1
|
Heimesaat MM, Mousavi S, Lobo de Sá FD, Peh E, Schulzke JD, Bücker R, Kittler S, Bereswill S. Oral curcumin ameliorates acute murine campylobacteriosis. Front Immunol 2024; 15:1363457. [PMID: 38855111 PMCID: PMC11157060 DOI: 10.3389/fimmu.2024.1363457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Human infections with the food-borne enteropathogen Campylobacter jejuni are responsible for increasing incidences of acute campylobacteriosis cases worldwide. Since antibiotic treatment is usually not indicated and the severity of the enteritis directly correlates with the risk of developing serious autoimmune disease later-on, novel antibiotics-independent intervention strategies with non-toxic compounds to ameliorate and even prevent campylobacteriosis are utmost wanted. Given its known pleiotropic health-promoting properties, curcumin constitutes such a promising candidate molecule. In our actual preclinical placebo-controlled intervention trial, we tested the anti-microbial and anti-inflammatory effects of oral curcumin pretreatment during acute experimental campylobacteriosis. Methods Therefore, secondary abiotic IL-10-/- mice were challenged with synthetic curcumin via the drinking water starting a week prior oral C. jejuni infection. To assess anti-pathogenic, clinical, immune-modulatory, and functional effects of curcumin prophylaxis, gastrointestinal C. jejuni bacteria were cultured, clinical signs and colonic histopathological changes quantitated, pro-inflammatory immune cell responses determined by in situ immunohistochemistry and intestinal, extra-intestinal and systemic pro-inflammatory mediator measurements, and finally, intestinal epithelial barrier function tested by electrophysiological resistance analysis of colonic ex vivo biopsies in the Ussing chamber. Results and discussion Whereas placebo counterparts were suffering from severe enterocolitis characterized by wasting symptoms and bloody diarrhea on day 6 post-infection, curcumin pretreated mice, however, were clinically far less compromised and displayed less severe microscopic inflammatory sequelae such as histopathological changes and epithelial cell apoptosis in the colon. In addition, curcumin pretreatment could mitigate pro-inflammatory innate and adaptive immune responses in the intestinal tract and importantly, rescue colonic epithelial barrier integrity upon C. jejuni infection. Remarkably, the disease-mitigating effects of exogenous curcumin was also observed in organs beyond the infected intestines and strikingly, even systemically given basal hepatic, renal, and serum concentrations of pro-inflammatory mediators measured in curcumin pretreated mice on day 6 post-infection. In conclusion, the anti-Campylobacter and disease-mitigating including anti-inflammatory effects upon oral curcumin application observed here highlight the polyphenolic compound as a promising antibiotics-independent option for the prevention from severe acute campylobacteriosis and its potential post-infectious complications.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fábia Daniela Lobo de Sá
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jörg-Dieter Schulzke
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Roland Bücker
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
2
|
Shayya NW, Bandick R, Busmann LV, Mousavi S, Bereswill S, Heimesaat MM. Metabolomic signatures of intestinal colonization resistance against Campylobacter jejuni in mice. Front Microbiol 2023; 14:1331114. [PMID: 38164399 PMCID: PMC10757985 DOI: 10.3389/fmicb.2023.1331114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Campylobacter jejuni stands out as one of the leading causes of bacterial enteritis. In contrast to humans, specific pathogen-free (SPF) laboratory mice display strict intestinal colonization resistance (CR) against C. jejuni, orchestrated by the specific murine intestinal microbiota, as shown by fecal microbiota transplantation (FMT) earlier. Methods Murine infection models, comprising SPF, SAB, hma, and mma mice were employed. FMT and microbiota depletion were confirmed by culture and culture-independent analyses. Targeted metabolome analyses of fecal samples provided insights into the associated metabolomic signatures. Results In comparison to hma mice, the murine intestinal microbiota of mma and SPF mice (with CR against C. jejuni) contained significantly elevated numbers of lactobacilli, and Mouse Intestinal Bacteroides, whereas numbers of enterobacteria, enterococci, and Clostridium coccoides group were reduced. Targeted metabolome analysis revealed that fecal samples from mice with CR contained increased levels of secondary bile acids and fatty acids with known antimicrobial activities, but reduced concentrations of amino acids essential for C. jejuni growth as compared to control animals without CR. Discussion The findings highlight the role of microbiota-mediated nutrient competition and antibacterial activities of intestinal metabolites in driving murine CR against C. jejuni. The study underscores the complex dynamics of host-microbiota-pathogen interactions and sets the stage for further investigations into the mechanisms driving CR against enteric infections.
Collapse
|
3
|
Mousavi S, Weschka D, Bereswill S, Heimesaat MM. Disease alleviating effects following prophylactic lemon and coriander essential oil treatment in mice with acute campylobacteriosis. Front Microbiol 2023; 14:1154407. [PMID: 37065112 PMCID: PMC10090957 DOI: 10.3389/fmicb.2023.1154407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionGiven the worldwide increasing prevalence of human Campylobacter jejuni infections and the emergence of multi-drug resistant enteropathogenic strains, antibiotic-independent approaches applying non-toxic natural compounds for the treatment and prophylaxis of campylobacteriosis appear utmost desirable. In our placebo-controlled intervention study, we surveyed potential disease-alleviating including anti-pathogenic and immune-modulatory effects upon prophylactic oral application of lemon-essential oil (LEM-EO) and coriander-essential oil (COR-EO) in acute experimental campylobacteriosis.MethodsTherefore, secondary abiotic IL-10−/− mice were orally challenged with either LEM-EO or COR-EO starting seven days prior to peroral C. jejuni infection.Results and discussionSix days post-infection, slightly lower pathogen loads were assessed in the colon of mice from the LEM-EO as opposed to the COR-EO cohort if compared to placebo counterparts. Prophylactic application of both EOs improved the clinical outcome of acute campylobacteriosis which was paralleled by less distinct pathogen-induced colonic epithelial cell apoptosis. Moreover, mice subjected to LEM-EO and COR-EO prophylaxis displayed lower colonic numbers of macrophages/monocytes and of T lymphocytes, respectively, whereas in both verum groups, basal IL-6 and IFN-γ concentrations were measured in mesenteric lymph nodes on day 6 post-infection. The oral challenge with either EOs resulted in diminished secretion of distinct pro-inflammatory mediators in the kidney as well as serum samples derived from the infected mice. In conclusion, the results from our preclinical in vivo study provide evidence that LEM-EO and COR-EO constitute promising prophylactic measures to prevent severe campylobacteriosis which may help to reduce the risk for development of post-infectious sequelae in C. jejuni infected individuals.
Collapse
|
4
|
Du K, Foote MS, Mousavi S, Buczkowski A, Schmidt S, Peh E, Kittler S, Bereswill S, Heimesaat MM. Combination of organic acids benzoate, butyrate, caprylate, and sorbate provides a novel antibiotics-independent treatment option in the combat of acute campylobacteriosis. Front Microbiol 2023; 14:1128500. [PMID: 37007531 PMCID: PMC10050375 DOI: 10.3389/fmicb.2023.1128500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionThe food-borne Gram-negative bacterial pathogen Campylobacter jejuni may cause the acute enterocolitis syndrome campylobacteriosis in infected humans. Given that human C. jejuni infections are rising globally which hold also true for resistance rates against antibiotic compounds such as macrolides and fluoroquinolones frequently prescribed for the treatment of severe infectious enteritis, novel antibiotics-independent therapeutic strategies are needed. Distinct organic acids are well known for their health-beneficial including anti-microbial and immunomodulatory properties. In our present study, we investigated potential pathogen-lowering and anti-inflammatory effects of benzoic acid, butyric acid, caprylic acid, and sorbic acid either alone or in combination during acute murine campylobacteriosis.MethodsTherefore, secondary abiotic IL-10–/– mice were perorally infected with C. jejuni strain 81–176 and subjected to a 4-day-course of respective organic acid treatment.Results and discussionOn day 6 post-infection, mice from the combination cohort displayed slightly lower pathogen loads in the duodenum, but neither in the stomach, ileum nor large intestine. Remarkably, the clinical outcome of C. jejuni induced acute enterocolitis was significantly improved after combined organic acid treatment when compared to the placebo control group. In support, the combinatory organic acid treatment dampened both, macroscopic and microscopic inflammatory sequelae of C. jejuni infection as indicated by less colonic shrinkage and less pronounced histopathological including apoptotic epithelial cell changes in the colon on day 6 post-infection. Furthermore, mice from the combination as compared to placebo cohort exhibited lower numbers of innate and adaptive immune cells such as neutrophilic granulocytes, macrophages, monocytes, and T lymphocytes in their colonic mucosa and lamina propria, respectively, which also held true for pro-inflammatory cytokine secretion in the large intestines and mesenteric lymph nodes. Notably, the anti-inflammatory effects were not restricted to the intestinal tract, but could also be observed systemically given pro-inflammatory mediator concentrations in C. jejuni infected mice from the combination organic acid treatment that were comparable to basal values. In conclusion, our in vivo study provides first evidence that an oral application of distinct organic acids in combination exhibits pronounced anti-inflammatory effects and hence, constitutes a promising novel antibiotics-independent therapeutic strategy in the combat of acute campylobacteriosis.
Collapse
Affiliation(s)
- Ke Du
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Minnja S. Foote
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Agnes Buczkowski
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Hofmann & Sommer GmbH & Co. KG, Büro Berlin, Berlin, Germany
| | - Sebastian Schmidt
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Hofmann & Sommer GmbH & Co. KG, Büro Berlin, Berlin, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité – University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- *Correspondence: Markus M. Heimesaat,
| |
Collapse
|
5
|
Woyda R, Oladeinde A, Endale D, Strickland T, Lawrence JP, Abdo Z. Broiler house environment and litter management practices impose selective pressures on antimicrobial resistance genes and virulence factors of Campylobacter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526821. [PMID: 36778422 PMCID: PMC9915665 DOI: 10.1101/2023.02.02.526821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Campylobacter infections are a leading cause of bacterial diarrhea in humans globally. Infections are due to consumption of contaminated food products and are highly associated with chicken meat, with chickens being an important reservoir for Campylobacter. Here, we characterized the genetic diversity of Campylobacter species detected in broiler chicken litter over three consecutive flocks and determined their antimicrobial resistance and virulence factor profiles. Antimicrobial susceptibility testing and whole genome sequencing were performed on Campylobacter jejuni (n = 39) and Campylobacter coli (n = 5) isolates. All C. jejuni isolates were susceptible to all antibiotics tested while C. coli (n =4) were resistant to only tetracycline and harbored the tetracycline-resistant ribosomal protection protein (TetO). Virulence factors differed within and across grow houses but were explained by the isolates' flock cohort, species and multilocus sequence type. Virulence factors involved in the ability to invade and colonize host tissues and evade host defenses were absent from flock cohort 3 C. jejuni isolates as compared to flock 1 and 2 isolates. Our results show that virulence factors and antimicrobial resistance genes differed by the isolates' multilocus sequence type and by the flock cohort they were present in. These data suggest that the house environment and litter management practices performed imposed selective pressures on antimicrobial resistance genes and virulence factors. In particular, the absence of key virulence factors within the final flock cohort 3 isolates suggests litter reuse selected for Campylobacter strains that are less likely to colonize the chicken host.
Collapse
Affiliation(s)
- Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Dinku Endale
- Southeast Watershed Research Laboratory, USDA, Tifton, GA, 31793
| | | | | | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
Jiang L, Yuan C, Ye W, Huang Q, Chen Z, Wu W, Qian L. Akkermansia and its metabolites play key roles in the treatment of campylobacteriosis in mice. Front Immunol 2023; 13:1061627. [PMID: 36713373 PMCID: PMC9877526 DOI: 10.3389/fimmu.2022.1061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Campylobacter jejuni (C. jejuni) is a common food-borne bacterial pathogen that can use the host's innate immune response to induce the development of colitis. There has been some research on the role of normal intestinal flora in C. jejuni-induced colitis, but the mechanisms that play a central role in resistance to C. jejuni infection have not been explored. Methods We treated Campylobacter jejuni-infected mice with fecal microbiota transplantation (FMT), oral butyric acid and deoxycholic acid in a controlled trial and analyzed the possible mechanisms of treatment by a combination of chromatography, immunohistochemistry, fluorescence in situ hybridization, 16s rRNA gene, proteomics and western blot techniques. Results We first investigated the therapeutic effect of FMT on C. jejuni infection. The results showed that FMT significantly reduced the inflammatory response and blocked the invasion of C.jejuni into the colonic tissue. We observed a significant increase in the abundance of Akkermansia in the colon of mice after FMT, as well as a significant increase in the levels of butyric acid and deoxycholic acid. We next demonstrated that oral administration of sodium butyrate or deoxycholic acid had a similar therapeutic effect. Further proteomic analysis showed that C.jejuni induced colitis mainly through activation of the PI3K-AKT signaling pathway and MAPK signaling pathway, whereas Akkermansia, the core flora of FMT, and the gut microbial metabolites butyric acid and deoxycholic acid both inhibited these signaling pathways to counteract the infection of C. jejuni and alleviate colitis. Finally, we verified the above idea by in vitro cellular assays. In conclusion, FMT is highly effective in the treatment of colitis caused by C. jejuni, with which Akkermansia and butyric and deoxycholic acids are closely associated.The present study demonstrates that Akkermansia and butyric and deoxycholic acids are effective in the treatment of colitis caused by C. jejuni. Discussion This is the first time that Akkermansia has been found to be effective in fighting pathogens, which provides new ideas and insights into the use of FMT to alleviate colitis caused by C. jejuni and Akkermansia as a treatment for intestinal sexually transmitted diseases caused by various pathogens.
Collapse
Affiliation(s)
- Lai Jiang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chunchun Yuan
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya, China
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhuo Chen
- Hainan Institute of Zhejiang University, Sanya, China
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Wu S, Hu L, Lin J, Li K, Ye S, Zhu S, Liu Z. Excretion of Amyloid-β in the Gastrointestinal Tract and Regulation by the Gut Microbiota. J Alzheimers Dis 2022; 90:1153-1162. [DOI: 10.3233/jad-220705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Amyloid-β (Aβ) is important in the etiology of Alzheimer’s disease (AD). Removal of Aβ from the brain is a major strategy for the prevention and treatment of AD. Objective: To clarify whether Aβ 42 can be cleared by intestinal excretion and whether the gut microbiota (GM) can affect the excretory clearance of Aβ 42 in the peripheral blood and intestines. Methods: Male 8-month-old C57BL6 mice were maintained on either normal chow or received broad-spectrum antibiotics in their drinking water for one week. Sterile saline, fluorescein isothiocyanate (FITC), or FITC-Aβ 42 (fluorescein isothiocyanate-labeled amyloid-β 42 peptides) was injected 1 h before FITC, or FITC-Aβ 42 was injected 1 h before sampling. Related changes of Aβ 42 before and after injection were evaluated. Results: FITC-Aβ 42 was injected into mice through the tail vein and could later be detected in feces. Furthermore, the fecal concentrations of FITC-Aβ 42 were higher in mice that had been fed antibiotics to alter their GM than in normal mice. However, the FITC-Aβ 42 concentrations in blood showed the opposite pattern. Conclusion: Aβ 42 can be excreted into the intestinal lumen and is regulated by the GM.
Collapse
Affiliation(s)
- Shijing Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiajing Lin
- Department of Psychiatry, Maoming People’s Hospital, MaoMing, Guangdong, China
| | - Kanglan Li
- Department of Pharmacy, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shaoping Zhu
- Institute of Laboratory Animal Center, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
9
|
Du K, Foote MS, Mousavi S, Buczkowski A, Schmidt S, Bereswill S, Heimesaat MM. Less Pronounced Immunopathological Responses Following Oral Butyrate Treatment of Campylobacter jejuni-Infected Mice. Microorganisms 2022; 10:1953. [PMID: 36296229 PMCID: PMC9609162 DOI: 10.3390/microorganisms10101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Given that human Campylobacter jejuni infections are rising globally and antibiotic treatment is not recommended, infected patients would substantially benefit from alternative therapeutic strategies. Short-chain fatty acids such as butyrate are known for their health benefits, including anti-microbial and anti-inflammatory effects. This prompted us to investigate potential disease-alleviating properties of butyrate treatment during acute murine C. jejuni-induced enterocolitis. Therefore, following gut microbiota depletion IL-10-/- mice were challenged with 109 viable C. jejuni cells by oral gavage and treated with butyrate via the drinking water (22 g/L) starting on day 2 post-infection. As early as day 3 post-infection, butyrate reduced diarrheal severity and frequency in treated mice, whereas on day 6 post-infection, gastrointestinal C. jejuni burdens and the overall clinical outcomes were comparable in butyrate- and placebo-treated cohorts. Most importantly, butyrate treatment dampened intestinal pro-inflammatory immune responses given lower colonic numbers of apoptotic cells and neutrophils, less distinct TNF-α secretion in mesenteric lymph nodes and lower IL-6 and MCP-1 concentrations in the ileum. In conclusion, results of our preclinical intervention study provide evidence that butyrate represents a promising candidate molecule for the treatment of acute campylobacteriosis.
Collapse
Affiliation(s)
- Ke Du
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Minnja S. Foote
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Soraya Mousavi
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Agnes Buczkowski
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
- Hofmann & Sommer GmbH und Co., KG, Büro Berlin, 12489 Berlin, Germany
| | - Sebastian Schmidt
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
- Hofmann & Sommer GmbH und Co., KG, Büro Berlin, 12489 Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| |
Collapse
|
10
|
Are the Bacteria and Their Metabolites Contributing for Gut Inflammation on GSD-Ia Patients? Metabolites 2022; 12:metabo12090873. [PMID: 36144277 PMCID: PMC9504798 DOI: 10.3390/metabo12090873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, patients with glycogen storage disease (GSD) have been described as having gut dysbiosis, lower fecal pH, and an imbalance in SCFAs due to an increase in acetate and propionate levels. Here, we report the fecal measurement of bacterial-related metabolites formic, acetic, lactic, propionic, and succinic acid, a key metabolite of both host and microbiota, on a previously described cohort of 24 patients (GSD Ia = 15, GSD Ib = 5, 1 GSD III = 1 and GSD IX = 3) and 16 healthy controls, with similar sex and age, using the high-performance liquid chromatography technique. The succinic acid levels were higher in the GSD patients than in the controls (patients = 38.02; controls = 27.53; p = 0.045), without differences between the groups for other metabolites. Fecal pH present inverse correlation with lactic acid (R = −0.54; p = 0.0085), while OTUs were inversely correlated with both lactic (R = −0.46; p = 0.026) and formic (R = −0.54; p = 0.026) acids. Using two distinct metrics of diversity, borderline significance was obtained for propionic acid, affecting the microbial structure on Euclidean basis in 8% (r2 = 0.081; p = 0.079), and for lactic acid, affecting 6% of microbial structure using Bray–Curtis distance (r2 = 0.065; p = 0.060). No correlation was found between SCFAs and total carbohydrate consumption among the participants or uncooked cornstarch consumption among the patients.
Collapse
|
11
|
Effects of Sublethally Injured Campylobacter jejuni in Mice. Microbiol Spectr 2022; 10:e0069022. [PMID: 35862957 PMCID: PMC9431606 DOI: 10.1128/spectrum.00690-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Globally, Campylobacter spp. are the most common food-associated bacterial cause of human gastrointestinal disease. Campylobacteriosis is primarily associated with the consumption of contaminated chicken meat. Chemical decontamination of chicken carcasses during processing is one of the most effective interventions to mitigate Campylobacter contamination. Following exposure to sanitizers, however, sublethally injured populations of bacteria may persist. The risk that sublethally injured Campylobacter pose for public health is unknown. Furthermore, the virulence potential of sublethally injured Campylobacter jejuni during prolonged storage in relation to host pathogenesis and the host immune response has not been well established. Therefore, we evaluated the effects of sublethally injured C. jejuni on the host, after storage in chicken meat juice. C57BL/6 mice were infected with two C. jejuni chicken meat isolates or the ATCC 33291 strain that had been stored in the chicken meat juice, after exposure to chlorine or acidified sodium chlorite (ASC). Although chlorine exposure was unable to reduce intestinal colonization by C. jejuni, exposure to ASC significantly reduced the intestinal colonization and tissue translocation in mice. The expression of pro- and anti-inflammatory cytokine genes for interleukin-6 (IL-6), IL23a, and IL-10, Toll-like receptor 2 (TLR2) and TLR4 genes, and host stress response genes (CRP, MBL1, and NF-κB1) were significantly reduced following the exposure to ASC. Our results demonstrated that sublethally injured C. jejuni has reduced virulence potential and colonization in mice. The data contribute toward clarification of the importance of chemical decontamination during processing to minimize human campylobacteriosis. IMPORTANCECampylobacter is the most common cause of bacterial gastrointestinal disease, and consumption of contaminated poultry is frequently identified as the source of bacteria. The survivability and virulence potential of sublethally injured Campylobacter following exposure to chemicals which are commonly used to eliminate Campylobacter during the poultry meat processing are of concern to the food industry, government health officials, and consumers. Here, we demonstrate that sublethally injured Campylobacter jejuni has reduced bacterial virulence and colonization potential in mice.
Collapse
|
12
|
Shaughnessy MP, Park CJ, Salvi PS, Cowles RA. Jejunoileal mucosal growth in mice with a limited microbiome. PLoS One 2022; 17:e0266251. [PMID: 35349599 PMCID: PMC8963542 DOI: 10.1371/journal.pone.0266251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Abstract
Previous work demonstrated enhanced enterocyte proliferation and mucosal growth in gnotobiotic mice, suggesting that intestinal flora participate in mucosal homeostasis. Furthermore, broad-spectrum enteral antibiotics are known to induce near germ-free (GF) conditions in mice with conventional flora (CONV). We hypothesized that inducing near GF conditions with broad-spectrum enteral antibiotics would cause ordered small intestinal mucosal growth in CONV mice but would have no effect in GF mice with no inherent microbiome. C57BL/6J CONV and GF mice received either an antibiotic solution (Ampicillin, Ciprofloxacin, Metronidazole, Vancomycin, Meropenem) or a vehicle alone. After treatment, small intestinal villus height (VH), crypt depth (CD), mucosal surface area (MSA), crypt proliferation index (CPI), apoptosis, and villus and crypt cell types were assessed. Antibiotic-treated CONV (Abx-CONV) mice had taller villi, deeper crypts, increased CPI, increased apoptosis, and greater MSA compared to vehicle-treated CONV mice. Minor differences were noted in enterocyte and enterochromaffin cell proportions between groups, but goblet and Paneth cell proportions were unchanged in Abx-CONV mice compared to vehicle-treated CONV mice (p>0.05). Antibiotics caused no significant changes in VH or MSA in GF mice when compared to vehicle-treated GF mice (p>0.05). Enteral administration of broad-spectrum antibiotics to mice with a conventional microbiome stimulates ordered small intestinal mucosal growth. Mucosal growth was not seen in germ-free mice treated with antibiotics, implying that intestinal mucosal growth is associated with change in the microbiome in this model.
Collapse
Affiliation(s)
- Matthew P. Shaughnessy
- Division of Pediatric Surgery, Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - Christine J. Park
- Division of Pediatric Surgery, Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - Pooja S. Salvi
- Division of Pediatric Surgery, Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - Robert A. Cowles
- Division of Pediatric Surgery, Department of Surgery, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
13
|
AL-MEGRIN WA, YEHIA HM, KORANY SM, ALKHATEEB MA, ALAHDAL H, SONBOL H, ALKHURIJI AF, ELKHADRAGY MF. In vitro and in vivo evaluation of probiotic as immunomodulatory and anti-Campylobacter agent. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.20322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Hadil ALAHDAL
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Hana SONBOL
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | | | | |
Collapse
|
14
|
Johansson C, Kampmann C, Nilsson A, Dicksved J, Engstrand L, Rautelin H. Genomic and Phenotypic Characteristics in Geographically Separated Clinical Campylobacter jejuni ST353CC Isolates. Microorganisms 2021; 9:2540. [PMID: 34946141 PMCID: PMC8709058 DOI: 10.3390/microorganisms9122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni fecal isolates of eight international travelers, 5 of which had traveled to Ecuador and 3 to Bangladesh, were characterized, and the possible relationship between bacterial traits and clinical symptoms was further analyzed. All eight isolates belonged to the same Multi-Locus Sequence Type clonal complex (ST353CC). The three isolates from Bangladesh were all of the same sequence type (ST-9438), and when compared to isolates of various other sequence types, they had a larger quantity of unique genetic content, higher expression levels of some putative virulence genes involved in adhesion and invasion (flpA, ciaB and iamA), and showed higher adhesion levels to human HT-29 colon cancer cells in an in vitro infection model. However, in contrast to the seemingly higher pathogenic potential of these bacterial isolates, travelers infected with the ST-9438 isolates had no or only very mild symptoms, whereas the other individuals, whose bacterial isolates seemed to have less pathogenic potential, generally reported severe symptoms. When studying the 16S rRNA gene-based fecal microbiota in samples collected prior to travel, there was an individual variation in the relative abundance of the three major bacterial phyla Actinobacteria, Bacteroidetes and Firmicutes, but there were no associations between composition and diversity of microbiota and development of severe symptoms from the infection. It remains to be confirmed by larger studies whether an individual's characteristics such as gut microbiota, might be related to the severity of symptoms in Campylobacter infections.
Collapse
Affiliation(s)
- Cecilia Johansson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden; (C.J.); (C.K.); (A.N.)
| | - Christian Kampmann
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden; (C.J.); (C.K.); (A.N.)
| | - Anna Nilsson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden; (C.J.); (C.K.); (A.N.)
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| | - Lars Engstrand
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-17177 Stockholm, Sweden;
| | - Hilpi Rautelin
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden; (C.J.); (C.K.); (A.N.)
| |
Collapse
|
15
|
Ruiz MJ, Sirini NE, Signorini ML, Etcheverría A, Zbrun MV, Soto LP, Zimmermann JA, Frizzo LS. Protective effect of Lactiplantibacillus plantarum LP5 in a murine model of colonisation by Campylobacter coli DSPV458. Benef Microbes 2021; 12:553-565. [PMID: 34590533 DOI: 10.3920/bm2021.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thermotolerant Campylobacter species are the leading cause of foodborne bacterial diarrheal disease worldwide. Campylobacter coli, abundant in pigs and pork products, have been identified as a source of human infection. In this study, we propose the use of Lactiplantibacillus plantarum LP5 as a probiotic to reduce colonisation of this intestinal pathogen in a murine colonisation model of C. coli DSPV458. Six-week-old adult female Balb/cCmedc mice were housed in groups: Control, Campy and Pro-Campy. Control and Pro-Campy groups received antibiotics for 5 days and the Campy group for 12 days. Pro-Campy group was inoculated for 7 days with 8.78 log10 cfu total of L. plantarum LP5 suspended in De Man, Rogosa and Sharpe broth. All groups were inoculated with 6.72 log10 cfu of C. coli DSPV458 suspended in brain heart infusion broth. L. plantarum LP5 was recovered only in the Pro- Campy group. C. coli DSPV458 was recovered at higher levels in the Control and Campy groups. The differences with the Pro-Campy group were significant. As regards faeces, Control and Campy groups reached 7.41 and 7.84 log10 cfu/g, respectively, and the Pro-Campy group only 4.62 log10 cfu/g. In the caecum, Control and Campy groups reached 8.01 and 9.26 log10cfu/g, respectively, and the Pro-Campy group only 4.51 log10 cfu/g. In the ileum, Control and Campy groups reached 3.43 and 3.26 log10 cfu/g, respectively, and the Pro-Campy group did not show detectable levels. The reduction of C. coli DSPV458 in the Pro-Campy group compared to the Control group in faeces, caecum and ileum was 99.55, 99.98 and 100%, respectively. Animals were maintained under normal health conditions, and haematological parameters were within the standard values for Balb/cCmedc. The incorporation of a probiotic generated a protective effect in the mice colonisation model. The protective effect would also apply to intestinal colonisation by indigenous enterobacteria. Therefore, the strategy used in this study is of great importance to understand the protection mechanisms in a murine model, as well as its application in food-producing animals.
Collapse
Affiliation(s)
- M J Ruiz
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina.,Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Tandil, Argentina
| | - N E Sirini
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina
| | - M L Signorini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina.,National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela, Ruta 34 Km 227, 2300 Rafaela, Province of Santa Fe, Argentina
| | - A Etcheverría
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Tandil, Argentina
| | - M V Zbrun
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University, Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina
| | - L P Soto
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University, Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina
| | - J A Zimmermann
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina
| | - L S Frizzo
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral - National Council of Scientific and Technical Research (UNL/CONICET), Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University, Kreder 2805, 3080 Esperanza, Province of Santa Fe, Argentina
| |
Collapse
|
16
|
Markley RL, Restori KH, Katkere B, Sumner SE, Nicol MJ, Tyryshkina A, Nettleford SK, Williamson DR, Place DE, Dewan KK, Shay AE, Carlson BA, Girirajan S, Prabhu KS, Kirimanjeswara GS. Macrophage Selenoproteins Restrict Intracellular Replication of Francisella tularensis and Are Essential for Host Immunity. Front Immunol 2021; 12:701341. [PMID: 34777335 PMCID: PMC8586653 DOI: 10.3389/fimmu.2021.701341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.
Collapse
Affiliation(s)
- Rachel L. Markley
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Katherine H. Restori
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Bhuvana Katkere
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Sarah E. Sumner
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - McKayla J. Nicol
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Anastasia Tyryshkina
- Neuroscience Graduate Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Shaneice K. Nettleford
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, United States,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David R. Williamson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - David E. Place
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kalyan K. Dewan
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| | - Ashley E. Shay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bradley A. Carlson
- Office of Research Support, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - K. Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States,Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States,*Correspondence: Girish S. Kirimanjeswara,
| |
Collapse
|
17
|
Ruiz MJ, Soto LP, Sirini NE, Werning ML, Olivero CR, Zimmermann JA, Zbrun MV, Acosta FF, Signorini ML, Frizzo LS. Murine colonization model by Campylobacter coli DSPV458. J Appl Microbiol 2021; 132:1457-1466. [PMID: 34465011 DOI: 10.1111/jam.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
AIMS To generate a murine experimental model of colonization by Campylobacter coli DSPV458. METHODS AND RESULTS Twelve adult Balb/cCmedc female mice were housed in a treated group (T-G) and a control group (C-G) for 4 weeks. Both experimental groups received antibiotics for 5 days during the first week. The T-G was administered with 6.68log10 CFU of C. coli DSPV458 by oesophageal gavage. Necropsies were performed weekly to evaluate translocation and intestinal colonization in the spleen and liver and in the ileum and cecum respectively. Samples were cultured to quantify intestinal microbiota members. Faeces were cultured weekly for a C. coli DSPV458 count. Campylobacter coli DSPV458 was isolated from all the inoculated mice. The recovered level of C. coli DSPV458 was, on average, 6.9 log10 CFUg-1 , 8.0 log10 CFUg-1 and 1.6 log10 CFUg-1 in faeces, cecum and ileum respectively. Colonization by C. coli DSPV458 does not alter the normal clinical and physiological status. CONCLUSIONS Campylobacter coli DSPV458 does not have an invasive capacity, and the model is suitable for evaluating strategies to reduce intestinal loads. SIGNIFICANCE AND IMPACT OF STUDY Farm animals have an important impact on thermotolerant Campylobacter transmission to humans. Extremely few colonization models by C. coli have been reported to date. In food-producing animals, infection is mild or absent and thermotolerant Campylobacter colonize the intestines of animals. Colonization models are specific models that do not cause infection as they do not generally result in diarrhoea or other signs of disease. Therefore, this model will allow to evaluate the evolution of colonization by thermotolerant Campylobacter and the alternative tools development to antibiotics that limit their colonization in food-producing animals.
Collapse
Affiliation(s)
- M J Ruiz
- Laboratory of Food Analysis "Rodolfo Oscar DALLA SANTINA", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Argentina
| | - L P Soto
- Laboratory of Food Analysis "Rodolfo Oscar DALLA SANTINA", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe, Argentina
| | - N E Sirini
- Laboratory of Food Analysis "Rodolfo Oscar DALLA SANTINA", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - M L Werning
- Laboratory of Food Analysis "Rodolfo Oscar DALLA SANTINA", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - C R Olivero
- Laboratory of Food Analysis "Rodolfo Oscar DALLA SANTINA", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - J A Zimmermann
- Laboratory of Food Analysis "Rodolfo Oscar DALLA SANTINA", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe, Argentina
| | - M V Zbrun
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe, Argentina.,National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela, Rafaela, Province of Santa Fe, Argentina
| | - F F Acosta
- Laboratory of Food Analysis "Rodolfo Oscar DALLA SANTINA", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - M L Signorini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe, Argentina.,National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela, Rafaela, Province of Santa Fe, Argentina
| | - L S Frizzo
- Laboratory of Food Analysis "Rodolfo Oscar DALLA SANTINA", Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza, Province of Santa Fe, Argentina
| |
Collapse
|
18
|
Wymore Brand M, Sahin O, Hostetter JM, Trachsel J, Zhang Q, Wannemuehler MJ. Campylobacter jejuni persistently colonizes gnotobiotic altered Schaedler flora C3H/HeN mice and induces mild colitis. FEMS Microbiol Lett 2021; 367:5937419. [PMID: 33098301 DOI: 10.1093/femsle/fnaa163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne human bacterial gastroenteritis but animal models for C. jejuni mediated disease remain limited because C. jejuni poorly colonizes immunocompetent, conventionally-reared (Conv-R) mice. Thus, a reliable rodent model (i.e. persistent colonization) is desirable in order to evaluate C. jejuni-mediated gastrointestinal disease and mechanisms of pathogenicity. As the nature and complexity of the microbiota likely impacts colonization resistance for C. jejuni, Conv-R and gnotobiotic C3H/HeN mice were used to evaluate the persistence of C. jejuni colonization and development of disease. A total of four C. jejuni isolates readily and persistently colonized ASF mice and induced mild mucosal inflammation in the proximal colon, but C. jejuni did not stably colonize nor induce lesions in Conv-R mice. This suggests that the pathogenesis of C. jejuni is influenced by the microbiota, and that ASF mice offer a reproducible model to study the influence of the microbiota on the ability of C. jejuni to colonize the gut and to mediate gastroenteritis.
Collapse
Affiliation(s)
- Meghan Wymore Brand
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Jesse M Hostetter
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, USA
| | - Julian Trachsel
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011, USA
| |
Collapse
|
19
|
Bereswill S, Mousavi S, Weschka D, Heimesaat MM. Disease-Alleviating Effects of Peroral Activated Charcoal Treatment in Acute Murine Campylobacteriosis. Microorganisms 2021; 9:microorganisms9071424. [PMID: 34209438 PMCID: PMC8307340 DOI: 10.3390/microorganisms9071424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Foodborne Campylobacter jejuni infections are on the rise and responsible for worldwide serious health issues. Increasing resistance of C. jejuni strains against antimicrobial treatments, necessitates antibiotics-independent treatment options for acute campylobacteriosis. Activated charcoal (AC) constitutes a long-known and safe compound for the treatment of bacterial enteritis. In this preclinical intervention study, we addressed potential anti-pathogenic and immune-modulatory effects of AC during acute experimental campylobacteriosis. Therefore, microbiota-depleted IL-10-/- mice were infected with C. jejuni by gavage and challenged with either AC or placebo via the drinking water starting on day 2 post-infection. On day 6 post-infection, AC as compared to placebo-treated mice did not only harbor lower intestinal pathogen loads but also presented with alleviated C. jejuni-induced clinical signs such as diarrhea and wasting symptoms. The improved clinical outcome of AC-treated mice was accompanied by less colonic epithelial cell apoptosis and reduced pro-inflammatory immune responses in the intestinal tract. Notably, AC treatment did not only alleviate intestinal, but also extra-intestinal and systemic immune responses as indicated by dampened pro-inflammatory mediator secretion. Given the anti-pathogenic and immune-modulatory properties of AC in this study, a short-term application of this non-toxic drug constitutes a promising antibiotics-independent option for the treatment of human campylobacteriosis.
Collapse
|
20
|
Immune-Modulatory Effects upon Oral Application of Cumin-Essential-Oil to Mice Suffering from Acute Campylobacteriosis. Pathogens 2021; 10:pathogens10070818. [PMID: 34209990 PMCID: PMC8308722 DOI: 10.3390/pathogens10070818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/24/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Human campylobacteriosis, commonly caused by Campylobacter jejuni, is a food-borne infection with rising prevalence causing significant health and socioeconomic burdens worldwide. Given the threat from emerging antimicrobial resistances, the treatment of infectious diseases with antibiotics-independent natural compounds is utmost appreciated. Since the health-beneficial effects of cumin-essential-oil (EO) have been known for centuries, its potential anti-pathogenic and immune-modulatory effects during acute experimental campylobacteriosis were addressed in the present study. Therefore, C. jejuni-challenged secondary abiotic IL-10-/- mice were treated perorally with either cumin-EO or placebo starting on day 2 post-infection. On day 6 post-infection, cumin-EO treated mice harbored lower ileal pathogen numbers and exhibited a better clinical outcome when compared to placebo controls. Furthermore, cumin-EO treatment alleviated enteropathogen-induced apoptotic cell responses in colonic epithelia. Whereas, on day 6 post-infection, a dampened secretion of pro-inflammatory mediators, including nitric oxide and IFN-γ to basal levels, could be assessed in mesenteric lymph nodes of cumin-EO treated mice, systemic MCP-1 concentrations were elevated in placebo counterparts only. In conclusion, our preclinical intervention study provides first evidence for promising immune-modulatory effects of cumin-EO in the combat of human campylobacteriosis. Future studies should address antimicrobial and immune-modulatory effects of natural compounds as adjunct antibiotics-independent treatment option for infectious diseases.
Collapse
|
21
|
Xi D, Hofmann L, Alter T, Einspanier R, Bereswill S, Heimesaat MM, Gölz G, Sharbati S. The glycosyltransferase ST3GAL2 is regulated by miR-615-3p in the intestinal tract of Campylobacter jejuni infected mice. Gut Pathog 2021; 13:42. [PMID: 34183045 PMCID: PMC8240225 DOI: 10.1186/s13099-021-00437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background Campylobacter jejuni (C. jejuni) infections are of increasing importance worldwide. As a typical mucosal pathogen, the interaction of C. jejuni with mucins is a prominent step in the colonisation of mucosal surfaces. Despite recent advances in understanding the interaction between bacterial pathogens and host mucins, the mechanisms of mucin glycosylation during intestinal C. jejuni infection remain largely unclear. This prompted us to identify relevant regulatory networks that are concerted by miRNAs and could play a role in the mucin modification and interaction. Results We firstly used a human intestinal in vitro model, in which we observed altered transcription of MUC2 and TFF3 upon C. jejuni NCTC 11168 infection. Using a combined approach consisting of in silico analysis together with in vitro expression analysis, we identified the conserved miRNAs miR-125a-5p and miR-615-3p associated with MUC2 and TFF3. Further pathway analyses showed that both miRNAs appear to regulate glycosyltransferases, which are related to the KEGG pathway ‘Mucin type O-glycan biosynthesis’. To validate the proposed interactions, we applied an in vivo approach utilising a well-established secondary abiotic IL-10−/− mouse model for infection with C. jejuni 81-176. In colonic tissue samples, we confirmed infection-dependent aberrant transcription of MUC2 and TFF3. Moreover, two predicted glycosyltransferases, the sialyltransferases ST3GAL1 and ST3GAL2, exhibited inversely correlated transcriptional levels compared to the expression of the identified miRNAs miR-125a-5p and miR-615-3p, respectively. In this study, we mainly focused on the interaction between miR-615-3p and ST3GAL2 and were able to demonstrate their molecular interaction using luciferase reporter assays and RNAi. Detection of ST3GAL2 in murine colonic tissue by immunofluorescence demonstrated reduced intensity after C. jejuni 81-176 infection and was thus consistent with the observations made above. Conclusions We report here for the first time the regulation of glycosyltransferases by miRNAs during murine infection with C. jejuni 81-176. Our data suggest that mucin type O-glycan biosynthesis is concerted by the interplay of miRNAs and glycosyltransferases, which could determine the shape of intestinal glycosylated proteins during infection. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00437-1.
Collapse
Affiliation(s)
- De Xi
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Lukas Hofmann
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Stefan Bereswill
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Markus M Heimesaat
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Greta Gölz
- Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Treatment with the Probiotic Product Aviguard ® Alleviates Inflammatory Responses during Campylobacter jejuni-Induced Acute Enterocolitis in Mice. Int J Mol Sci 2021; 22:ijms22136683. [PMID: 34206478 PMCID: PMC8269033 DOI: 10.3390/ijms22136683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 02/04/2023] Open
Abstract
Prevalences of Campylobacter (C.) jejuni infections are progressively rising globally. Given that probiotic feed additives, such as the commercial product Aviguard®, have been shown to be effective in reducing enteropathogens, such as Salmonella, in vertebrates, including livestock, we assessed potential anti-pathogenic and immune-modulatory properties of Aviguard® during acute C. jejuni-induced murine enterocolitis. Therefore, microbiota-depleted IL-10−/− mice were infected with C. jejuni strain 81-176 by gavage and orally treated with Aviguard® or placebo from day 2 to 4 post-infection. The applied probiotic bacteria could be rescued from the intestinal tract of treated mice, but with lower obligate anaerobic bacterial counts in C. jejuni-infected as compared to non-infected mice. Whereas comparable gastrointestinal pathogen loads could be detected in both groups until day 6 post-infection, Aviguard® treatment resulted in improved clinical outcome and attenuated apoptotic cell responses in infected large intestines during acute campylobacteriosis. Furthermore, less distinct pro-inflammatory immune responses could be observed not only in the intestinal tract, but also in extra-intestinal compartments on day 6 post-infection. In conclusion, we show here for the first time that Aviguard® exerts potent disease-alleviating effects in acute C. jejuni-induced murine enterocolitis and might be a promising probiotic treatment option for severe campylobacteriosis in humans.
Collapse
|
23
|
Ruiz MJ, Zbrun MV, Signorini ML, Zimmermann JA, Soto LP, Rosmini MR, Frizzo LS. In vitro screening and in vivo colonization pilot model of Lactobacillus plantarum LP5 and Campylobacter coli DSPV 458 in mice. Arch Microbiol 2021; 203:4161-4171. [PMID: 34061232 DOI: 10.1007/s00203-021-02385-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
The objective of this work was to determine the antibacterial effect of Lactobacillus plantarum strains of pork origin against Campylobacter coli strains, and to conduct experimental colonization pilot models in mice for both microorganisms. Inhibition assays allowed evaluation and selection of L. plantarum LP5 as the strain with the highest antagonistic activity against C. coli and with the best potential to be used in in vivo study. Adult 6-week-old female Balb/cCmedc mice were lodged in two groups. The treated group was administered with 9.4 log10CFU/2 times/wk of L. plantarum LP5. L. plantarum LP5 was recovered from the feces and cecum of the inoculated mice. However, when bacteria stopped being administered, probiotic counts decreased. Experimental colonization with C. coli was carried out in five groups of mice. All animals were treated with antibiotics in their drinking water to weaken the indigenous microbiota and to allow colonization of C. coli. Four groups were administered once with different C. coli strains (DSPV458: 8.49 log10CFU; DSPV567: 8.09 log10CFU; DSPV570: 8.46 log10CFU; DSPV541: 8.86 log10CFU, respectively). After 8 h, mice inoculated with different C. coli strains were colonized because the pathogen was detected in their feces. L. plantarum LP5 tolerated the gastrointestinal conditions of murine model without generating adverse effects on the animals. C. coli DSPV458 colonized the mice without causing infection by lodging in their digestive tract, thus generating a reproducible colonization model. Both models combined could be used as protection murine models against pathogens to test alternative control tools to antibiotics.
Collapse
Affiliation(s)
- M J Ruiz
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires (UNCPBA), Tandil, Province of Buenos Aires, Argentina
| | - M V Zbrun
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina
| | - M L Signorini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina.,National Council of Scientific and Technical Research, National Institute of Agricultural Technology EEA Rafaela (CONICET/INTA), Rafaela, Province of Santa Fe, Argentina
| | - J A Zimmermann
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina
| | - L P Soto
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina.,Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina
| | - M R Rosmini
- Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina
| | - L S Frizzo
- Laboratory of Food Analysis 'Rodolfo Oscar Dalla Santina', Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina. .,Department of Public Health, Faculty of Veterinary Science, Litoral National University (DSPV-FCV-UNL), Esperanza, Province of Santa Fe, Argentina.
| |
Collapse
|
24
|
Heimesaat MM, Mousavi S, Weschka D, Bereswill S. Garlic Essential Oil as Promising Option for the Treatment of Acute Campylobacteriosis-Results from a Preclinical Placebo-Controlled Intervention Study. Microorganisms 2021; 9:microorganisms9061140. [PMID: 34070612 PMCID: PMC8227651 DOI: 10.3390/microorganisms9061140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Since human infections with Campylobacter jejuni including antibiotic-resistant strains are rising worldwide, natural compounds might constitute promising antibiotics-independent treatment options for campylobacteriosis. Since the health-beneficial properties of garlic have been known for centuries, we here surveyed the antimicrobial and immune-modulatory effects of garlic essential oil (EO) in acute experimental campylobacteriosis. Therefore, secondary abiotic IL-10-/- mice were orally infected with C. jejuni strain 81-176 and garlic-EO treatment via the drinking water was initiated on day 2 post-infection. Mice from the garlic-EO group displayed less severe clinical signs of acute campylobacteriosis as compared to placebo counterparts that were associated with lower ileal C. jejuni burdens on day 6 post-infection. Furthermore, when compared to placebo application, garlic-EO treatment resulted in alleviated colonic epithelia cell apoptosis, in less pronounced C. jejuni induced immune cell responses in the large intestines, in dampened pro-inflammatory mediator secretion in intestinal and extra-intestinal compartments, and, finally, in less frequent translocation of viable pathogens from the intestines to distinct organs. Given its potent immune-modulatory and disease-alleviating effects as shown in our actual preclinical placebo-controlled intervention study, we conclude that garlic-EO may be considered as promising adjunct treatment option for acute campylobacteriosis in humans.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Correspondence: (M.M.H.); (S.M.); Tel.: +49-30-450524318 (M.M.H); +49-30-450524315 (S.M.)
| | - Soraya Mousavi
- Correspondence: (M.M.H.); (S.M.); Tel.: +49-30-450524318 (M.M.H); +49-30-450524315 (S.M.)
| | | | | |
Collapse
|
25
|
Weschka D, Mousavi S, Biesemeier N, Bereswill S, Heimesaat MM. Survey of Pathogen-Lowering and Immuno-Modulatory Effects Upon Treatment of Campylobacter coli-Infected Secondary Abiotic IL-10 -/- Mice with the Probiotic Formulation Aviguard ®. Microorganisms 2021; 9:microorganisms9061127. [PMID: 34070972 PMCID: PMC8224786 DOI: 10.3390/microorganisms9061127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence of infections with the zoonotic enteritis pathogen Campylobacter coli is increasing. Probiotic formulations constitute promising antibiotic-independent approaches to reduce intestinal pathogen loads and modulate pathogen-induced immune responses in the infected human host, resulting in acute campylobacteriosis and post-infectious sequelae. Here, we address potential antipathogenic and immuno-modulatory effects of the commercial product Aviguard® during experimental campylobacteriosis. Secondary abiotic IL-10-/- mice were infected with a C. coli patient isolate on days 0 and 1, followed by oral Aviguard® treatment on days 2, 3 and 4. Until day 6 post-infection, Aviguard® treatment could lower the pathogen burdens within the proximal but not the distal intestinal tract. In contrast, the probiotic bacteria had sufficiently established in the intestines with lower fecal loads of obligate anaerobic species in C. coli-infected as compared to uninfected mice following Aviguard® treatment. Aviguard® application did not result in alleviated clinical signs, histopathological or apoptotic changes in the colon of infected IL-10-/- mice, whereas, however, Aviguard® treatment could dampen pathogen-induced innate and adaptive immune responses in the colon, accompanied by less distinct intestinal proinflammatory cytokine secretion. In conclusion, Aviguard® constitutes a promising probiotic compound to alleviate enteropathogen-induced proinflammatory immune responses during human campylobacteriosis.
Collapse
Affiliation(s)
| | - Soraya Mousavi
- Correspondence: (S.M.); (M.M.H.); Tel.: +49-30-450524315 (S.M.); +49-30-450524318 (M.M.H.)
| | | | | | - Markus M. Heimesaat
- Correspondence: (S.M.); (M.M.H.); Tel.: +49-30-450524315 (S.M.); +49-30-450524318 (M.M.H.)
| |
Collapse
|
26
|
Reuter M, Ultee E, Toseafa Y, Tan A, van Vliet AHM. Inactivation of the core cheVAWY chemotaxis genes disrupts chemotactic motility and organised biofilm formation in Campylobacter jejuni. FEMS Microbiol Lett 2021; 367:6017310. [PMID: 33264398 DOI: 10.1093/femsle/fnaa198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Flagellar motility plays a central role in the bacterial foodborne pathogen Campylobacter jejuni, as flagellar motility is required for reaching the intestinal epithelium and subsequent colonisation or disease. Flagellar proteins also contribute strongly to biofilm formation during transmission. Chemotaxis is the process directing flagellar motility in response to attractant and repellent stimuli, but its role in biofilm formation of C. jejuni is not well understood. Here we show that inactivation of the core chemotaxis genes cheVAWY in C. jejuni strain NCTC 11168 affects both chemotactic motility and biofilm formation. Inactivation of any of the core chemotaxis genes (cheA, cheY, cheV or cheW) impaired chemotactic motility but did not affect flagellar assembly or growth. The ∆cheY mutant swam in clockwise loops, while complementation restored normal motility. Inactivation of the core chemotaxis genes interfered with the ability to form a discrete biofilm at the air-media interface, and the ∆cheY mutant displayed reduced dispersal/shedding of bacteria into the planktonic fraction. This suggests that while the chemotaxis system is not required for biofilm formation per se, it is necessary for organized biofilm formation. Hence interference with the Campylobacter chemotaxis system at any level disrupts optimal chemotactic motility and transmission modes such as biofilm formation.
Collapse
Affiliation(s)
- Mark Reuter
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Eveline Ultee
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Yasmin Toseafa
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andrew Tan
- Gut Health and Food Safety Programme, Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, UK
| |
Collapse
|
27
|
Peroral Clove Essential Oil Treatment Ameliorates Acute Campylobacteriosis-Results from a Preclinical Murine Intervention Study. Microorganisms 2021; 9:microorganisms9040735. [PMID: 33807493 PMCID: PMC8066448 DOI: 10.3390/microorganisms9040735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Campylobacter (C.) jejuni infections pose progressively emerging threats to human health worldwide. Given the rise in antibiotic resistance, antibiotics-independent options are required to fight campylobacteriosis. Since the health-beneficial effects of clove have been known for long, we here analyzed the antimicrobial and immune-modulatory effects of clove essential oil (EO) during acute experimental campylobacteriosis. Therefore, microbiota-depleted interleukin-10 deficient (IL-10-/-) mice were perorally infected with C. jejuni and treated with clove EO via drinking water starting on day 2 post-infection. On day 6 post-infection, lower small- and large-intestinal pathogen loads could be assessed in clove EO as compared to placebo treated mice. Although placebo mice suffered from severe campylobacteriosis as indicated by wasting and bloody diarrhea, clove EO treatment resulted in a better clinical outcome and in less severe colonic histopathological and apoptotic cell responses in C. jejuni infected mice. Furthermore, lower colonic numbers of macrophages, monocytes, and T lymphocytes were detected in mice from the verum versus the placebo cohort that were accompanied by lower intestinal, extra-intestinal, and even systemic proinflammatory cytokine concentrations. In conclusion, our preclinical intervention study provides first evidence that the natural compound clove EO constitutes a promising antibiotics-independent treatment option of acute campylobacteriosis in humans.
Collapse
|
28
|
Heimesaat MM, Backert S, Alter T, Bereswill S. Human Campylobacteriosis-A Serious Infectious Threat in a One Health Perspective. Curr Top Microbiol Immunol 2021; 431:1-23. [PMID: 33620646 DOI: 10.1007/978-3-030-65481-8_1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zoonotic Campylobacter species-mainly C. jejuni and C. coli-are major causes of food-borne bacterial infectious gastroenteritis worldwide. Symptoms of intestinal campylobacteriosis include abdominal pain, diarrhea and fever. The clinical course of enteritis is generally self-limiting, but some infected individuals develop severe post-infectious sequelae including autoimmune disorders affecting the nervous system, the joints and the intestinal tract. Moreover, in immunocompromised individuals, systemic spread of the pathogens may trigger diseases of the circulatory system and septicemia. The socioeconomic costs associated with Campylobacter infections have been calculated to several billion dollars annually. Poultry meat products represent major sources of human infections. Thus, a "One World-One Health" approach with collective efforts of public health authorities, veterinarians, clinicians, researchers and politicians is required to reduce the burden of campylobacteriosis. Innovative intervention regimes for the prevention of Campylobacter contaminations along the food chain include improvements of information distribution to strengthen hygiene measures for agricultural remediation. Given that elimination of Campylobacter from the food production chains is not feasible, novel intervention strategies fortify both the reduction of pathogen contamination in food production and the treatment of the associated diseases in humans. This review summarizes some current trends in the combat of Campylobacter infections including the combination of public health and veterinary preventive approaches with consumer education. The "One World-One Health" perspective is completed by clinical aspects and molecular concepts of human campylobacteriosis offering innovative treatment options supported by novel murine infection models that are based on the essential role of innate immune activation by bacterial endotoxins.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Thomas Alter
- Department of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Free University Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
29
|
Patuzzi I, Orsini M, Cibin V, Petrin S, Mastrorilli E, Tiengo A, Gobbo F, Catania S, Barco L, Ricci A, Losasso C. The Interplay between Campylobacter and the Caecal Microbial Community of Commercial Broiler Chickens over Time. Microorganisms 2021; 9:221. [PMID: 33499060 PMCID: PMC7911313 DOI: 10.3390/microorganisms9020221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
Campylobacter is the most frequent foodborne zoonotic bacteria worldwide, with chicken meat being overwhelmingly the most important reservoir for human infections. Control measures implemented at the farm level (i.e., biosecurity or vaccination), which have been successfully applied to limit other pathogens, such as Salmonella, have not been effective in reducing Campylobacter occurrence. Thus, new approaches are needed to fully understand the ecological interactions of Campylobacter with host animals to effectively comprehend its epidemiology. The objective of this study was to analyse longitudinally the gut microbiota composition of Campylobacter-infected and non-infected farms to identify any difference that could potentially be indicative of gut colonization by Campylobacter spp. Differences in the colonization rate and timing were observed at the farms that became positive for Campylobacter jejuni over the investigated time points, even though in positive tests, the occurrence of Campylobacter jejuni gut colonization was not observed before the second week of the life of the birds. Significant differences were observed in the abundances of specific bacterial taxa between the microbiota of individuals belonging to farms that became Campylobacter positive during the study and those who remained negative with particular reference to Bacteroidales and Clostridiales, respectively. Moreover, Campylobacter colonization dramatically influenced the microbiota richness, although to a different extent depending on the infection timing. Finally, a key role of Faecalibacterium and Lactobacillus genera on the Campylobacter microbial network was observed. Understanding the ecology of the Campylobacter interaction with host microbiota during infection could support novel approaches for broiler microbial barrier restoration. Therefore, evidence obtained through this study can be used to identify options to reduce the incidence of infection at a primary production level based on the targeted influence of the intestinal microbiota, thus helping develop new control strategies in order to mitigate the risk of human exposure to Campylobacter by chicken meat consumption.
Collapse
Affiliation(s)
- Ilaria Patuzzi
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Massimiliano Orsini
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Veronica Cibin
- National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (V.C.); (A.T.); (A.R.)
| | - Sara Petrin
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Eleonora Mastrorilli
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| | - Alessia Tiengo
- National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (V.C.); (A.T.); (A.R.)
| | - Federica Gobbo
- Avian Pathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (F.G.); (S.C.)
| | - Salvatore Catania
- Avian Pathology Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (F.G.); (S.C.)
| | - Lisa Barco
- Experimental Microbiology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy;
| | - Antonia Ricci
- National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (V.C.); (A.T.); (A.R.)
| | - Carmen Losasso
- Microbial Ecology and Genomics Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35120 Legnaro, Italy; (I.P.); (M.O.); (S.P.); (E.M.)
| |
Collapse
|
30
|
Xu HM, Huang HL, Zhou YL, Zhao HL, Xu J, Shou DW, Liu YD, Zhou YJ, Nie YQ. Fecal Microbiota Transplantation: A New Therapeutic Attempt from the Gut to the Brain. Gastroenterol Res Pract 2021; 2021:6699268. [PMID: 33510784 PMCID: PMC7826222 DOI: 10.1155/2021/6699268] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gut dysbacteriosis is closely related to various intestinal and extraintestinal diseases. Fecal microbiota transplantation (FMT) is a biological therapy that entails transferring the gut microbiota from healthy individuals to patients in order to reconstruct the intestinal microflora in the latter. It has been proved to be an effective treatment for recurrent Clostridium difficile infection. Studies show that the gut microbiota plays an important role in the pathophysiology of neurological and psychiatric disorders through the microbiota-gut-brain axis. Therefore, reconstruction of the healthy gut microbiota is a promising new strategy for treating cerebral diseases. We have reviewed the latest research on the role of gut microbiota in different nervous system diseases as well as FMT in the context of its application in neurological, psychiatric, and other nervous system-related diseases (Parkinson's disease, Alzheimer's disease, multiple sclerosis, epilepsy, autism spectrum disorder, bipolar disorder, hepatic encephalopathy, neuropathic pain, etc.).
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - You-Lian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Hai-Lan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Di-Wen Shou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yan-Di Liu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
31
|
Heimesaat MM, Mousavi S, Weschka D, Bereswill S. Anti-Pathogenic and Immune-Modulatory Effects of Peroral Treatment with Cardamom Essential Oil in Acute Murine Campylobacteriosis. Microorganisms 2021; 9:microorganisms9010169. [PMID: 33466708 PMCID: PMC7828794 DOI: 10.3390/microorganisms9010169] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Human infections with enteropathogenic Campylobacter jejuni (C. jejuni) including multi-drug resistant isolates are emerging worldwide. Antibiotics-independent approaches in the combat of campylobacteriosis are therefore highly desirable. Since the health-beneficial including anti-inflammatory and anti-infectious properties of cardamom have been acknowledged for long, we here addressed potential anti-pathogenic and immune-modulatory effects of this natural compound during acute campylobacteriosis. For this purpose, microbiota-depleted IL-10-/- mice were orally infected with C. jejuni strain 81-176 and subjected to cardamom essential oil (EO) via the drinking water starting on day 2 post-infection. Cardamom EO treatment resulted in lower intestinal pathogen loads and improved clinical outcome of mice as early as day 3 post-infection. Furthermore, when compared to mock controls, cardamom EO treated mice displayed less distinct macroscopic and microscopic inflammatory sequelae on day 6 post-infection that were paralleled by lower colonic numbers of macrophages, monocytes, and T cells and diminished pro-inflammatory mediator secretion not only in the intestinal tract, but also in extra-intestinal and, remarkably, systemic organs. In conclusion, our preclinical intervention study provides the first evidence that cardamom EO comprises a promising compound for the combat of acute campylobacteriosis and presumably prevention of post-infectious morbidities.
Collapse
|
32
|
Mousavi S, Bereswill S, Heimesaat MM. Murine Models for the Investigation of Colonization Resistance and Innate Immune Responses in Campylobacter Jejuni Infections. Curr Top Microbiol Immunol 2021; 431:233-263. [PMID: 33620654 DOI: 10.1007/978-3-030-65481-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human infections with the food-borne pathogen Campylobacter jejuni are progressively increasing worldwide and constitute a significant socioeconomic burden to mankind. Intestinal campylobacteriosis in humans is characterized by bloody diarrhea, fever, abdominal pain, and severe malaise. Some individuals develop chronic post-infectious sequelae including neurological and autoimmune diseases such as reactive arthritis and Guillain-Barré syndrome. Studies unraveling the molecular mechanisms underlying campylobacteriosis and post-infectious sequelae have been hampered by the scarcity of appropriate experimental in vivo models. Particularly, conventional laboratory mice are protected from C. jejuni infection due to the physiological colonization resistance exerted by the murine gut microbiota composition. Additionally, as compared to humans, mice are up to 10,000 times more resistant to C. jejuni lipooligosaccharide (LOS) constituting a major pathogenicity factor responsible for the immunopathological host responses during campylobacteriosis. In this chapter, we summarize the recent progress that has been made in overcoming these fundamental obstacles in Campylobacter research in mice. Modification of the murine host-specific gut microbiota composition and sensitization of the mice to C. jejuni LOS by deletion of genes encoding interleukin-10 or a single IL-1 receptor-related molecule as well as by dietary zinc depletion have yielded reliable murine infection models resembling key features of human campylobacteriosis. These substantial improvements pave the way for a better understanding of the molecular mechanisms underlying pathogen-host interactions. The ongoing validation and standardization of these novel murine infection models will provide the basis for the development of innovative treatment and prevention strategies to combat human campylobacteriosis and collateral damages of C. jejuni infections.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
33
|
Preclinical Evaluation of Oral Urolithin-A for the Treatment of Acute Campylobacteriosis in Campylobacter jejuni Infected Microbiota-Depleted IL-10 -/- Mice. Pathogens 2020; 10:pathogens10010007. [PMID: 33374868 PMCID: PMC7823290 DOI: 10.3390/pathogens10010007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Human campylobacteriosis represents an infectious enteritis syndrome caused by Campylobacter species, mostly Campylobacter jejuni. Given that C. jejuni infections are rising worldwide and antibiotic treatment is usually not indicated, novel treatment options for campylobacteriosis are needed. Urolithin-A constitutes a metabolite produced by the human gut microbiota from ellagitannins and ellagic acids in berries and nuts which have been known for their health-beneficial including anti-inflammatory effects since centuries. Therefore, we investigated potential pathogen-lowering and immunomodulatory effects following oral application of synthetic urolithin-A during acute campylobacteriosis applying perorally C. jejuni infected, microbiota-depleted IL-10-/- mice as preclinical inflammation model. On day 6 post infection, urolithin-A treated mice harbored slightly lower pathogen loads in their ileum, but not colon as compared to placebo counterparts. Importantly, urolithin-A treatment resulted in an improved clinical outcome and less pronounced macroscopic and microscopic inflammatory sequelae of infection that were paralleled by less pronounced intestinal pro-inflammatory immune responses which could even be observed systemically. In conclusion, this preclinical murine intervention study provides first evidence that oral urolithin-A application is a promising treatment option for acute C. jejuni infection and paves the way for future clinical studies in human campylobacteriosis.
Collapse
|
34
|
Toll-Like Receptor-4 Is Involved in Mediating Intestinal and Extra-Intestinal Inflammation in Campylobacter coli-Infected Secondary Abiotic IL-10 -/- Mice. Microorganisms 2020; 8:microorganisms8121882. [PMID: 33261211 PMCID: PMC7761268 DOI: 10.3390/microorganisms8121882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
Human Campylobacter infections are emerging worldwide and constitute significant health burdens. We recently showed that the immunopathological sequelae in Campylobacter jejuni-infected mice were due to Toll-like receptor (TLR)-4 dependent immune responses induced by bacterial lipooligosaccharide (LOS). Information regarding the molecular mechanisms underlying Campylobacter coli-host interactions are scarce, however. Therefore, we analyzed C. coli-induced campylobacteriosis in secondary abiotic IL-10−/− mice with and without TLR4. Mice were infected perorally with a human C. coli isolate or with a murine commensal Escherichia coli as apathogenic, non-invasive control. Independent from TLR4, C. coli and E. coli stably colonized the gastrointestinal tract, but only C. coli induced clinical signs of campylobacteriosis. TLR4−/− IL-10−/− mice, however, displayed less frequently fecal blood and less distinct histopathological and apoptotic sequelae in the colon versus IL-10−/− counterparts on day 28 following C. coli infection. Furthermore, C. coli-induced colonic immune cell responses were less pronounced in TLR4−/− IL-10−/− as compared to IL-10−/− mice and accompanied by lower pro-inflammatory mediator concentrations in the intestines and the liver of the former versus the latter. In conclusion, our study provides evidence that TLR4 is involved in mediating C. coli-LOS-induced immune responses in intestinal and extra-intestinal compartments during murine campylobacteriosis.
Collapse
|
35
|
Heimesaat MM, Mousavi S, Escher U, Lobo de Sá FD, Peh E, Schulzke JD, Kittler S, Bücker R, Bereswill S. Resveratrol Alleviates Acute Campylobacter jejuni Induced Enterocolitis in a Preclinical Murine Intervention Study. Microorganisms 2020; 8:microorganisms8121858. [PMID: 33255723 PMCID: PMC7760181 DOI: 10.3390/microorganisms8121858] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
The polyphenolic compound resveratrol has been shown to exert health-beneficial properties. Given globally emerging Campylobacter infections in humans, we addressed potential anti-pathogenic, immuno-modulatory and intestinal epithelial barrier preserving properties of synthetic resveratrol in the present preclinical intervention study applying a murine acute campylobacteriosis model. Two days following peroral C. jejuni infection, secondary abiotic IL-10−/− mice were either subjected to resveratrol or placebo via the drinking water. Whereas placebo mice suffered from acute enterocolitis at day 6 post-infection, resveratrol treatment did not only lead to improved clinical conditions, but also to less pronounced colonic epithelial apoptosis as compared to placebo application. Furthermore, C. jejuni induced innate and adaptive immune cell responses were dampened in the large intestines upon resveratrol challenge and accompanied by less colonic nitric oxide secretion in the resveratrol versus the placebo cohort. Functional analyses revealed that resveratrol treatment could effectively rescue colonic epithelial barrier function in C. jejuni infected mice. Strikingly, the disease-alleviating effects of resveratrol could additionally be found in extra-intestinal and also systemic compartments at day 6 post-infection. For the first time, our current preclinical intervention study provides evidence that peroral resveratrol treatment exerts potent disease-alleviating effects during acute experimental campylobacteriosis.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
- Correspondence: ; Tel.: +49-30-450524318
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
| | - Ulrike Escher
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
| | - Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (F.D.L.d.S.); (J.-D.S.); (R.B.)
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (E.P.); (S.K.)
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (F.D.L.d.S.); (J.-D.S.); (R.B.)
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (E.P.); (S.K.)
| | - Roland Bücker
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (F.D.L.d.S.); (J.-D.S.); (R.B.)
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
| |
Collapse
|
36
|
Davies E, Ebbesen M, Johansson C, Kaden R, Rautelin H. Genomic and Phenotypic Characterisation of Campylobacter jejuni Isolates From a Waterborne Outbreak. Front Cell Infect Microbiol 2020; 10:594856. [PMID: 33194843 PMCID: PMC7658296 DOI: 10.3389/fcimb.2020.594856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/06/2020] [Indexed: 01/15/2023] Open
Abstract
Campylobacter infections are the leading cause of bacterial gastroenteritis. In Europe, over 246,000 cases are confirmed annually. Infections are often transmitted via contaminated food, such as poultry products, but water may be the source of infection as well. The aim of this study was to characterise a selection of Campylobacter jejuni human isolates, together with a water isolate, from a waterborne outbreak in Norway in 2019, including human isolates from early, mid-, and late epidemic. The isolates were characterised with whole-genome sequencing, analysing the expression of putative virulence genes and demonstrating the pathogenic potential in an in vitro adhesion model using HT-29 cells. All isolates belonged to the multilocus sequence type 1701 and ST45 clonal complex. In the genomic analysis, the water isolate clustered somewhat separately from the human isolates. There was some variation between the human isolates, but the water isolate seemed to display the greatest pathogenic potential, demonstrated by the highest levels of virulence gene expression, adhesion to epithelial cells and IL-8 induction. These results suggest that the water isolate of the study has potential to cause human infections, and that some bacterial changes due to host or environmental adaptation, may occur during a waterborne Campylobacter epidemic. This is, to the best of our knowledge, the first study on C. jejuni isolates from a waterborne outbreak, including both human isolates and a water isolate, characterised with genomic and phenotypic approaches.
Collapse
Affiliation(s)
- Emma Davies
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Marit Ebbesen
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Cecilia Johansson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - René Kaden
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hilpi Rautelin
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
37
|
Heimesaat MM, Schmidt AM, Mousavi S, Escher U, Tegtmeyer N, Wessler S, Gadermaier G, Briza P, Hofreuter D, Bereswill S, Backert S. Peptidase PepP is a novel virulence factor of Campylobacter jejuni contributing to murine campylobacteriosis. Gut Microbes 2020; 12:1770017. [PMID: 32584649 PMCID: PMC7524167 DOI: 10.1080/19490976.2020.1770017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanisms of host-pathogen interactions resulting in immunopathological responses upon human Campylobacter jejuni infection are not completely understood, but the recent availability of murine infection models mimicking key features of campylobacteriosis helps solving this dilemma. During a screen for proteases expressed by C. jejuni, we identified a peptidase of the M24 family as a potential novel virulence factor, which was named PepP. The gene is strongly conserved in various Campylobacter species. A constructed deletion mutant ΔpepP of C. jejuni strain 81-176 grew as efficiently compared to isogenic wild-type (WT) or pepP complemented bacteria. To shed light on the potential role of this protease in mediating immunopathological responses in the mammalian host, we perorally challenged microbiota-depleted IL-10-/- mice with these strains. All strains stably colonized the murine gastrointestinal tract with comparably high loads. Remarkably, pepP deficiency was associated with less severe induced malaise, with less distinct apoptotic and innate immune cell responses, but also with more pronounced proliferative/regenerative epithelial cell responses in the large intestine at d6post-infection. Furthermore, pro-inflammatory mediators were lower in the colon, ileum, and mesenteric lymph nodes of mice that had been challenged with the ΔpepP mutant compared to the WT or pepP complemented strains. This also held true for extra-intestinal organs including liver, kidneys, and lungs, and, strikingly, to systemic compartments. Taken together, protease PepP is a novel virulence determinant involved in mediating campylobacteriosis. The finding that apoptosis in the colon is significantly diminished in mice infected with the pepP mutant highlights the epithelial layer as the first and main target of PepP in the intestine.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Anna-Maria Schmidt
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Ulrike Escher
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Silja Wessler
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Gabriele Gadermaier
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Dirk Hofreuter
- Department of Biological Safety, German Federal Institute for Risk Assessment (Bfr), Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, And Berlin Institute of Health, Berlin, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| |
Collapse
|
38
|
Pituitary Adenylate Cyclase-Activating Polypeptide Alleviates Intestinal, Extra-Intestinal and Systemic Inflammatory Responses during Acute Campylobacter jejuni-induced Enterocolitis in Mice. Pathogens 2020; 9:pathogens9100805. [PMID: 33007819 PMCID: PMC7650764 DOI: 10.3390/pathogens9100805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
Human Campylobacter jejuni infections are emerging, and constitute a significant health burden worldwide. The ubiquitously expressed pituitary adenylate cyclase-activating polypeptide (PACAP) is well-known for its cell-protective and immunomodulatory effects. In our actual intervention study, we used an acute campylobacteriosis model and assessed the potential disease-alleviating effects of exogenous PACAP. Therefore, secondary abiotic IL-10-/- mice were perorally infected with C. jejuni and treated with synthetic PACAP38 intraperitoneally from day 2 until day 5 post-infection. Whereas PACAP did not interfere with the gastrointestinal colonization of the pathogen, mice from the PACAP group exhibited less severe clinical signs of C. jejuni-induced disease, as compared to mock controls, which were paralleled by alleviated apoptotic, but enhanced cell proliferative responses in colonic epithelia on day 6 post-infection. Furthermore, PACAP dampened the accumulation of macrophages and monocytes, but enhanced regulatory T cell responses in the colon, which were accompanied by less IFN-γ secretion in intestinal compartments in PACAP versus mock-treated mice. Remarkably, the inflammation-dampening properties of PACAP could also be observed in extra-intestinal organs, and strikingly, even the systemic circulation on day 6 post-infection. For the first time, we provide evidence that synthetic PACAP might be a promising candidate to combat acute campylobacteriosis and post-infectious sequelae.
Collapse
|
39
|
The Host-Specific Intestinal Microbiota Composition Impacts Campylobacter coli Infection in a Clinical Mouse Model of Campylobacteriosis. Pathogens 2020; 9:pathogens9100804. [PMID: 33003421 PMCID: PMC7600086 DOI: 10.3390/pathogens9100804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/04/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Human Campylobacter-infections are progressively rising globally. However, the molecular mechanisms underlying C. coli–host interactions are incompletely understood. In this study, we surveyed the impact of the host-specific intestinal microbiota composition during peroral C. coli infection applying an established murine campylobacteriosis model. Therefore, microbiota-depleted IL-10−/− mice were subjected to peroral fecal microbiota transplantation from murine versus human donors and infected with C. coli one week later by gavage. Irrespective of the microbiota, C. coli stably colonized the murine gastrointestinal tract until day 21 post-infection. Throughout the survey, C. coli-infected mice with a human intestinal microbiota displayed more frequently fecal blood as their murine counterparts. Intestinal inflammatory sequelae of C. coli-infection could exclusively be observed in mice with a human intestinal microbiota, as indicated by increased colonic numbers of apoptotic epithelial cells and innate as well as adaptive immune cell subsets, which were accompanied by more pronounced pro-inflammatory cytokine secretion in the colon and mesenteric lymph nodes versus mock controls. However, in extra-intestinal, including systemic compartments, pro-inflammatory responses upon pathogen challenge could be assessed in mice with either microbiota. In conclusion, the host-specific intestinal microbiota composition has a profound effect on intestinal and systemic pro-inflammatory immune responses during C. coli infection.
Collapse
|
40
|
Ashaolu TJ, Ashaolu JO, Adeyeye SAO. Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. J Appl Microbiol 2020; 130:677-687. [PMID: 32892434 DOI: 10.1111/jam.14843] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Prebiotics are known for their health benefits to man, including reducing cardiovascular disease and improving gut health. This review takes a critical assessment of the impact of dietary fibres and prebiotics on the gastrointestinal microbiota in vitro. The roles of colonic organisms, slow fermentation of prebiotics, production of high butyric and propionic acids and positive modulation of the host health were taken into cognizance. Also, the short-chain fatty acids (SCFAs) molecular signalling mechanisms associated with their prebiotic substrate structural conformations and the phenotypic responses related to the gut microbes composition were discussed. Furthermore, common dietary fibres such as resistant starch, pectin, hemicelluloses, β-glucan and fructan in context of their prebiotic potentials for human health were also explained. Finally, the in vitro human colonic fermentation depends on prebiotic type and its physicochemical characteristics, which will then affect the rate of fermentation, selectivity of micro-organisms to multiply, and SCFAs concentrations and compositions.
Collapse
Affiliation(s)
- T J Ashaolu
- Smart Agriculture Research and Application Team, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - J O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - S A O Adeyeye
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
41
|
Heimesaat MM, Weschka D, Kløve S, Genger C, Biesemeier N, Mousavi S, Bereswill S. Microbiota composition and inflammatory immune responses upon peroral application of the commercial competitive exclusion product Aviguard® to microbiota-depleted wildtype mice. Eur J Microbiol Immunol (Bp) 2020; 10:139-146. [PMID: 32750026 PMCID: PMC7592517 DOI: 10.1556/1886.2020.00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Non-antibiotic feed additives including competitive exclusion products have been shown effective in reducing pathogen loads including multi-drug resistant strains from the vertebrate gut. In the present study we surveyed the intestinal bacterial colonization properties, potential macroscopic and microscopic inflammatory sequelae and immune responses upon peroral application of the commercial competitive exclusion product Aviguard® to wildtype mice in which the gut microbiota had been depleted by antibiotic pre-treatment. Until four weeks following Aviguard® challenge, bacterial strains abundant in the probiotic suspension stably established within the murine intestines. Aviguard® application did neither induce any clinical signs nor gross macroscopic intestinal inflammatory sequelae, which also held true when assessing apoptotic and proliferative cell responses in colonic epithelia until day 28 post-challenge. Whereas numbers of colonic innate immune cell subsets such as macrophages and monocytes remained unaffected, peroral Aviguard® application to microbiota depleted mice was accompanied by decreases in colonic mucosal counts of adaptive immune cells such as T and B lymphocytes. In conclusion, peroral Aviguard® application results i.) in effective intestinal colonization within microbiota depleted mice, ii.) neither in macroscopic nor in microscopic inflammatory sequelae and iii.) in lower colonic mucosal T and B cell responses.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dennis Weschka
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sigri Kløve
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Genger
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nina Biesemeier
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
42
|
Heimesaat MM, Genger C, Biesemeier N, Klove S, Weschka D, Mousavi S, Bereswill S. Inflammatory Immune Responses and Gut Microbiota Changes Following Campylobacter coli Infection of IL-10 -/- Mice with Chronic Colitis. Pathogens 2020; 9:pathogens9070560. [PMID: 32664563 PMCID: PMC7400060 DOI: 10.3390/pathogens9070560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Human infections with the food-borne enteropathogens Campylobacter are progressively rising. Recent evidence revealed that pre-existing intestinal inflammation facilitates enteropathogenic infection subsequently exacerbating the underlying disease. Given that only little is known about C. coli-host interactions and particularly during intestinal inflammation, the aim of the present study was to survey gastrointestinal colonization properties, gut microbiota changes and pro-inflammatory sequelae upon peroral C. coli-infection of IL-10-/- mice with chronic colitis. C. coli colonized the gastrointestinal tract of mice with varying efficiencies until day 28 post-infection and induced macroscopic and microscopic inflammatory changes as indicated by shorter colonic lengths, more distinct histopathological changes in the colonic mucosa and higher numbers of apoptotic colonic epithelial cells when compared to mock-infected controls. Furthermore, not only colonic innate and adaptive immune cell responses, but also enhanced systemic TNF-α secretion could be observed following C. coli as opposed to mock challenge. Notably, C. coli induced intestinal inflammatory sequelae were accompanied with gut microbiota shifts towards higher commensal enterobacterial loads in the infected gut lumen. Moreover, the pathogen translocated from the intestinal tract to extra-intestinal tissue sites in some cases, but never to systemic compartments. Hence, C. coli accelerates inflammatory immune responses in IL-10-/- mice with chronic colitis.
Collapse
|
43
|
Perruzza L, Jaconi S, Lombardo G, Pinna D, Strati F, Morone D, Seehusen F, Hu Y, Bajoria S, Xiong J, Kumru OS, Joshi SB, Volkin DB, Piantanida R, Benigni F, Grassi F, Corti D, Pizzuto MS. Prophylactic Activity of Orally Administered FliD-Reactive Monoclonal SIgA Against Campylobacter Infection. Front Immunol 2020; 11:1011. [PMID: 32582158 PMCID: PMC7296071 DOI: 10.3389/fimmu.2020.01011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Campylobacter infection is one of the most common causes of bacterial gastroenteritis worldwide and a major global health threat due to the rapid development of antibiotic resistance. Currently, there are no vaccines approved to prevent campylobacteriosis, and rehydration is the main form of therapy. Secretory immunoglobulin A (SIgA) is the main antibody class found in mucous secretions, including human milk, and serves as the first line of defense for the gastrointestinal epithelium against enteric pathogens. In this study, we describe the prophylactic activity of orally delivered recombinant SIgA generated from two human monoclonal antibodies (CAA1 and CCG4) isolated for their reactivity against the flagellar-capping protein FliD, which is essential for bacteria motility and highly conserved across Campylobacter species associated with severe enteritis. In an immunocompetent weaned mouse model, a single oral administration of FliD-reactive SIgA CAA1 or CCG4 at 2 h before infection significantly enhances Campylobacter clearance at early stages post-infection, reducing the levels of inflammation markers associated with epithelial damage and polymorphonuclear (PMN) cells infiltration in the cecum lamina propria. Our data indicate that the prophylactic activity of CAA1 and CCG4 is not only dependent on the specificity to FliD but also on the use of the SIgA format, as the immunoglobulin G (IgG) versions of the same antibodies did not confer a comparable protective effect. Our work emphasizes the potential of FliD as a target for the development of vaccines and supports the concept that orally administered FliD-reactive SIgA can be developed to prevent or mitigate the severity of Campylobacter infections as well as the development of post-infection syndromes.
Collapse
Affiliation(s)
- Lisa Perruzza
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | - Gloria Lombardo
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | - Debora Pinna
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | - Francesco Strati
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Diego Morone
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Yue Hu
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - Jian Xiong
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - Ozan Selahattin Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - Sangeeta Bagai Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - David Bernard Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, United States
| | - Renato Piantanida
- Department of Otolaryngology-Head and Neck Surgery, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | - Fabio Grassi
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Davide Corti
- Humabs BioMed SA a Subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | | |
Collapse
|
44
|
Immune-modulatory Properties of the Octapeptide NAP in Campylobacter jejuni Infected Mice Suffering from Acute Enterocolitis. Microorganisms 2020; 8:microorganisms8060802. [PMID: 32466564 PMCID: PMC7356963 DOI: 10.3390/microorganisms8060802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/30/2022] Open
Abstract
Human infections with the food-borne zoonotic pathogen Campylobacter jejuni are progressively rising and constitute serious global public health and socioeconomic burdens. Hence, application of compounds with disease-alleviating properties are required to combat campylobacteriosis and post-infectious sequelae. In our preclinical intervention study applying an acute C. jejuni induced enterocolitis model, we surveyed the anti-pathogenic and immune-modulatory effects of the octapeptide NAP which is well-known for its neuroprotective and anti-inflammatory properties. Therefore, secondary abiotic IL-10−/− mice were perorally infected with C. jejuni and intraperitoneally treated with synthetic NAP from day 2 until day 5 post-infection. NAP-treatment did not affect gastrointestinal C. jejuni colonization but could alleviate clinical signs of infection that was accompanied by less pronounced apoptosis of colonic epithelial cells and enhancement of cell regenerative measures on day 6 post-infection. Moreover, NAP-treatment resulted in less distinct innate and adaptive pro-inflammatory immune responses that were not restricted to the intestinal tract but could also be observed in extra-intestinal and even systemic compartments. NAP-treatment further resulted in less frequent translocation of viable pathogens from the intestinal tract to extra-intestinal including systemic tissue sites. For the first time, we here provide evidence that NAP application constitutes a promising option to combat acute campylobacteriosis.
Collapse
|
45
|
Kløve S, Genger C, Mousavi S, Weschka D, Bereswill S, Heimesaat MM. Toll-Like Receptor-4 Dependent Intestinal and Systemic Sequelae Following Peroral Campylobacter coli Infection of IL10 Deficient Mice Harboring a Human Gut Microbiota. Pathogens 2020; 9:E386. [PMID: 32443576 PMCID: PMC7281621 DOI: 10.3390/pathogens9050386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Zoonotic Campylobacter, including C. jejuni and C. coli, are among the most prevalent agents of food-borne enteritis worldwide. The immunopathological sequelae of campylobacteriosis are caused by Toll-like Receptor-4 (TLR4)-dependent host immune responses, induced by bacterial lipooligosaccharide (LOS). In order to investigate C. coli-host interactions, including the roles of the human gut microbiota and TLR4, upon infection, we applied a clinical acute campylobacteriosis model, and subjected secondary abiotic, TLR4-deficient IL10-/- mice and IL10-/- controls to fecal microbiota transplantation derived from human donors by gavage, before peroral C. coli challenge. Until day 21 post-infection, C. coli could stably colonize the gastrointestinal tract of human microbiota-associated (hma) mice of either genotype. TLR4-deficient IL10-/- mice, however, displayed less severe clinical signs of infection, that were accompanied by less distinct apoptotic epithelial cell and innate as well as adaptive immune cell responses in the colon, as compared to IL10-/- counterparts. Furthermore, C. coli infected IL10-/-, as opposed to TLR4-deficient IL10-/-, mice displayed increased pro-inflammatory cytokine concentrations in intestinal and, strikingly, systemic compartments. We conclude that pathogenic LOS might play an important role in inducing TLR4-dependent host immune responses upon C. coli infection, which needs to be further addressed in more detail.
Collapse
|
46
|
Genger C, Kløve S, Mousavi S, Bereswill S, Heimesaat MM. The conundrum of colonization resistance against Campylobacter reloaded: The gut microbota composition in conventional mice does not prevent from Campylobacter coli infection. Eur J Microbiol Immunol (Bp) 2020; 10:80-90. [PMID: 32590346 PMCID: PMC7391380 DOI: 10.1556/1886.2020.00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 01/27/2023] Open
Abstract
The physiological colonization resistance exerted by the murine gut microbiota prevents conventional mice from Campylobacter jejuni infection. In the present study we addressed whether this also held true for Campylobacter coli. Following peroral application, C. coli as opposed to C.jejuni could stably establish within the gastrointestinal tract of conventionally colonized mice until 3 weeks post-challenge. Neither before nor after either Campylobacter application any changes in the gut microbiota composition could be observed. C. coli, but not C. jejuni challenge was associated with pronounced regenerative, but not apoptotic responses in colonic epithelia. At day 21 following C. coli versus C. jejuni application mice exhibited higher numbers of adaptive immune cells including T-lymphocytes and regulatory T-cells in the colonic mucosa and lamina propria that were accompanied by higher large intestinal interferon-γ (IFN-γ) concentrations in the former versus the latter but comparable to naive levels. Campylobacter application resulted in decreased splenic IFN-γ, tumor necrosis factor-α (TNF-α), and IL-6 concentrations, whereas IL-12p70 secretion was increased in the spleens at day 21 following C. coli application only. In either Campylobacter cohort decreased IL-10 concentrations could be measured in splenic and serum samples. In conclusion, the commensal gut microbiota prevents mice from C. jejuni, but not C. coli infection.
Collapse
Affiliation(s)
- Claudia Genger
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sigri Kløve
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
47
|
Markowiak-Kopeć P, Śliżewska K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020; 12:nu12041107. [PMID: 32316181 PMCID: PMC7230973 DOI: 10.3390/nu12041107] [Citation(s) in RCA: 483] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
The relationship between diet and the diversity and function of the intestinal microbiome and its importance for human health is currently the subject of many studies. The type and proportion of microorganisms found in the intestines can determine the energy balance of the host. Intestinal microorganisms perform many important functions, one of which is participation in metabolic processes, e.g., in the production of short-chain fatty acids—SCFAs (also called volatile fatty acids). These acids represent the main carbon flow from the diet to the host microbiome. Maintaining intestinal balance is necessary to maintain the host’s normal health and prevent many diseases. The results of many studies confirm the beneficial effect of probiotic microorganisms on the balance of the intestinal microbiome and produced metabolites, including SCFAs. The aim of this review is to summarize what is known on the effects of probiotics on the production of short-chain fatty acids by gut microbes. In addition, the mechanism of formation and properties of these metabolites is discussed and verified test results confirming the effectiveness of probiotics in human nutrition by modulating SCFAs production by intestinal microbiome is presented.
Collapse
|
48
|
Mousavi S, Bereswill S, Heimesaat MM. Novel Clinical Campylobacter jejuni Infection Models Based on Sensitization of Mice to Lipooligosaccharide, a Major Bacterial Factor Triggering Innate Immune Responses in Human Campylobacteriosis. Microorganisms 2020; 8:E482. [PMID: 32231139 PMCID: PMC7232424 DOI: 10.3390/microorganisms8040482] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
: Human Campylobacter jejuni infections inducing campylobacteriosis including post-infectious sequelae such as Guillain-Barré syndrome and reactive arthritis are rising worldwide and progress into a global burden of high socioeconomic impact. Intestinal immunopathology underlying campylobacteriosis is a classical response of the innate immune system characterized by the accumulation of neutrophils and macrophages which cause tissue destruction, barrier defects and malabsorption leading to bloody diarrhea. Clinical studies revealed that enteritis and post-infectious morbidities of human C. jejuni infections are strongly dependent on the structure of pathogenic lipooligosaccharides (LOS) triggering the innate immune system via Toll-like-receptor (TLR)-4 signaling. Compared to humans, mice display an approximately 10,000 times weaker TLR-4 response and a pronounced colonization resistance (CR) against C. jejuni maintained by the murine gut microbiota. In consequence, investigations of campylobacteriosis have been hampered by the lack of experimental animal models. We here summarize recent progress made in the development of murine C. jejuni infection models that are based on the abolishment of CR by modulating the murine gut microbiota and by sensitization of mice to LOS. These advances support the major role of LOS driven innate immunity in pathogenesis of campylobacteriosis including post-infectious autoimmune diseases and promote the preclinical evaluation of novel pharmaceutical strategies for prophylaxis and treatment.
Collapse
|
49
|
Vendrik KEW, Ooijevaar RE, de Jong PRC, Laman JD, van Oosten BW, van Hilten JJ, Ducarmon QR, Keller JJ, Kuijper EJ, Contarino MF. Fecal Microbiota Transplantation in Neurological Disorders. Front Cell Infect Microbiol 2020; 10:98. [PMID: 32266160 PMCID: PMC7105733 DOI: 10.3389/fcimb.2020.00098] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Several studies suggested an important role of the gut microbiota in the pathophysiology of neurological disorders, implying that alteration of the gut microbiota might serve as a treatment strategy. Fecal microbiota transplantation (FMT) is currently the most effective gut microbiota intervention and an accepted treatment for recurrent Clostridioides difficile infections. To evaluate indications of FMT for patients with neurological disorders, we summarized the available literature on FMT. In addition, we provide suggestions for future directions. Methods: In July 2019, five main databases were searched for studies and case descriptions on FMT in neurological disorders in humans or animal models. In addition, the ClinicalTrials.gov website was consulted for registered planned and ongoing trials. Results: Of 541 identified studies, 34 were included in the analysis. Clinical trials with FMT have been performed in patients with autism spectrum disorder and showed beneficial effects on neurological symptoms. For multiple sclerosis and Parkinson's disease, several animal studies suggested a positive effect of FMT, supported by some human case reports. For epilepsy, Tourette syndrome, and diabetic neuropathy some studies suggested a beneficial effect of FMT, but evidence was restricted to case reports and limited numbers of animal studies. For stroke, Alzheimer's disease and Guillain-Barré syndrome only studies with animal models were identified. These studies suggested a potential beneficial effect of healthy donor FMT. In contrast, one study with an animal model for stroke showed increased mortality after FMT. For Guillain-Barré only one study was identified. Whether positive findings from animal studies can be confirmed in the treatment of human diseases awaits to be seen. Several trials with FMT as treatment for the above mentioned neurological disorders are planned or ongoing, as well as for amyotrophic lateral sclerosis. Conclusions: Preliminary literature suggests that FMT may be a promising treatment option for several neurological disorders. However, available evidence is still scanty and some contrasting results were observed. A limited number of studies in humans have been performed or are ongoing, while for some disorders only animal experiments have been conducted. Large double-blinded randomized controlled trials are needed to further elucidate the effect of FMT in neurological disorders.
Collapse
Affiliation(s)
- Karuna E W Vendrik
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu, RIVM), Bilthoven, Netherlands
| | - Rogier E Ooijevaar
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, Netherlands
| | - Pieter R C de Jong
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Jon D Laman
- Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, Netherlands
| | - Bob W van Oosten
- Department of Neurology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, Netherlands
| | | | - Quinten R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology, Haaglanden Medical Center, The Hague, Netherlands
| | - Eduard J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu, RIVM), Bilthoven, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Neurology, Haga Teaching Hospital, The Hague, Netherlands
| |
Collapse
|
50
|
Butkevych E, Lobo de Sá FD, Nattramilarasu PK, Bücker R. Contribution of Epithelial Apoptosis and Subepithelial Immune Responses in Campylobacter jejuni- Induced Barrier Disruption. Front Microbiol 2020; 11:344. [PMID: 32210941 PMCID: PMC7067706 DOI: 10.3389/fmicb.2020.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Campylobacter jejuni is a widespread zoonotic pathogen and the leading bacterial cause of foodborne gastroenteritis in humans. Previous infection studies showed disruption of intercellular contacts, induction of epithelial apoptosis, and immune activation, all three contributing to intestinal barrier dysfunction leading to diarrhea. The present study aims to determine the impact of subepithelial immune cells on intestinal barrier dysfunction during Campylobacter jejuni infection and the underlying pathological mechanisms. Infection was performed in a co-culture of confluent monolayers of the human colon cell line HT-29/B6-GR/MR and THP-1 immune cells. Twenty-two hours after infection, transepithelial electrical resistance (TER) was decreased by 58 ± 6% compared to controls. The infection resulted in an increase in permeability for fluorescein (332 Da; 4.5-fold) and for FITC-dextran (4 kDa; 3.5-fold), respectively. In contrast, incubation of the co-culture with the pan-caspase inhibitor Q-VD-OPh during the infection resulted in a complete recovery of the decrease in TER and a normalization of flux values. Fluorescence microscopy showed apoptotic fragmentation in infected cell monolayers resulting in a 5-fold increase of the apoptotic ratio, accompanied by an increased caspase-3 cleavage and caspase-3/7 activity, which both were not present after Q-VD-OPh treatment. Western blot analysis revealed increased claudin-1 and claudin-2 protein expression. Inhibition of apoptosis induction did not normalize these tight junction changes. TNFα concentration was increased during the infection in the co-culture. In conclusion, Campylobacter jejuni infection and the consequent subepithelial immune activation cause intestinal barrier dysfunction mainly through caspase-3-dependent epithelial apoptosis. Concomitant tight junction changes were caspase-independent. Anti-apoptotic and immune-modulatory substances appear to be promising agents for treatment of campylobacteriosis.
Collapse
Affiliation(s)
- Eduard Butkevych
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Praveen Kumar Nattramilarasu
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|