1
|
Lu H, Zhu Z, Fields L, Zhang H, Li L. Mass Spectrometry Structural Proteomics Enabled by Limited Proteolysis and Cross-Linking. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39300771 DOI: 10.1002/mas.21908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
The exploration of protein structure and function stands at the forefront of life science and represents an ever-expanding focus in the development of proteomics. As mass spectrometry (MS) offers readout of protein conformational changes at both the protein and peptide levels, MS-based structural proteomics is making significant strides in the realms of structural and molecular biology, complementing traditional structural biology techniques. This review focuses on two powerful MS-based techniques for peptide-level readout, namely limited proteolysis-mass spectrometry (LiP-MS) and cross-linking mass spectrometry (XL-MS). First, we discuss the principles, features, and different workflows of these two methods. Subsequently, we delve into the bioinformatics strategies and software tools used for interpreting data associated with these protein conformation readouts and how the data can be integrated with other computational tools. Furthermore, we provide a comprehensive summary of the noteworthy applications of LiP-MS and XL-MS in diverse areas including neurodegenerative diseases, interactome studies, membrane proteins, and artificial intelligence-based structural analysis. Finally, we discuss the factors that modulate protein conformational changes. We also highlight the remaining challenges in understanding the intricacies of protein conformational changes by LiP-MS and XL-MS technologies.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Chen Y, Wang C, Qi M, Wei Y, Jiang H, Du Z. Molecular targets of cisplatin in HeLa cells explored through competitive activity-based protein profiling strategy. J Inorg Biochem 2024; 254:112518. [PMID: 38460483 DOI: 10.1016/j.jinorgbio.2024.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Cisplatin is widely used as anticancer drugs, and DNA is considered as the main target. Considering its high affinity towards cysteines and the important role of cystine containing proteins, we applied a competitive activity-based protein profiling strategy to identify protein cysteines that bind with cisplatin in HeLa cells. Living cells were treated with cisplatin at cytotoxic concentrations, then the protein was extracted. After labeling with desthiobiotin iodoacetamide (DBIA) probe, protein was precipitated, digested and isotopically labeled, subsequently the peptides were combined, and the biotinylated cysteine-containing peptides were enriched and quantified by LC-MS/MS. A total of 3571 peptides which originated from 1871 proteins were identified using the DBIA probe. Among them, 46 proteins were screened as targets, including proteins that have been identified as binding proteins by previous study. A novel cisplatin target, calpain-1 (CAPN1), was identified and validated as binding with cisplatin in vitro.
Collapse
Affiliation(s)
- Yi Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenxi Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiling Qi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinyu Wei
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Chaudhary RK, Khanal P, Mateti UV, Shastry CS, Shetty J. Identification of hub genes involved in cisplatin resistance in head and neck cancer. J Genet Eng Biotechnol 2023; 21:9. [PMID: 36715825 PMCID: PMC9886788 DOI: 10.1186/s43141-023-00468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/14/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cisplatin resistance is one of the major contributors to the poor survival rate among head and neck cancer (HNC) patients. Focusing on the protein-protein interaction rather than a single protein could provide a better understanding of drug resistance. Thus, this study aimed to identify hub genes in a complex network of cisplatin resistance associated genes in HNC chemotherapy via a series of bioinformatic tools. METHODS The genes involved in cisplatin resistance were retrieved from the NCBI gene database using "head and neck cancer" and "cisplatin resistance" as key words. The human genes retrieved were analyzed for their interactions and enriched using the STRING database. The interaction between KEGG pathways and genes was visualized in Cytoscape 3.7.2. Further, the hub gene was identified using the Cytohubba plugin of Cytoscape and validated using UALCAN and Human Protein Atlas database. Validated genes were investigated for the drug-gene interaction using the DGIbd database. RESULTS Out of 137 genes obtained using key words, 133 were associated with cisplatin resistance in the human species. A total of 150 KEGG pathways, 82 cellular components, 123 molecular functions, and 1752 biological processes were modulated on enrichment analysis. Out of 37 hub genes, CCND1, AXL, CDKN2A, TERT, and EXH2 genes were found to have significant (p < 0.05) mRNA expression and effect on overall survival whereas protein expression was found to be positive for all the significant genes except TERT. Thus, they can be targeted with palbociclib, methotrexate, bortezomib and fluorouracil, sorafenib, dasatinib, carboplatin, paclitaxel, gemcitabine, imatinib, doxorubicin, and vorinostat. CONCLUSION As the pathogenesis of head and neck cancer is complex, targeting hub genes and associated pathways involved in cisplatin resistance could bring a milestone change in the drug discovery and management of drug resistance which might uplift overall survival among HNC patients.
Collapse
Affiliation(s)
- Raushan Kumar Chaudhary
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Pukar Khanal
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Uday Venkat Mateti
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, 575018, India.
| | - C. S. Shastry
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| | - Jayarama Shetty
- grid.414809.00000 0004 1765 9194Department of Radiation Therapy and Oncology, K.S. Hegde Medical Academy (KSHEMA), Justice K.S. Hegde Charitable Hospital, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka 575018 India
| |
Collapse
|
4
|
Abstract
Metals are essential components in life processes and participate in many important biological processes. Dysregulation of metal homeostasis is correlated with many diseases. Metals are also frequently incorporated into diagnosis and therapeutics. Understanding of metal homeostasis under (patho)physiological conditions and the molecular mechanisms of action of metallodrugs in biological systems has positive impacts on human health. As an emerging interdisciplinary area of research, metalloproteomics involves investigating metal-protein interactions in biological systems at a proteome-wide scale, has received growing attention, and has been implemented into metal-related research. In this review, we summarize the recent advances in metalloproteomics methodologies and applications. We also highlight emerging single-cell metalloproteomics, including time-resolved inductively coupled plasma mass spectrometry, mass cytometry, and secondary ion mass spectrometry. Finally, we discuss future perspectives in metalloproteomics, aiming to attract more original research to develop more advanced methodologies, which could be utilized rapidly by biochemists or biologists to expand our knowledge of how metal functions in biology and medicine. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, China; ,
| |
Collapse
|
5
|
Rogoyski O, Gerber AP. RNA-binding proteins modulate drug sensitivity of cancer cells. Emerg Top Life Sci 2021; 5:681-685. [PMID: 34328175 PMCID: PMC8726047 DOI: 10.1042/etls20210193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
As our understanding of the complex network of regulatory pathways for gene expression continues to grow, avenues of investigation for how these new findings can be utilised in therapeutics are emerging. The recent growth of interest in the RNA binding protein (RBP) interactome has revealed it to be rich in targets linked to, and causative of diseases. While this is, in and of itself, very interesting, evidence is also beginning to arise for how the RBP interactome can act to modulate the response of diseases to existing therapeutic treatments, especially in cancers. Here we highlight this topic, providing examples of work that exemplifies such modulation of chemotherapeutic sensitivity.
Collapse
Affiliation(s)
- Oliver Rogoyski
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - André P. Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| |
Collapse
|
6
|
Morelli AP, Tortelli TC, Mancini MCS, Pavan ICB, Silva LGS, Severino MB, Granato DC, Pestana NF, Ponte LGS, Peruca GF, Pauletti BA, Dos Santos DFG, de Moura LP, Bezerra RMN, Leme AFP, Chammas R, Simabuco FM. STAT3 contributes to cisplatin resistance, modulating EMT markers, and the mTOR signaling in lung adenocarcinoma. Neoplasia 2021; 23:1048-1058. [PMID: 34543857 PMCID: PMC8453219 DOI: 10.1016/j.neo.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/29/2022]
Abstract
Lung cancer is the second leading cause of cancer death worldwide and is strongly associated with cisplatin resistance. The transcription factor signal transducer and activator of transcription 3 (STAT3) is constitutively activated in cancer cells and coordinates critical cellular processes as survival, self-renewal, and inflammation. In several types of cancer, STAT3 controls the development, immunogenicity, and malignant behavior of tumor cells while it dictates the responsiveness to radio- and chemotherapy. It is known that STAT3 phosphorylation at Ser727 by mechanistic target of rapamycin (mTOR) is necessary for its maximal activation, but the crosstalk between STAT3 and mTOR signaling in cisplatin resistance remains elusive. In this study, using a proteomic approach, we revealed important targets and signaling pathways altered in cisplatin-resistant A549 lung adenocarcinoma cells. STAT3 had increased expression in a resistance context, which can be associated with a poor prognosis. STAT3 knockout (SKO) resulted in a decreased mesenchymal phenotype in A549 cells, observed by clonogenic potential and by the expression of epithelial-mesenchymal transition markers. Importantly, SKO cells did not acquire the mTOR pathway overactivation induced by cisplatin resistance. Consistently, SKO cells were more responsive to mTOR inhibition by rapamycin and presented impairment of the feedback activation loop in Akt. Therefore, rapamycin was even more potent in inhibiting the clonogenic potential in SKO cells and sensitized to cisplatin treatment. Mechanistically, STAT3 partially coordinated the cisplatin resistance phenotype via the mTOR pathway in non-small cell lung cancer. Thus, our findings reveal important targets and highlight the significance of the crosstalk between STAT3 and mTOR signaling in cisplatin resistance. The synergic inhibition of STAT3 and mTOR potentially unveil a potential mechanism of synthetic lethality to be explored for human lung cancer treatment.
Collapse
Affiliation(s)
- Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | - Tharcísio Citrângulo Tortelli
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil; Laboratory of Signaling Mechanisms, School of Pharmaceutical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Luiz Guilherme Salvino Silva
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | - Daniela Campos Granato
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Nathalie Fortes Pestana
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | - Guilherme Francisco Peruca
- Exercise Cell Biology Laboratory, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | - Bianca Alves Pauletti
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | | | - Leandro Pereira de Moura
- Exercise Cell Biology Laboratory, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | - Rosângela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | - Adriana Franco Paes Leme
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, State University of Campinas, Limeira, SP, Brazil.
| |
Collapse
|
7
|
Pauwels E, Rutz C, Provinciael B, Stroobants J, Schols D, Hartmann E, Krause E, Stephanowitz H, Schülein R, Vermeire K. A Proteomic Study on the Membrane Protein Fraction of T Cells Confirms High Substrate Selectivity for the ER Translocation Inhibitor Cyclotriazadisulfonamide. Mol Cell Proteomics 2021; 20:100144. [PMID: 34481949 PMCID: PMC8477212 DOI: 10.1016/j.mcpro.2021.100144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/15/2022] Open
Abstract
Cyclotriazadisulfonamide (CADA) inhibits the cotranslational translocation of type I integral membrane protein human CD4 (huCD4) across the endoplasmic reticulum in a signal peptide (SP)–dependent way. Previously, sortilin was identified as a secondary substrate for CADA but showed reduced CADA sensitivity as compared with huCD4. Here, we performed a quantitative proteomic study on the crude membrane fraction of human T-cells to analyze how many proteins are sensitive to CADA. To screen for these proteins, we employed stable isotope labeling by amino acids in cell culture technique in combination with quantitative MS on CADA-treated human T-lymphoid SUP-T1 cells expressing high levels of huCD4. In line with our previous reports, our current proteomic analysis (data available via ProteomeXchange with identifier PXD027712) demonstrated that only a very small subset of proteins is depleted by CADA. Our data also confirmed that cellular expression of both huCD4 and sortilin are affected by CADA treatment of SUP-T1 cells. Furthermore, three additional targets for CADA are identified, namely, endoplasmic reticulum lectin 1 (ERLEC1), inactive tyrosine-protein kinase 7 (PTK7), and DnaJ homolog subfamily C member 3 (DNAJC3). Western blot and flow cytometry analysis of ERLEC1, PTK7, and DNAJC3 protein expression validated susceptibility of these substrates to CADA, although with varying degrees of sensitivity. Additional cell-free in vitro translation/translocation data demonstrated that the new substrates for CADA carry cleavable SPs that are targets for the cotranslational translocation inhibition exerted by CADA. Thus, our quantitative proteomic analysis demonstrates that ERLEC1, PTK7, and DNAJC3 are validated additional substrates of CADA; however, huCD4 remains the most sensitive integral membrane protein for the endoplasmic reticulum translocation inhibitor CADA. Furthermore, to our knowledge, CADA is the first compound that specifically interferes with only a very small subset of SPs and does not affect signal anchor sequences. About 3007 proteins quantified in SILAC/MS study on CD4+ T-cells treated with CADA. Three new targets for CADA were identified: ERLEC1, PTK7, and DNAJC3. All CADA substrates carry cleavable signal peptides for translocation into ER. huCD4 remains the most sensitive substrate for the ER translocation inhibitor CADA.
Collapse
Affiliation(s)
- Eva Pauwels
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Claudia Rutz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Becky Provinciael
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Joren Stroobants
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Enno Hartmann
- Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Lübeck, Lübeck, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Heike Stephanowitz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Ralf Schülein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Kurt Vermeire
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium.
| |
Collapse
|
8
|
Chavez JD, Tang X, Campbell MD, Reyes G, Kramer PA, Stuppard R, Keller A, Zhang H, Rabinovitch PS, Marcinek DJ, Bruce JE. Mitochondrial protein interaction landscape of SS-31. Proc Natl Acad Sci U S A 2020; 117:15363-15373. [PMID: 32554501 PMCID: PMC7334473 DOI: 10.1073/pnas.2002250117] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction underlies the etiology of a broad spectrum of diseases including heart disease, cancer, neurodegenerative diseases, and the general aging process. Therapeutics that restore healthy mitochondrial function hold promise for treatment of these conditions. The synthetic tetrapeptide, elamipretide (SS-31), improves mitochondrial function, but mechanistic details of its pharmacological effects are unknown. Reportedly, SS-31 primarily interacts with the phospholipid cardiolipin in the inner mitochondrial membrane. Here we utilize chemical cross-linking with mass spectrometry to identify protein interactors of SS-31 in mitochondria. The SS-31-interacting proteins, all known cardiolipin binders, fall into two groups, those involved in ATP production through the oxidative phosphorylation pathway and those involved in 2-oxoglutarate metabolic processes. Residues cross-linked with SS-31 reveal binding regions that in many cases, are proximal to cardiolipin-protein interacting regions. These results offer a glimpse of the protein interaction landscape of SS-31 and provide mechanistic insight relevant to SS-31 mitochondrial therapy.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | | | - Gustavo Reyes
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Philip A Kramer
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Rudy Stuppard
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, WA 98105
| | - Huiliang Zhang
- Department of Pathology, University of Washington, Seattle, WA 98195
| | | | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98105
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA 98105;
| |
Collapse
|
9
|
Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, Quiñones-Díaz BI, Noriega-Rivera RA, Martínez-Zayas G, Santana-Rivera Y, Santiago-Sánchez GS, Valiyeva F, Vivas-Mejía PE. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int J Nanomedicine 2020; 15:2809-2828. [PMID: 32368056 PMCID: PMC7185647 DOI: 10.2147/ijn.s241055] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Christian I Rios-Vicil
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Neurosurgery, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L Lozada-Delgado
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Blanca I Quiñones-Díaz
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Ricardo A Noriega-Rivera
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Gabriel Martínez-Zayas
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Ginette S Santiago-Sánchez
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Fatma Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
10
|
Santana-Rivera Y, Rabelo-Fernández RJ, Quiñones-Díaz BI, Grafals-Ruíz N, Santiago-Sánchez G, Lozada-Delgado EL, Echevarría-Vargas IM, Apiz J, Soto D, Rosado A, Meléndez L, Valiyeva F, Vivas-Mejía PE. Reduced expression of enolase-1 correlates with high intracellular glucose levels and increased senescence in cisplatin-resistant ovarian cancer cells. Am J Transl Res 2020; 12:1275-1292. [PMID: 32355541 PMCID: PMC7191177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Despite good responses to first-line treatment with platinum-based combination chemotherapy, most ovarian cancer patients will relapse and eventually develop a platinum-resistant disease with a poor overall prognosis. The molecular events leading to the cisplatin resistance of ovarian cancer cells are not fully understood. Here, we performed a proteomic analysis to identify protein candidates deregulated in a cisplatin-resistant ovarian cancer cell line (A2780CP20) in comparison to their sensitive counterpart (A2780). Forty-eight proteins were differentially abundant in A2780CP20, as compared with A2780, cells. Enolase-1 (ENO1) was significantly decreased in cisplatin-resistant ovarian cancer cells. Western blots and RT-PCR confirmed our findings. Ectopic ENO1 expression increased the sensitivity of ovarian cancer cells to cisplatin treatment. In contrast, small-interfering (siRNA)-based ENO1 silencing in A2780 cells reduced the sensitivity of these cells to cisplatin treatment. Whereas glucose consumption was lower, intracellular levels were higher in cisplatin-resistant ovarian cancer cells as compared with their cisplatin-sensitive counterparts. Senescence-associated β-galactosidase (β-Gal) levels were higher in cisplatin-resistant ovarian cancer cells as compared with cisplatin-sensitive ovarian cancer cells. β-Gal levels were decreased in ENO1 overexpressed clones. Protein levels of the cell cycle regulators and senescence markers p21 and p53 showed opposite expression patterns in cisplatin-resistant compared with cisplatin sensitive cells. Our studies suggest that decreased expression of ENO1 promotes glucose accumulation, induces senescence, and leads to cisplatin resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Yasmarie Santana-Rivera
- Department of Interdisciplinary Sciences, University of Puerto Rico, Rio Piedras CampusSan Juan 00927, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Robert J Rabelo-Fernández
- Department of Biology, University of Puerto Rico, Rio Piedras CampusSan Juan 00927, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Blanca I Quiñones-Díaz
- Department of Biochemistry, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Nilmary Grafals-Ruíz
- Department of Physiology, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Ginette Santiago-Sánchez
- Department of Biochemistry, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Eunice L Lozada-Delgado
- Department of Biology, University of Puerto Rico, Rio Piedras CampusSan Juan 00927, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Ileabett M Echevarría-Vargas
- Department of Biochemistry, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Juan Apiz
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Department of Biology, University of Puerto Rico, Cayey CampusCayey 00736, Puerto Rico
| | - Daniel Soto
- Department of Biology, University of Puerto Rico, Rio Piedras CampusSan Juan 00927, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Andrea Rosado
- Department of Interdisciplinary Sciences, University of Puerto Rico, Rio Piedras CampusSan Juan 00927, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Loyda Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Fatima Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| | - Pablo E Vivas-Mejía
- Department of Biochemistry, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences CampusSan Juan 00935, Puerto Rico
| |
Collapse
|
11
|
Iadevaia V, Wouters MD, Kanitz A, Matia-González AM, Laing EE, Gerber AP. Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on CDKN1B/p27Kip1 3'UTRs in cisplatin treated cells. RNA Biol 2019; 17:33-46. [PMID: 31522610 PMCID: PMC6948961 DOI: 10.1080/15476286.2019.1662268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional control of gene expression is mediated via RNA-binding proteins (RBPs) that interact with mRNAs in a combinatorial fashion. While recent global RNA interactome capture experiments expanded the repertoire of cellular RBPs quiet dramatically, little is known about the assembly of RBPs on particular mRNAs; and how these associations change and control the fate of the mRNA in drug-treatment conditions. Here we introduce a novel biochemical approach, termed tobramycin-based tandem RNA isolation procedure (tobTRIP), to quantify proteins associated with the 3ʹUTRs of cyclin-dependent kinase inhibitor 1B (CDKN1B/p27Kip1) mRNAs in vivo. P27Kip1 plays an important role in mediating a cell’s response to cisplatin (CP), a widely used chemotherapeutic cancer drug that induces DNA damage and cell cycle arrest. We found that p27Kip1 mRNA is stabilized upon CP treatment of HEK293 cells through elements in its 3ʹUTR. Applying tobTRIP, we further compared the associated proteins in CP and non-treated cells, and identified more than 50 interacting RBPs, many functionally related and evoking a coordinated response. Knock-downs of several of the identified RBPs in HEK293 cells confirmed their involvement in CP-induced p27 mRNA regulation; while knock-down of the KH-type splicing regulatory protein (KHSRP) further enhanced the sensitivity of MCF7 adenocarcinoma cancer cells to CP treatment. Our results highlight the benefit of specific in vivo mRNA-protein interactome capture to reveal post-transcriptional regulatory networks implicated in cellular drug response and adaptation.
Collapse
Affiliation(s)
- Valentina Iadevaia
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Maikel D Wouters
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Ana M Matia-González
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Emma E Laing
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
12
|
Rodríguez-Ulloa A, Ramos Y, Sánchez-Puente A, Perera Y, Musacchio-Lasa A, Fernández-de-Cossio J, Padrón G, López LJ, Besada V, Perea SE. The Combination of the CIGB-300 Anticancer Peptide and Cisplatin Modulates Proteins Related to Cell Survival, DNA Repair and Metastasis in a Lung Cancer Cell Line Model. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666190126104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
CIGB-300 is a pro-apoptotic peptide that abrogates CK2-mediated phosphorylation,
and can elicit synergistic interaction in vitro and in vivo when combined with certain anticancer
drugs.
Objective:
The combination of CIGB-300 with cisplatin is studied through data mining and expressionbased
proteomics to reveal the molecular basis of this interaction. Cisplatin resistance-associated proteins,
which have also been reported as CK2 substrates, were first identified by bioinformatic analyses.
Methods:
Data from these analyses suggested that the cisplatin resistance phenotype could be directly
improved by inhibiting CK2 phosphorylation on specific substrates. Furthermore, 157 proteins were
differentially modulated on the NCI-H125 lung cancer cell line in response to CIGB-300, cisplatin or
both drugs as determined by LC-MS/MS.
Results:
The expression of 28 cisplatin resistance-associated proteins was changed when cisplatin was
combined with CIGB-300. Overall, the proteins identified are also related to cell survival, cell proliferation
and metastasis. Furthermore, the CIGB-300 regulated proteome revealed proteins that were initially
involved in the mechanism of action of CIGB-300 and cisplatin as single agents.
Conclusion:
This is the first report describing the protein array modulated by combining CIGB-300
and cisplatin that will support the rationale for future clinical settings based on a multi-target cancer
therapy.
Collapse
Affiliation(s)
| | - Yassel Ramos
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Aniel Sánchez-Puente
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yasser Perera
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Alexis Musacchio-Lasa
- Department of Bioinformatics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Gabriel Padrón
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Luis J.G. López
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Vladimir Besada
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Silvio E. Perea
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
13
|
Jia S, Wang R, Wu K, Jiang H, Du Z. Elucidation of the Mechanism of Action for Metal Based Anticancer Drugs by Mass Spectrometry-Based Quantitative Proteomics. Molecules 2019; 24:molecules24030581. [PMID: 30736320 PMCID: PMC6384660 DOI: 10.3390/molecules24030581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 02/06/2023] Open
Abstract
The discovery of the anticancer activity of cisplatin and its clinical application has opened a new field for studying metal-coordinated anticancer drugs. Metal-based anticancer drugs, such as cisplatin, can be transported to cells after entering into the human body and form metal–DNA or metal–protein adducts. Then, responding proteins will recognize adducts and form stable complexes. The proteins that were binding with metal-based anticancer drugs were relevant to their mechanism of action. Herein, investigation of the recognition between metal-based anticancer drugs and its binding partners will further our understanding about the pharmacology of cytotoxic anticancer drugs and help optimize the structure of anticancer drugs. The “soft” ionization mass spectrometric methods have many advantages such as high sensitivity and low sample consumption, which are suitable for the analyses of complex biological samples. Thus, MS has become a powerful tool for the identification of proteins binding or responding to metal-based anticancer drugs. In this review, we focused on the mass spectrometry-based quantitative strategy for the identification of proteins specifically responding or binding to metal-based anticancer drugs, ultimately elucidating their mechanism of action.
Collapse
Affiliation(s)
- Shuailong Jia
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Runjing Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Kui Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Srivastava V, Rezinciuc S, Bulone V. Quantitative Proteomic Analysis of Four Developmental Stages of Saprolegnia parasitica. Front Microbiol 2018; 8:2658. [PMID: 29375523 PMCID: PMC5768655 DOI: 10.3389/fmicb.2017.02658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/20/2017] [Indexed: 01/24/2023] Open
Abstract
Several water mold species from the Saprolegnia genus infect fish, amphibians, and crustaceans in natural ecosystems and aquaculture farms. Saprolegnia parasitica is one of the most severe fish pathogens. It is responsible for millions of dollars of losses to the aquaculture industry worldwide. Here, we have performed a proteomic analysis, using gel-based and solution (iTRAQ) approaches, of four defined developmental stages of S. parasitica grown in vitro, i.e., the mycelium, primary cysts, secondary cysts and germinated cysts, to gain greater insight into the types of proteins linked to the different stages. A relatively high number of kinases as well as virulence proteins, including the ricin B lectin, disintegrins, and proteases were identified in the S. parasitica proteome. Many proteins associated with various biological processes were significantly enriched in different life cycle stages of S. parasitica. Compared to the mycelium, most of the proteins in the different cyst stages showed similar enrichment patterns and were mainly related to energy metabolism, signal transduction, protein synthesis, and post-translational modifications. The proteins most enriched in the mycelium compared to the cyst stages were associated with amino acid metabolism, carbohydrate metabolism, and mitochondrial energy production. The data presented expand our knowledge of metabolic pathways specifically linked to each developmental stage of this pathogen.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Division of Glycoscience, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Svetlana Rezinciuc
- Division of Glycoscience, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden.,ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
15
|
Wootton CA, Lam YPY, Willetts M, van Agthoven MA, Barrow MP, Sadler PJ, O Connor PB. Automatic assignment of metal-containing peptides in proteomic LC-MS and MS/MS data sets. Analyst 2017; 142:2029-2037. [PMID: 28513638 DOI: 10.1039/c7an00075h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition metal-containing proteins and enzymes are critical for the maintenance of cellular function and metal-based (metallo)drugs are commonly used for the treatment of many diseases, such as cancer. Detection and characterisation of metallodrug targets is crucial for improving drug-design and therapeutic efficacy. Due to the unique isotopic ratios of many metal species, and the complexity of proteomic samples, standard MS data analysis of these species is unsuitable for accurate assignment. Herein a new method for differentiating metal-containing species within complex LCMS data is presented based upon the Smart Numerical Annotation Procedure (SNAP). SNAP-LC accounts for the change in isotopic envelopes for analytes containing non-standard species, such as metals, and will accurately identify, record, and display the particular spectra within extended LCMS runs that contain target species, and produce accurate lists of matched peaks, greatly assisting the identification and assignment of modified species and tailored to the metals of interest. Analysis of metallated species obtained from tryptic digests of common blood proteins after reactions with three candidate metallodrugs is presented as proof-of-concept examples and demonstrates the effectiveness of SNAP-LC for the fast and accurate elucidation of metallodrug targets.
Collapse
Affiliation(s)
| | - Yuko P Y Lam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | | | | | - Mark P Barrow
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - Peter B O Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
16
|
Lee RFS, Chernobrovkin A, Rutishauser D, Allardyce CS, Hacker D, Johnsson K, Zubarev RA, Dyson PJ. Expression proteomics study to determine metallodrug targets and optimal drug combinations. Sci Rep 2017; 7:1590. [PMID: 28484215 PMCID: PMC5431558 DOI: 10.1038/s41598-017-01643-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/03/2017] [Indexed: 01/01/2023] Open
Abstract
The emerging technique termed functional identification of target by expression proteomics (FITExP) has been shown to identify the key protein targets of anti-cancer drugs. Here, we use this approach to elucidate the proteins involved in the mechanism of action of two ruthenium(II)-based anti-cancer compounds, RAPTA-T and RAPTA-EA in breast cancer cells, revealing significant differences in the proteins upregulated. RAPTA-T causes upregulation of multiple proteins suggesting a broad mechanism of action involving suppression of both metastasis and tumorigenicity. RAPTA-EA bearing a GST inhibiting ethacrynic acid moiety, causes upregulation of mainly oxidative stress related proteins. The approach used in this work could be applied to the prediction of effective drug combinations to test in cancer chemotherapy clinical trials.
Collapse
Affiliation(s)
- Ronald F S Lee
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alexey Chernobrovkin
- Karolinska Institute, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, S-171 77, Stockholm, Sweden
| | - Dorothea Rutishauser
- Karolinska Institute, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, S-171 77, Stockholm, Sweden.,Science for Life Laboratory, Stockholm, Sweden
| | - Claire S Allardyce
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - David Hacker
- Protein Expression Core Facility, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Roman A Zubarev
- Karolinska Institute, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, S-171 77, Stockholm, Sweden
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
The metabolomic signature of hematologic malignancies. Leuk Res 2016; 49:22-35. [PMID: 27526405 DOI: 10.1016/j.leukres.2016.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
The ongoing accumulation of knowledge raises hopes that understanding tumor metabolism will provide new ways for predicting, diagnosing, and even treating cancers. Some metabolic biomarkers are at present routinely utilized to diagnose cancer and metabolic alterations of tumors are being confirmed as therapeutic targets. The growing utilization of metabolomics in clinical research may rapidly turn it into one of the most potent instruments used to detect and fight tumor. In fact, while the current state and trends of high throughput metabolomics profiling focus on the purpose of discovering biomarkers and hunting for metabolic mechanism, a prospective direction, namely reprogramming metabolomics, highlights the way to use metabolomics approach for the aim of treatment of disease by way of reconstruction of disturbed metabolic pathways. In this review, we present an ample summary of the current clinical appliances of metabolomics in hematological malignancies.
Collapse
|
18
|
Zhu H, Luo H, Zhang W, Shen Z, Hu X, Zhu X. Molecular mechanisms of cisplatin resistance in cervical cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1885-95. [PMID: 27354763 PMCID: PMC4907638 DOI: 10.2147/dddt.s106412] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%–20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hui Luo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhaojun Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
19
|
Herrera-Pérez Z, Gretz N, Dweep H. A Comprehensive Review on the Genetic Regulation of Cisplatin-induced Nephrotoxicity. Curr Genomics 2016; 17:279-93. [PMID: 27252593 PMCID: PMC4869013 DOI: 10.2174/1389202917666160202220555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Cisplatin (CDDP) is a well-known antineoplastic drug which has been extensively utilized over the last decades in the treatment of numerous kinds of tumors. However, CDDP induces a wide range of toxicities in a dose-dependent manner, among which nephrotoxicity is of particular importance. Still, the mechanism of CDDP-induced renal damage is not completely understood; moreover, the knowledge about the role of microRNAs (miRNAs) in the nephrotoxic response is still unknown. miRNAs are known to interact with the representative members of a diverse range of regulatory pathways (including postnatal development, proliferation, inflammation and fibrosis) and pathological conditions, including kidney diseases: polycystic kidney diseases (PKDs), diabetic nephropathy (DN), kidney cancer, and drug-induced kidney injury. In this review, we shed light on the following important aspects: (i) information on genes/proteins and their interactions with previously known pathways engaged with CDDP-induced nephrotoxicity, (ii) information on newly discovered biomarkers, especially, miRNAs for detecting CDDP-induced nephrotoxicity and (iii) information to improve our understanding on CDDP. This information will not only help the researchers belonging to nephrotoxicity field, but also supply an indisputable help for oncologists to better understand and manage the side effects induced by CDDP during cancer treatment. Moreover, we provide up-to-date information about different in vivo and in vitro models that have been utilized over the last decades to study CDDP-induced renal injury. Taken together, this review offers a comprehensive network on genes, miRNAs, pathways and animal models which will serve as a useful resource to understand the molecular mechanism of CDDP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zeneida Herrera-Pérez
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Harsh Dweep
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
20
|
Gao SG, Liu RM, Zhao YG, Wang P, Ward DG, Wang GC, Guo XQ, Gu J, Niu WB, Zhang T, Martin A, Guo ZP, Feng XS, Qi YJ, Ma YF. Integrative topological analysis of mass spectrometry data reveals molecular features with clinical relevance in esophageal squamous cell carcinoma. Sci Rep 2016; 6:21586. [PMID: 26898710 PMCID: PMC4761933 DOI: 10.1038/srep21586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Combining MS-based proteomic data with network and topological features of such network would identify more clinically relevant molecules and meaningfully expand the repertoire of proteins derived from MS analysis. The integrative topological indexes representing 95.96% information of seven individual topological measures of node proteins were calculated within a protein-protein interaction (PPI) network, built using 244 differentially expressed proteins (DEPs) identified by iTRAQ 2D-LC-MS/MS. Compared with DEPs, differentially expressed genes (DEGs) and comprehensive features (CFs), structurally dominant nodes (SDNs) based on integrative topological index distribution produced comparable classification performance in three different clinical settings using five independent gene expression data sets. The signature molecules of SDN-based classifier for distinction of early from late clinical TNM stages were enriched in biological traits of protein synthesis, intracellular localization and ribosome biogenesis, which suggests that ribosome biogenesis represents a promising therapeutic target for treating ESCC. In addition, ITGB1 expression selected exclusively by integrative topological measures correlated with clinical stages and prognosis, which was further validated with two independent cohorts of ESCC samples. Thus the integrative topological analysis of PPI networks proposed in this study provides an alternative approach to identify potential biomarkers and therapeutic targets from MS/MS data with functional insights in ESCC.
Collapse
Affiliation(s)
- She-Gan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, P. R. China, 471003
| | - Rui-Min Liu
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Yun-Gang Zhao
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Pei Wang
- School of Mathematics and Statistics, Henan University, Kaifeng, China, Henan 475004, P. R. China
| | - Douglas G. Ward
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Guang-Chao Wang
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Xiang-Qian Guo
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Juan Gu
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Wan-Bin Niu
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Tian Zhang
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Ashley Martin
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhi-Peng Guo
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Xiao-Shan Feng
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, P. R. China, 471003
| | - Yi-Jun Qi
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Yuan-Fang Ma
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| |
Collapse
|
21
|
Schweppe DK, Harding C, Chavez JD, Wu X, Ramage E, Singh PK, Manoil C, Bruce JE. Host-Microbe Protein Interactions during Bacterial Infection. ACTA ACUST UNITED AC 2015; 22:1521-1530. [PMID: 26548613 DOI: 10.1016/j.chembiol.2015.09.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 12/24/2022]
Abstract
Interspecies protein-protein interactions are essential mediators of infection. While bacterial proteins required for host cell invasion and infection can be identified through bacterial mutant library screens, information about host target proteins and interspecies complex structures has been more difficult to acquire. Using an unbiased chemical crosslinking/mass spectrometry approach, we identified interspecies protein-protein interactions in human lung epithelial cells infected with Acinetobacter baumannii. These efforts resulted in identification of 3,076 crosslinked peptide pairs and 46 interspecies protein-protein interactions. Most notably, the key A. baumannii virulence factor, OmpA, was identified as crosslinked to host proteins involved in desmosomes, specialized structures that mediate host cell-to-cell adhesion. Co-immunoprecipitation and transposon mutant experiments were used to verify these interactions and demonstrate relevance for host cell invasion and acute murine lung infection. These results shed new light on A. baumannii-host protein interactions and their structural features, and the presented approach is generally applicable to other systems.
Collapse
Affiliation(s)
- Devin K Schweppe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Christopher Harding
- Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Xia Wu
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth Ramage
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Pradeep K Singh
- Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Colin Manoil
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Departments of Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington School of Medicine, 850 Republican Street, Brotman Building, Room 154, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
Quantitative interactome analysis reveals a chemoresistant edgotype. Nat Commun 2015; 6:7928. [PMID: 26235782 PMCID: PMC4532879 DOI: 10.1038/ncomms8928] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/25/2015] [Indexed: 02/07/2023] Open
Abstract
Chemoresistance is a common mode of therapy failure for many cancers. Tumours develop resistance to chemotherapeutics through a variety of mechanisms, with proteins serving pivotal roles. Changes in protein conformations and interactions affect the cellular response to environmental conditions contributing to the development of new phenotypes. The ability to understand how protein interaction networks adapt to yield new function or alter phenotype is limited by the inability to determine structural and protein interaction changes on a proteomic scale. Here, chemical crosslinking and mass spectrometry were employed to quantify changes in protein structures and interactions in multidrug-resistant human carcinoma cells. Quantitative analysis of the largest crosslinking-derived, protein interaction network comprising 1,391 crosslinked peptides allows for ‘edgotype' analysis in a cell model of chemoresistance. We detect consistent changes to protein interactions and structures, including those involving cytokeratins, topoisomerase-2-alpha, and post-translationally modified histones, which correlate with a chemoresistant phenotype. Changes in protein–protein interactions result in changes to cellular phenotype. Here the authors use crosslinking mass spectrometry to derive a quantitative protein interaction network in drug-sensitive and -resistant HeLa cells, and uncover a chemoresistant ‘edgotype'.
Collapse
|
23
|
Wang Y, Wang H, Li H, Sun H. Metallomic and metalloproteomic strategies in elucidating the molecular mechanisms of metallodrugs. Dalton Trans 2015; 44:437-47. [DOI: 10.1039/c4dt02814g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in the mechanistic studies of metallodrugs by metallomic and metalloproteomic approaches will improve our understanding of the mechanism of action and allow more metallodrugs to be developed.
Collapse
Affiliation(s)
- Yuchuan Wang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Haibo Wang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hongyan Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hongzhe Sun
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| |
Collapse
|
24
|
Rabilloud T, Lescuyer P. Proteomics in mechanistic toxicology: History, concepts, achievements, caveats, and potential. Proteomics 2014; 15:1051-74. [DOI: 10.1002/pmic.201400288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/25/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals; CNRS UMR; 5249 Grenoble France
- Laboratory of Chemistry and Biology of Metals; Université Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CEA Grenoble; iRTSV/CBM; Grenoble France
| | - Pierre Lescuyer
- Department of Human Protein Sciences; Clinical Proteomics and Chemistry Group; Geneva University; Geneva Switzerland
- Toxicology and Therapeutic Drug Monitoring Laboratory; Department of Genetic and Laboratory Medicine; Geneva University Hospitals; Geneva Switzerland
| |
Collapse
|
25
|
Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 2014; 5:e1257. [PMID: 24874729 PMCID: PMC4047912 DOI: 10.1038/cddis.2013.428] [Citation(s) in RCA: 567] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
The platinum derivative cis-diamminedichloroplatinum(II), best known as cisplatin, is currently employed for the clinical management of patients affected by testicular, ovarian, head and neck, colorectal, bladder and lung cancers. For a long time, the antineoplastic effects of cisplatin have been fully ascribed to its ability to generate unrepairable DNA lesions, hence inducing either a permanent proliferative arrest known as cellular senescence or the mitochondrial pathway of apoptosis. Accumulating evidence now suggests that the cytostatic and cytotoxic activity of cisplatin involves both a nuclear and a cytoplasmic component. Despite the unresolved issues regarding its mechanism of action, the administration of cisplatin is generally associated with high rates of clinical responses. However, in the vast majority of cases, malignant cells exposed to cisplatin activate a multipronged adaptive response that renders them less susceptible to the antiproliferative and cytotoxic effects of the drug, and eventually resume proliferation. Thus, a large fraction of cisplatin-treated patients is destined to experience therapeutic failure and tumor recurrence. Throughout the last four decades great efforts have been devoted to the characterization of the molecular mechanisms whereby neoplastic cells progressively lose their sensitivity to cisplatin. The advent of high-content and high-throughput screening technologies has accelerated the discovery of cell-intrinsic and cell-extrinsic pathways that may be targeted to prevent or reverse cisplatin resistance in cancer patients. Still, the multifactorial and redundant nature of this phenomenon poses a significant barrier against the identification of effective chemosensitization strategies. Here, we discuss recent systems biology studies aimed at deconvoluting the complex circuitries that underpin cisplatin resistance, and how their findings might drive the development of rational approaches to tackle this clinically relevant problem.
Collapse
Affiliation(s)
- L Galluzzi
- 1] Gustave Roussy, Villejuif, France [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France [3] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - I Vitale
- 1] Regina Elena National Cancer Institute, Rome, Italy [2] National Institute of Health, Rome, Italy
| | - J Michels
- 1] Gustave Roussy, Villejuif, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] INSERM, U848, Villejuif, France
| | - C Brenner
- 1] INSERM, UMRS 769; LabEx LERMIT, Châtenay Malabry, France [2] Faculté de Pharmacie, Université de Paris Sud/Paris XI, Châtenay Malabry, France
| | - G Szabadkai
- 1] Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK [2] Department of Biomedical Sciences, Università Degli Studi di Padova, Padova, Italy
| | - A Harel-Bellan
- 1] Laboratoire Epigenetique et Cancer, Université de Paris Sud/Paris XI, Gif-Sur-Yvette, France [2] CNRS, FRE3377, Gif-Sur-Yvette, France [3] Commissariat à l'Energie Atomique (CEA), Saclay, France
| | - M Castedo
- 1] Gustave Roussy, Villejuif, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] INSERM, U848, Villejuif, France
| | - G Kroemer
- 1] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] INSERM, U848, Villejuif, France [4] Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France [5] Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| |
Collapse
|
26
|
Huang L, Huang QY, Huang HQ. The evidence of HeLa cell apoptosis induced with tetraethylammonium using proteomics and various analytical methods. J Biol Chem 2013; 289:2217-29. [PMID: 24297172 DOI: 10.1074/jbc.m113.515932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetraethylammonium (TEA) is a potassium channel (KCh) blocker applied in the functional and pharmacological studies of the KChs. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, a colorimetric assay to quantitatively measure living cells, demonstrated that TEA reduced the HeLa cell viability dose-dependently. Flow cytometry analysis indicated an increased apoptosis rate of the HeLa cell after exposing to TEA. The patch clamp technique revealed that the K(+) current of the HeLa cell was inhibited up to 80% when exposed to TEA. In addition, quantitative real-time PCR approach set up cross-talk among the cytotoxicity of TEA, 4-aminopyridine, and anti-cancer drug such as cisplatin. Using comparative proteomics combined with MALDI-TOF MS/MS, 33 significantly changed proteins were found from TEA treatment group; among these proteins, 12 were up-regulated, and 21 were down-regulated. Here we indicated that these proteins were closely connected with many biological functions such as oxidative stress response, signal transduction, metabolism, protein synthesis, and degradation. Both Western blotting and quantitative real-time PCR approaches further verified these differential proteins. Ingenuity Pathways Analysis software, a tool to analyze "omics" data and model biological system, was applied to analyze the interaction pathways of these proteins. The subcellular locations of the differential proteins are also predicted from Uniprot. All results above can help in our understanding of the mechanism of TEA-induced cytotoxicity and provide potential cancer biomarkers. Various experimental results in this study (like those for cisplatin) indicated that TEA is not only a KCh blocker but also a potential anti-cancer drug.
Collapse
Affiliation(s)
- Lin Huang
- From the State Key Laboratory of Cellular Stress Biology, School of Life Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China and
| | | | | |
Collapse
|
27
|
Caceres NE, Aerts M, Marquez B, Mingeot-Leclercq MP, Tulkens PM, Devreese B, Van Bambeke F. Analysis of the membrane proteome of ciprofloxacin-resistant macrophages by stable isotope labeling with amino acids in cell culture (SILAC). PLoS One 2013; 8:e58285. [PMID: 23505477 PMCID: PMC3591400 DOI: 10.1371/journal.pone.0058285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 02/01/2013] [Indexed: 12/21/2022] Open
Abstract
Overexpression of multidrug transporters is a well-established mechanism of resistance to chemotherapy, but other changes may be co-selected upon exposure to drugs that contribute to resistance. Using a model of J774 macrophages made resistant to the fluoroquinolone antibiotic ciprofloxacin and comparing it with the wild-type parent cell line, we performed a quantitative proteomic analysis using the stable isotope labeling with amino acids in cell culture technology coupled with liquid chromatography electrospray ionization Fourier transform tandem mass spectrometry (LC-ESI-FT-MS/MS) on 2 samples enriched in membrane proteins (fractions F1 and F2 collected from discontinuous sucrose gradient). Nine hundred proteins were identified with at least 3 unique peptides in these 2 pooled fractions among which 61 (F1) and 69 (F2) showed a significantly modified abundance among the 2 cell lines. The multidrug resistance associated protein Abcc4, known as the ciprofloxacin efflux transporter in these cells, was the most upregulated, together with Dnajc3, a protein encoded by a gene located downstream of Abcc4. The other modulated proteins are involved in transport functions, cell adhesion and cytoskeleton organization, immune response, signal transduction, and metabolism. This indicates that the antibiotic ciprofloxacin is able to trigger a pleiotropic adaptative response in macrophages that includes the overexpression of its efflux transporter.
Collapse
Affiliation(s)
- Nancy E. Caceres
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Maarten Aerts
- Laboratorium voor Eiwitbiochemie en Biomoleculaire Engineering, Universiteit Gent, Belgium
| | - Béatrice Marquez
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Paul M. Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bart Devreese
- Laboratorium voor Eiwitbiochemie en Biomoleculaire Engineering, Universiteit Gent, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
Wang Y, Chen Q, Jin S, Deng W, Li S, Tong Q, Chen Y. Up-regulation of P-glycoprotein is involved in the increased paclitaxel resistance in human esophageal cancer radioresistant cells. Scand J Gastroenterol 2012; 47:802-8. [PMID: 22545578 DOI: 10.3109/00365521.2012.683042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Development of drug and radiation resistance is one of the major causes of cancer treatment failure with chemoradiotherapy. Whether radiotherapy affects drugs resistance in esophageal cancer cells remain to be determined. The purpose of the study was to investigate the change of drug-sensitivity and P-glycoprotein (P-gp) expression in ionization radiation-induced human esophageal cancer radioresistant cells. MATERIALS AND METHODS Radioresistant cells were established by means of continuous fractionated gamma-ray irradiation on human esophageal squamous cancer cell line EC9706. The radiosensitivity and drug-sensitivity between established radioresistant cells and parental cells were detected by a colony-forming assay and 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, respectively. The expressions of multidrug resistance type 1 gene (MDR1) mRNA and protein for P-gp were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot methods. The roles of P-gp activity in irradiation-induced drugs resistance were studied by using verapamil, an inhibitor of P-gp activity. RESULTS The esophageal cancer radioresistant cells showed an increased cisplatin or paclitaxel resistance. Compared with their parental cells, the expressions of MDR1 mRNA and protein for P-gp were increased significantly in radioresistant cells. Verapamil reduced paclitaxel resistance but had no effect on cisplatin resistance in human esophageal cancer radioresistant cells. CONCLUSIONS These results suggested that up-regulation of P-gp is involved in the increased paclitaxel resistance but not cisplatin resistance in ionization radiation-induced human esophageal squamous cancer radioresistant cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Taihe Hospital, Hubei Medical University, Shiyan, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Huang Y, Jeong JS, Okamura J, Sook-Kim M, Zhu H, Guerrero-Preston R, Ratovitski EA. Global tumor protein p53/p63 interactome: making a case for cisplatin chemoresistance. Cell Cycle 2012; 11:2367-79. [PMID: 22672905 DOI: 10.4161/cc.20863] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cisplatin chemoresistance is a clinical problem that leads to treatment failure in various human epithelial cancers. Members of tumor protein (TP) p53 family play various critical roles in the multiple molecular mechanisms underlying the chemoresistance of tumor cells. However, the in-depth mechanisms of the cellular response to cisplatin-induced cell death are still under thorough investigation. We previously showed that squamous cell carcinoma (SCC) cells exposed to cisplatin display an ATM-dependent phosphorylation of ΔNp63α, leading to a specific function of the phosphorylated (p)-ΔNp63α transcription factor in cisplatin-sensitive tumor cells. We further found that SCC cells expressing non-p-ΔNp63α-S385G became cisplatin-resistant. Using quantitative mass-spectrometry of protein complexes labeled with isobaric tags, we showed that TP53 and ΔNp63α are involved in numerous protein-protein interactions, which are likely to be implicated in the response of tumor cells to cisplatin exposure. We found that p-ΔNp63α binds to the splicing complex, leading to repression of mRNA splicing and activation of ACIN1-mediated cell death pathway. In contrast to p-ΔNp63α, non-p-ΔNp63α fails to bind the critical members of the splicing complex, thereby leading to activation of RNA splicing and reduction of cell death pathway. Overall, our studies provide an integrated proteomic platform in making a case for the role of the p53/p63 interactome in cisplatin chemoresistance.
Collapse
Affiliation(s)
- Yiping Huang
- Department of Dermatology, Institute of Basic Biomedical Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Hoopmann MR, Chavez JD, Bruce JE. SILACtor: software to enable dynamic SILAC studies. Anal Chem 2011; 83:8403-10. [PMID: 21954881 DOI: 10.1021/ac2017053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) is a versatile tool in proteomics that has been used to explore protein turnover on a large scale. However, these studies pose a significant undertaking that can be greatly simplified through the use of computational tools that automate the data analysis. While SILAC technology has enjoyed rapid adoption through the availability of several software tools, algorithms do not exist for the automated analysis of protein turnover data generated using SILAC technology. Presented here is a software tool, SILACtor, designed to trace and compare SILAC-labeled peptides across multiple time points. SILACtor is used to profile protein turnover rates for more than 500 HeLa cell proteins using a SILAC label-chase approach. Additionally, SILACtor contains a method for the automated generation of accurate mass and retention time inclusion lists that target peptides of interest showing fast or slow turnover rates relative to the other peptides observed in the samples. SILACtor enables improved protein turnover studies using SILAC technology and also provides a framework for features extensible to comparative SILAC analyses and targeted methods.
Collapse
Affiliation(s)
- Michael R Hoopmann
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109-4717, United States
| | | | | |
Collapse
|