the expression of target proteins. Following screening to exclude inflammatory factors, SELDI-TOF-MS revealed a protein with a mass-to-charge ratio of 9,348 Da that was expressed at significantly lower levels in the serum of children with hepatoblastoma compared with healthy controls (P<0.01). Sequence analysis identified this protein as apolipoprotein A-1 (Apo A-I). qPCR and ELISA confirmed that the expression of Apo A-I mRNA and protein were significantly lower in children with hepatoblastoma compared with healthy controls (P<0.05). These results indicate that Apo A-I is a non-inflammatory protein marker for hepatoblastoma with the potential for use in early diagnosis of hepatoblastoma. In addition, the present study demonstrates the feasibility of proteomic screening for the identification of proteins that can serve as markers for a specific tumor.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yilin Zhang
- Department of Clinical Medicine, Basic Medical College of Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Pengfei Gao
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Junjie Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fei Guo
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiekai Yu
- Institute of Cancer, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Shu Zheng
- Institute of Cancer, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiaxiang Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
23
|
Zawadzka AM, Schilling B, Held JM, Sahu AK, Cusack MP, Drake PM, Fisher SJ, Gibson BW. Variation and quantification among a target set of phosphopeptides in human plasma by multiple reaction monitoring and SWATH-MS2 data-independent acquisition. Electrophoresis 2014; 35:3487-97. [PMID: 24853916 PMCID: PMC4565165 DOI: 10.1002/elps.201400167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 04/26/2014] [Accepted: 05/13/2014] [Indexed: 11/07/2022]
Abstract
Human plasma contains proteins that reflect overall health and represents a rich source of proteins for identifying and understanding disease pathophysiology. However, few studies have investigated changes in plasma phosphoproteins. In addition, little is known about the normal variations in these phosphoproteins, especially with respect to specific sites of modification. To address these questions, we evaluated variability in plasma protein phosphorylation in healthy individuals using multiple reaction monitoring (MRM) and SWATH-MS2 data-independent acquisition. First, we developed a discovery workflow for phosphopeptide enrichment from plasma and identified targets for MRM assays. Next, we analyzed plasma from healthy donors using an analytical workflow consisting of MRM and SWATH-MS2 that targeted phosphopeptides from 58 and 68 phosphoproteins, respectively. These two methods produced similar results showing low variability in 13 phosphosites from 10 phosphoproteins (CVinter < 30%) and high interpersonal variation of 16 phosphosites from 14 phosphoproteins (CVinter > 30%). Moreover, these phosphopeptides originate from phosphoproteins involved in cellular processes governing homeostasis, immune response, cell-extracellular matrix interactions, lipid and sugar metabolism, and cell signaling. This limited assessment of technical and biological variability in phosphopeptides generated from plasma phosphoproteins among healthy volunteers constitutes a reference for future studies that target protein phosphorylation as biomarkers.
Collapse
Affiliation(s)
- Anna M. Zawadzka
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945
| | - Birgit Schilling
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945
| | - Jason M. Held
- Division of Oncology and Department of Anesthesiology, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Avenue, St. Louis, MO 63110
| | - Alexandria K. Sahu
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945
| | - Michael P. Cusack
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945
| | - Penelope M. Drake
- Department of Obstetrics, Gynecology and Reproductive Sciences, 513 Parnassus Ave., Box 0556, University of California San Francisco, San Francisco, CA 94143
| | - Susan J. Fisher
- Department of Obstetrics, Gynecology and Reproductive Sciences, 513 Parnassus Ave., Box 0556, University of California San Francisco, San Francisco, CA 94143
| | - Bradford W. Gibson
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945
- Department of Pharmaceutical Chemistry, 513 Parnassus Ave., Box 0556, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
24
|
Identification of apolipoprotein C-I as a potential Wilms' tumor marker after excluding inflammatory factors. Int J Mol Sci 2014; 15:16186-95. [PMID: 25222555 PMCID: PMC4200791 DOI: 10.3390/ijms150916186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022] Open
Abstract
Wilms' tumor is one of the most common malignant tumors observed in children, and its early diagnosis is important for late-stage treatment and prognosis. We previously screened and identified protein markers for Wilms' tumor; however, these markers lacked specificity, and some were associated with inflammation. In the current study, serum samples from children with Wilms' tumors were compared with those of healthy controls and patients with systemic inflammatory response syndrome (SIRS). After exclusion of factors associated with inflammation, specific protein markers for Wilms' tumors were identified. After comparing the protein peak values obtained from all three groups, a protein with a m/z of 6438 Da was specified. Purification and identification of the target protein using high-pressure liquid chromatography (HPLC) and two-dimensional liquid chromatography-linearion trap mass spectrometry(2D-LC-LTQ-MS) mass spectrometry, respectively, revealed that it was apolipoprotein C-I (APO C-I). Thus, APO C-I is a specific protein marker for Wilms' tumor.
Collapse
|
25
|
Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M. Personalized protein coronas: a "key" factor at the nanobiointerface. Biomater Sci 2014; 2:1210-1221. [PMID: 32481892 DOI: 10.1039/c4bm00131a] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is now well known that the primary interactions of biological entities (e.g., tissues and cells) with nanoparticles (NPs) are strongly influenced by the protein composition of the "corona" (i.e., the NP surface attached proteins). The composition of the corona strongly depends on the protein source (e.g., human plasma). Because the protein source determines the NP corona, it is reasonable to hypothesize that humans with specific disease(s) may have specific NP coronas. To test this hypothesis, we incubated two different hydrophobic/hydrophilic types of NPs (polystyrene and silica) with plasma from human subjects with different diseases and medical conditions (e.g., breast cancer, diabetes, hypercholesterolemia, rheumatism, fauvism, smoking, hemodialysis, thalassemia, hemophilia A and B, pregnancy, common cold and hypofibrinogenemia). Our results demonstrate that the type of disease has a crucial role in the protein composition of the NP corona. Based on these results, we introduce the concept of the "personalized protein corona" (PPC) as a determinant factor in nano-biomedical science. This study will help researchers rationally design experiments based on the "personalized protein corona" for clinical and biological applications.
Collapse
Affiliation(s)
- Mohammad J Hajipour
- Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|
26
|
Pernemalm M, Lehtiö J. Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics 2014; 11:431-48. [PMID: 24661227 DOI: 10.1586/14789450.2014.901157] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mass spectrometry-based plasma proteomics is a field where intense research has been performed during the last decade. Being closely linked to biomarker discovery, the field has received a fair amount of criticism, mostly due to the low number of novel biomarkers reaching the clinic. However, plasma proteomics is under gradual development with improvements on fractionation methods, mass spectrometry instrumentation and analytical approaches. These recent developments have contributed to the revival of plasma proteomics. The goal of this review is to summarize these advances, focusing in particular on fractionation methods, both for targeted and global mass spectrometry-based plasma analysis.
Collapse
Affiliation(s)
- Maria Pernemalm
- Karolinska Institutet, Science for Life Laboratory, Tomtebodavägen 23, 171 65, Solna, Sweden
| | | |
Collapse
|
27
|
Morcos NY, Zakhary NI, Said MM, Tadros MM. Postoperative simple biochemical markers for prediction of bone metastases in Egyptian breast cancer patients. Ecancermedicalscience 2013; 7:305. [PMID: 23653670 PMCID: PMC3640610 DOI: 10.3332/ecancer.2013.305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Indexed: 11/16/2022] Open
Abstract
Objective: The present study was undertaken to identify patient populations at high risk for bone metastases (BM) at any time after diagnosis of operable breast cancer. Subjects and methods: A total number of 59 cases with breast cancer after mastectomy was subdivided into two main groups that included 30 patients with radiologically confirmed BM and 29 patients with no bone metastasis (NBM). Patients with NBM were formerly observed for a one-year follow-up interval to monitor the development of bone metastasis (new BM). Parameters included a full blood picture, tumour markers (carcinoembryonic antigen and CA 15.3) and some biochemical markers (vascular endothelial growth factor and zinc levels, as well as tartrate-resistant acid phosphatase and alkaline phosphatase activities). Results: A significant elevation was recorded in carcinoembryonic antigen level and alkaline phosphatase activity, as well as inflammation and vascularisation markers at the time of primary diagnosis in patients with BM, compared with those without BM. CA 15.3 was significantly higher in the new BM group as compared with the other two groups (patients free of bone metastasis [free BM] and BM). According to the likelihood ratio, a panel of single, calculated as well as combined markers was proposed to predict BM within one year in breast cancer patients. Conclusion: Vascularisation and inflammation markers, as well as CA 15.3 are predictive of bone recurrence within one year in breast carcinoma patients. We suggest that in cancer validation studies it is imperative to search for markers that link to the premetastatic process and to determine what type of mechanism is active in each stage.
Collapse
Affiliation(s)
- Nadia Ys Morcos
- Biochemistry Department, Faculty of Science, Ain Shams University, Egypt
| | | | | | | |
Collapse
|
28
|
Aller MA, Arias JI, Prieto I, Gilsanz C, Arias A, Yang H, Arias J. Surgical inflammatory stress: the embryo takes hold of the reins again. Theor Biol Med Model 2013; 10:6. [PMID: 23374964 PMCID: PMC3577641 DOI: 10.1186/1742-4682-10-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/18/2013] [Indexed: 01/07/2023] Open
Abstract
The surgical inflammatory response can be a type of high-grade acute stress response associated with an increasingly complex trophic functional system for using oxygen. This systemic neuro-immune-endocrine response seems to induce the re-expression of 2 extraembryonic-like functional axes, i.e. coelomic-amniotic and trophoblastic-yolk-sac-related, within injured tissues and organs, thus favoring their re-development. Accordingly, through the up-regulation of two systemic inflammatory phenotypes, i.e. neurogenic and immune-related, a gestational-like response using embryonic functions would be induced in the patient's injured tissues and organs, which would therefore result in their repair. Here we establish a comparison between the pathophysiological mechanisms that are produced during the inflammatory response and the physiological mechanisms that are expressed during early embryonic development. In this way, surgical inflammation could be a high-grade stress response whose pathophysiological mechanisms would be based on the recapitulation of ontogenic and phylogenetic-related functions. Thus, the ultimate objective of surgical inflammation, as a gestational process, is creating new tissues/organs for repairing the injured ones. Since surgical inflammation and early embryonic development share common production mechanisms, the factors that hamper the wound healing reaction in surgical patients could be similar to those that impair the gestational process.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Jose-Ignacio Arias
- General and Digestive Surgery Unit, Monte Naranco Hospital, Oviedo, Asturias, Spain
| | - Isabel Prieto
- Department of General and Digestive Surgery, La Paz Hospital, Autonomous University, Madrid, Spain
| | - Carlos Gilsanz
- General and Digestive Surgery Unit, Sudeste University Hospital, Arganda del Rey, Madrid, Spain
| | - Ana Arias
- Department of Medicine, Puerta de Hierro Hospital, Autonomous University, Madrid, Spain
| | - Heping Yang
- Division of Gastroenterology and Liver Disease, USC Research Centre for Liver Diseases, Los Angeles, CA, USA
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
29
|
Identification of potential serum biomarkers for Wilms tumor after excluding confounding effects of common systemic inflammatory factors. Mol Biol Rep 2011; 39:5095-104. [PMID: 22160518 DOI: 10.1007/s11033-011-1305-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 11/30/2011] [Indexed: 02/08/2023]
Abstract
Wilms tumor is the most common pediatric tumor of the kidney. Previous studies have identified several serum biomarkers for Wilms tumor; however, they lack sufficient specificity and may not adequately distinguish Wilms tumor from confounding conditions. To date, no specific protein biomarker has been confirmed for this pediatric tumor. To identify novel serum biomarkers for Wilms tumor, we used proteomic technologies to perform protein profiling of serum samples from pre-surgery and post-surgery patients with Wilms tumor and healthy controls. Some common systemic inflammatory factors were included to control for systemic inflammation. By comparing protein peaks among the three groups of sera, we identified two peaks (11,526 and 4,756 Da) showing significant differential expression not only between pre-surgery and control sera but also between pre-surgery and post-surgery sera. These two peaks were identified as serum amyloid A1 (SAA1) and apolipoprotein C-III (APO C-III). Western blot analysis confirmed that both proteins were expressed at higher levels in pre-surgery sera than in post-surgery and control sera. Using the method of leave-1-out for cross detection, we demonstrate that detection of these two candidate biomarkers had high sensitivity and specificity in discriminating pre-surgery sera from post-surgery and normal control sera. Taken together, these findings suggest that SAA1 and APO C-III are two potential biomarkers for Wilms tumor.
Collapse
|
30
|
Taguchi A, Politi K, Pitteri SJ, Lockwood WW, Faça VM, Kelly-Spratt K, Wong CH, Zhang Q, Chin A, Park KS, Goodman G, Gazdar AF, Sage J, Dinulescu DM, Kucherlapati R, DePinho RA, Kemp CJ, Varmus HE, Hanash SM. Lung cancer signatures in plasma based on proteome profiling of mouse tumor models. Cancer Cell 2011; 20:289-99. [PMID: 21907921 PMCID: PMC3406925 DOI: 10.1016/j.ccr.2011.08.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/06/2011] [Accepted: 08/05/2011] [Indexed: 12/23/2022]
Abstract
We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models.
Collapse
Affiliation(s)
- Ayumu Taguchi
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Katerina Politi
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | - William W. Lockwood
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Vitor M. Faça
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Chee-Hong Wong
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qing Zhang
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alice Chin
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kwon-Sik Park
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gary Goodman
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adi F. Gazdar
- Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Daniela M. Dinulescu
- Eugene Braunwald Research Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raju Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ronald A. DePinho
- Belfer Institute for Applied Cancer Science, Department of Medical Oncology, Department of Medicine and Department of Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Harold E. Varmus
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Samir M. Hanash
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
31
|
Pitteri SJ, Kelly-Spratt KS, Gurley KE, Kennedy J, Buson TB, Chin A, Wang H, Zhang Q, Wong CH, Chodosh LA, Nelson PS, Hanash SM, Kemp CJ. Tumor microenvironment-derived proteins dominate the plasma proteome response during breast cancer induction and progression. Cancer Res 2011; 71:5090-100. [PMID: 21653680 DOI: 10.1158/0008-5472.can-11-0568] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor development relies upon essential contributions from the tumor microenvironment and host immune alterations. These contributions may inform the plasma proteome in a manner that could be exploited for cancer diagnosis and prognosis. In this study, we employed a systems biology approach to characterize the plasma proteome response in the inducible HER2/neu mouse model of breast cancer during tumor induction, progression, and regression. Mass spectrometry data derived from approximately 1.6 million spectra identified protein networks involved in wound healing, microenvironment, and metabolism that coordinately changed during tumor development. The observed alterations developed prior to cancer detection, increased progressively with tumor growth and reverted toward baseline with tumor regression. Gene expression and immunohistochemical analyses suggested that the cancer-associated plasma proteome was derived from transcriptional responses in the noncancerous host tissues as well as the developing tumor. The proteomic signature was distinct from a nonspecific response to inflammation. Overall, the developing tumor simultaneously engaged a number of innate physiologic processes, including wound repair, immune response, coagulation and complement cascades, tissue remodeling, and metabolic homeostasis that were all detectable in plasma. Our findings offer an integrated view of tumor development relevant to plasma-based strategies to detect and diagnose cancer.
Collapse
Affiliation(s)
- Sharon J Pitteri
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|