1
|
Fortier M, Cauhapé M, Buono S, Becker J, Menuet A, Branchu J, Ricca I, Mero S, Dorgham K, El Hachimi KH, Dobrenis K, Colsch B, Samaroo D, Devaux M, Durr A, Stevanin G, Santorelli FM, Colombo S, Cowling B, Darios F. Decreasing ganglioside synthesis delays motor and cognitive symptom onset in Spg11 knockout mice. Neurobiol Dis 2024; 199:106564. [PMID: 38876323 DOI: 10.1016/j.nbd.2024.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Biallelic variants in the SPG11 gene account for the most common form of autosomal recessive hereditary spastic paraplegia characterized by motor and cognitive impairment, with currently no therapeutic option. We previously observed in a Spg11 knockout mouse that neurodegeneration is associated with accumulation of gangliosides in lysosomes. To test whether a substrate reduction therapy could be a therapeutic option, we downregulated the key enzyme involved in ganglioside biosynthesis using an AAV-PHP.eB viral vector expressing a miRNA targeting St3gal5. Downregulation of St3gal5 in Spg11 knockout mice prevented the accumulation of gangliosides, delayed the onset of motor and cognitive symptoms, and prevented the upregulation of serum levels of neurofilament light chain, a biomarker widely used in neurodegenerative diseases. Importantly, similar results were observed when Spg11 knockout mice were administrated venglustat, a pharmacological inhibitor of glucosylceramide synthase expected to decrease ganglioside synthesis. Downregulation of St3gal5 or venglustat administration in Spg11 knockout mice strongly decreased the formation of axonal spheroids, previously associated with impaired trafficking. Venglustat had similar effect on cultured human SPG11 neurons. In conclusion, this work identifies the first disease-modifying therapeutic strategy in SPG11, and provides data supporting its relevance for therapeutic testing in SPG11 patients.
Collapse
Affiliation(s)
- Manon Fortier
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Margaux Cauhapé
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Suzie Buono
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Julien Becker
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Alexia Menuet
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Julien Branchu
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Ivana Ricca
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Serena Mero
- Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - Khalid-Hamid El Hachimi
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; EPHE, PSL Research University, Paris, France
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, MetaboHUB, Gif sur Yvette, France
| | - Dominic Samaroo
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Morgan Devaux
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; EPHE, PSL Research University, Paris, France; University of Bordeaux, CNRS, INCIA, UMR 5287, NRGen Team, Bordeaux, France
| | | | - Sophie Colombo
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Belinda Cowling
- Dynacure SA (now Flamingo Therapeutics NV), Illkirch, France
| | - Frédéric Darios
- Sorbonne Université, Paris Brain Institute (ICM Institut du Cerveau), INSERM U1127, CNRS UMR 7225, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
2
|
Villalobos JA, Cahoon RE, Cahoon EB, Wallace IS. Glucosylceramides impact cellulose deposition and cellulose synthase complex motility in Arabidopsis. Glycobiology 2024; 34:cwae035. [PMID: 38690785 DOI: 10.1093/glycob/cwae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.
Collapse
Affiliation(s)
- Jose A Villalobos
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Rebecca E Cahoon
- Department of Biochemistry & Center for Plant Science Innovation, University of Nebraska, 1901 Vine St. Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry & Center for Plant Science Innovation, University of Nebraska, 1901 Vine St. Lincoln, NE 68588, USA
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV 89557, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd. Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Science Building Athens, GA 30602, USA
| |
Collapse
|
3
|
Paquet Luzy C, Doppler E, Polasek TM, Giorgino R. First-in-human single-dose study of nizubaglustat, a dual inhibitor of ceramide glucosyltransferase and non-lysosomal glucosylceramidase: Safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending and multiple doses in healthy adults. Mol Genet Metab 2024; 141:108113. [PMID: 38113551 DOI: 10.1016/j.ymgme.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Nizubaglustat is a novel, orally available, brain penetrant, potent, and selective dual inhibitor of ceramide glucosyltranferase and non-lysosomal neutral glucosylceramidase (NLGase), which is currently under development for the treatment of subjects with neurological manifestations in primary and secondary gangliosidoses. The objectives of this first-in-human study were to evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics (PD) of single oral doses of nizubaglustat after single (1, 3, and 9 mg) and multiple oral doses (9 mg once per day (QD) over 14 days) in healthy adults. Nizubaglustat was rapidly absorbed and systemic exposure was dose-proportional. Steady-state was achieved after three days of QD multiple dosing with minimal accumulation. Renal clearance accounted for around 15% of nizubaglustat elimination. Following multiple dosing, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide (LacCer), and monosialodihexosylganglioside (GM3) decreased to a nadir at Day 10. PD target engagement of GCS inhibition was shown by a median decrease from baseline of plasma concentrations of GlcCer, LacCer, and GM3 ganglioside by 70%, 50%, and 48%, respectively. NLGase inhibition was also manifested by increased concentrations of GlcCer in cerebrospinal fluid from Day 1 to Day 14. Nizubaglustat was safe and well-tolerated at all doses tested. Consistent with the high selectivity, and the absence of intestinal disaccharidases inhibition, no cases of diarrhea were reported. No decreased appetite or weight loss was noted. Only treatment-emergent adverse events with preferred terms belonging to the system organ class skin and subcutaneous disorders of mild intensity were reported as drug-related in the nizubaglustat arm, in line with the pharmacological mechanism targeting glucosylceramide metabolism. Taken together, these data support QD dosing of nizubaglustat and its ongoing development in patients with primary and secondary forms of gangliosidoses.
Collapse
Affiliation(s)
| | | | - Thomas M Polasek
- Principal Investigator, CMAX Research Phase 1 Unit, Ground Floor 21-24 North Terrace, Adelaide, 5000, SA, Australia; Department of Clinical Pharmacology, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | | |
Collapse
|
4
|
Vyas M, Deschenes NM, Osmon KJL, Chen Z, Ahmad I, Kot S, Thompson P, Richmond C, Gray SJ, Walia JS. Efficacy of Adeno-Associated Virus Serotype 9-Mediated Gene Therapy for AB-Variant GM2 Gangliosidosis. Int J Mol Sci 2023; 24:14611. [PMID: 37834060 PMCID: PMC10572999 DOI: 10.3390/ijms241914611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
GM2 gangliosidoses are a group of neurodegenerative lysosomal storage disorders that are characterized by the accumulation of GM2 gangliosides (GM2), leading to rapid neurological decline and death. The hydrolysis of GM2 requires the specific synthesis, processing, and combination of products of three genes-HEXA, HEXB, and GM2A-within the cell's lysosomes. Mutations in these genes result in Tay-Sachs disease, Sandhoff disease, or AB-variant GM2 gangliosidosis (ABGM2), respectively. ABGM2, the rarest of the three types, is characterized by a mutation in the GM2A gene, which encodes the GM2 activator (GM2A) protein. Being a monogenic disease, gene therapy is a plausible and likely effective method of treatment for ABGM2. This study aimed at assessing the effects of administering a one-time intravenous treatment of single-stranded Adeno-associated virus serotype 9 (ssAAV9)-GM2A viral vector at a dose of 1 × 1014 vector genomes (vg) per kilogram per mouse in an ABGM2 mouse model (Gm2a-/-). ssAAV9-GM2A was administered at 1-day (neonatal) or 6-weeks of age (adult-stage). The results demonstrated that, in comparison to Gm2a-/- mice that received a vehicle injection, the treated mice had reduced GM2 accumulation within the central nervous system and had long-term persistence of vector genomes in the brain and liver. This proof-of-concept study is a step forward towards the development of a clinically therapeutic approach for the treatment of patients with ABGM2.
Collapse
Affiliation(s)
- Meera Vyas
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Natalie M. Deschenes
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Karlaina J. L. Osmon
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Zhilin Chen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (Z.C.)
| | - Imtiaz Ahmad
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Shalini Kot
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (Z.C.)
| | - Patrick Thompson
- Department of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada;
| | - Chris Richmond
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (Z.C.)
| | - Steven J. Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jagdeep S. Walia
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (Z.C.)
- Department of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada;
| |
Collapse
|
5
|
Giladi N, Alcalay RN, Cutter G, Gasser T, Gurevich T, Höglinger GU, Marek K, Pacchetti C, Schapira AHV, Scherzer CR, Simuni T, Minini P, Sardi SP, Peterschmitt MJ. Safety and efficacy of venglustat in GBA1-associated Parkinson's disease: an international, multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2023; 22:661-671. [PMID: 37479372 DOI: 10.1016/s1474-4422(23)00205-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Variants in the GBA1 gene, which encodes lysosomal acid glucocerebrosidase, are among the most common genetic risk factors for Parkinson's disease and are associated with faster disease progression. The mechanisms involved are unresolved but might include accumulation of glucosylceramide. Venglustat is a brain-penetrant glucosylceramide synthase inhibitor that, in previous studies, reduced amounts of the glycosphingolipid. We aimed to assess the safety, efficacy, and target engagement of venglustat in people with early-stage Parkinson's disease carrying pathogenic GBA1 variants. METHODS MOVES-PD part 2 was a randomised, double-blinded, placebo-controlled phase 2 study done at 52 centres (academic sites, specialty clinics, and general neurology centres) in 16 countries. Eligible adults aged 18-80 years with Parkinson's disease (Hoehn and Yahr stage ≤2) and one or more GBA1 variants were randomly assigned using an interactive voice-response system (1:1) to 52 weeks of treatment with oral venglustat (15 mg/day) or matching placebo. Investigators, site personnel, participants, and their caregivers were masked to treatment allocation. The primary outcome measure was the change from baseline to 52 weeks in the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III combined score (a higher score indicates greater impairment), and it was analysed in a modified intention-to-treat population (ie, all randomly assigned participants with a baseline and at least one post-baseline measurement during the treatment period). This study was registered with ClinicalTrials.gov (NCT02906020) and is closed to recruitment. FINDINGS Between Dec 15, 2016, and May 27, 2021, 221 participants were randomly assigned to venglustat (n=110) or placebo (n=111). The least squares mean change in MDS-UPDRS parts II and III combined score was 7·29 (SE 1·36) for venglustat (n=96) and 4·71 (SE 1·27) for placebo (n=105); the absolute difference between groups was 2·58 (95% CI -1·10 to 6·27; p=0·17). The most common treatment-emergent adverse events (TEAEs) were constipation and nausea (both were reported by 23 [21%] of 110 participants in the venglustat group and eight [7%] of 111 participants in the placebo group). Serious TEAEs were reported for 12 (11%) participants in each group. There was one death in the venglustat group owing to an unrelated cardiopulmonary arrest and there were no deaths in the placebo group. INTERPRETATION In people with GBA1-associated Parkinson's disease in our study, venglustat had a satisfactory safety profile but showed no beneficial treatment effect compared with placebo. These findings indicate that glucosylceramide synthase inhibition with venglustat might not be a viable therapeutic approach for GBA1-associated Parkinson's disease. FUNDING Sanofi.
Collapse
Affiliation(s)
- Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Roy N Alcalay
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel; Department of Neurology and the Taub Institute, Columbia University Medical Center, New York, NY, USA
| | - Gary Cutter
- University of Alabama at Birmingham, School of Public Health, Birmingham, AL, USA
| | - Thomas Gasser
- German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Centre, Sackler School of Medicine, Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Günter U Höglinger
- Department of Neurology, Ludwig Maximilian University, Munich, Germany; German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Clemens R Scherzer
- Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Tanya Simuni
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
6
|
Grabowski GA, Mistry PK. Therapies for lysosomal storage diseases: Principles, practice, and prospects for refinements based on evolving science. Mol Genet Metab 2022; 137:81-91. [PMID: 35933791 DOI: 10.1016/j.ymgme.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory A Grabowski
- University of Cincinnati College of Medicine, Department of Pediatrics, Department of Molecular Genetics, Biochemistry and Microbiology, United States of America; Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States of America.
| | - Pramod K Mistry
- Yale School of Medicine, Department of Medicine, Department of Pediatrics, Department of Cellular & Molecular Physiology, New Haven, CT, United States of America
| |
Collapse
|
7
|
Vantaggiato C, Orso G, Guarato G, Brivio F, Napoli B, Panzeri E, Masotti S, Santorelli FM, Lamprou M, Gumeni S, Clementi E, Bassi MT. Rescue of lysosomal function as therapeutic strategy for SPG15 hereditary spastic paraplegia. Brain 2022; 146:1103-1120. [PMID: 36029068 PMCID: PMC9976989 DOI: 10.1093/brain/awac308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 08/11/2022] [Indexed: 11/14/2022] Open
Abstract
SPG15 is a hereditary spastic paraplegia subtype caused by mutations in Spastizin, a protein encoded by the ZFYVE26 gene. Spastizin is involved in autophagosome maturation and autophagic lysosome reformation and SPG15-related mutations lead to autophagic lysosome reformation defects with lysosome enlargement, free lysosome depletion and autophagosome accumulation. Symptomatic and rehabilitative treatments are the only therapy currently available for patients. Here, we targeted autophagy and lysosomes in SPG15 patient-derived cells by using a library of autophagy-modulating compounds. We identified a rose of compounds affecting intracellular calcium levels, the calcium-calpain pathway or lysosomal functions, which reduced autophagosome accumulation. The six most effective compounds were tested in vivo in a new SPG15 loss of function Drosophila model that mimicked the reported SPG15 phenotype, with autophagosome accumulation, enlarged lysosomes, reduced free lysosomes, autophagic lysosome reformation defects and locomotor deficit. These compounds, namely verapamil, Bay K8644, 2',5'-dideoxyadenosine, trehalose, Small-Molecule Enhancer of Rapamycin 28 and trifluoperazine, improved lysosome biogenesis and function in vivo, demonstrating that lysosomes are a key pharmacological target to rescue SPG15 phenotype. Among the others, the Small-Molecule Enhancer of Rapamycin 28 was the most effective, rescuing both autophagic lysosome reformation defects and locomotor deficit, and could be considered as a potential therapeutic compound for this hereditary spastic paraplegia subtype.
Collapse
Affiliation(s)
- Chiara Vantaggiato
- Correspondence to: Chiara Vantaggiato, PhD Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Via D. L. Monza 20 23842 Bosisio Parini, Lecco, Italy E-mail:
| | - Genny Orso
- Correspondence may also be addressed to: Genny Orso, PhD Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy E-mail:
| | - Giulia Guarato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Francesca Brivio
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Barbara Napoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, Padova, Italy
| | - Elena Panzeri
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | - Simona Masotti
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| | | | - Maria Lamprou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, ‘Luigi Sacco’ University Hospital, Università di Milano, Milan, Italy
| | - Maria Teresa Bassi
- Scientific Institute IRCCS E. Medea, Laboratory of Molecular Biology, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|
8
|
Picache JA, Zheng W, Chen CZ. Therapeutic Strategies For Tay-Sachs Disease. Front Pharmacol 2022; 13:906647. [PMID: 35865957 PMCID: PMC9294361 DOI: 10.3389/fphar.2022.906647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tay-Sachs disease (TSD) is an autosomal recessive disease that features progressive neurodegenerative presentations. It affects one in 100,000 live births. Currently, there is no approved therapy or cure. This review summarizes multiple drug development strategies for TSD, including enzyme replacement therapy, pharmaceutical chaperone therapy, substrate reduction therapy, gene therapy, and hematopoietic stem cell replacement therapy. In vitro and in vivo systems are described to assess the efficacy of the aforementioned therapeutic strategies. Furthermore, we discuss using MALDI mass spectrometry to perform a high throughput screen of compound libraries. This enables discovery of compounds that reduce GM2 and can lead to further development of a TSD therapy.
Collapse
|
9
|
Welford RW, Farine H, Steiner M, Garzotti M, Dobrenis K, Sievers C, Strasser DS, Amraoui Y, Groenen PM, Giugliani R, Mengel E. Plasma neurofilament light, glial fibrillary acidic protein and lysosphingolipid biomarkers for pharmacodynamics and disease monitoring of GM2 and GM1 gangliosidoses patients. Mol Genet Metab Rep 2022; 30:100843. [PMID: 35242574 PMCID: PMC8856936 DOI: 10.1016/j.ymgmr.2022.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
GM2 and GM1 gangliosidoses are genetic, neurodegenerative lysosomal sphingolipid storage disorders. The earlier the age of onset, the more severe the clinical presentation and progression, with infantile, juvenile and late-onset presentations broadly delineated into separate phenotypic subtypes. Gene and substrate reduction therapies, both of which act directly on sphingolipidosis are entering clinical trials for treatment of these disorders. Simple to use biomarkers for disease monitoring are urgently required to support and expedite these clinical trials. Here, lysosphingolipid and protein biomarkers of sphingolipidosis and neuropathology respectively, were assessed in plasma samples from 33 GM2 gangliosidosis patients, 13 GM1 gangliosidosis patients, and compared to 66 controls. LysoGM2 and lysoGM1 were detectable in 31/33 GM2 gangliosidosis and 12/13 GM1 gangliosidosis patient samples respectively, but not in any controls. Levels of the axonal damage marker Neurofilament light (NF-L) were highly elevated in both GM2 and GM1 gangliosidosis patient plasma samples, with no overlap with controls. Levels of the astrocytosis biomarker Glial fibrillary acidic protein (GFAP) were also elevated in samples from both patient populations, albeit with some overlap with controls. In GM2 gangliosidosis patient plasma NF-L, Tau, GFAP and lysoGM2 were all most highly elevated in infantile onset patients, indicating a relationship to severity and phenotype. Plasma NF-L and liver lysoGM2 were also elevated in a GM2 gangliosidosis mouse model, and were lowered by treatment with a drug that slowed disease progression. These results indicate that lysosphingolipids and NF-L/GFAP have potential to monitor pharmacodynamics and pathogenic processes respectively in GM2 and GM1 gangliosidoses patients.
Collapse
|
10
|
Walkley SU. Rethinking lysosomes and lysosomal disease. Neurosci Lett 2021; 762:136155. [PMID: 34358625 DOI: 10.1016/j.neulet.2021.136155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Lysosomal storage diseases were recognized and defined over a century ago as a class of disorders affecting mostly children and causing systemic disease often accompanied by major neurological consequences. Since their discovery, research focused on understanding their causes has been an important driver of our ever-expanding knowledge of cell biology and the central role that lysosomes play in cell function. Today we recognize over 50 so-called storage diseases, with most understood at the level of gene, protein and pathway involvement, but few fully clarified in terms of how the defective lysosomal function causes brain disease; even fewer have therapies that can effectively rescue brain function. Importantly, we also recognize that storage diseases are not simply a class of lysosomal disorders all by themselves, as increasingly a critical role for the greater lysosomal system with its endosomal, autophagosomal and salvage streams has also emerged in a host of neurodevelopmental and neurodegenerative diseases. Despite persistent challenges across all aspects of these complex disorders, and as reflected in this and other articles focused on lysosomal storage diseases in this special issue of Neuroscience Letters, the progress and promise to both understand and effectively treat these conditions has never been greater.
Collapse
Affiliation(s)
- Steven U Walkley
- Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Gehin M, Melchior M, Welford RWD, Sidharta PN, Dingemanse J. Assessment of Target Engagement in a First-in-Human Trial with Sinbaglustat, an Iminosugar to Treat Lysosomal Storage Disorders. Clin Transl Sci 2020; 14:558-567. [PMID: 33142037 PMCID: PMC7993281 DOI: 10.1111/cts.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/26/2020] [Indexed: 11/30/2022] Open
Abstract
In this first-in-human study, the tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of single and multiple oral doses of sinbaglustat, a dual inhibitor of glucosylceramide synthase (GCS) and non-lysosomal glucosyl ceramidase (GBA2), were investigated in healthy subjects. The single-ascending dose (SAD) and multiple-ascending dose (MAD) studies were randomized, double-blind, and placebo-controlled. Single doses from 10 to 2,000 mg in men and multiple doses from 30 to 1,000 mg twice daily for 7 days in male and female subjects were investigated. Tolerability, PK, and PD data were collected up to 3 days after (last) treatment administration and analyzed descriptively. Sinbaglustat was well-tolerated in the SAD and MAD studies, however, at the highest dose of the MAD, three of the four female subjects presented a similar pattern of general symptoms. In all cohorts, sinbaglustat was rapidly absorbed. Thereafter, plasma concentrations decreased biphasically. In the MAD study, steady-state conditions were reached on Day 2 without accumulation. During sinbaglustat treatment, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide, and globotriaosylceramide decreased in a dose-dependent manner, reflecting GCS inhibition. The more complex the glycosphingolipid, the more time was required to elicit PD changes. After treatment stop, GlcCer levels returned to baseline and increased above baseline at lowest doses, probably due to the higher potency of sinbaglustat on GBA2 compared to GCS. Overall, sinbaglustat was welltolerated up to the highest tested doses. The PK profile is compatible with b.i.d. dosing. Sinbaglustat demonstrated target engagement in the periphery for GCS and GBA2.
Collapse
Affiliation(s)
- Martine Gehin
- Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Meggane Melchior
- Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Richard W D Welford
- Drug Discovery, Translational Biomarkers, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Jasper Dingemanse
- Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
12
|
Leal AF, Benincore-Flórez E, Solano-Galarza D, Garzón Jaramillo RG, Echeverri-Peña OY, Suarez DA, Alméciga-Díaz CJ, Espejo-Mojica AJ. GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies. Int J Mol Sci 2020; 21:ijms21176213. [PMID: 32867370 PMCID: PMC7503724 DOI: 10.3390/ijms21176213] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay-Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. The blood-brain barrier represents a challenge for the development of therapeutic agents for these disorders. In this sense, alternative routes of administration (e.g., intrathecal or intracerebroventricular) have been evaluated, as well as the design of fusion peptides that allow the protein transport from the brain capillaries to the central nervous system. In this review, we outline the current knowledge about clinical and physiopathological findings of GM2 gangliosidoses, as well as the ongoing proposals to overcome some limitations of the traditional alternatives by using novel strategies such as molecular Trojan horses or advanced tools of genome editing.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
| | - Eliana Benincore-Flórez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
| | - Daniela Solano-Galarza
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
| | - Rafael Guillermo Garzón Jaramillo
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
| | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
| | - Diego A. Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
- Correspondence: (C.J.A.-D.); (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.)
| | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.F.L.); (E.B.-F); (D.S.-G.); (R.G.G.J.); (O.Y.E.-P.); (D.A.S.)
- Correspondence: (C.J.A.-D.); (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.)
| |
Collapse
|
13
|
Darios F, Mochel F, Stevanin G. Lipids in the Physiopathology of Hereditary Spastic Paraplegias. Front Neurosci 2020; 14:74. [PMID: 32180696 PMCID: PMC7059351 DOI: 10.3389/fnins.2020.00074] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a group of neurodegenerative diseases sharing spasticity in lower limbs as common symptom. There is a large clinical variability in the presentation of patients, partly underlined by the large genetic heterogeneity, with more than 60 genes responsible for HSP. Despite this large heterogeneity, the proteins with known function are supposed to be involved in a limited number of cellular compartments such as shaping of the endoplasmic reticulum or endolysosomal function. Yet, it is difficult to understand why alteration of such different cellular compartments can lead to degeneration of the axons of cortical motor neurons. A common feature that has emerged over the last decade is the alteration of lipid metabolism in this group of pathologies. This was first revealed by the identification of mutations in genes encoding proteins that have or are supposed to have enzymatic activities on lipid substrates. However, it also appears that mutations in genes affecting endoplasmic reticulum, mitochondria, or endolysosome function can lead to changes in lipid distribution or metabolism. The aim of this review is to discuss the role of lipid metabolism alterations in the physiopathology of HSP, to evaluate how such alterations contribute to neurodegenerative phenotypes, and to understand how this knowledge can help develop therapeutic strategy for HSP.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,National Reference Center for Neurometabolic Diseases, Pitié-Salpêtrière University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Paris, France.,Inserm, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Institut du Cerveau et de la Moelle Epinière, Paris, France.,Equipe de Neurogénétique, Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| |
Collapse
|
14
|
Inhibition of Lysosome Membrane Recycling Causes Accumulation of Gangliosides that Contribute to Neurodegeneration. Cell Rep 2019; 23:3813-3826. [PMID: 29949766 PMCID: PMC6045775 DOI: 10.1016/j.celrep.2018.05.098] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/24/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022] Open
Abstract
Lysosome membrane recycling occurs at the end of the autophagic pathway and requires proteins that are mostly encoded by genes mutated in neurodegenerative diseases. However, its implication in neuronal death is still unclear. Here, we show that spatacsin, which is required for lysosome recycling and whose loss of function leads to hereditary spastic paraplegia 11 (SPG11), promotes clearance of gangliosides from lysosomes in mouse and human SPG11 models. We demonstrate that spatacsin acts downstream of clathrin and recruits dynamin to allow lysosome membrane recycling and clearance of gangliosides from lysosomes. Gangliosides contributed to the accumulation of autophagy markers in lysosomes and to neuronal death. In contrast, decreasing ganglioside synthesis prevented neurodegeneration and improved motor phenotype in a SPG11 zebrafish model. Our work reveals how inhibition of lysosome membrane recycling leads to the deleterious accumulation of gangliosides, linking lysosome recycling to neurodegeneration. Loss of spatacsin promotes accumulation of simple gangliosides in lysosomes Inhibition of lysosome membrane recycling leads to accumulation of gangliosides Gangliosides promote accumulation of autophagy markers in lysosomes Gangliosides contribute to neurodegeneration when lysosome recycling is compromised
Collapse
|
15
|
Aerts JMFG, Artola M, van Eijk M, Ferraz MJ, Boot RG. Glycosphingolipids and Infection. Potential New Therapeutic Avenues. Front Cell Dev Biol 2019; 7:324. [PMID: 31867330 PMCID: PMC6908816 DOI: 10.3389/fcell.2019.00324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Glycosphingolipids (GSLs), the main topic of this review, are a subclass of sphingolipids. With their glycans exposed to the extracellular space, glycosphingolipids are ubiquitous components of the plasma membrane of cells. GSLs are implicated in a variety of biological processes including specific infections. Several pathogens use GSLs at the surface of host cells as binding receptors. In addition, lipid-rafts in the plasma membrane of host cells may act as platform for signaling the presence of pathogens. Relatively common in man are inherited deficiencies in lysosomal glycosidases involved in the turnover of GSLs. The associated storage disorders (glycosphingolipidoses) show lysosomal accumulation of substrate(s) of the deficient enzyme. In recent years compounds have been identified that allow modulation of GSLs levels in cells. Some of these agents are well tolerated and already used to treat lysosomal glycosphingolipidoses. This review summarizes present knowledge on the role of GSLs in infection and subsequent immune response. It concludes with the thought to apply glycosphingolipid-lowering agents to prevent and/or combat infections.
Collapse
Affiliation(s)
| | - M Artola
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - M van Eijk
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - M J Ferraz
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - R G Boot
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
16
|
Aerts JMFG, Kuo CL, Lelieveld LT, Boer DEC, van der Lienden MJC, Overkleeft HS, Artola M. Glycosphingolipids and lysosomal storage disorders as illustrated by gaucher disease. Curr Opin Chem Biol 2019; 53:204-215. [PMID: 31783225 DOI: 10.1016/j.cbpa.2019.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
Glycosphingolipids are important building blocks of the outer leaflet of the cell membrane. They are continuously recycled, involving fragmentation inside lysosomes by glycosidases. Inherited defects in degradation cause lysosomal glycosphingolipid storage disorders. The relatively common glycosphingolipidosis Gaucher disease is highlighted here to discuss new insights in the molecular basis and pathophysiology of glycosphingolipidoses reached by fundamental research increasingly using chemical biology tools. We discuss improvements in the detection of glycosphingolipid metabolites by mass spectrometry and review new developments in laboratory diagnosis and disease monitoring as well as therapeutic interventions.
Collapse
Affiliation(s)
- Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands.
| | - Chi-Lin Kuo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Lindsey T Lelieveld
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Daphne E C Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | | | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
17
|
Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson O, Hallett PJ, Platt FM. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. Mol Neurodegener 2019; 14:40. [PMID: 31703585 PMCID: PMC6842240 DOI: 10.1186/s13024-019-0339-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Haploinsufficiency in the Gaucher disease GBA gene, which encodes the lysosomal glucocerebrosidase GBA, and ageing represent major risk factors for developing Parkinson’s disease (PD). Recently, more than fifty other lysosomal storage disorder gene variants have been identified in PD, implicating lysosomal dysfunction more broadly as a key risk factor for PD. Despite the evidence of multiple lysosomal genetic risks, it remains unclear how sphingolipid hydrolase activities, other than GBA, are altered with ageing or in PD. Moreover, it is not fully known if levels of glycosphingolipid substrates for these enzymes change in vulnerable brain regions of PD. Finally, little is known about the levels of complex gangliosides in substantia nigra which may play a significant role in ageing and PD. Methods To study sphingolipid hydrolase activities and glycosphingolipid expression in ageing and in PD, two independent cohorts of human substantia nigra tissues were obtained. Fluorescent 4-methylumbelliferone assays were used to determine multiple enzyme activities. The lysosomal GBA and non-lysosomal GBA2 activities were distinguished using the inhibitor NB-DGJ. Sensitive and quantitative normal-phase HPLC was performed to study glycosphingolipid levels. In addition, glycosphingolipid levels in cerebrospinal fluid and serum were analysed as possible biomarkers for PD. Results The present study demonstrates, in two independent cohorts of human post-mortem substantia nigra, that sporadic PD is associated with deficiencies in multiple lysosomal hydrolases (e.g. α-galactosidase and β-hexosaminidase), in addition to reduced GBA and GBA2 activities and concomitant glycosphingolipid substrate accumulation. Furthermore, the data show significant reductions in levels of complex gangliosides (e.g. GM1a) in substantia nigra, CSF and serum in ageing, PD, and REM sleep behaviour disorder, which is a strong predictor of PD. Conclusions These findings conclusively demonstrate reductions in GBA activity in the parkinsonian midbrain, and for the first time, reductions in the activity of several other sphingolipid hydrolases. Furthermore, significant reductions were seen in complex gangliosides in PD and ageing. The diminished activities of these lysosomal hydrolases, the glycosphingolipid substrate accumulation, and the reduced levels of complex gangliosides are likely major contributors to the primary development of the pathology seen in PD and related disorders with age.
Collapse
Affiliation(s)
- Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Elizabeth B Moloney
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA
| | - Aarnoud C van der Spoel
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
18
|
Brown RA, Voit A, Srikanth MP, Thayer JA, Kingsbury TJ, Jacobson MA, Lipinski MM, Feldman RA, Awad O. mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells. Dis Model Mech 2019; 12:dmm038596. [PMID: 31519738 PMCID: PMC6826018 DOI: 10.1242/dmm.038596] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bi-allelic GBA1 mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive. GBA1 mutations are also the most frequent genetic risk factors for Parkinson's disease. Dysfunction of the autophagy-lysosomal pathway represents a key pathogenic event in GBA1-associated neurodegeneration. Using an induced pluripotent stem cell (iPSC) model of GD, we previously demonstrated that lysosomal alterations in GD neurons are linked to dysfunction of the transcription factor EB (TFEB). TFEB controls the coordinated expression of autophagy and lysosomal genes and is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). To further investigate the mechanism of autophagy-lysosomal pathway dysfunction in neuronopathic GD, we examined mTORC1 kinase activity in GD iPSC neuronal progenitors and differentiated neurons. We found that mTORC1 is hyperactive in GD cells as evidenced by increased phosphorylation of its downstream protein substrates. We also found that pharmacological inhibition of glucosylceramide synthase enzyme reversed mTORC1 hyperactivation, suggesting that increased mTORC1 activity is mediated by the abnormal accumulation of glycosphingolipids in the mutant cells. Treatment with the mTOR inhibitor Torin1 upregulated lysosomal biogenesis and enhanced autophagic clearance in GD neurons, confirming that lysosomal dysfunction is mediated by mTOR hyperactivation. Further analysis demonstrated that increased TFEB phosphorylation by mTORC1 results in decreased TFEB stability in GD cells. Our study uncovers a new mechanism contributing to autophagy-lysosomal pathway dysfunction in GD, and identifies the mTOR complex as a potential therapeutic target for treatment of GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Robert A Brown
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Antanina Voit
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Julia A Thayer
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tami J Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- University of Maryland Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marlene A Jacobson
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Marta M Lipinski
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Lelieveld LT, Mirzaian M, Kuo CL, Artola M, Ferraz MJ, Peter REA, Akiyama H, Greimel P, van den Berg RJBHN, Overkleeft HS, Boot RG, Meijer AH, Aerts JMFG. Role of β-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. J Lipid Res 2019; 60:1851-1867. [PMID: 31562193 DOI: 10.1194/jlr.ra119000154] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/24/2019] [Indexed: 11/20/2022] Open
Abstract
β-glucosidases [GBA1 (glucocerebrosidase) and GBA2] are ubiquitous essential enzymes. Lysosomal GBA1 and cytosol-facing GBA2 degrade glucosylceramide (GlcCer); GBA1 deficiency causes Gaucher disease, a lysosomal storage disorder characterized by lysosomal accumulation of GlcCer, which is partly converted to glucosylsphingosine (GlcSph). GBA1 and GBA2 also may transfer glucose from GlcCer to cholesterol, yielding glucosylated cholesterol (GlcChol). Here, we aimed to clarify the role of zebrafish Gba2 in glycosphingolipid metabolism during Gba1 deficiency in zebrafish (Danio rerio), which are able to survive total Gba1 deficiency. We developed Gba1 (gba1 -/-), Gba2 (gba2 -/-), and double (gba1 -/- :gba2 -/-) zebrafish knockouts using CRISPR/Cas9 and explored the effects of both genetic and pharmacological interventions on GlcCer metabolism in individual larvae. Activity-based probes and quantification of relevant glycolipid metabolites confirmed enzyme deficiency. GlcSph increased in gba1 -/- larvae (0.09 pmol/fish) but did not increase more in gba1 -/- :gba2 -/- larvae. GlcCer was comparable in gba1 -/- and WT larvae but increased in gba2 -/- and gba1 -/- :gba2 -/- larvae. Independent of Gba1 status, GlcChol was low in all gba2 -/- larvae (0.05 vs. 0.18 pmol/fish in WT). Pharmacologic inactivation of zebrafish Gba1 comparably increased GlcSph. Inhibition of GlcCer synthase (GCS) in Gba1-deficient larvae reduced GlcCer and GlcSph, and concomitant inhibition of GCS and Gba2 with iminosugars also reduced excessive GlcChol. Finally, overexpression of human GBA1 and injection of recombinant GBA1 both decreased GlcSph. We determined that zebrafish larvae offer an attractive model to study glucosidase actions in glycosphingolipid metabolism in vivo, and we identified distinguishing characteristics of zebrafish Gba2 deficiency.
Collapse
Affiliation(s)
- Lindsey T Lelieveld
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Chi-Lin Kuo
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands.,Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Maria J Ferraz
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Remco E A Peter
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | | | | | | | - Herman S Overkleeft
- Bio-organic Synthesis Group, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Rolf G Boot
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| | | | - Johannes M F G Aerts
- Department of Medical Biochemistry Leiden Institute of Chemistry, Leiden, The Netherlands
| |
Collapse
|
20
|
Wheeler S, Haberkant P, Bhardwaj M, Tongue P, Ferraz MJ, Halter D, Sprong H, Schmid R, Aerts JM, Sullo N, Sillence DJ. Cytosolic glucosylceramide regulates endolysosomal function in Niemann-Pick type C disease. Neurobiol Dis 2019; 127:242-252. [DOI: 10.1016/j.nbd.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
|
21
|
Substrate Reduction Therapy for Sandhoff Disease through Inhibition of Glucosylceramide Synthase Activity. Mol Ther 2019; 27:1495-1506. [PMID: 31208914 DOI: 10.1016/j.ymthe.2019.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronopathic glycosphingolipidoses are a sub-group of lysosomal storage disorders for which there are presently no effective therapies. Here, we evaluated the potential of substrate reduction therapy (SRT) using an inhibitor of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide (GL1) and related glycosphingolipids. The substrates that accumulate in Sandhoff disease (e.g., ganglioside GM2 and its nonacylated derivative, lyso-GM2) are distal to the drug target, GCS. Treatment of Sandhoff mice with a GCS inhibitor that has demonstrated CNS access (Genz-682452) reduced the accumulation of GL1 and GM2, as well as a variety of disease-associated substrates in the liver and brain. Concomitant with these effects was a significant decrease in the expression of CD68 and glycoprotein non-metastatic melanoma B protein (Gpnmb) in the brain, indicating a reduction in microgliosis in the treated mice. Moreover, using in vivo imaging, we showed that the monocytic biomarker translocator protein (TSPO), which was elevated in Sandhoff mice, was normalized following Genz-682452 treatment. These positive effects translated in turn into a delay (∼28 days) in loss of motor function and coordination, as measured by rotarod latency, and a significant increase in longevity (∼17.5%). Together, these results support the development of SRT for the treatment of gangliosidoses, particularly in patients with residual enzyme activity.
Collapse
|
22
|
De Fenza M, D'Alonzo D, Esposito A, Munari S, Loberto N, Santangelo A, Lampronti I, Tamanini A, Rossi A, Ranucci S, De Fino I, Bragonzi A, Aureli M, Bassi R, Tironi M, Lippi G, Gambari R, Cabrini G, Palumbo G, Dechecchi MC, Guaragna A. Exploring the effect of chirality on the therapeutic potential of N-alkyl-deoxyiminosugars: anti-inflammatory response to Pseudomonas aeruginosa infections for application in CF lung disease. Eur J Med Chem 2019; 175:63-71. [PMID: 31075609 DOI: 10.1016/j.ejmech.2019.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Accepted: 04/21/2019] [Indexed: 12/28/2022]
Abstract
In the frame of a research program aimed to explore the relationship between chirality of iminosugars and their therapeutic potential, herein we report the synthesis of N-akyl l-deoxyiminosugars and the evaluation of the anti-inflammatory properties of selected candidates for the treatment of Pseudomonas aeruginosa infections in Cystic Fibrosis (CF) lung disease. Target glycomimetics were prepared by the shortest and most convenient approach reported to date, relying on the use of the well-known PS-TPP/I2 reagent system to prepare reactive alkoxyalkyl iodides, acting as key intermediates. Iminosugars ent-1-3 demonstrated to efficiently reduce the inflammatory response induced by P. aeruginosa in CuFi cells, either alone or in synergistic combination with their d-enantiomers, by selectively inhibiting NLGase. Surprisingly, the evaluation in murine models of lung disease showed that the amount of ent-1 required to reduce the recruitment of neutrophils was 40-fold lower than that of the corresponding d-enantiomer. The remarkably low dosage of the l-iminosugar, combined with its inability to act as inhibitor for most glycosidases, is expected to limit the onset of undesired effects, which are typically associated with the administration of its d-counterpart. Biological results herein obtained place ent-1 and congeners among the earliest examples of l-iminosugars acting as anti-inflammatory agents for therapeutic applications in Cystic Fibrosis.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy.
| | - Anna Esposito
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| | - Silvia Munari
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Alessandra Santangelo
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Tamanini
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Alice Rossi
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Serena Ranucci
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Ida De Fino
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Alessandra Bragonzi
- CFaCore, Infection and CF Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Matteo Tironi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Giuseppe Lippi
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulio Cabrini
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Giovanni Palumbo
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| | - Maria Cristina Dechecchi
- Laboratory of Molecular Pathology-Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy.
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Napoli Federico II, via Cintia, 80126 Napoli, Italy
| |
Collapse
|
23
|
Welford RWD, Mühlemann A, Garzotti M, Rickert V, Groenen PMA, Morand O, Üçeyler N, Probst MR. Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Hum Mol Genet 2019; 27:3392-3403. [PMID: 29982630 PMCID: PMC6140777 DOI: 10.1093/hmg/ddy248] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the GLA gene coding for α-galactosidase A (α-GalA). The deleterious mutations lead to accumulation of α-GalA substrates, including globotriaosylceramide (Gb3) and globotriaosylsphingosine. Progressive glycolipid storage results in cellular dysfunction, leading to organ damage and clinical disease, i.e. neuropathic pain, impaired renal function and cardiomyopathy. Many Fabry patients are treated by bi-weekly intravenous infusions of replacement enzyme. While the only available oral therapy is an α-GalA chaperone, which is indicated for a limited number of patients with specific 'amenable' mutations. Lucerastat is an orally bioavailable inhibitor of glucosylceramide synthase (GCS) that is in late stage clinical development for Fabry disease. Here we investigated the ability of lucerastat to lower Gb3, globotriaosylsphingosine and lysosomal staining in cultured fibroblasts from 15 different Fabry patients. Patients' cells included 13 different pathogenic variants, with 13 cell lines harboring GLA mutations associated with the classic disease phenotype. Lucerastat dose dependently reduced Gb3 in all cell lines. For 13 cell lines the Gb3 data could be fit to an IC50 curve, giving a median IC50 [interquartile range (IQR)] = 11 μM (8.2-18); the median percent reduction (IQR) in Gb3 was 77% (70-83). Lucerastat treatment also dose dependently reduced LysoTracker Red staining of acidic compartments. Lucerastat's effects in the cell lines were compared to those with current treatments-agalsidase alfa and migalastat. Consequently, the GCS inhibitor lucerastat provides a viable mechanism to reduce Gb3 accumulation and lysosome volume, suitable for all Fabry patients regardless of genotype.
Collapse
Affiliation(s)
- R W D Welford
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| | - A Mühlemann
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| | - M Garzotti
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| | - V Rickert
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - P M A Groenen
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| | - O Morand
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| | - N Üçeyler
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - M R Probst
- Idorsia Pharmaceuticals, Hegenheimermattweg, Allschwil, Switzerland
| |
Collapse
|
24
|
Ben Bdira F, Artola M, Overkleeft HS, Ubbink M, Aerts JMFG. Distinguishing the differences in β-glycosylceramidase folds, dynamics, and actions informs therapeutic uses. J Lipid Res 2018; 59:2262-2276. [PMID: 30279220 PMCID: PMC6277158 DOI: 10.1194/jlr.r086629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Glycosyl hydrolases (GHs) are carbohydrate-active enzymes that hydrolyze a specific β-glycosidic bond in glycoconjugate substrates; β-glucosidases degrade glucosylceramide, a ubiquitous glycosphingolipid. GHs are grouped into structurally similar families that themselves can be grouped into clans. GH1, GH5, and GH30 glycosidases belong to clan A hydrolases with a catalytic (β/α)8 TIM barrel domain, whereas GH116 belongs to clan O with a catalytic (α/α)6 domain. In humans, GH abnormalities underlie metabolic diseases. The lysosomal enzyme glucocerebrosidase (family GH30), deficient in Gaucher disease and implicated in Parkinson disease etiology, and the cytosol-facing membrane-bound glucosylceramidase (family GH116) remove the terminal glucose from the ceramide lipid moiety. Here, we compare enzyme differences in fold, action, dynamics, and catalytic domain stabilization by binding site occupancy. We also explore other glycosidases with reported glycosylceramidase activity, including human cytosolic β-glucosidase, intestinal lactase-phlorizin hydrolase, and lysosomal galactosylceramidase. Last, we describe the successful translation of research to practice: recombinant glycosidases and glucosylceramide metabolism modulators are approved drug products (enzyme replacement therapies). Activity-based probes now facilitate the diagnosis of enzyme deficiency and screening for compounds that interact with the catalytic pocket of glycosidases. Future research may deepen the understanding of the functional variety of these enzymes and their therapeutic potential.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marcellus Ubbink
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | | |
Collapse
|
25
|
Boudewyn LC, Sikora J, Kuchar L, Ledvinova J, Grishchuk Y, Wang SL, Dobrenis K, Walkley SU. N-butyldeoxynojirimycin delays motor deficits, cerebellar microgliosis, and Purkinje cell loss in a mouse model of mucolipidosis type IV. Neurobiol Dis 2017; 105:257-270. [PMID: 28610891 PMCID: PMC5555164 DOI: 10.1016/j.nbd.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
Mucolipidosis type IV (MLIV) is a lysosomal storage disease exhibiting progressive intellectual disability, motor impairment, and premature death. There is currently no cure or corrective treatment. The disease results from mutations in the gene encoding mucolipin-1, a transient receptor potential channel believed to play a key role in lysosomal calcium egress. Loss of mucolipin-1 and subsequent defects lead to a host of cellular aberrations, including accumulation of glycosphingolipids (GSLs) in neurons and other cell types, microgliosis and, as reported here, cerebellar Purkinje cell loss. Several studies have demonstrated that N-butyldeoxynojirimycin (NB-DNJ, also known as miglustat), an inhibitor of the enzyme glucosylceramide synthase (GCS), successfully delays the onset of motor deficits, improves longevity, and rescues some of the cerebellar abnormalities (e.g., Purkinje cell death) seen in another lysosomal disease known as Niemann-Pick type C (NPC). Given the similarities in pathology between MLIV and NPC, we examined whether miglustat would be efficacious in ameliorating disease progression in MLIV. Using a full mucolipin-1 knockout mouse (Mcoln1-/-), we found that early miglustat treatment delays the onset and progression of motor deficits, delays cerebellar Purkinje cell loss, and reduces cerebellar microgliosis characteristic of MLIV disease. Quantitative mass spectrometry analyses provided new data on the GSL profiles of murine MLIV brain tissue and showed that miglustat partially restored the wild type profile of white matter enriched lipids. Collectively, our findings indicate that early miglustat treatment delays the progression of clinically relevant pathology in an MLIV mouse model, and therefore supports consideration of miglustat as a therapeutic agent for MLIV disease in humans.
Collapse
Affiliation(s)
- Lauren C Boudewyn
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jakub Sikora
- Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislav Kuchar
- Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Ledvinova
- Institute of Inherited Metabolic Disorders, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Yulia Grishchuk
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Shirley L Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St., Boston, MA 02114, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven U Walkley
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Abstract
Sphingolipidoses are genetically inherited diseases in which genetic mutations lead to functional deficiencies in the enzymes needed for lysosomal degradation of sphingolipid substrates. As a consequence, nondegradable lipids enrich in the lysosomes and lead to fatal pathological phenotypes in affected individuals. In this review, different drug-based treatment strategies including enzyme replacement therapy and substrate reduction therapy are discussed. A special focus is on the concept of pharmacological chaperones, one of which recently acquired clinical approval within the EU. On the basis of the different limitations for each approach, possible future directions of research are discussed.
Collapse
|
27
|
Liou B, Peng Y, Li R, Inskeep V, Zhang W, Quinn B, Dasgupta N, Blackwood R, Setchell KDR, Fleming S, Grabowski GA, Marshall J, Sun Y. Modulating ryanodine receptors with dantrolene attenuates neuronopathic phenotype in Gaucher disease mice. Hum Mol Genet 2017; 25:5126-5141. [PMID: 27655403 DOI: 10.1093/hmg/ddw322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Neuronopathic Gaucher disease (nGD) manifests as severe neurological symptoms in patients with no effective treatment available. Ryanodine receptors (Ryrs) are a family of calcium release channels on intracellular stores. The goal of this study is to determine if Ryrs are potential targets for nGD treatment. A nGD cell model (CBE-N2a) was created by inhibiting acid β-glucosidase (GCase) in N2a cells with conduritol B epoxide (CBE). Enhanced cytosolic calcium in CBE-N2a cells was blocked by either ryanodine or dantrolene, antagonists of Ryrs and by Genz-161, a glucosylceramide synthase inhibitor, suggesting substrate-mediated ER-calcium efflux occurs through ryanodine receptors. In the brain of a nGD (4L;C*) mouse model, expression of Ryrs was normal at 13 days of age, but significantly decreased below the wild type level in end-stage 4L;C* brains at 40 days. Treatment with dantrolene in 4L;C* mice starting at postnatal day 5 delayed neurological pathology and prolonged survival. Compared to untreated 4L;C* mice, dantrolene treatment significantly improved gait, reduced LC3-II levels, improved mitochondrial ATP production and reduced inflammation in the brain. Dantrolene treatment partially normalized Ryr expression and its potential regulators, CAMK IV and calmodulin. Furthermore, dantrolene treatment increased residual mutant GCase activity in 4L;C* brains. These data demonstrate that modulating Ryrs has neuroprotective effects in nGD through mechanisms that protect the mitochondria, autophagy, Ryr expression and enhance GCase activity. This study suggests that calcium signalling stabilization, e.g. with dantrolene, could be a potential disease modifying therapy for nGD.
Collapse
Affiliation(s)
- Benjamin Liou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yanyan Peng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ronghua Li
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Venette Inskeep
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wujuan Zhang
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brian Quinn
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nupur Dasgupta
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rachel Blackwood
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth D R Setchell
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sheila Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
28
|
Mohamed FE, Al-Gazali L, Al-Jasmi F, Ali BR. Pharmaceutical Chaperones and Proteostasis Regulators in the Therapy of Lysosomal Storage Disorders: Current Perspective and Future Promises. Front Pharmacol 2017; 8:448. [PMID: 28736525 PMCID: PMC5500627 DOI: 10.3389/fphar.2017.00448] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 02/05/2023] Open
Abstract
Different approaches have been utilized or proposed for the treatment of lysosomal storage disorders (LSDs) including enzyme replacement and hematopoietic stem cell transplant therapies, both aiming to compensate for the enzymatic loss of the underlying mutated lysosomal enzymes. However, these approaches have their own limitations and therefore the vast majority of LSDs are either still untreatable or their treatments are inadequate. Missense mutations affecting enzyme stability, folding and cellular trafficking are common in LSDs resulting often in low protein half-life, premature degradation, aggregation and retention of the mutant proteins in the endoplasmic reticulum. Small molecular weight compounds such as pharmaceutical chaperones (PCs) and proteostasis regulators have been in recent years to be promising approaches for overcoming some of these protein processing defects. These compounds are thought to enhance lysosomal enzyme activity by specific binding to the mutated enzyme or by manipulating components of the proteostasis pathways promoting protein stability, folding and trafficking and thus enhancing and restoring some of the enzymatic activity of the mutated protein in lysosomes. Multiple compounds have already been approved for clinical use to treat multiple LSDs like migalastat in the treatment of Fabry disease and others are currently under research or in clinical trials such as Ambroxol hydrochloride and Pyrimethamine. In this review, we are presenting a general overview of LSDs, their molecular and cellular bases, and focusing on recent advances on targeting and manipulation proteostasis, including the use of PCs and proteostasis regulators, as therapeutic targets for some LSDs. In addition, we present the successes, limitations and future perspectives in this field.
Collapse
Affiliation(s)
- Fedah E Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates UniversityAl-Ain, United Arab Emirates
| |
Collapse
|
29
|
Coutinho MF, Santos JI, Alves S. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders. Int J Mol Sci 2016; 17:ijms17071065. [PMID: 27384562 PMCID: PMC4964441 DOI: 10.3390/ijms17071065] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of rare, life-threatening genetic disorders, usually caused by a dysfunction in one of the many enzymes responsible for intralysosomal digestion. Even though no cure is available for any LSD, a few treatment strategies do exist. Traditionally, efforts have been mainly targeting the functional loss of the enzyme, by injection of a recombinant formulation, in a process called enzyme replacement therapy (ERT), with no impact on neuropathology. This ineffectiveness, together with its high cost and lifelong dependence is amongst the main reasons why additional therapeutic approaches are being (and have to be) investigated: chaperone therapy; gene enhancement; gene therapy; and, alternatively, substrate reduction therapy (SRT), whose aim is to prevent storage not by correcting the original enzymatic defect but, instead, by decreasing the levels of biosynthesis of the accumulating substrate(s). Here we review the concept of substrate reduction, highlighting the major breakthroughs in the field and discussing the future of SRT, not only as a monotherapy but also, especially, as complementary approach for LSDs.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Department of Human Genetics, Research and Development Unit, National Health Institute Doutor Ricardo Jorge, Rua Alexandre Herculano, 321 4000-055 Porto, Portugal.
| | - Juliana Inês Santos
- Department of Human Genetics, Research and Development Unit, National Health Institute Doutor Ricardo Jorge, Rua Alexandre Herculano, 321 4000-055 Porto, Portugal.
| | - Sandra Alves
- Department of Human Genetics, Research and Development Unit, National Health Institute Doutor Ricardo Jorge, Rua Alexandre Herculano, 321 4000-055 Porto, Portugal.
| |
Collapse
|
30
|
Kaidonis X, Byers S, Ranieri E, Sharp P, Fletcher J, Derrick-Roberts A. N-butyldeoxynojirimycin treatment restores the innate fear response and improves learning in mucopolysaccharidosis IIIA mice. Mol Genet Metab 2016; 118:100-10. [PMID: 27106513 DOI: 10.1016/j.ymgme.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 11/18/2022]
Abstract
UNLABELLED Mucopolysaccharidosis IIIA is a heritable neurodegenerative disorder resulting from the dysfunction of the lysosomal hydrolase sulphamidase. This leads to the primary accumulation of the complex carbohydrate heparan sulphate in a wide range of tissues and the secondary neuronal storage of gangliosides GM2 and GM3 in the brain. GM2 storage is associated with CNS deterioration in the GM2 gangliosidosis group of lysosomal storage disorders and may also contribute to MPS CNS disease. N-butyldeoxynojirimycin, an inhibitor of ceramide glucosyltransferase activity and therefore of ganglioside synthesis, was administered to MPS IIIA mice both prior to maximal GM2 and GM3 accumulation (early treatment) and after the maximum level of ganglioside had accumulated in the brain (late treatment) to determine if behaviour was altered by ganglioside level. Ceramide glucosyltransferase activity was decreased in both treatment groups; however, brain ganglioside levels were only decreased in the late treatment group. Learning in the water cross maze was improved in both groups and the innate fear response was also restored in both groups. A reduction in the expression of inflammatory gene Ccl3 was observed in the early treatment group, while IL1β expression was reduced in both treatment groups. Thus, it appears that NB-DNJ elicits a transient decrease in brain ganglioside levels, some modulation of inflammatory cytokines and a functional improvement in behaviour that can be elicited both before and after overt neurological changes manifest. SYNOPSIS NB-DNJ improves learning and restores the innate fear response in MPS IIIA mice by decreasing ceramide glucosyltransferase activity and transiently reducing ganglioside storage and/or modulating inflammatory signals.
Collapse
Affiliation(s)
- Xenia Kaidonis
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Genetics, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon Byers
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Genetics, University of Adelaide, Adelaide, South Australia, Australia; Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Enzo Ranieri
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia
| | - Peter Sharp
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia
| | - Janice Fletcher
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Ainslie Derrick-Roberts
- Department of Genetics and Molecular Pathology, SA Pathology (CYWHS site), North Adelaide, South Australia, Australia; Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
31
|
Sultana S, Truong NY, Vieira DB, Wigger JGD, Forrester AM, Veinotte CJ, Berman JN, van der Spoel AC. Characterization of the Zebrafish Homolog of β-Glucosidase 2: A Target of the Drug Miglustat. Zebrafish 2016; 13:177-87. [PMID: 26909767 DOI: 10.1089/zeb.2015.1152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The small-molecular compound miglustat (N-butyldeoxynojirimycin, Zavesca(®)) has been approved for clinical use in type 1 Gaucher disease and Niemann-Pick type C disease, which are disorders caused by dysfunction of the endosomal-autophagic-lysosomal system. Miglustat inhibits a number of enzymes involved in glycoconjugate and glycan metabolism, including β-glucosidase 2 (GBA2), which is exceptionally sensitive to inhibition by miglustat. GBA2 is a glucosylceramide-degrading enzyme that is located on the plasma membrane/endoplasmic reticulum, and is distinct from the lysosomal enzyme glucocerebrosidase (GBA). Various strands of evidence suggest that inhibition of GBA2 contributes to the therapeutic benefits of miglustat. To further explore the pharmacology and biology of GBA2, we investigated whether the zebrafish homolog of GBA2 has similar enzymatic properties and pharmacological sensitivities to its human counterpart. We established that zebrafish has endogenous β-glucosidase activity toward lipid- and water-soluble GBA2 substrates, which can be inhibited by miglustat, N-butyldeoxygalactonojirimycin, and conduritol B epoxide. β-Glucosidase activities with highly similar characteristics were expressed in cells transfected with the zebrafish gba2 cDNA and in cells transfected with the human GBA2 cDNA. These results provide a foundation for the use of zebrafish in screening GBA2-targeting molecules, and for wider studies investigating GBA2 biology.
Collapse
Affiliation(s)
- Saki Sultana
- 1 Department of Pediatrics, Atlantic Research Centre, Dalhousie University , Halifax, Canada .,2 Department of Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University , Halifax, Canada
| | - Nhu Y Truong
- 1 Department of Pediatrics, Atlantic Research Centre, Dalhousie University , Halifax, Canada
| | - Douglas B Vieira
- 1 Department of Pediatrics, Atlantic Research Centre, Dalhousie University , Halifax, Canada
| | - Jasper G D Wigger
- 1 Department of Pediatrics, Atlantic Research Centre, Dalhousie University , Halifax, Canada
| | - A Michael Forrester
- 3 Department of Microbiology and Immunology, Dalhousie University , Halifax, Canada
| | - Chansey J Veinotte
- 3 Department of Microbiology and Immunology, Dalhousie University , Halifax, Canada
| | - Jason N Berman
- 3 Department of Microbiology and Immunology, Dalhousie University , Halifax, Canada .,4 Department of Pediatrics, IWK Health Centre, Dalhousie University , Halifax, Canada .,5 Department of Pathology, Dalhousie University , Halifax, Canada
| | - Aarnoud C van der Spoel
- 1 Department of Pediatrics, Atlantic Research Centre, Dalhousie University , Halifax, Canada .,2 Department of Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University , Halifax, Canada
| |
Collapse
|
32
|
Current and Novel Aspects on the Non-lysosomal β-Glucosylceramidase GBA2. Neurochem Res 2015; 41:210-20. [DOI: 10.1007/s11064-015-1763-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
|
33
|
van den Berg RJBHN, van Rijssel ER, Ferraz MJ, Houben J, Strijland A, Donker-Koopman WE, Wennekes T, Bonger KM, Ghisaidoobe ABT, Hoogendoorn S, van der Marel GA, Codée JDC, Overkleeft HS, Aerts JMFG. Synthesis and Evaluation of Hybrid Structures Composed of Two Glucosylceramide Synthase Inhibitors. ChemMedChem 2015; 10:2042-62. [DOI: 10.1002/cmdc.201500407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 01/08/2023]
Affiliation(s)
| | - Erwin R. van Rijssel
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Maria Joao Ferraz
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Judith Houben
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Anneke Strijland
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Wilma E. Donker-Koopman
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Tom Wennekes
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
- Laboratory of Organic Chemistry; Wageningen University; Dreijenplein 8 6703 HB Wageningen The Netherlands
| | - Kimberly M. Bonger
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Amar B. T. Ghisaidoobe
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Sascha Hoogendoorn
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Gijsbert A. van der Marel
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| |
Collapse
|
34
|
Marques ARA, Aten J, Ottenhoff R, van Roomen CPAA, Herrera Moro D, Claessen N, Vinueza Veloz MF, Zhou K, Lin Z, Mirzaian M, Boot RG, De Zeeuw CI, Overkleeft HS, Yildiz Y, Aerts JMFG. Reducing GBA2 Activity Ameliorates Neuropathology in Niemann-Pick Type C Mice. PLoS One 2015; 10:e0135889. [PMID: 26275242 PMCID: PMC4537125 DOI: 10.1371/journal.pone.0135889] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
The enzyme glucocerebrosidase (GBA) hydrolyses glucosylceramide (GlcCer) in lysosomes. Markedly reduced GBA activity is associated with severe manifestations of Gaucher disease including neurological involvement. Mutations in the GBA gene have recently also been identified as major genetic risk factor for Parkinsonism. Disturbed metabolism of GlcCer may therefore play a role in neuropathology. Besides lysosomal GBA, cells also contain a non-lysosomal glucosylceramidase (GBA2). Given that the two β-glucosidases share substrates, we speculated that over-activity of GBA2 during severe GBA impairment might influence neuropathology. This hypothesis was studied in Niemann-Pick type C (Npc1-/-) mice showing secondary deficiency in GBA in various tissues. Here we report that GBA2 activity is indeed increased in the brain of Npc1-/- mice. We found that GBA2 is particularly abundant in Purkinje cells (PCs), one of the most affected neuronal populations in NPC disease. Inhibiting GBA2 in Npc1-/- mice with a brain-permeable low nanomolar inhibitor significantly improved motor coordination and extended lifespan in the absence of correction in cholesterol and ganglioside abnormalities. This trend was recapitulated, although not to full extent, by introducing a genetic loss of GBA2 in Npc1-/- mice. Our findings point to GBA2 activity as therapeutic target in NPC.
Collapse
Affiliation(s)
- André R. A. Marques
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Aten
- Department of Pathology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | | | - Daniela Herrera Moro
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | | | - Kuikui Zhou
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Zhanmin Lin
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Rolf G. Boot
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Yildiz Yildiz
- Department of Internal Medicine, Hospital of Bregenz, 6900, Bregenz, Austria
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
35
|
Kallemeijn WW, Witte MD, Wennekes T, Aerts JMFG. Mechanism-based inhibitors of glycosidases: design and applications. Adv Carbohydr Chem Biochem 2015; 71:297-338. [PMID: 25480507 DOI: 10.1016/b978-0-12-800128-8.00004-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article covers recent developments in the design and application of activity-based probes (ABPs) for glycosidases, with emphasis on the different enzymes involved in metabolism of glucosylceramide in humans. Described are the various catalytic reaction mechanisms employed by inverting and retaining glycosidases. An understanding of catalysis at the molecular level has stimulated the design of different types of ABPs for glycosidases. Such compounds range from (1) transition-state mimics tagged with reactive moieties, which associate with the target active site—forming covalent bonds in a relatively nonspecific manner in or near the catalytic pocket—to (2) enzyme substrates that exploit the catalytic mechanism of retaining glycosidase targets to release a highly reactive species within the active site of the enzyme, to (3) probes based on mechanism-based, covalent, and irreversible glycosidase inhibitors. Some applications in biochemical and biological research of the activity-based glycosidase probes are discussed, including specific quantitative visualization of active enzyme molecules in vitro and in vivo, and as strategies for unambiguously identifying catalytic residues in glycosidases in vitro.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Martin D Witte
- Department of Bio-Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Tom Wennekes
- Department of Synthetic Organic Chemistry, Wageningen University, Wageningen, The Netherlands.
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
A symptomatic Fabry disease mouse model generated by inducing globotriaosylceramide synthesis. Biochem J 2015; 456:373-83. [PMID: 24094090 DOI: 10.1042/bj20130825] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fabry disease is a lysosomal storage disorder in which neutral glycosphingolipids, predominantly Gb3 (globotriaosylceramide), accumulate due to deficient α-Gal A (α-galactosidase A) activity. The GLAko (α-Gal A-knockout) mouse has been used as a model for Fabry disease, but it does not have any symptomatic abnormalities. In the present study, we generated a symptomatic mouse model (G3Stg/GLAko) by cross-breeding GLAko mice with transgenic mice expressing human Gb3 synthase. G3Stg/GLAko mice had high Gb3 levels in major organs, and their serum Gb3 level at 5-25 weeks of age was 6-10-fold higher than that in GLAko mice of the same age. G3Stg/GLAko mice showed progressive renal impairment, with albuminuria at 3 weeks of age, decreased urine osmolality at 5 weeks, polyuria at 10 weeks and increased blood urea nitrogen at 15 weeks. The urine volume and urinary albumin concentration were significantly reduced in the G3Stg/GLAko mice when human recombinant α-Gal A was administered intravenously. These data suggest that Gb3 accumulation is a primary pathogenic factor in the symptomatic phenotype of G3Stg/GLAko mice, and that this mouse line is suitable for studying the pathogenesis of Fabry disease and for preclinical studies of candidate therapies.
Collapse
|
37
|
Sardi SP, Cheng SH, Shihabuddin LS. Gaucher-related synucleinopathies: the examination of sporadic neurodegeneration from a rare (disease) angle. Prog Neurobiol 2015; 125:47-62. [PMID: 25573151 DOI: 10.1016/j.pneurobio.2014.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/01/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
Gaucher disease, the most common lysosomal storage disease, is caused by a recessively inherited deficiency in glucocerebrosidase and subsequent accumulation of toxic lipid substrates. Heterozygous mutations in the lysosomal glucocerebrosidase gene (GBA1) have recently been recognized as the highest genetic risk factor for the development of α-synuclein aggregation disorders ("synucleinopathies"), including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Despite the wealth of experimental, clinical and genetic evidence that supports the association between mutant genotypes and synucleinopathy risk, the precise mechanisms by which GBA1 mutations lead to PD and DLB remain unclear. Decreased glucocerebrosidase activity has been demonstrated to promote α-synuclein misprocessing. Furthermore, aberrant α-synuclein species have been reported to downregulate glucocerebrosidase activity, which further contributes to disease progression. In this review, we summarize the recent findings that highlight the complexity of this pathogenetic link and how several pathways that connect glucocerebrosidase insufficiency with α-synuclein misprocessing have emerged as potential therapeutic targets. From a translational perspective, we discuss how various therapeutic approaches to lysosomal dysfunction have been explored for the treatment of GBA1-related synucleinopathies, and potentially, for non-GBA1-associated neurodegenerative diseases. In summary, the link between GBA1 and synucleinopathies has become the paradigm of how the study of a rare lysosomal disease can transform the understanding of the etiopathology, and hopefully the treatment, of a more prevalent and multifactorial disorder.
Collapse
Affiliation(s)
- S Pablo Sardi
- Genzyme, a Sanofi Company, 49 New York Avenue, Framingham, MA 01701, USA.
| | - Seng H Cheng
- Genzyme, a Sanofi Company, 49 New York Avenue, Framingham, MA 01701, USA
| | | |
Collapse
|
38
|
Schiffmann R. The consequences of genetic and pharmacologic reduction in sphingolipid synthesis. J Inherit Metab Dis 2015; 38:77-84. [PMID: 25164785 DOI: 10.1007/s10545-014-9758-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
A new therapy based on substrate synthesis reduction in sphingolipidoses is showing promise. The consequences of decreasing sphingolipid synthesis depend on the level at which synthetic blockage occurs and on the extent of the blockage. Complete synthetic blockage may be lethal if it includes all sphingolipids, such as in a global knockout of serine palmitoyltransferase. Partial inhibition of sphingolipid synthetic pathways is usually benign and may have beneficial effects in a number of lysosomal diseases and in more common pathologies, as seen in animal models for atherosclerosis, polycystic kidney disease, diabetes, and asthma. Studies of various forms of sphingolipid synthesis reduction serve to highlight not only the cellular role of these lipids but also the potential risks and therapeutic benefits of pharmacological agents to be used in therapy for human diseases.
Collapse
Affiliation(s)
- Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, USA,
| |
Collapse
|
39
|
Barnes S, Xu YH, Zhang W, Liou B, Setchell KDR, Bao L, Grabowski GA, Sun Y. Ubiquitous transgene expression of the glucosylceramide-synthesizing enzyme accelerates glucosylceramide accumulation and storage cells in a Gaucher disease mouse model. PLoS One 2014; 9:e116023. [PMID: 25551612 PMCID: PMC4281226 DOI: 10.1371/journal.pone.0116023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Gaucher disease is a lysosomal storage disease caused by defective activity of acid β-glucosidase (GCase), which leads to the accumulation of its major substrates, glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph) in many cells. To modulate cellular substrate concentration in viable mouse models of Gaucher disease (Gba1 mutants), a novel mouse model was created with enhanced glycosphingolipid biosynthesis. This was accomplished by cross-breeding Gba1 mutant mice with mice expressing a transgene (GCStg) containing the mouse glucosylceramide synthase (GCS, Ugcg) cDNA driven by the ROSA promoter, yielding GCStg/Gba1 mice. The GCStg rescued Ugcg null mice from embryonic lethality. GCStg/Gba1 mice showed 2-3 fold increases in tissue GCS activity as well as accelerated GlcCer accumulation and the appearance of lipid-laden CD68 positive macrophages in visceral organs. Although GlcCer/GlcSph concentrations were elevated in the brain, there was no neurodegenerative phenotype up to 1 yr of age conceivably due to the greater residual GCase hydrolytic activity in the brains than in the visceral tissues of 9V/null mice. These studies provide 'proof of principle' for threshold substrate flux that modifies phenotypic development in Gaucher disease and other lysosomal storage diseases.
Collapse
Affiliation(s)
- Sonya Barnes
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - You-Hai Xu
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Wujuan Zhang
- The Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Benjamin Liou
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kenneth D. R. Setchell
- The Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Liming Bao
- Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire, United States of America
| | - Gregory A. Grabowski
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Synageva BioPharma Corp., Lexington, Massachusetts, United States of America
| | - Ying Sun
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- The Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
40
|
Long-term correction of Sandhoff disease following intravenous delivery of rAAV9 to mouse neonates. Mol Ther 2014; 23:414-22. [PMID: 25515709 DOI: 10.1038/mt.2014.240] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023] Open
Abstract
G(M2) gangliosidoses are severe neurodegenerative disorders resulting from a deficiency in β-hexosaminidase A activity and lacking effective therapies. Using a Sandhoff disease (SD) mouse model (Hexb(-/-)) of the G(M2) gangliosidoses, we tested the potential of systemically delivered adeno-associated virus 9 (AAV9) expressing Hexb cDNA to correct the neurological phenotype. Neonatal or adult SD and normal mice were intravenously injected with AAV9-HexB or -LacZ and monitored for serum β-hexosaminidase activity, motor function, and survival. Brain G(M2) ganglioside, β-hexosaminidase activity, and inflammation were assessed at experimental week 43, or an earlier humane end point. SD mice injected with AAV9-LacZ died by 17 weeks of age, whereas all neonatal AAV9-HexB-treated SD mice survived until 43 weeks (P < 0.0001) with only three exhibiting neurological dysfunction. SD mice treated as adults with AAV9-HexB died between 17 and 35 weeks. Neonatal SD-HexB-treated mice had a significant increase in brain β-hexosaminidase activity, and a reduction in G(M2) ganglioside storage and neuroinflammation compared to adult SD-HexB- and SD-LacZ-treated groups. However, at 43 weeks, 8 of 10 neonatal-HexB injected control and SD mice exhibited liver or lung tumors. This study demonstrates the potential for long-term correction of SD and other G(M2) gangliosidoses through early rAAV9 based systemic gene therapy.
Collapse
|
41
|
Loberto N, Tebon M, Lampronti I, Marchetti N, Aureli M, Bassi R, Giri MG, Bezzerri V, Lovato V, Cantù C, Munari S, Cheng SH, Cavazzini A, Gambari R, Sonnino S, Cabrini G, Dechecchi MC. GBA2-encoded β-glucosidase activity is involved in the inflammatory response to Pseudomonas aeruginosa. PLoS One 2014; 9:e104763. [PMID: 25141135 PMCID: PMC4139313 DOI: 10.1371/journal.pone.0104763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
Current anti-inflammatory strategies for the treatment of pulmonary disease in cystic fibrosis (CF) are limited; thus, there is continued interest in identifying additional molecular targets for therapeutic intervention. Given the emerging role of sphingolipids (SLs) in various respiratory disorders, including CF, drugs that selectively target the enzymes associated with SL metabolism are under development. Miglustat, a well-characterized iminosugar-based inhibitor of β-glucosidase 2 (GBA2), has shown promise in CF treatment because it reduces the inflammatory response to infection by P. aeruginosa and restores F508del-CFTR chloride channel activity. This study aimed to probe the molecular basis for the anti-inflammatory activity of miglustat by examining specifically the role of GBA2 following the infection of CF bronchial epithelial cells by P. aeruginosa. We also report the anti-inflammatory activity of another potent inhibitor of GBA2 activity, namely N-(5-adamantane-1-yl-methoxy)pentyl)-deoxynojirimycin (Genz-529648). In CF bronchial cells, inhibition of GBA2 by miglustat or Genz-529648 significantly reduced the induction of IL-8 mRNA levels and protein release following infection by P. aeruginosa. Hence, the present data demonstrate that the anti-inflammatory effects of miglustat and Genz-529648 are likely exerted through inhibition of GBA2.
Collapse
Affiliation(s)
- Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Maela Tebon
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Nicola Marchetti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Maria Grazia Giri
- Medical Physics Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Valentino Bezzerri
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Valentina Lovato
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Cinzia Cantù
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Silvia Munari
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Seng H. Cheng
- Genzyme, a Sanofi Company, Framingham, Massachusetts, United States of America
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Giulio Cabrini
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Maria Cristina Dechecchi
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| |
Collapse
|
42
|
Ferraz MJ, Kallemeijn WW, Mirzaian M, Herrera Moro D, Marques A, Wisse P, Boot RG, Willems LI, Overkleeft H, Aerts J. Gaucher disease and Fabry disease: New markers and insights in pathophysiology for two distinct glycosphingolipidoses. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:811-25. [DOI: 10.1016/j.bbalip.2013.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/25/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
43
|
Sybertz E, Krainc D. Development of targeted therapies for Parkinson's disease and related synucleinopathies. J Lipid Res 2014; 55:1996-2003. [PMID: 24668939 DOI: 10.1194/jlr.r047381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Therapeutic efforts in neurodegenerative diseases have been very challenging, particularly due to a lack of validated and mechanism-based therapeutic targets and biomarkers. The basic idea underlying the novel therapeutic approaches reviewed here is that by exploring the molecular basis of neurodegeneration in a rare lysosomal disease such as Gaucher's disease (GD), new molecular targets will be identified for therapeutic development in common synucleinopathies. Accumulation of α-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies, suggesting that improved clearance of α-synuclein may be of therapeutic benefit. To achieve this goal, it is important to identify specific mechanisms and targets involved in the clearance of α-synuclein. Recent discovery of clinical, genetic, and pathological linkage between GD and PD offers a unique opportunity to examine lysosomal glucocerebrosidase, an enzyme mutated in GD, for development of targeted therapies in synucleinopathies. While modulation of glucocerebrosidase and glycolipid metabolism offers a viable approach to treating disorders associated with synuclein accumulation, the compounds described to date either lack the ability to penetrate the CNS or have off-target effects that may counteract or limit their capabilities to mediate the desired pharmacological action. However, recent emergence of selective inhibitors of glycosphingolipid biosynthesis and noninhibitory pharmacological chaperones of glycosphingolipid processing enzymes that gain access to the CNS provide a novel approach that may overcome some of the limitations of compounds reported to date. These new strategies may allow for development of targeted treatments for synucleinopathies that affect both children and adults.
Collapse
Affiliation(s)
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
44
|
Shen W, Henry AG, Paumier KL, Li L, Mou K, Dunlop J, Berger Z, Hirst WD. Inhibition of glucosylceramide synthase stimulates autophagy flux in neurons. J Neurochem 2014; 129:884-94. [PMID: 24494600 DOI: 10.1111/jnc.12672] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 01/16/2023]
Abstract
Aggregate-prone mutant proteins, such as α-synuclein and huntingtin, play a prominent role in the pathogenesis of various neurodegenerative disorders; thus, it has been hypothesized that reducing the aggregate-prone proteins may be a beneficial therapeutic strategy for these neurodegenerative disorders. Here, we identified two previously described glucosylceramide (GlcCer) synthase inhibitors, DL-threo-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol and Genz-123346(Genz), as enhancers of autophagy flux. We also demonstrate that GlcCer synthase inhibitors exert their effects on autophagy by inhibiting AKT-mammalian target of rapamycin (mTOR) signaling. More importantly, siRNA knock down of GlcCer synthase had the similar effect as pharmacological inhibition, confirming the on-target effect. In addition, we discovered that inhibition of GlcCer synthase increased the number and size of lysosomal/late endosomal structures. Although inhibition of GlcCer synthase decreases levels of mutant α-synuclein in neurons, it does so, according to our data, through autophagy-independent mechanisms. Our findings demonstrate a direct link between glycosphingolipid biosynthesis and autophagy in primary neurons, which may represent a novel pathway with potential therapeutic value for the treatment of Parkinson's disease. Inhibition of GlcCer synthase enhances autophagy by inhibiting AKT-mTOR signaling, and increases the number and size of lysosomal/late endosomal structures. Furthermore, inhibition of GlcCer synthase decreased levels of mutant α-synuclein in neurons, which may represent a potential therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Wei Shen
- Pfizer Neuroscience Research Unit, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Shayman JA, Larsen SD. The development and use of small molecule inhibitors of glycosphingolipid metabolism for lysosomal storage diseases. J Lipid Res 2014; 55:1215-25. [PMID: 24534703 DOI: 10.1194/jlr.r047167] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glycosphingolipid (GSL) storage diseases have been the focus of efforts to develop small molecule therapeutics from design, experimental proof of concept studies, and clinical trials. Two primary alternative strategies that have been pursued include pharmacological chaperones and GSL synthase inhibitors. There are theoretical advantages and disadvantages to each of these approaches. Pharmacological chaperones are specific for an individual glycoside hydrolase and for the specific mutation present, but no candidate chaperone has been demonstrated to be effective for all mutations leading to a given disorder. Synthase inhibitors target single enzymes such as glucosylceramide synthase and inhibit the formation of multiple GSLs. A glycolipid synthase inhibitor could potentially be used to treat multiple diseases, but at the risk of lowering nontargeted cellular GSLs that are important for normal health. The basis for these strategies and specific examples of compounds that have led to clinical trials is the focus of this review.
Collapse
Affiliation(s)
- James A Shayman
- Department of Internal Medicine and Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
46
|
Cachón-González MB, Wang SZ, Ziegler R, Cheng SH, Cox TM. Reversibility of neuropathology in Tay-Sachs-related diseases. Hum Mol Genet 2014; 23:730-48. [PMID: 24057669 PMCID: PMC3888261 DOI: 10.1093/hmg/ddt459] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/16/2013] [Indexed: 01/22/2023] Open
Abstract
The GM2 gangliosidoses are progressive neurodegenerative disorders due to defects in the lysosomal β-N-acetylhexosaminidase system. Accumulation of β-hexosaminidases A and B substrates is presumed to cause this fatal condition. An authentic mouse model of Sandhoff disease (SD) with pathological characteristics resembling those noted in infantile GM2 gangliosidosis has been described. We have shown that expression of β-hexosaminidase by intracranial delivery of recombinant adeno-associated viral vectors to young adult SD mice can prevent many features of the disease and extends lifespan. To investigate the nature of the neurological injury in GM2 gangliosidosis and the extent of its reversibility, we have examined the evolution of disease in the SD mouse; we have moreover explored the effects of gene transfer delivered at key times during the course of the illness. Here we report greatly increased survival only when the therapeutic genes are expressed either before the disease is apparent or during its early manifestations. However, irrespective of when treatment was administered, widespread and abundant expression of β-hexosaminidase with consequent clearance of glycoconjugates, α-synuclein and ubiquitinated proteins, and abrogation of inflammatory responses and neuronal loss was observed. We also show that defects in myelination occur in early life and cannot be easily resolved when treatment is given to the adult brain. These results indicate that there is a limited temporal opportunity in which function and survival can be improved-but regardless of resolution of the cardinal pathological features of GM2 gangliosidosis, a point is reached when functional deterioration and death cannot be prevented.
Collapse
Affiliation(s)
| | - Susan Z. Wang
- Department of Medicine, University of Cambridge, Cambridge, UK and
| | | | | | - Timothy M. Cox
- Department of Medicine, University of Cambridge, Cambridge, UK and
| |
Collapse
|
47
|
Abstract
Eliglustat tartrate is a highly specific inhibitor of glucosylceramide synthase, developed for the treatment glucosylceramide-based glycosphingolipidoses. Eliglustat is in late clinical development for Gaucher disease type 1. Phase II and III clinical trials have demonstrated clinical efficacy for eliglustat as a stand-alone agent for newly diagnosed patients that are naïve to prior therapy and for patients who have been previously treated with enzyme replacement therapy. Importantly, the reported toxicity of eliglustat has been limited. Eliglustat will be submitted for the US FDA and EMA review in late 2013. Several structurally unrelated glucosylceramide synthase inhibitors have been identified and are in various stages of development, some of which cross the blood-brain barrier. Targeting glucosylceramide synthesis is also a promising approach for the treatment of type 2 diabetes mellitus, autosomal dominant polycystic kidney disease and certain cancers.
Collapse
Affiliation(s)
- James A Shayman
- a Department of Internal Medicine, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
48
|
Fan M, Sidhu R, Fujiwara H, Tortelli B, Zhang J, Davidson C, Walkley SU, Bagel JH, Vite C, Yanjanin NM, Porter FD, Schaffer JE, Ory DS. Identification of Niemann-Pick C1 disease biomarkers through sphingolipid profiling. J Lipid Res 2013; 54:2800-14. [PMID: 23881911 DOI: 10.1194/jlr.m040618] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Niemann-Pick type C (NPC)1 is a rare neurodegenerative disease for which treatment options are limited. A major barrier to development of effective treatments has been the lack of validated biomarkers to monitor disease progression or serve as outcome measures in clinical trials. Using targeted metabolomics to exploit the complex lipid storage phenotype that is the hallmark of NPC1 disease, we broadly surveyed Npc1(-/-) mouse tissues and identified elevated species across multiple sphingolipid classes that increased with disease progression. There was a striking accumulation of sphingoid bases, monohexosylceramides (MCs), and GM2 gangliosides in liver, and sphingoid bases and GM2 and GM3 gangliosides in brain. These lipids were modestly decreased following miglustat treatment, but markedly decreased in response to treatment with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), two drugs that have shown efficacy in NPC1 animal models. Extending these studies to human subjects led to identification of sphingolipid classes that were significantly altered in the plasma of NPC1 patients. Plasma MCs and ceramides were elevated, whereas sphingoid bases were reduced in NPC1 subjects. Intervention with miglustat in NPC1 patients was accompanied by striking alterations in plasma (reductions in GM1 and GM3 gangliosides) and cerebrospinal fluid (CSF) (increased MCs) sphingolipids. Similar alterations were observed in the CSF from the NPC1 feline model following HP-β-CD treatment. Our findings suggest that these lipid biomarkers may prove useful as outcome measures for monitoring efficacy of therapy in clinical trials.
Collapse
Affiliation(s)
- Martin Fan
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ridley CM, Thur KE, Shanahan J, Thillaiappan NB, Shen A, Uhl K, Walden CM, Rahim AA, Waddington SN, Platt FM, van der Spoel AC. β-Glucosidase 2 (GBA2) activity and imino sugar pharmacology. J Biol Chem 2013; 288:26052-26066. [PMID: 23880767 DOI: 10.1074/jbc.m113.463562] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Glucosidase 2 (GBA2) is an enzyme that cleaves the membrane lipid glucosylceramide into glucose and ceramide. The GBA2 gene is mutated in genetic neurological diseases (hereditary spastic paraplegia and cerebellar ataxia). Pharmacologically, GBA2 is reversibly inhibited by alkylated imino sugars that are in clinical use or are being developed for this purpose. We have addressed the ambiguity surrounding one of the defining characteristics of GBA2, which is its sensitivity to inhibition by conduritol B epoxide (CBE). We found that CBE inhibited GBA2, in vitro and in live cells, in a time-dependent fashion, which is typical for mechanism-based enzyme inactivators. Compared with the well characterized impact of CBE on the lysosomal glucosylceramide-degrading enzyme (glucocerebrosidase, GBA), CBE inactivated GBA2 less efficiently, due to a lower affinity for this enzyme (higher KI) and a lower rate of enzyme inactivation (k(inact)). In contrast to CBE, N-butyldeoxygalactonojirimycin exclusively inhibited GBA2. Accordingly, we propose to redefine GBA2 activity as the β-glucosidase that is sensitive to inhibition by N-butyldeoxygalactonojirimycin. Revised as such, GBA2 activity 1) was optimal at pH 5.5-6.0; 2) accounted for a much higher proportion of detergent-independent membrane-associated β-glucosidase activity; 3) was more variable among mouse tissues and neuroblastoma and monocyte cell lines; and 4) was more sensitive to inhibition by N-butyldeoxynojirimycin (miglustat, Zavesca®), in comparison with earlier studies. Our evaluation of GBA2 makes it possible to assess its activity more accurately, which will be helpful in analyzing its physiological roles and involvement in disease and in the pharmacological profiling of monosaccharide mimetics.
Collapse
Affiliation(s)
- Christina M Ridley
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Karen E Thur
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jessica Shanahan
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Ann Shen
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Karly Uhl
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Charlotte M Walden
- the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom, and
| | - Ahad A Rahim
- the Gene Transfer Technology Group, Institute of Women's Health, University College London, London WC1E 6HX, United Kingdom
| | - Simon N Waddington
- the Gene Transfer Technology Group, Institute of Women's Health, University College London, London WC1E 6HX, United Kingdom
| | - Frances M Platt
- the Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Aarnoud C van der Spoel
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada,.
| |
Collapse
|
50
|
Arthur JR, Wilson MW, Larsen SD, Rockwell HE, Shayman JA, Seyfried TN. Ethylenedioxy-PIP2 oxalate reduces ganglioside storage in juvenile Sandhoff disease mice. Neurochem Res 2013; 38:866-75. [PMID: 23417430 DOI: 10.1007/s11064-013-0992-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/16/2013] [Accepted: 01/29/2013] [Indexed: 01/02/2023]
Abstract
Sandhoff disease is an incurable neurodegenerative disorder caused by mutations in the lysosomal hydrolase β-hexosaminidase. Deficiency in this enzyme leads to excessive accumulation of ganglioside GM2 and its asialo derivative, GA2, in brain and visceral tissues. Small molecule inhibitors of ceramide-specific glucosyltransferase, the first committed step in ganglioside biosynthesis, reduce storage of GM2 and GA2. Limited brain access or adverse effects have hampered the therapeutic efficacy of the clinically approved substrate reduction molecules, eliglustat tartrate and the imino sugar NB-DNJ (Miglustat). The novel eliglustat tartrate analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1, 4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (EtDO-PIP2, CCG-203586 or "3h"), was recently reported to reduce glucosylceramide in murine brain. Here we assessed the therapeutic efficacy of 3h in juvenile Sandhoff (Hexb-/-) mice. Sandhoff mice received intraperitoneal injections of phosphate buffered saline (PBS) or 3h (60 mg/kg/day) from postnatal day 9 (p-9) to postnatal day 15 (p-15). Brain weight and brain water content was similar in 3h and PBS-treated mice. 3h significantly reduced total ganglioside sialic acid, GM2, and GA2 content in cerebrum, cerebellum and liver of Sandhoff mice. Data from the liver showed that 3h reduced the key upstream ganglioside precursor (glucosylceramide), providing evidence for an on target mechanism of action. No significant differences were seen in the distribution of cholesterol or of neutral and acidic phospholipids. These data suggest that 3h can be an effective alternative to existing substrate reduction molecules for ganglioside storage diseases.
Collapse
Affiliation(s)
- Julian R Arthur
- Boston College Biology Department, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|