1
|
Sun YD, Wallis CM, Krugner R, Yokomi R. Citrus Yellow Vein Clearing Virus Infection in Lemon Influences Host Preference of the Citrus Whitefly by Affecting the Host Metabolite Composition. PLANTS (BASEL, SWITZERLAND) 2025; 14:288. [PMID: 39861642 PMCID: PMC11768271 DOI: 10.3390/plants14020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Plant viruses have been known to alter host metabolites that influence the attraction of insect vectors. Our study investigated whether Citrus yellow vein clearing virus (CYVCV) infection influences vector attractiveness, focusing on the citrus whitefly, Dialeurodes citri (Ashmead). Free choice assays showed that citrus whiteflies exhibited a preference for settling on CYVCV-infected lemon plants versus healthy control plants. Using chromatography techniques, we found that the levels of sugars were similar in leaves and stems of both plant groups, while the contents of several amino acids in leaf or stem samples and non-volatile phenolic compounds in the leaf samples of CYVCV-infected and healthy plants differ drastically. In addition, volatile terpenes/terpenoids decreased significantly in virus-infected plants compared to healthy controls. Several of the identified volatile compounds such as α-phellandrene, α-terpinolene, p-cymene, linalool, and citral are known for their whitefly repellent properties. Further Y-tube olfactometer bioassays revealed that emissions of volatile organic compounds (VOCs) from infected plants attracted more citrus whiteflies, but not alate spirea aphids, Aphis spiraecola Patch, than those from healthy plants, suggesting that the VOCs released from CYVCV-infected lemon plants may specifically affect citrus whiteflies. Therefore, we suggest that, in addition to the visual cue of yellow vein symptoms, the preference of citrus whiteflies that settled on CYVCV-infected lemon plants was attributed to a reduction in the levels of repellent volatile compounds.
Collapse
Affiliation(s)
| | | | | | - Raymond Yokomi
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA; (C.M.W.); (R.K.)
| |
Collapse
|
2
|
Giménez-Sanchis A, Bermejo A, Besada C. Changes in the sugars and volatile compounds profiles associated with anthocyanin accumulation in oranges: Blood vs. blond varieties, and slightly pigmented vs. intensely pigmented blood fruit. Food Res Int 2024; 197:115199. [PMID: 39593284 DOI: 10.1016/j.foodres.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The blood oranges accumulate anthocyanins in their peel and pulp, which give them their characteristic red colour. To investigate whether there is a specific volatile compounds profile for blood oranges, we compared the volatile composition of the blood varieties 'Moro', 'Tarocco Rosso' and 'Sanguinelli' to that of the blond ones 'Cadenera', 'Salustina' and 'Hamlim' using a non-targeted approach based on HS-SPME-GC-MS. Moreover, fruits from each blood orange variety were divided into slightly and intensely pigmented fruits, and individual sugars and anthocyanins were determined by liquid chromatography to investigate whether their profiles depend on the degree of pulp pigmentation. A total of 101 volatile compounds were identified in this study. Hierarchical Cluster Analysis, including all compounds, revealed that blood oranges have no unique volatiles profile that makes them more similar to one another than to the blond varieties. For blood orange varieties, our results corroborated that greater anthocyanin accumulation in the most intensely pigmented fruit is associated with higher sugar content (an increase of 0.8-2.3 % depending on the variety). Moreover, we reported for the first time that anthocyanin accumulation is also associated with changes in the volatiles profile. A Multifactor Analysis including data on volatiles, sugars and anthocyanin showed that sucrose is the sugar more strongly linked to anthocyanin accumulation. A group of volatile compounds, mainly esters (ethyl acetate, ethyl-2-methyl butanoate and ethyl-2-butenoate) along with ethanol, are present at increased levels, sometimes even doubling in the most intensely pigmented samples compared to the slightly pigmented ones. These results open the door to further investigate the possible metabolic link between sugars and anthocyanins accumulation and changes in volatile compounds.
Collapse
Affiliation(s)
- Adrián Giménez-Sanchis
- Sensory and Consumer Science Research Group, Postharvest Department, Valencian Institute for Agricultural Research, 46113 Valencia, Spain.
| | - Almudena Bermejo
- Center of Citriculture and Plant Production, Valencian Institute for Agricultural Research, 46113 Valencia, Spain.
| | - Cristina Besada
- Sensory and Consumer Science Research Group, Postharvest Department, Valencian Institute for Agricultural Research, 46113 Valencia, Spain.
| |
Collapse
|
3
|
Raigón Jiménez MD, García-Martínez MD, Esteve Ciudad P, Fukalova Fukalova T. Nutritional, Bioactive, and Volatile Characteristics of Two Types of Sorbus domestica Undervalued Fruit from Northeast of Iberian Peninsula, Spain. Molecules 2024; 29:4321. [PMID: 39339316 PMCID: PMC11434549 DOI: 10.3390/molecules29184321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The promotion of food from underutilized plants can help combat biodiversity loss, foster cultural preservation, and empower farmers in the face of market pressures and sustainable production conditions. The nutritional and aromatic characterization of two undervalued types of Sorbus domestica fruits, differentiated by their apple and pear shapes, has been carried out. Official Association of Analytical Communities methods have been used for proximate composition and mineral analysis determinations, and gas chromatography was used for the analysis of volatile components in three states of ripeness and compared with the aromas of fresh apple and quince jam. S. domestica fruits are a good source of K, Ca, Fe, and fiber and are an important source of antioxidants in the human diet. S. domestica fruits have proven to be very distinctive in the aromatic fraction. 1-hexanol, hexyl 1,3-octanediol, phenylacetaldehyde, nonanal, hexanal, and α-farnesene are the most potent odor compounds in the overripening stage of the fruits. The aroma profiles of immature S. domestica fruits were dominated by aldehydes, while in the overripe stage, the fruit accumulated abundant esters, alcohols, and sesquiterpenoids. S. domestica fruits could be introduced as an alternative to seasonal fruit consumption and could generate sustainable production and consumption alternatives while recovering cultural and food heritage.
Collapse
Affiliation(s)
- María Dolores Raigón Jiménez
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain; (M.D.G.-M.); (P.E.C.)
| | - María Dolores García-Martínez
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain; (M.D.G.-M.); (P.E.C.)
| | - Patricia Esteve Ciudad
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain; (M.D.G.-M.); (P.E.C.)
| | - Tamara Fukalova Fukalova
- Laboratorio de Fitoquímica y Productos Biológicos, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Avenue Universitaria, Quito 170521, Ecuador;
| |
Collapse
|
4
|
He J, Qin Z, Liu K, Li X, Kou Y, Jin Z, He R, Hong M, Xiong B, Liao L, Sun G, He S, Zhang M, Liang D, Lv X, Wang X, Wang Z. Volatile metabolomics and transcriptomics analyses provide insights into the mechanism of volatile changes during fruit development of 'Ehime 38' ( Citrus reticulata) and its bud mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1430204. [PMID: 38984161 PMCID: PMC11231921 DOI: 10.3389/fpls.2024.1430204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Volatile compounds are important determinants affecting fruit flavor. Previous study has identified a bud mutant of 'Ehime 38' (Citrus reticulata) with different volatile profile. However, the volatile changes between WT and MT during fruit development and underlying mechanism remain elusive. In this study, a total of 35 volatile compounds were identified in the pulps of WT and MT at five developmental stages. Both varieties accumulated similar and the highest levels of volatiles at stage S1, and showed a downward trend as the fruit develops. However, the total volatile contents in the pulps of MT were 1.4-2.5 folds higher than those in WT at stages S2-S5, which was mainly due to the increase in the content of d-limonene. Transcriptomic and RT-qPCR analysis revealed that most genes in MEP pathway were positively correlated with the volatile contents, of which DXS1 might mainly contribute to the elevated volatiles accumulation in MT by increasing the flux into the MEP pathway. Moreover, temporal expression analysis indicated that these MEP pathway genes functioned at different developmental stages. This study provided comprehensive volatile metabolomics and transcriptomics characterizations of a citrus mutant during fruit development, which is valuable for fruit flavor improvement in citrus.
Collapse
Affiliation(s)
- Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zeyu Qin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Kexin Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiangyi Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yiming Kou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhenghua Jin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ruiyuan He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Min Hong
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Siya He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
CarolinaVieira-Porto A, Cunha SC, Rosa EC, DePaula J, Cruz AG, Freitas-Silva O, Fernandes JO, Farah A. Chemical composition and sensory profiling of coffees treated with asparaginase to decrease acrylamide formation during roasting. Food Res Int 2024; 186:114333. [PMID: 38729693 DOI: 10.1016/j.foodres.2024.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.
Collapse
Affiliation(s)
- Ana CarolinaVieira-Porto
- Laboratório de Química e Bioatividade de Alimentos e Núcleo de Pesquisa em Café (NUPECAFÉ), Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidadedo Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Elaine C Rosa
- Cerrad Coffee, Av. Faria Pereira, 3076 - sala 201, São Cristóvão - Patrocínio/38742-218, Minas Gerais, Brazil.
| | - Juliana DePaula
- Laboratório de Química e Bioatividade de Alimentos e Núcleo de Pesquisa em Café (NUPECAFÉ), Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil.
| | - Adriano G Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Departamento de Alimentos, 20270-021 Rio de Janeiro, Brazil.
| | - Otniel Freitas-Silva
- Embrapa Agroindústria de Alimentos: Av. das Américas, n° 29.501, Guaratiba., Rio de Janeiro, RJ 23020-470, Brazil.
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidadedo Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Adriana Farah
- Laboratório de Química e Bioatividade de Alimentos e Núcleo de Pesquisa em Café (NUPECAFÉ), Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
6
|
Jo SM, Hong SJ, Yoon S, Jeong H, Youn MY, Shin EC. Comparative study on volatile compounds and taste components of various citrus cultivars using electronic sensors, GC-MS, and GC-olfactometry. Food Sci Biotechnol 2024; 33:1825-1837. [PMID: 38752123 PMCID: PMC11091006 DOI: 10.1007/s10068-023-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 05/18/2024] Open
Abstract
Various citrus fruits' flavor compounds were analyzed using an electronic sensor (E-sensor), and odor-active compounds were identified using gas chromatography-mass spectrometry-olfactometry (GC-MS-O). In the E-tongue analysis, the intensity of sweetness, saltiness, and bitterness was highest in Citrus unshiu, while sourness and umami were highest in C. setomi. A total of 43 volatile compounds were detected in the E-nose analysis, and the compound with the highest peak area was limonene, a type of terpenoid, which exhibited a prominent peak area in C. unshiu. Principal component analysis between flavor compounds and each sample explained a total variance of 83.15% and led to the classification of three clusters. By GC-MS-O, 32 volatile compounds were detected, with limonene being the most abundant, ranging from 20.28 to 56.21 mg/kg. The odor-active compounds were identified as (E)-2-hexenal, hexanal, α-pinene, β-myrcene, limonene, γ-terpinene, nonanal, and D-carvone, respectively.
Collapse
Affiliation(s)
- Seong Min Jo
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Seong Jun Hong
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Sojeong Yoon
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Hyangyeon Jeong
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Moon Yeon Youn
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Eui-Cheol Shin
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju, 52725 Republic of Korea
| |
Collapse
|
7
|
Balmori V, Marnpae M, Chusak C, Kamonsuwan K, Katelakha K, Charoensiddhi S, Adisakwattana S. Enhancing Phytochemical Compounds, Functional Properties, and Volatile Flavor Profiles of Pomelo ( Citrus grandis (L.) Osbeck) Juices from Different Cultivars through Fermentation with Lacticaseibacillus paracasei. Foods 2023; 12:4278. [PMID: 38231752 DOI: 10.3390/foods12234278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
The current study aimed to explore the effects of fermenting five different pomelo cultivars using Lacticaseibacillus paracasei on various physicochemical, phytochemical, and organoleptic attributes. Fermentation led to an increase in viable lactic acid bacteria count (8.80-9.28 log cfu/mL), organic acids, total polyphenols, and flavonoids, resulting in improved antioxidant activity, bile acid binding, cholesterol micellization disruption, and inhibition of pancreatic lipase activity. Additionally, some cultivars displayed higher levels of naringin, naringenin, and hesperetin after fermentation. The levels of volatile compounds were elevated after fermentation. The bitterness and overall acceptability scores were improved in the fermented samples of the Kao Numpueng cultivar. The principal component analysis (PCA) revealed that the Tubtim Siam cultivar demonstrated the highest functionality and health-related benefits among all fermented pomelos. Overall, the study suggests that pomelo exhibits potential as a valuable resource for creating a dairy-free probiotic drink enriched with bioactive phytochemical compounds and beneficial functional attributes.
Collapse
Affiliation(s)
- Vernabelle Balmori
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food Science and Technology, Southern Leyte State University, Sogod 6606, Southern Leyte, Philippines
| | - Marisa Marnpae
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charoonsri Chusak
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kritmongkhon Kamonsuwan
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kasinee Katelakha
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sirichai Adisakwattana
- Center of Excellence in Phytochemical and Functional Food for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Abbas F, Zhou Y, O'Neill Rothenberg D, Alam I, Ke Y, Wang HC. Aroma Components in Horticultural Crops: Chemical Diversity and Usage of Metabolic Engineering for Industrial Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091748. [PMID: 37176806 PMCID: PMC10180852 DOI: 10.3390/plants12091748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Plants produce an incredible variety of volatile organic compounds (VOCs) that assist the interactions with their environment, such as attracting pollinating insects and seed dispersers and defense against herbivores, pathogens, and parasites. Furthermore, VOCs have a significant economic impact on crop quality, as well as the beverage, food, perfume, cosmetics and pharmaceuticals industries. These VOCs are mainly classified as terpenoids, benzenoids/phenylpropanes, and fatty acid derivates. Fruits and vegetables are rich in minerals, vitamins, antioxidants, and dietary fiber, while aroma compounds play a major role in flavor and quality management of these horticultural commodities. Subtle shifts in aroma compounds can dramatically alter the flavor and texture of fruits and vegetables, altering their consumer appeal. Rapid innovations in -omics techniques have led to the isolation of genes encoding enzymes involved in the biosynthesis of several volatiles, which has aided to our comprehension of the regulatory molecular pathways involved in VOC production. The present review focuses on the significance of aroma volatiles to the flavor and aroma profile of horticultural crops and addresses the industrial applications of plant-derived volatile terpenoids, particularly in food and beverages, pharmaceuticals, cosmetics, and biofuel industries. Additionally, the methodological constraints and complexities that limit the transition from gene selection to host organisms and from laboratories to practical implementation are discussed, along with metabolic engineering's potential for enhancing terpenoids volatile production at the industrial level.
Collapse
Affiliation(s)
- Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yiwei Zhou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Dylan O'Neill Rothenberg
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Intikhab Alam
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yanguo Ke
- College of Economics and Management, College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming 650214, China
| | - Hui-Cong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Garmendia A, Raigón MD, García-Breijo F, Reig J, Beltrán R, Zornoza C, Cebrián N, Merle H. Agronomic treatments to avoid presence of seeds in Nadorcott mandarin II. Effect on seed number per fruit and yield. PLoS One 2022; 17:e0278934. [PMID: 36490267 PMCID: PMC9733848 DOI: 10.1371/journal.pone.0278934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Nadorcott is a well-established and appreciated mandarin by the fresh market. However, it produces seeds due to cross-pollination with other compatible varieties, which is quite frequent in most producing countries. Consumers prefer seedless mandarins and, therefore, citrus growers need techniques to avoid seeds forming. This study aims to evaluate the effect of six treatments (ammonium nitrate, potassium nitrate, sulfur, saccharose, methylcellulose, callose) on seed number per fruit when applied to Nadorcott trees. In this way, we evaluate which of them is more efficient and can be used in the future as an agronomic treatment to avoid seeds in mandarins. The effect of treatments on yield and fruit quality is also reported. To fulfill this main objective, a randomized complete block design experiment with three applications at flowering was performed on trees. Of the six tested treatments, only elemental sulfur was able to significantly reduce seed number by 87% compared to the positive control. This is a very novel result because it is the first time that such an effective treatment has been found. The biggest seed number per fruit was obtained for the saccharose treatment. Treatments did not significantly influence yield or fruit quality. These results are entirely consistent with a previous study that evaluated the effect of the same products on pollen tube growth, and they can help to develop new techniques. Nevertheless, more studies are necessary to test, for example, different treatment doses.
Collapse
Affiliation(s)
- Alfonso Garmendia
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| | - María Dolores Raigón
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana/Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| | - Francisco García-Breijo
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Valencia, Spain
| | - José Reig
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Roberto Beltrán
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Valencia, Spain
| | - Carlos Zornoza
- S.A. Explotaciones Agrícolas Serrano (SAEAS), Valencia, Spain
| | - Nuria Cebrián
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Valencia, Spain
| | - Hugo Merle
- Departamento de Ecosistemas Agroforestales, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
10
|
Deng H, He R, Huang R, Pang C, Ma Y, Xia H, Liang D, Liao L, Xiong B, Wang X, Zhang M, Ao X, Yu B, Han D, Wang Z. Optimization of a static headspace GC-MS method and its application in metabolic fingerprinting of the leaf volatiles of 42 citrus cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:1050289. [PMID: 36570894 PMCID: PMC9772436 DOI: 10.3389/fpls.2022.1050289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Citrus leaves, which are a rich source of plant volatiles, have the beneficial attributes of rapid growth, large biomass, and availability throughout the year. Establishing the leaf volatile profiles of different citrus genotypes would make a valuable contribution to citrus species identification and chemotaxonomic studies. In this study, we developed an efficient and convenient static headspace (HS) sampling technique combined with gas chromatography-mass spectrometry (GC-MS) analysis and optimized the extraction conditions (a 15-min incubation at 100 ˚C without the addition of salt). Using a large set of 42 citrus cultivars, we validated the applicability of the optimized HS-GC-MS system in determining leaf volatile profiles. A total of 83 volatile metabolites, including monoterpene hydrocarbons, alcohols, sesquiterpene hydrocarbons, aldehydes, monoterpenoids, esters, and ketones were identified and quantified. Multivariate statistical analysis and hierarchical clustering revealed that mandarin (Citrus reticulata Blanco) and orange (Citrus sinensis L. Osbeck) groups exhibited notably differential volatile profiles, and that the mandarin group cultivars were characterized by the complex volatile profiles, thereby indicating the complex nature and diversity of these mandarin cultivars. We also identified those volatile compounds deemed to be the most useful in discriminating amongst citrus cultivars. This method developed in this study provides a rapid, simple, and reliable approach for the extraction and identification of citrus leaf volatile organic compound, and based on this methodology, we propose a leaf volatile profile-based classification model for citrus.
Collapse
Affiliation(s)
- Honghong Deng
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Runmei He
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Rong Huang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Changqing Pang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanshuo Ma
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Hui Xia
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ling Liao
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Bo Xiong
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xun Wang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mingfei Zhang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiang Ao
- Sichuan Dan Cheng Modern Fruit Industry Co., Ltd., Meishan, China
| | - Bo Yu
- Sichuan Dan Cheng Modern Fruit Industry Co., Ltd., Meishan, China
| | - Dongdao Han
- Ningbo Tian Yuan Mu Ge Agricultural Development Co., Ltd., Ningbo, China
| | - Zhihui Wang
- Institute of Pomology and Olericulture, College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Eduardo WI, Miranda MP, Volpe HXL, Garcia RB, Girardi EA, Alquezar B, Ruiz AE, Peña L. Resistance of True Citrus species to Diaphorina citri. PEST MANAGEMENT SCIENCE 2022; 78:4783-4792. [PMID: 35900363 DOI: 10.1002/ps.7098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Host genetic resistance is a promising strategy for the management of Diaphorina citri Kuwayama (Hemiptera: Psyllidae), and consequently Huanglongbing (HLB). To date, no study has investigated the resistance to D. citri in the clonal and vegetatively propagated plants of the Microcitrus, Eremocitrus, and Atalantia genera. This study assesses Near and True Citrus genotype antixenosis and antibiosis against D. citri, with trichome density and volatile emission as possible mechanisms of resistance. RESULTS All genotypes were oviposited by D. citri, however, 8 of 14 genotypes were less oviposited than Citrus × sinensis 'Valencia' (susceptible control). Diaphorina citri nymphs had lower nymphal viability in E. glauca (31%) and M. warburgiana (58%) than that in Citrus × sinensis (77%). The behavioral assay showed that 30% of D. citri nymphs in the last instars evaded E. glauca shoots, whereas no nymphs evaded Citrus × sinensis shoots. A higher trichome density was observed in E. glauca shoots compared to the other genotypes. Chemical analysis revealed differences in the volatile profiles of E. glauca and Citrus × sinensis. CONCLUSION Eremocitrus glauca and M. warburgiana genotypes were more resistant to D. citri than Citrus × sinensis. Higher trichome density in the shoots may negatively influence the development of D. citri nymphs. Eremocitrus glauca volatiles may also be involved in their resistance to D. citri. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wellington Ivo Eduardo
- Department of Research and Development, Fund for Citrus Protection - Fundecitrus, Araraquara, Brazil
| | - Marcelo Pedreira Miranda
- Department of Research and Development, Fund for Citrus Protection - Fundecitrus, Araraquara, Brazil
| | | | - Rafael Brandão Garcia
- Department of Research and Development, Fund for Citrus Protection - Fundecitrus, Araraquara, Brazil
| | - Eduardo Augusto Girardi
- Department of Research and Development, Fund for Citrus Protection - Fundecitrus, Araraquara, Brazil
- Brazilian Agricultural Research Corporation - Embrapa, Embrapa Cassava & Fruits, Cruz das Almas, Brazil
| | - Berta Alquezar
- Instituto de Biologia Molecular y Celular de Plantas - Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| | - Ana Espinosa Ruiz
- Instituto de Biologia Molecular y Celular de Plantas - Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| | - Leandro Peña
- Instituto de Biologia Molecular y Celular de Plantas - Consejo Superior de Investigaciones Científicas (IBMCP-CSIC), Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
12
|
Zhang Y, Zhang J, Li D, Sun H, Lu R, Yin S, Guo X, Gao S. Aldehyde oxidases mediate plant toxicant susceptibility and fecundity in the red flour beetle, Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:656-666. [PMID: 35168693 DOI: 10.1017/s0007485322000049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aldehyde oxidases (AOXs) are a group of metabolic enzymes that play critical roles in the degradation of xenobiotics and chemicals. However, the physiological function of this enzyme in insects remains poorly understood. In this study, three TcAOX genes (TcAOX1, TcAOX2, TcAOX3) were identified and characterized from Tribolium castaneum genome. Spatiotemporal expression profiling showed that TcAOX1 expression was most highly expressed at the early pupal stage and was predominantly expressed in the antennae of adults, indicating that TcAOX1 was involved in the degradation of chemical signals; TcAOX2 expression was most highly expressed at the late pupal stage and was mainly expressed in the fat body, epidermis of larvae and adults, respectively; and TcAOX3 expression was in all stages and was primarily expressed in the head of adults. Moreover, the transcripts of TcAOX2 and TcAOX3 were significantly induced after exposure to plant oil, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to this plant toxicant, suggesting that these two genes are associated with plant toxicant detoxification. Intriguingly, knockdown of the TcAOX1 led to reductions in female egg-laying but unchanged the hatchability and the development of genital organs, suggesting that this gene may mediate fecundity by effecting the inactivation of chemical signals in T. castaneum. Overall, these results shed new light on the function of AOX genes in insects, and could facilitate the development of research on pest control management.
Collapse
Affiliation(s)
- Yonglei Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiahao Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Dongyu Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Se Yin
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Xinlong Guo
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| |
Collapse
|
13
|
Characterization and Differentiation of Fresh Orange Juice Variety Based on Conventional Physicochemical Parameters, Flavonoids, and Volatile Compounds Using Chemometrics. Molecules 2022; 27:molecules27196166. [PMID: 36234701 PMCID: PMC9572974 DOI: 10.3390/molecules27196166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The present study focused on the possibility of differentiating fresh-unprocessed orange juice according to botanical origin (variety), based on the use of conventional physico-chemical parameters, flavonoids, and volatile compounds, in combination with chemometrics. For this purpose, oranges from seven different varieties were collected during the harvest years of 2013−2014 and 2014−2015 from central and southern Greece. The physico-chemical parameters that were determined included: electrical conductivity, acidity, pH, and total soluble solids. The flavonoids: hesperidin, neohespseridin, quercetin, naringin, and naringenin were determined using high-performance liquid chromatography (HPLC-DAD). Finally, volatile compounds were determined using headspace solid-phase micro-extraction in combination with gas chromatography-mass spectrometry (HS-SPME/GC-MS). Statistical treatment of data by multivariate techniques showed that orange juice variety had a significant (p < 0.05) impact on the above analytical parameters. The classification rate for the differentiation of orange juice according to orange variety using multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA) was 89.3%, based on the cross-validation method.
Collapse
|
14
|
Preschoolers’ liking of citrus fruits served as a mid-morning snack. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Raigón MD, García-Martínez MD, Chiriac OP. Nutritional Characterization of a Traditional Cultivar of Tomato Grown Under Organic Conditions-cv. "Malacara". Front Nutr 2022; 8:810812. [PMID: 35087858 PMCID: PMC8786908 DOI: 10.3389/fnut.2021.810812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The loss of genetic diversity due to the replacement of local tomato (Solanum lycopersicum L.) varieties by improved cultivars has been mitigated in many cases by the good work of organic farmers in maintaining local agricultural biodiversity. In parallel to these initiatives, in recent years, consumers have developed an increasing awareness of both food-related health, environmental issues, and food demand to recover the flavors of the past. In the case of tomatoes, these attributes (nutritional, organoleptic, social, and environmental) are closely related to organic production using local varieties. “Malacara” tomato is an example of a local variety. Coming from Sierra de Cádiz, it is a varietal type called “Cuelga” (“for hanging,” because the tomato trusses are hung from beams in the farmhouses). Cultivated and harvested in the open air during the summer months, these tomatoes are commercialized and consumed in the winter. Historically, this variety has enabled the fresh consumption of tomatoes during the winter, without the need to force cultivation. It is highly appreciated in the local cuisine and is the basis for sauces figuring in typical dishes. Its characteristic traits are small, pallid fruits, and long shelf life. The main objective of this work has been to typify two Malacara tomato cultivars (red and yellow color) grown under organic farming conditions, through the characterization of morphological, nutritional, and volatile parameters. The main differences are due to morphological parameters (fruit weight and color of the exocarp and endocarp). Other characteristics such as the content of ash, fiber, moisture, the concentration of iron, magnesium, and calcium, and content of lycopene are different between both cultivars. This study provides information on the nutritional and aromatic composition of two Malacara tomato cultivars, differentiated by their color and grown under organic farming conditions. The results add value to the native horticultural heritage and can aid in the selection of tomato varieties suitable for a sustainable production system and to produce tomatoes with high nutritional value and rich in aroma.
Collapse
Affiliation(s)
- María D Raigón
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana/Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| | - María D García-Martínez
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana/Departamento de Química, Universitat Politècnica de València, Valencia, Spain
| | - Octavian P Chiriac
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
16
|
Antoniou C, Kyratzis AC, Soteriou GA, Rouphael Y, Kyriacou MC. Configuration of the Volatile Aromatic Profile of Carob Powder Milled From Pods of Genetic Variants Harvested at Progressive Stages of Ripening From High and Low Altitudes. Front Nutr 2022; 8:789169. [PMID: 34977128 PMCID: PMC8714772 DOI: 10.3389/fnut.2021.789169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Carob powder is increasingly valued as a substitute for cocoa and as a flavor-enhancing component of processed foods. However, little is known about the impact of preharvest factors such as fruit maturity, genotype and altitude on its volatile organic compounds (VOCs) composition. The current study examined the VOCs composition of powder milled from pods of two genotypes cultivated at 15 and 510 m altitude and harvested at six progressive stages of maturity, ranging from fully developed immature green (RS1) to late ripe (RS6). Fifty-six VOCs categorized into acids, esters, aldehydes, ketones, alcohols, furans, and alkanes were identified through HS-SPME GC-MS analysis. Maturity was the most influential factor, followed by altitude and least by genotype. Aldehydes and alcohols correlated positively (r = 0.789; p < 0.001), both accumulated in immature carobs and decreased with progressive ripening, resulting in the attenuation of green grassy aroma. Conversely, acids increased with ripening and dominated the carob volatilome at full maturity, correlating negatively with aldehydes and alcohols (r = −0.835 and r = −0.950, respectively; p < 0.001). The most abundant VOC throughout ripening (17.3-57.7%) was isobutyric acid, responsible for the characteristic cheesy-acidic-buttery aroma of carob powder. The pleasurable aroma detected at the immature stages (RS2 and RS3) was traced to isobutyrate and methyl isobutyrate esters, rendering unripe green carob powder a potential admixture component for improving the aroma of novel food products. Lower altitude favored the accumulation of acids linked to less pleasant aroma, whereas isobutyric acid was more abundant at higher altitude. This constitutes a significant indication that higher altitude enhances the characteristic carob-like aroma and sensory quality of carob powder.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Angelos C Kyratzis
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Georgios A Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| |
Collapse
|
17
|
Zheng X, Yang Y, Al-Babili S. Exploring the Diversity and Regulation of Apocarotenoid Metabolic Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:787049. [PMID: 34956282 PMCID: PMC8702529 DOI: 10.3389/fpls.2021.787049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 05/31/2023]
Abstract
In plants, carotenoids are subjected to enzyme-catalyzed oxidative cleavage reactions as well as to non-enzymatic degradation processes, which produce various carbonyl products called apocarotenoids. These conversions control carotenoid content in different tissues and give rise to apocarotenoid hormones and signaling molecules, which play important roles in plant growth and development, response to environmental stimuli, and in interactions with surrounding organisms. In addition, carotenoid cleavage gives rise to apocarotenoid pigments and volatiles that contribute to the color and flavor of many flowers and several fruits. Some apocarotenoid pigments, such as crocins and bixin, are widely utilized as colorants and additives in food and cosmetic industry and also have health-promoting properties. Considering the importance of this class of metabolites, investigation of apocarotenoid diversity and regulation has increasingly attracted the attention of plant biologists. Here, we provide an update on the plant apocarotenoid biosynthetic pathway, especially highlighting the diversity of the enzyme carotenoid cleavage dioxygenase 4 (CCD4) from different plant species with respect to substrate specificity and regioselectivity, which contribute to the formation of diverse apocarotenoid volatiles and pigments. In addition, we summarize the regulation of apocarotenoid metabolic pathway at transcriptional, post-translational, and epigenetic levels. Finally, we describe inter- and intraspecies variation in apocarotenoid production observed in many important horticulture crops and depict recent progress in elucidating the genetic basis of the natural variation in the composition and amount of apocarotenoids. We propose that the illustration of biochemical, genetic, and evolutionary background of apocarotenoid diversity would not only accelerate the discovery of unknown biosynthetic and regulatory genes of bioactive apocarotenoids but also enable the identification of genetic variation of causal genes for marker-assisted improvement of aroma and color of fruits and vegetables and CRISPR-based next-generation metabolic engineering of high-value apocarotenoids.
Collapse
|
18
|
Galvan-Lima Â, Cunha SC, Martins ZE, Soares AG, Ferreira IMPLVO, Farah A. Headspace volatolome of peel flours from citrus fruits grown in Brazil. Food Res Int 2021; 150:110801. [PMID: 34863493 DOI: 10.1016/j.foodres.2021.110801] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Citrus fruit peel comprises a pleasant mix of volatile compounds together with fibers, nutrients, and bioactive compounds. Therefore, it has great potential for use as a food ingredient. Studies evaluating the volatile composition of citrus peel flours are limited for most citruses. The goal of this study was to characterize, by HS-SPME/GC-MS, the volatile profile of citrus peel flours made from fruits commonly grown in Brazil. Two composite samples of ten types of citrus peel flours from consecutive harvests were evaluated. 69 volatile compounds were assigned, 49 in Tahiti acid lime, 49 in Sicilian lemon, 37 in Persian lime, 34 in Italian tangerine and oval kumquat, 33 in Valencia orange, 32 in Baia orange and round kumquat, 28 in Blood-of-Mombuca orange and 26 in Lima orange. 26 major compounds represented 93-99% of the total chromatogram peak area. Terpenic compounds were predominant in all samples, especially monoterpenes (about 48-97% of the total chromatogram peak area), while lower proportions of aldehydes (0.2-16.1%), monoterpene alcohols (0.4-11.8%) and esters (0.0-7.7%) were observed. Even though a few compounds like limonene, β-myrcene, linalool, α-pinene and valencene were detected in all citrus, volatile compounds followed specific patterns in the different citruses, with a clear distinction among them, especially between lemon flours and the remaining flours. The variety of volatile profiles and singular specific volatolomic signatures in citrus peels can be explored for different applications related to food flavoring and preservation, and promotion of good health. These aspects should be thoroughly investigated in future studies.
Collapse
Affiliation(s)
- Ângela Galvan-Lima
- Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brasil; Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 01, 96010-610, Pelotas, Rio Grande do Sul, Brasil; LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Sara C Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Zita E Martins
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Antonio G Soares
- Embrapa Agroindústria de Alimentos: Av. das Américas, n° 29.501, Guaratiba/23020-470 Rio de Janeiro, RJ, Brasil.
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal.
| | - Adriana Farah
- Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brasil.
| |
Collapse
|
19
|
Chitarrini G, Lazazzara V, Lubes G, Agnolet S, Valls J, von Lutz H, Brunner K, Lozano L, Guerra W, Ciesa F, Robatscher P, Oberhuber M. Volatile profiles of 47 monovarietal cloudy apple juices from commercial, old, red-fleshed and scab-resistant apple cultivars. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Antioxidant Metabolites in Primitive, Wild, and Cultivated Citrus and Their Role in Stress Tolerance. Molecules 2021; 26:molecules26195801. [PMID: 34641344 PMCID: PMC8510114 DOI: 10.3390/molecules26195801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 01/07/2023] Open
Abstract
The genus Citrus contains a vast range of antioxidant metabolites, dietary metabolites, and antioxidant polyphenols that protect plants from unfavorable environmental conditions, enhance their tolerance to abiotic and biotic stresses, and possess multiple health-promoting effects in humans. This review summarizes various antioxidant metabolites such as organic acids, amino acids, alkaloids, fatty acids, carotenoids, ascorbic acid, tocopherols, terpenoids, hydroxycinnamic acids, flavonoids, and anthocyanins that are distributed in different citrus species. Among these antioxidant metabolites, flavonoids are abundantly present in primitive, wild, and cultivated citrus species and possess the highest antioxidant activity. We demonstrate that the primitive and wild citrus species (e.g., Atalantia buxifolia and C. latipes) have a high level of antioxidant metabolites and are tolerant to various abiotic and biotic stresses compared with cultivated citrus species (e.g., C. sinensis and C. reticulata). Additionally, we highlight the potential usage of citrus wastes (rag, seeds, fruit peels, etc.) and the health-promoting properties of citrus metabolites. Furthermore, we summarize the genes that are involved in the biosynthesis of antioxidant metabolites in different citrus species. We speculate that the genome-engineering technologies should be used to confirm the functions of candidate genes that are responsible for the accumulation of antioxidant metabolites, which will serve as an alternative tool to breed citrus cultivars with increased antioxidant metabolites.
Collapse
|
21
|
Gupta AK, Dhua S, Sahu PP, Abate G, Mishra P, Mastinu A. Variation in Phytochemical, Antioxidant and Volatile Composition of Pomelo Fruit ( Citrus grandis (L.) Osbeck) during Seasonal Growth and Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091941. [PMID: 34579472 PMCID: PMC8467822 DOI: 10.3390/plants10091941] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 05/07/2023]
Abstract
Citrus fruits exhibit a high level of different phytoconstituents, of which the changes in the different parts of the fruit during ripening have not been thoroughly studied yet. Thus, in this study, we have investigated how different parts of pomelo fruit (Citrus grandis L.) are modified throughout the development of two consecutive growing seasons. In detail, the main phytochemical compounds, such as total phenolic content, total flavonoid content, antioxidant capacity, DPPH free radical scavenging activity, Ferric reducing antioxidant power (FRAP), and naringin and tannin content, were analyzed. A systematic metabolism of these compounds was found during the development of the fruit, but some pomelo tissues showed a fluctuating trend, suggesting a dependence on the different growing season. Focusing on the tissue distribution of these compounds, the fruit membrane contained the highest level of total phenolic and flavonoid content; fruit flavedo displayed the highest antioxidant capacities and FRAP activities, whereas maximum accumulation of naringin was noticed in fruit albedo. Instead, the highest DPPH free radical scavenging activity and tannin contents were found in the pomelo juice. Regarding the distribution of compounds, a possible bias pattern for the accumulation of those compounds has been noticed throughout the fruit development. From the GC-MS analysis, a total of 111 compounds were identified, where 91 compounds were common in both seasons. Overall, these results could be useful for the food processing industry as guidelines for excellent quality foods and for introducing health-beneficial products and components into our daily diets.
Collapse
Affiliation(s)
- Arun Kumar Gupta
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
| | - Subhamoy Dhua
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
| | - Partha Pratim Sahu
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur 784028, Assam, India;
| | - Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy;
- Correspondence: (G.A.); (P.M.); Tel.: +39-030-371-7509 (G.A.); +91-03712-267007 (ext. 5705) (P.M.)
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Tezpur 784028, Assam, India; (A.K.G.); (S.D.)
- Correspondence: (G.A.); (P.M.); Tel.: +39-030-371-7509 (G.A.); +91-03712-267007 (ext. 5705) (P.M.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy;
| |
Collapse
|
22
|
Vitalini S, Iriti M, Vinciguerra V, Garzoli S. A Comparative Study of the Chemical Composition by SPME-GC/MS and Antiradical Activity of Less Common Citrus Species. Molecules 2021; 26:molecules26175378. [PMID: 34500811 PMCID: PMC8434063 DOI: 10.3390/molecules26175378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Citrus secondary metabolites, such as terpene compounds, are very important for human health due to their bioactivity including anti-inflammatory, anti-cancer, and antioxidant effects. In this work, for the first time, the volatile chemical composition of peels and juices from four different Citrus species (C. junos, Citrus × aurantium, C. aurantium 'Bizzarria' and C. medica 'Florentina', commonly known as Yuzu jeune, Oni Yuzu, Bizzarria orange and Florence cedar, respectively) was investigated by Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS) technique and the antiradical activity was also examined. The results showed that limonene and γ-terpinene were the main volatile substances detected both in the juices and in the peels, followed by other minority compounds responsible for the phyto-complex of the unique aromas which characterize each individual analyzed Citrus species. Principal component analysis (PCA), performed on volatile compounds, showed both some correlation as well as a clear separation between the juice and the peel of each species. Among them, Oni Yuzu juice was found to be the richest in total polyphenols and flavonoids while its capacity to scavenge ABTS•+ and DPPH• radicals was similar to that of Yuzu Jeune and Bizzarria orange.
Collapse
Affiliation(s)
- Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Phytochem Lab, Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
- Center for Studies on Bioispired Agro-Environmental Technology (BAT Center), Università degli Studi di Napoli ‘Federico II’, 80055 Portici, Italy
- Correspondence: (M.I.); (S.G.)
| | - Vittorio Vinciguerra
- Department for Innovation in Biological Systems, Food and Forestry, University of Tuscia, 01100 Viterbo, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy
- Correspondence: (M.I.); (S.G.)
| |
Collapse
|
23
|
Untargeted Metabolomics of Rind Essential Oils Allowed to Differentiate Two Closely Related Clementine Varieties. PLANTS 2021; 10:plants10091789. [PMID: 34579322 PMCID: PMC8470288 DOI: 10.3390/plants10091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
Chemical characterization of clementine varieties (Citrus clementina Hort. ex Tan.) essential oils (EO) can lead to variety identification and valorization of their potential use in food and aroma industries. The goal of this study was the chemometric discrimination between two very closely related and morphologically identical clementine varieties, Clemenules (NL) and Clemenpons (PO), based on their rind EO, to identify the differential volatile organic compounds (VOCs) and to determine their antioxidant capacity. EO rind volatile profile was determined by gas chromatography coupled to mass spectrometry in Citrus fruit at different ripening stages grown two independent years in two different locations. Untargeted metabolomics and multivariate data analysis showed an evolution of EO volatile profiles markedly parallel in both varieties. Although EO qualitative composition was identical in both varieties, PLS-DA allowed the identification of characteristic VOCs, quantitatively discriminating them along all the ripening process. PO showed higher accumulation of several mono- and sesquiterpene compounds such as trans-carveol, while NL showed higher levels of aldehyde and alcohol non-terpenoids like dodecanal. Both varieties evinced identical EO antioxidant activities, indicating a similar value for food preservation. Hence, untargeted metabolomics approach based on rind EO volatiles was revealed as a powerful technique able to differentiate between morphologically undistinguishable Citrus varieties.
Collapse
|
24
|
Effect of Various Postharvest Treatment on Aroma Volatile Compounds of Blood Orange Fruit Exposed to Chilling Temperature After Long-Term Storage. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02547-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Freitas TP, Taver IB, Spricigo PC, do Amaral LB, Purgatto E, Jacomino AP. Volatile Compounds and Physicochemical Quality of Four Jabuticabas ( Plinia sp.). Molecules 2020; 25:molecules25194543. [PMID: 33023070 PMCID: PMC7582703 DOI: 10.3390/molecules25194543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/27/2023] Open
Abstract
The jabuticaba is a native Brazilian fruit that has aroused worldwide interest in terms of its nutritional composition and biological activity. However, research on the profile of volatile compounds (VOCs) emitted by these fruits is rare. This study presents the first identification of VOCs from four jabuticaba species. The aim of the study was to characterize the aromatic profile of the following species: ‘Sabará’ (Plinia jaboticaba), ‘Escarlate’ (Plinia phitrantha × Plinia cauliflora), ‘Otto Andersen’ (Plinia cauliflora), and ‘Esalq’ (Plinia phitrantha). The analysis was performed by headspace solid-phase microextraction combined with gas chromatography/mass spectrometry (SPME-GC-MS). Multivariate analysis techniques applying the partial least squares-discriminant analysis (PLS-DA) and heatmap were used to compare the results. Fruit quality parameters were determined in terms of fresh mass (g), skin color, soluble solids, and titratable acidity. A total of 117 VOCs was identified including terpenoids, esters, alcohols, aldehydes, alkanes, ketones, and carboxylic acids, with 36 VOCs common to all four species. Terpenes were the majority for all jabuticabas with smaller contributions from other volatile classes, especially β-cubebene, β-elemene, and D-limonene for the ‘Otto Andersen’ jabuticaba.
Collapse
Affiliation(s)
- Thais Pádua Freitas
- Department of Crop Science, University of São Paulo (USP), Piracicaba 13418-900, Brazil; (T.P.F.); (I.B.T.); (P.C.S.)
| | - Isabela Barroso Taver
- Department of Crop Science, University of São Paulo (USP), Piracicaba 13418-900, Brazil; (T.P.F.); (I.B.T.); (P.C.S.)
| | - Poliana Cristina Spricigo
- Department of Crop Science, University of São Paulo (USP), Piracicaba 13418-900, Brazil; (T.P.F.); (I.B.T.); (P.C.S.)
| | - Lucas Bueno do Amaral
- Department of Food Science, University of São Paulo (USP), São Paulo 05508-000, Brazil; (L.B.d.A.); (E.P.)
| | - Eduardo Purgatto
- Department of Food Science, University of São Paulo (USP), São Paulo 05508-000, Brazil; (L.B.d.A.); (E.P.)
| | - Angelo Pedro Jacomino
- Department of Crop Science, University of São Paulo (USP), Piracicaba 13418-900, Brazil; (T.P.F.); (I.B.T.); (P.C.S.)
- Correspondence: ; Tel.: +55-19-3447-6708
| |
Collapse
|
26
|
Mahmud MMC, Shellie RA, Keast R. Unravelling the relationship between aroma compounds and consumer acceptance: Coffee as an example. Compr Rev Food Sci Food Saf 2020; 19:2380-2420. [DOI: 10.1111/1541-4337.12595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/01/2020] [Accepted: 05/25/2020] [Indexed: 11/27/2022]
Affiliation(s)
- M M Chayan Mahmud
- CASS Food Research Center, School of Exercise and Nutrition SciencesDeakin University Burwood Victoria Australia
| | - Robert A. Shellie
- CASS Food Research Center, School of Exercise and Nutrition SciencesDeakin University Burwood Victoria Australia
| | - Russell Keast
- CASS Food Research Center, School of Exercise and Nutrition SciencesDeakin University Burwood Victoria Australia
| |
Collapse
|
27
|
Research Advances on Biosynthesis, Regulation, and Biological Activities of Apocarotenoid Aroma in Horticultural Plants. J CHEM-NY 2020. [DOI: 10.1155/2020/2526956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Apocarotenoids, which play important roles in the growth and development of horticultural plants, are produced by the action of carotenoid cleavage oxygenase (CCO) family members or nonenzymatic cleavage actions. Apocarotenoids are commonly found in leaves, flowers, and fruits of many horticultural plants and participate in the formation of pigments, flavors, hormones, and signaling compounds. Some of them are recognized as important aroma components of fruit and flower with aromatic odor, such as βß-ionone, β-damascenone, and 6-methyl-5-hepten-2-one in tomato fruit, and have low odor thresholds with β-ionone having odor threshold of only 0.007 ppb. In this review, the main apocarotenoid aroma components in horticultural plants were listed, and factors influencing their production were discussed at first. Then, the biosynthetic pathway of apocarotenoid aromas was briefly introduced, and the CCDs gene family was highlighted, and the nonenzymatic production of apocarotenoid aromas was also mentioned. Next, chemical and molecular regulations of apocarotenoid aromas and their biological activities were summarized. Finally, further exploration aspects needed were suggested. We anticipate that this review can afford some crucial information for comprehensive application of apocarotenoid volatile compounds in horticultural plants.
Collapse
|
28
|
Zhang H, Chen M, Wen H, Wang Z, Chen J, Fang L, Zhang H, Xie Z, Jiang D, Cheng Y, Xu J. Transcriptomic and metabolomic analyses provide insight into the volatile compounds of citrus leaves and flowers. BMC PLANT BIOLOGY 2020; 20:7. [PMID: 31906915 PMCID: PMC6945444 DOI: 10.1186/s12870-019-2222-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/30/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Previous reports have mainly focused on the volatiles in citrus fruits, and there have been few reports about the volatiles in citrus leaves and flowers. However, citrus leaves and flowers are also rich in volatile compounds with unique aromas. Here, to investigate the volatiles in citrus leaves and flowers, volatile profiling was performed on leaves from 62 germplasms and flowers from 25 germplasms. RESULTS In total, 196 and 82 volatile compounds were identified from leaves of 62 citrus germplasms and flowers of 25 citrus germplasms, respectively. The dominant volatile terpenoids were more diverse in citrus leaves than in peels. A total of 34 volatile terpenoids were commonly detected in the leaves of at least 20 germplasms, among which 31 were overaccumulated in the leaves of wild or semiwild germplasms. This result was consistent with the high expression levels of five genes and one key gene of the mevalonate and 2-C-methyl-D-erythritol-4-phosphate (MEP) biosynthetic pathways, respectively, as well as the low expression levels of geranylgeranyl diphosphate synthase of the MEP pathway, relative to the levels in cultivars. Fully open flowers showed increased levels of four terpene alcohols and a decrease in sabinene content compared with balloon-stage flowers, especially in sweet orange. A monoterpene synthase gene was identified and functionally characterized as a sabinene synthase in vitro. CONCLUSIONS Collectively, our results suggest that 31 important terpenoids are abundant in wild or semiwild citrus germplasms, possibly because of a negative effect of domestication on the volatiles in citrus leaves. The sweet smell of fully open flowers may be attributed to increased levels of four terpene alcohols. In addition, a sabinene synthase gene was identified by combined transcriptomic and metabolomic analyses.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Mengjun Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Huan Wen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zhenhua Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Liu Fang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Dong Jiang
- Citrus Research Institute of Southwest University, National Citrus Germplasm Repository, Chongqing, 400712 People’s Republic of China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
29
|
Abstract
Volatile compounds derived from carotenoid cleavage are biologically relevant molecules in plants, as they are involved in different processes of plant communication and also have a significant effect on our perception of food flavor.Here we describe two methods for the determination of volatile apocarotenoids in fruit based on extraction by means of headspace solid-phase microextraction (HS-SPME) and separation and detection by means of gas chromatography coupled to mass spectrometry (GC-MS). The first method is optimised for the detection of the complete volatile profile in Citrus fruit, including those compounds derived from carotenoids. The second is a shorter method focused to the detection of volatile apocarotenoids in the tomato fruit.
Collapse
Affiliation(s)
- José L Rambla
- Instituto de Biología Molecular y Celular de Plantas, CSIC- Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia, Spain
- Department of Agricultural and Environmental Sciences, Jaume I University, Castellón de la Plana, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC- Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, Valencia, Spain.
| |
Collapse
|
30
|
Volatile Compounds in Fruit Peels as Novel Biomarkers for the Identification of Four Citrus Species. Molecules 2019; 24:molecules24244550. [PMID: 31842378 PMCID: PMC6943597 DOI: 10.3390/molecules24244550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/01/2023] Open
Abstract
The aroma quality of citrus fruit is determined by volatile compounds, which bring about different notes to allow discrimination among different citrus species. However, the volatiles with various aromatic traits specific to different citrus species have not been identified. In this study, volatile profiles in the fruit peels of four citrus species collected from our previous studies were subjected to various analyses to mine volatile biomarkers. Principal component analysis results indicated that different citrus species could almost completely be separated. Thirty volatiles were identified as potential biomarkers in discriminating loose-skin mandarin, sweet orange, pomelo, and lemon, while 17 were identified as effective biomarkers in discriminating clementine mandarins from the other loose-skin mandarins and sweet oranges. Finally, 30 citrus germplasms were used to verify the classification based on β-elemene, valencene, nootkatone, and limettin as biomarkers. The accuracy values were 90.0%, 96.7%, 96.7%, and 100%, respectively. This research may provide a novel and effective alternative approach to identifying citrus genetic resources.
Collapse
|
31
|
Chemical and sensory analysis of commercial Navel oranges in California. NPJ Sci Food 2019; 3:22. [PMID: 31701017 PMCID: PMC6821911 DOI: 10.1038/s41538-019-0055-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/20/2019] [Indexed: 11/30/2022] Open
Abstract
Seven lots of commercially available Navel oranges grown in California were evaluated with flavoromic, metabolomic, sensory descriptive analysis, and consumer testing techniques to identify sensory and chemical drivers of liking. Eight identified chemical clusters related to numerous sensory attributes and consumer preferences. Differences in adult and child preferences led to the discovery of six consumer clusters (four adult and two child). Sweetness, overall flavor, sourness, fruity flavor, and juiciness were identified as the main sensory drivers of liking for the consumers. Fructose, glucose, and proline were among the compounds that best explained perceived sweetness while sourness was correlated with citrate and ascorbate. Perceived fruity flavor increased with higher concentrations of ethanol. We conclude that consumers differ in their preferences for Navel oranges and desire fruit that is higher in both sweetness and sourness.
Collapse
|
32
|
|
33
|
Effect of sugar reduction on flavour release and sensory perception in an orange juice soft drink model. Food Chem 2019; 284:125-132. [DOI: 10.1016/j.foodchem.2019.01.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 11/17/2022]
|
34
|
Lado J, Gurrea A, Zacarías L, Rodrigo MJ. Influence of the storage temperature on volatile emission, carotenoid content and chilling injury development in Star Ruby red grapefruit. Food Chem 2019; 295:72-81. [PMID: 31174812 DOI: 10.1016/j.foodchem.2019.05.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Abstract
Grapefruits are sensitive to develop chilling injury (CI) on the peel upon postharvest storage at low temperature. We investigated the influence of the storage at 2 and 12 °C on CI, carotenoids, and emission of volatiles by intact fruit. CI symptoms at 12 °C were restricted to green fruit peel sectors but at 2 °C the CI severity was higher and distributed through the whole fruit surface. Fruit peel coloration and carotenes content increased at 12 °C whereas experienced minor changes at 2 °C. At 2 °C the emission of total volatiles and specific monoterpenes, mainly limonene, but also linalool and α-terpineol was enhanced, while storage at 12 °C resulted in higher emission and diversity of cyclic sesquiterpenes and aliphatic esters. Results indicate a selective emission of volatiles by intact red grapefruit that appears to be a specific response to the storage temperature or to the cold-induced damage.
Collapse
Affiliation(s)
- Joanna Lado
- Instituto Nacional de Investigación Agropecuaria (INIA), Salto, Uruguay; Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain.
| | - Aránzazu Gurrea
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain.
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain.
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
35
|
González-Mas MC, Rambla JL, López-Gresa MP, Blázquez MA, Granell A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2019; 10:12. [PMID: 30804951 PMCID: PMC6370709 DOI: 10.3389/fpls.2019.00012] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 05/09/2023]
Abstract
The essential oil fraction obtained from the rind of Citrus spp. is rich in chemical compounds of interest for the food and perfume industries, and therefore has been extensively studied during the last decades. In this manuscript, we provide a comprehensive review of the volatile composition of this oil fraction and rind extracts for the 10 most studied Citrus species: C. sinensis (sweet orange), C. reticulata (mandarin), C. paradisi (grapefruit), C. grandis (pummelo), C. limon (lemon), C. medica (citron), C. aurantifolia (lime), C. aurantium (bitter orange), C. bergamia (bergamot orange), and C. junos (yuzu). Forty-nine volatile organic compounds have been reported in all 10 species, most of them terpenoid (90%), although about half of the volatile compounds identified in Citrus peel are non-terpenoid. Over 400 volatiles of different chemical nature have been exclusively described in only one of these species and some of them could be useful as species biomarkers. A hierarchical cluster analysis based on volatile composition arranges these Citrus species in three clusters which essentially mirrors those obtained with genetic information. The first cluster is comprised by C. reticulata, C. grandis, C. sinensis, C. paradisi and C. aurantium, and is mainly characterized by the presence of a larger abundance of non-terpenoid ester and aldehyde compounds than in the other species reviewed. The second cluster is comprised by C. junos, C. medica, C. aurantifolia, and C. bergamia, and is characterized by the prevalence of mono- and sesquiterpene hydrocarbons. Finally, C. limon shows a particular volatile profile with some sulfur monoterpenoids and non-terpenoid esters and aldehydes as part of its main differential peculiarities. A systematic description of the rind volatile composition in each of the species is provided together with a general comparison with those in leaves and blossoms. Additionally, the most widely used techniques for the extraction and analysis of volatile Citrus compounds are also described.
Collapse
Affiliation(s)
- M. Carmen González-Mas
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - José L. Rambla
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| | - M. Amparo Blázquez
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de València, Valencia, Spain
| |
Collapse
|
36
|
Vivian Goh RM, Lau H, Liu SQ, Lassabliere B, Guervilly R, Sun J, Bian Y, Yu B. Comparative analysis of pomelo volatiles using headspace-solid phase micro-extraction and solvent assisted flavour evaporation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Guijarro-Real C, Rodríguez-Burruezo A, Prohens J, Raigón MD, Fita A. HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Res Int 2018; 121:765-775. [PMID: 31108807 DOI: 10.1016/j.foodres.2018.12.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 11/24/2022]
Abstract
Water celery (Apium nodiflorum) is a wild plant traditionally harvested in some Mediterranean areas for being consumed raw. Despite its appreciated organoleptic properties, the aromatic profile of the fresh vegetable remains to be studied. In the present study, volatile compounds from five wild populations were extracted by the headspace-solid phase microextraction technique, analysed by gas cromatography-mass spectrometry, and compared to related crops. The wild species had a high number of aromatic compounds. It was rich in monoterpenes (49.2%), sesquiterpenes (39.4%) and phenylpropanoids (9.6%), with quantitative differences among populations, in absolute terms and relative abundance. On average, germacrene D was the main compound (16.6%), followed by allo-ocimene (11.9%) and limonene (11.1%). Only in one population, the levels of limonene were greater than those of germacrene D. Among phenylpropanoids, dillapiol displayed the highest levels, and co-occurred with myristicin in all populations except one. These differences may have a genetic component, which would indicate the possibility of establishing selection programmes for the development of water celery as a crop adapted to different market preferences. On the other hand, comparison with related crops revealed some similarities among individual volatiles present in the different crops, which would be responsible of the common aroma notes. However, water celery displayed a unique profile, which was in addition quantitatively richer than others. Thus, this differentiation may promote the use of water celery as a new crop.
Collapse
Affiliation(s)
- Carla Guijarro-Real
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Adrián Rodríguez-Burruezo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - María D Raigón
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Ana Fita
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
38
|
Yu Y, Bai J, Chen C, Plotto A, Baldwin EA, Gmitter FG. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1124-1131. [PMID: 28731231 DOI: 10.1002/jsfa.8563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Citrus fruit flavor is an important attribute prioritized in variety improvement. The present study compared juice volatiles compositions from 13 selected citrus genotypes, including six mandarins (Citrus reticulata), three sour oranges (Citrus aurantium), one blood orange (Citrus sinensis), one lime (Citrus limonia), one Clementine (Citrus clementina) and one satsuma (Citrus unshiu). RESULTS Large differences were observed with respect to volatile compositions among the citrus genotypes. 'Goutou' sour orange contained the greatest number of volatile compounds and the largest volatile production level. 'Ponkan' mandarin had the smallest number of volatiles and 'Owari' satsuma yielded the lowest volatile production level. 'Goutou' sour orange and 'Moro' blood orange were clearly distinguished from other citrus genotypes based on the analysis of volatile compositions, even though they were assigned into one single group with two other sour oranges by the molecular marker profiles. CONCLUSIONS The clustering analysis based on the aroma volatile compositions was able to differentiate mandarin varieties and natural sub-groups, and was also supported by the molecular marker study. The gas chromatography-mass spectrometry analysis of citrus juice aroma volatiles can be used as a tool to distinguish citrus genotypes and assist in the assessment of future citrus breeding programs. The aroma volatile profiles of the different citrus genotypes and inter-relationships detected among volatile compounds and among citrus genotypes will provide fundamental information on the development of marker-assisted selection in citrus breeding. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Jinhe Bai
- Horticultural Research Laboratory, ARS, USDA, Fort Pierce, FL, USA
| | - Chunxian Chen
- Southeastern Fruit and Tree Nut Research Laboratory, ARS, USDA, Byron, GA, USA
| | - Anne Plotto
- Horticultural Research Laboratory, ARS, USDA, Fort Pierce, FL, USA
| | | | - Frederick G Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
39
|
Feng S, Suh JH, Gmitter FG, Wang Y. Differentiation between Flavors of Sweet Orange ( Citrus sinensis) and Mandarin ( Citrus reticulata). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:203-211. [PMID: 0 DOI: 10.1021/acs.jafc.7b04968] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Shi Feng
- Department
of Food Science and Human Nutrition, University of Florida, 572 Newell
Drive, Gainesville, Florida 32611, United States
| | | | | | | |
Collapse
|
40
|
Pripdeevech P, Rothwell J, D’Souza PE, Panuwet P. Differentiation of volatile profiles of Thai Oolong tea No. 12 provenances by SPME-GC-MS combined with principal component analysis. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1374288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Patcharee Pripdeevech
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai, Thailand
| | - Joseph Rothwell
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Priya E. D’Souza
- Analytical Exposure Science and Environmental Health Laboratory, Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Parinya Panuwet
- Analytical Exposure Science and Environmental Health Laboratory, Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
41
|
López-Gresa MP, Payá C, Ozáez M, Rodrigo I, Conejero V, Klee H, Bellés JM, Lisón P. A New Role For Green Leaf Volatile Esters in Tomato Stomatal Defense Against Pseudomonas syringe pv. tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1855. [PMID: 30619420 PMCID: PMC6305539 DOI: 10.3389/fpls.2018.01855] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/30/2018] [Indexed: 05/20/2023]
Abstract
The volatile esters of (Z)-3-hexenol with acetic, propionic, isobutyric, or butyric acids are synthesized by alcohol acyltransferases (AAT) in plants. These compounds are differentially emitted when tomato plants are efficiently resisting an infection with Pseudomonas syringae pv. tomato. We have studied the defensive role of these green leaf volatile (GLV) esters in the tomato response to bacterial infection, by analyzing the induction of resistance mediated by these GLVs and the phenotype upon bacterial infection of tomato plants impaired in their biosynthesis. We observed that treatments of plants with (Z)-3-hexenyl propionate (HP) and, to a greater extent with (Z)-3-hexenyl butyrate (HB), resulted in stomatal closure, PR gene induction and enhanced resistance to the bacteria. HB-mediated stomatal closure was also effective in several plant species belonging to Nicotiana, Arabidopsis, Medicago, Zea and Citrus genus, and both stomatal closure and resistance were induced in HB-treated NahG tomato plants, which are deficient in salicylic acid (SA) accumulation. Transgenic antisense AAT1 tomato plants, which displayed a reduction of ester emissions upon bacterial infection in leaves, exhibited a lower ratio of stomatal closure and were hyper-susceptible to bacterial infection. Our results confirm the role of GLV esters in plant immunity, uncovering a SA-independent effect of HB in stomatal defense. Moreover, we identified HB as a natural stomatal closure compound with potential agricultural applications.
Collapse
Affiliation(s)
- María Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Celia Payá
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Miguel Ozáez
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Conejero
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Harry Klee
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - José María Bellés
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
- *Correspondence: Purificación Lisón
| |
Collapse
|
42
|
Quality Parameters, Volatile Composition, and Sensory Profiles of Highly Endangered Spanish Citrus Fruits. J FOOD QUALITY 2018. [DOI: 10.1155/2018/3475461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is very little information available on the chemical composition and the quality attributes of the citrus species studied which are truly endangered in Spain. None of the fruits studied is available for commercial purposes, which is the main interest and novelty of this study. The aim of this work was to fully describe the morphology, volatile composition, and sensory profile of traditional citrus fruits: sour lime (SoLi), sweet lime (SwLi), and sweet lemon (SwLe), to have the information to convince farmers and growers to cultivate these fruits again. The predominant sugar was fructose while citric acid prevails in SoLi and SwLe. Regarding volatiles compounds, monoterpenes, monoterpenoids, and esters predominated in the juices, and these three families plus sesquiterpenes in the peels. The juice of SoLi presented the highest content of esters (14.8%), SwLi juice presented similar values of both monoterpenes and monoterpenoids (46.1 and 46.0%, resp.), and SwLe juice had the highest content of monoterpenes (72.2%). The results demonstrated the high potential of these citrus materials for the agrofood industry. Therefore, it will be possible to recover these vegetal materials at risk of disappearing for potential uses by the food industry and simultaneously help maintaining the biodiversity.
Collapse
|
43
|
Profiling of volatile fragrant components in a mini-core collection of mango germplasms from seven countries. PLoS One 2017; 12:e0187487. [PMID: 29211747 PMCID: PMC5718421 DOI: 10.1371/journal.pone.0187487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/15/2017] [Indexed: 12/27/2022] Open
Abstract
Aroma is important in assessing the quality of fresh fruit and their processed products, and could provide good indicators for the development of local cultivars in the mango industry. In this study, the volatile diversity of 25 mango cultivars from China, America, Thailand, India, Cuba, Indonesia, and the Philippines was investigated. The volatile compositions, their relative contents, and the intervarietal differences were detected with headspace solid phase microextraction tandem gas chromatography-mass spectrometer methods. The similarities were also evaluated with a cluster analysis and correlation analysis of the volatiles. The differences in mango volatiles in different districts are also discussed. Our results show significant differences in the volatile compositions and their relative contents among the individual cultivars and regions. In total, 127 volatiles were found in all the cultivars, belonging to various chemical classes. The highest and lowest qualitative abundances of volatiles were detected in 'Zihua' and 'Mallika' cultivars, respectively. Based on the cumulative occurrence of members of the classes of volatiles, the cultivars were grouped into monoterpenes (16 cultivars), proportion and balanced (eight cultivars), and nonterpene groups (one cultivars). Terpene hydrocarbons were the major volatiles in these cultivars, with terpinolene, 3-carene, caryophyllene and α-Pinene the dominant components depending on the cultivars. Monoterpenes, some of the primary volatile components, were the most abundant aroma compounds, whereas aldehydes were the least abundant in the mango pulp. β-Myrcene, a major terpene, accounted for 58.93% of the total flavor volatile compounds in 'Xiaofei' (Philippens). γ-Octanoic lactone was the only ester in the total flavor volatile compounds, with its highest concentration in 'Guiya' (China). Hexamethyl cyclotrisiloxane was the most abundant volatile compound in 'Magovar' (India), accounting for 46.66% of the total flavor volatiles. A typical aldehydic aroma 2,6-di-tert-butyl-4-sec-butylphenol, was detected in 'Gleck'. A highly significant positive correlation was detected between Alc and K, Alk and Nt, O and L. Cultivars originating from America, Thailand, Cuba, India, Indonesia and the Philippines were more similar to each other than to those from China. This study provides a high-value dataset for use in development of health care products, diversified mango breeding, and local extension of mango cultivars.
Collapse
|
44
|
Cuevas FJ, Pereira-Caro G, Moreno-Rojas JM, Muñoz-Redondo JM, Ruiz-Moreno MJ. Assessment of premium organic orange juices authenticity using HPLC-HR-MS and HS-SPME-GC-MS combining data fusion and chemometrics. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Molecular basis for the behavioral effects of the odorant degrading enzyme Esterase 6 in Drosophila. Sci Rep 2017; 7:46188. [PMID: 28393888 PMCID: PMC5385555 DOI: 10.1038/srep46188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/10/2017] [Indexed: 01/10/2023] Open
Abstract
Previous electrophysiological and behavioural studies implicate esterase 6 in the processing of the pheromone cis-vaccenyl acetate and various food odorants that affect aggregation and reproductive behaviours. Here we show esterase 6 has relatively high activity against many of the short-mid chain food esters, but negligible activity against cis-vaccenyl acetate. The crystal structure of esterase 6 confirms its substrate-binding site can accommodate many short-mid chain food esters but not cis-vaccenyl acetate. Immunohistochemical assays show esterase 6 is expressed in non-neuronal cells in the third antennal segment that could be accessory or epidermal cells surrounding numerous olfactory sensilla, including basiconics involved in food odorant detection. Esterase 6 is also produced in trichoid sensilla, but not in the same cell types as the cis-vaccenyl acetate binding protein LUSH. Our data support a model in which esterase 6 acts as a direct odorant degrading enzyme for many bioactive food esters, but not cis-vaccenyl acetate.
Collapse
|
46
|
Aznar M, Úbeda S, Nerin C, Kabir A, Furton KG. Fabric phase sorptive extraction as a reliable tool for rapid screening and detection of freshness markers in oranges. J Chromatogr A 2017; 1500:32-42. [PMID: 28433435 DOI: 10.1016/j.chroma.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/03/2023]
Abstract
A simple, fast and sensitive analyte extraction method based on fabric phase sorptive extraction (FPSE) followed by gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) analysis was developed for the analysis of 12 volatile compounds that represent most of the principal chemical families possessing different polarities and volatilities. Five FPSE media coated with different sol-gel sorbent chemistries having different polarities and selectivities were studied: long chain poly(dimethylsiloxane) (PDMS), short chain poly(tetrahydrofuran) (PTHF), Carbowax 20M (CW20M), short chain poly(dimethyl siloxane) (SC PDMS) and polyethylene glycol-polypropylene glycol-polyethylene glycol triblock copolymer (PEG-PPG-PEG). CW20M coated FPSE media was found to be the most efficient extraction media for the analytes of interest in the intended study. The developed methodology was applied to the analysis of orange juice obtained from fresh oranges and oranges after storing at 5°C for two months in order to identify the best chemical markers, both volatiles and non-volatiles, attributed to the freshness of orange. For this purpose, aliquots of the same juice extracts were analysed by GC-MS as well as by UPLC-QTOF-MS. Monoterpenes and terpenoids, such as terpinene, citronellal or estragole were among the volatile compounds that endured the biggest decrease after the extended storage period. Three non-volatile compounds including one amide (subaphyllin) and two flavanoids (tangeretin and nobiletin) also showed a clear decrease in signal intensity (>70%) after orange stored for two months.
Collapse
Affiliation(s)
- M Aznar
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018, Zaragoza, Spain
| | - S Úbeda
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018, Zaragoza, Spain
| | - C Nerin
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018, Zaragoza, Spain.
| | - A Kabir
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| | - K G Furton
- International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| |
Collapse
|
47
|
Cuevas FJ, Moreno-Rojas JM, Ruiz-Moreno MJ. Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges. Food Chem 2017; 221:1930-1938. [DOI: 10.1016/j.foodchem.2016.11.156] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
|
48
|
Zhang H, Xie Y, Liu C, Chen S, Hu S, Xie Z, Deng X, Xu J. Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chem 2017; 230:316-326. [PMID: 28407917 DOI: 10.1016/j.foodchem.2017.03.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 01/02/2023]
Abstract
The volatile profiles of fruit peels and juice sacs from 108 citrus accessions representing seven species were analyzed. Using GC-MS 162 and 107 compounds were determined in the peels and juice sacs, respectively. In the peels, monoterpene alcohols were accumulated in loose-skin mandarins; clementine tangerines and papedas were rich in sesquiterpene alcohols, sesquiterpenes, monoterpene alcohols and monoterpene aldehydes. β-pinene and sabinene were specifically accumulated in 4 of 5 lemon germplasms. Furthermore, concentrations of 34 distinctive compounds were selected to best represent the volatile profiles of seven species for HCA analysis, and the clustering results were in agreement with classic citrus taxonomy. Comparison of profiles from different growing seasons and production areas indicated that environmental factors play important roles in volatile metabolism. In addition, a few citrus germplasms that accumulated certain compounds were determined as promising breeding materials. Notably, volatile biosynthesis via MVA pathway in C. ichangensis 'Huaihua' was enhanced.
Collapse
Affiliation(s)
- Haipeng Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yunxia Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Shilin Chen
- Agricultural Bureau of Yichang District, Yiling 443310, PR China.
| | - Shuangshuang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Collene of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
49
|
Qin XW, Lai JX, Tan LH, Hao CY, Li FP, He SZ, Song YH. Characterization of volatile compounds in Criollo, Forastero, and Trinitario cocoa seeds (Theobroma cacao L.) in China. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1236270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiao-Wei Qin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan, China
| | - Jian-Xiong Lai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
| | - Le-He Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
| | - Chao-Yun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan, China
| | - Fu-Peng Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
| | - Shu-Zhen He
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan, China
| | - Ying-Hui Song
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Science (CATAS), Wanning, Hainan, China
| |
Collapse
|
50
|
Alquézar B, Rodríguez A, de la Peña M, Peña L. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1481. [PMID: 28883829 PMCID: PMC5573811 DOI: 10.3389/fpls.2017.01481] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/09/2017] [Indexed: 05/17/2023]
Abstract
Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa y Desenvolvimento, Fundo de Defesa da CitriculturaAraraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas and Universidad Politécnica de ValenciaValencia, Spain
| | - Ana Rodríguez
- Laboratório de Biotecnologia Vegetal, Pesquisa y Desenvolvimento, Fundo de Defesa da CitriculturaAraraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas and Universidad Politécnica de ValenciaValencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas and Universidad Politécnica de ValenciaValencia, Spain
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa y Desenvolvimento, Fundo de Defesa da CitriculturaAraraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas and Universidad Politécnica de ValenciaValencia, Spain
- *Correspondence: Leandro Peña
| |
Collapse
|