1
|
Paik SS, Lee JM, Ko IG, Kim SR, Kang SW, An J, Kim JA, Kim D, Hwang L, Jin JJ, Kim SH, Cha JY, Choi CW. Pirfenidone Alleviates Inflammation and Fibrosis of Acute Respiratory Distress Syndrome by Modulating the Transforming Growth Factor-β/Smad Signaling Pathway. Int J Mol Sci 2024; 25:8014. [PMID: 39125585 PMCID: PMC11311955 DOI: 10.3390/ijms25158014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) occurs as an acute onset condition, and patients present with diffuse alveolar damage, refractory hypoxemia, and non-cardiac pulmonary edema. ARDS progresses through an initial exudative phase, an inflammatory phase, and a final fibrotic phase. Pirfenidone, a powerful anti-fibrotic agent, is known as an agent that inhibits the progression of fibrosis in idiopathic pulmonary fibrosis. In this study, we studied the treatment efficiency of pirfenidone on lipopolysaccharide (LPS) and bleomycin-induced ARDS using rats. The ARDS rat model was created by the intratracheal administration of 3 mg/kg LPS of and 3 mg/kg of bleomycin dissolved in 0.2 mL of normal saline. The pirfenidone treatment group was administered 100 or 200 mg/kg of pirfenidone dissolved in 0.5 mL distilled water orally 10 times every 2 days for 20 days. The administration of LPS and bleomycin intratracheally increased lung injury scores and significantly produced pro-inflammatory cytokines. ARDS induction increased the expressions of transforming growth factor (TGF)-β1/Smad-2 signaling factors. Additionally, matrix metalloproteinase (MMP)-9/tissue inhibitor of metalloproteinase (TIMP)-1 imbalance occurred, resulting in enhanced fibrosis-related factors. Treatment with pirfenidone strongly suppressed the expressions of TGF-β1/Smad-2 signaling factors and improved the imbalance of MMP-9/TIMP-1 compared to the untreated group. These effects led to a decrease in fibrosis factors and pro-inflammatory cytokines, promoting the recovery of damaged lung tissue. These results of this study showed that pirfenidone administration suppressed inflammation and fibrosis in the ARDS animal model. Therefore, pirfenidone can be considered a new early treatment for ARDS.
Collapse
Affiliation(s)
- Seung Sook Paik
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.S.P.); (D.K.)
| | - Jeong Mi Lee
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Il-Gyu Ko
- Research Support Center, School of Medicine, Keimyung University, Deagu 42601, Republic of Korea;
| | - Sae Rom Kim
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Sung Wook Kang
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Jin An
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| | - Jin Ah Kim
- Department of Nursing, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dongyon Kim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.S.P.); (D.K.)
| | - Lakkyong Hwang
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (L.H.); (J.-J.J.)
| | - Jun-Jang Jin
- Team of Efficacy Evaluation, Orient Genia Inc., Seongnam 13201, Republic of Korea; (L.H.); (J.-J.J.)
| | - Sang-Hoon Kim
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, The Stat University of New Jersey, Piscataway, NJ 08854, USA;
| | - Jun-Youl Cha
- Department of Sports and Martial Arts, Howon University, Gunsan 54058, Republic of Korea;
| | - Cheon Woong Choi
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea; (J.M.L.); (S.R.K.); (S.W.K.); (J.A.)
| |
Collapse
|
2
|
Alekhmimi NK, Raddadi Z, Alabdulwahed AA, Eissa S, Cialla-May D, Popp J, Al-Kattan K, Zourob M. Paper-Based Biosensor for the Detection of Sepsis Using MMP-9 Biomarker in FIP Mice Model. BIOSENSORS 2023; 13:804. [PMID: 37622890 PMCID: PMC10452393 DOI: 10.3390/bios13080804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Sepsis is an immune response to a microbial invasion that causes organ injury and dysfunction due to a systemic inflammatory response. Sepsis is a serious, life-threatening condition and a widely recognized global health challenge. Given its high death rate, it is critical to diagnose sepsis and start treatment as early as possible. There is an urgent need for a sensitive and rapid screening method for detecting sepsis. In this study, we investigated the use of MMP-9 as a biomarker for sepsis. A colorimetric paper-based biosensor was used for the detection of MMP-9 utilizing peptide-magnetic nanoparticle conjugates. The method is based on the cleavage of the MMP-9-specific peptide by the protease leading to the detaching of the magnetic beads from the sensor surface and changing of color. A fecal intraperitoneal (FIP) challenge was used to induce sepsis in mice, and an MMP-9 secretion was measured by taking blood and Bronchoalveolar Lavage (BAL) fluid samples at 1 h, 2 h, 4 h, and 20 h (early sepsis) post-challenge intervals. The results of the paper-based sensor for the detection of MMP-9 levels in blood samples and BAL samples were compared with ELISA and Western Blot. We found that both blood and BAL levels of MMP-9 increased immediately and could be detected as early as 1 h in FIP mice post-challenge. Our work adds evidence to the assertion that MMP-9 is a reliable biomarker for the detection of sepsis at early stages.
Collapse
Affiliation(s)
- Nuha Khalid Alekhmimi
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia;
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07745 Jena, Germany; (D.C.-M.); (J.P.)
| | - Zeyad Raddadi
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital and Research Center, Riyadh 13541, Saudi Arabia;
| | | | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Dana Cialla-May
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07745 Jena, Germany; (D.C.-M.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert Einstein Straße 9, 07745 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07745 Jena, Germany; (D.C.-M.); (J.P.)
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert Einstein Straße 9, 07745 Jena, Germany
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia;
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
3
|
Yao RQ, Shen Z, Ma QM, Ling P, Wei CR, Zheng LY, Duan Y, Li W, Zhu F, Sun Y, Wu GS. Combination of transcriptional biomarkers and clinical parameters for early prediction of sepsis indued acute respiratory distress syndrome. Front Immunol 2023; 13:1084568. [PMID: 36685531 PMCID: PMC9846102 DOI: 10.3389/fimmu.2022.1084568] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Objective As a common yet intractable complication of severe sepsis, acute respiratory distress syndrome (ARDS) is closely associated with poor clinical outcomes and elevated medical expenses. The aim of the current study is to generate a model combining transcriptional biomarkers and clinical parameters to alarm the development of ARDS in septic patients. Methods Gene expression profile (GSE66890) was downloaded from the Gene Expression Omnibus database and clinical data were extracted. Differentially expressed genes (DEGs) from whole blood leukocytes were identified between patients with sepsis alone and septic patients who develop ARDS. ARDS prediction model was constructed using backward stepwise regression and Akaike Information Criterion (AIC). Meanwhile, a nomogram based on this model was established, with subsequent internal validation. Results A total of 57 severe septic patients were enrolled in this study, and 28 (49.1%) developed ARDS. Based on the differential expression analysis, six DEGs (BPI, OLFM4, LCN2, CD24, MMP8 and MME) were screened. According to the outcome prediction model, six valuable risk factors (direct lung injury, shock, tumor, BPI, MME and MMP8) were incorporated into a nomogram, which was used to predict the onset of ARDS in septic patients. The calibration curves of the nomogram showed good consistency between the probabilities and observed values. The decision curve analysis also revealed the potential clinical usefulness of the nomogram. The area under the receiver operating characteristic (AUROC) for the prediction of ARDS occurrence in septic patients by the nomogram was 0.86 (95% CI = 0.767-0.952). A sensitivity analysis showed that the AUROC for the prediction of ARDS development in septic patients without direct lung injury was 0.967 (95% CI = 0.896-1.0). Conclusions The nomogram based on transcriptional biomarkers and clinical parameters showed a good performance for the prediction of ARDS occurrence in septic patients.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zong Shen
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qi-Min Ma
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ping Ling
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chen-Ru Wei
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yu Duan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Wei Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Feng Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yu Sun
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guo-Sheng Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Guo-Sheng Wu,
| |
Collapse
|
4
|
Sinha P, Delucchi KL, Chen Y, Zhuo H, Abbott J, Wang C, Wickersham N, McNeil JB, Jauregui A, Ke S, Vessel K, Gomez A, Hendrickson CM, Kangelaris KN, Sarma A, Leligdowicz A, Liu KD, Matthay MA, Ware LB, Calfee CS. Latent class analysis-derived subphenotypes are generalisable to observational cohorts of acute respiratory distress syndrome: a prospective study. Thorax 2022; 77:13-21. [PMID: 34253679 PMCID: PMC8688287 DOI: 10.1136/thoraxjnl-2021-217158] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
RATIONALE Using latent class analysis (LCA), two subphenotypes of acute respiratory distress syndrome (ARDS) have consistently been identified in five randomised controlled trials (RCTs), with distinct biological characteristics, divergent outcomes and differential treatment responses to randomised interventions. Their existence in unselected populations of ARDS remains unknown. We sought to identify subphenotypes in observational cohorts of ARDS using LCA. METHODS LCA was independently applied to patients with ARDS from two prospective observational cohorts of patients admitted to the intensive care unit, derived from the Validating Acute Lung Injury markers for Diagnosis (VALID) (n=624) and Early Assessment of Renal and Lung Injury (EARLI) (n=335) studies. Clinical and biological data were used as class-defining variables. To test for concordance with prior ARDS subphenotypes, the performance metrics of parsimonious classifier models (interleukin 8, bicarbonate, protein C and vasopressor-use), previously developed in RCTs, were evaluated in EARLI and VALID with LCA-derived subphenotypes as the gold-standard. RESULTS A 2-class model best fit the population in VALID (p=0.0010) and in EARLI (p<0.0001). Class 2 comprised 27% and 37% of the populations in VALID and EARLI, respectively. Consistent with the previously described 'hyperinflammatory' subphenotype, Class 2 was characterised by higher proinflammatory biomarkers, acidosis and increased shock and worse clinical outcomes. The similarities between these and prior RCT-derived subphenotypes were further substantiated by the performance of the parsimonious classifier models in both cohorts (area under the curves 0.92-0.94). The hyperinflammatory subphenotype was associated with increased prevalence of chronic liver disease and neutropenia and reduced incidence of chronic obstructive pulmonary disease. Measurement of novel biomarkers showed significantly higher levels of matrix metalloproteinase-8 and markers of endothelial injury in the hyperinflammatory subphenotype, whereas, matrix metalloproteinase-9 was significantly lower. CONCLUSION Previously described subphenotypes are generalisable to unselected populations of non-trauma ARDS.
Collapse
Affiliation(s)
- Pratik Sinha
- Department of Anesthesiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Kevin L Delucchi
- Department of Psychiatry, University of California San Francisco, San Francisco, California, USA
| | - Yue Chen
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Hanjing Zhuo
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - Jason Abbott
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - Chunxue Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nancy Wickersham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - J Brennan McNeil
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alejandra Jauregui
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Serena Ke
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kathryn Vessel
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Antonio Gomez
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| | - Carolyn M Hendrickson
- Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, USA
| | - Kirsten N Kangelaris
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
- University of California San Francisco, San Francisco, California, USA
| | - Aartik Sarma
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
| | | | - Kathleen D Liu
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carolyn S Calfee
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Jones TK, Reilly JP, Anderson BJ, Miano TA, Dunn TG, Weisman AR, Agyekum R, Feng R, Ittner CA, Shashaty MG, Meyer NJ. Elevated Plasma Levels of Matrix Metalloproteinase-3 and Tissue-Inhibitor of Matrix Metalloproteinases-1 Associate With Organ Dysfunction and Mortality in Sepsis. Shock 2022; 57:41-47. [PMID: 34265829 PMCID: PMC8663538 DOI: 10.1097/shk.0000000000001833] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Matrix Metalloproteinases (MMP) respond to tissue damage during sepsis. Higher plasma concentrations of MMPs and the tissue-inhibitor of matrix metalloproteinases (TIMP) have been reported in sepsis compared with healthy controls. The objective of this study was to examine if plasma levels of MMP-3, MMP-9, and TIMP-1 associate with mortality and organ dysfunction during sepsis. METHODS We conducted a prospective cohort study of critically ill patients with sepsis adjudicated per Sepsis-3 criteria at a tertiary academic medical center. We measured plasma concentrations of MMP-3, MMP-9, and TIMP-1 on intensive care unit admission. We phenotyped the subjects for shock, acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), and mortality at 30 days. We used logistic regression to test the associations between the MMPs and TIMP-1 with shock, ARDS, AKI, and mortality. RESULTS Higher plasma TIMP-1 levels were associated with shock (odds ratio [OR] 1.51 per log increase [95% CI 1.25, 1.83]), ARDS (OR 1.24 [95% CI 1.05, 1.46]), AKI (OR 1.18 [95% CI 1.01, 1.38]), and mortality (OR 1.20 [95% CI 1.05, 1.46]. Higher plasma MMP-3 concentrations were associated with shock (OR 1.40 [95% CI 1.12, 1.75]) and mortality (OR 1.24 [95% CI 1.03, 1.48]) whereas MMP-9 levels were not associated with outcomes. Higher plasma TIMP-1 to MMP-3 ratios were associated with shock (OR 1.41 [95% CI 1.15, 1.72], P = 0.02). CONCLUSION Elevated plasma concentrations of TIMP-1 associate with organ dysfunction and mortality in sepsis. Higher plasma levels of MMP-3 associate with shock and mortality. Plasma MMP and TIMP-1 may warrant further investigation as emerging sepsis theragnostic biomarkers.
Collapse
Affiliation(s)
- Tiffanie K. Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John P. Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian J. Anderson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Todd A. Miano
- Division of Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas G. Dunn
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ariel R. Weisman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roseline Agyekum
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rui Feng
- Division of Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caroline A.G. Ittner
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael G.S. Shashaty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Rayavara K, Kurosky A, Hosakote YM. Respiratory syncytial virus infection induces the release of transglutaminase 2 from human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2022; 322:L1-L12. [PMID: 34704843 PMCID: PMC8721898 DOI: 10.1152/ajplung.00013.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen that causes severe lower respiratory tract infections in young children, the elderly, and the immunocompromised, yet no effective treatments or vaccines are available. The precise mechanism underlying RSV-induced acute airway disease and associated sequelae are not fully understood; however, early lung inflammatory and immune events are thought to play a major role in the outcome of the disease. Moreover, oxidative stress responses in the airways play a key role in the pathogenesis of RSV. Oxidative stress has been shown to elevate cytosolic calcium (Ca2+) levels, which in turn activate Ca2+-dependent enzymes, including transglutaminase 2 (TG2). Transglutaminase 2 is a multifunctional cross-linking enzyme implicated in various physiological and pathological conditions; however, its involvement in respiratory virus-induced airway inflammation is largely unknown. In this study, we demonstrated that RSV-induced oxidative stress promotes enhanced activation and release of TG2 from human lung epithelial cells as a result of its translocation from the cytoplasm and subsequent release into the extracellular space, which was mediated by Toll-like receptor (TLR)-4 and NF-κB pathways. Antioxidant treatment significantly inhibited RSV-induced TG2 extracellular release and activation via blocking viral replication. Also, treatment of RSV-infected lung epithelial cells with TG2 inhibitor significantly reduced RSV-induced matrix metalloprotease activities. These results suggested that RSV-induced oxidative stress activates innate immune receptors in the airways, such as TLRs, that can activate TG2 via the NF-κB pathway to promote cross-linking of extracellular matrix proteins, resulting in enhanced inflammation.
Collapse
Affiliation(s)
- Kempaiah Rayavara
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Alexander Kurosky
- 2Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Yashoda M. Hosakote
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
7
|
Sinha P, Bos LD. Pathophysiology of the Acute Respiratory Distress Syndrome: Insights from Clinical Studies. Crit Care Clin 2021; 37:795-815. [PMID: 34548134 PMCID: PMC8149201 DOI: 10.1016/j.ccc.2021.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pratik Sinha
- Division of Clinical and Translational Research, Department of Anesthesia, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8054, St Louis, MO 63110, USA.
| | - Lieuwe D Bos
- Department of Respiratory Medicine, Infection and Immunity, Amsterdam University Medical Center, AMC, Meibergdreef 9, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
8
|
Yamashita M, Niisato M, Kawasaki Y, Karaman S, Robciuc MR, Shibata Y, Ishida Y, Nishio R, Masuda T, Sugai T, Ono M, Tuder RM, Alitalo K, Yamauchi K. VEGF-C/VEGFR-3 signaling in macrophages ameliorates acute lung injury. Eur Respir J 2021; 59:13993003.00880-2021. [PMID: 34446463 DOI: 10.1183/13993003.00880-2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/14/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE Successful recovery from acute lung injury requires inhibition of neutrophil influx and clearance of apoptotic neutrophils. However, the mechanisms underlying recovery remain unclear. OBJECTIVES We investigated the ameliorative effects of vascular endothelial growth factor receptor-3 (VEGFR-3)/VEGF-C signaling in macrophages in lipopolysaccharide-induced lung injury. METHODS Lipopolysaccharides were intranasally injected into wild-type and transgenic mice. Gain- and loss- of VEGF-C/VEGFR-3 signaling function experiments employed adenovirus-mediated intranasal delivery of VEGF-C (Ad-VEGF-C vector) and soluble VEGFR-3, or, anti-VEGFR-3 blocking antibodies and mice with a deletion of VEGFR-3 in myeloid cells. MEASUREMENTS AND MAIN RESULTS The early phase of lung injury was significantly alleviated by the overexpression of VEGF-C with increased levels of bronchoalveolar lavage fluid (BALF) interleukin (IL)-10, but worsened in the later phase by VEGFR-3 inhibition upon administration of Ad-sVEGFR-3 vector. Injection of anti-VEGFR-3 antibodies to the mice in the resolution phase inhibited recovery from lung injury. The VEGFR-3 deleted mice had a shorter survival time than littermates and more severe lung injury in the resolution phase. Alveolar macrophages in the resolution phase digested most of extrinsic apoptotic neutrophils, and VEGF-C/VEGFR-3 signaling increased efferocytosis via upregulation of integrin alpha v in the macrophages. We also found that incubation with BALF from acute respiratory distress syndrome (ARDS) patients, but not from controls, decreases VEGFR-3 expression and the efficiency of IL-10 expression and efferocytosis in human monocyte-derived macrophages. CONCLUSIONS VEGFR-3/VEGF-C signaling in macrophages ameliorates experimental lung injury. This mechanism may provide an explanation also for ARDS resolution.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Morioka, Japan
| | - Miyuki Niisato
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yasushi Kawasaki
- Department of Health Chemistry, Iwate Medical University School of Pharmacology, Shiwa, Japan
| | - Sinem Karaman
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, Finland
| | - Marius R Robciuc
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, Finland
| | - Yuji Shibata
- Department of Pathology, Iwate Medical University School of Medicine, Japan
| | - Yoji Ishida
- Department of Hematology, Iwate Medical University School of Medicine, Japan
| | | | - Tomoyuki Masuda
- Department of Pathology, Iwate Medical University School of Medicine, Japan
| | - Tamotsu Sugai
- Department of Pathology, Iwate Medical University School of Medicine, Japan
| | - Masao Ono
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, CO, USA
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, University of Helsinki, Finland
| | - Kohei Yamauchi
- Department of Pulmonary Medicine, Allergy and Immunological Diseases, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
9
|
Meizlish ML, Pine AB, Bishai JD, Goshua G, Nadelmann ER, Simonov M, Chang CH, Zhang H, Shallow M, Bahel P, Owusu K, Yamamoto Y, Arora T, Atri DS, Patel A, Gbyli R, Kwan J, Won CH, Dela Cruz C, Price C, Koff J, King BA, Rinder HM, Wilson FP, Hwa J, Halene S, Damsky W, van Dijk D, Lee AI, Chun HJ. A neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood Adv 2021; 5:1164-1177. [PMID: 33635335 PMCID: PMC7908851 DOI: 10.1182/bloodadvances.2020003568] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of more than 3300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, hepatocyte growth factor, interleukin-8, and granulocyte colony-stimulating factor, which were the strongest predictors of critical illness. Evidence of neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, these data suggest a central role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular markers that distinguish patients at risk of future clinical decompensation.
Collapse
Affiliation(s)
| | | | - Jason D Bishai
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT
| | - George Goshua
- Section of Hematology, Department of Internal Medicine
| | | | - Michael Simonov
- Clinical and Translational Research Accelerator, Department of Internal Medicine
- Department of Dermatology, and
| | - C-Hong Chang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
| | - Hanming Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
| | - Marcus Shallow
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
| | - Parveen Bahel
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
| | - Kent Owusu
- Department of Pharmacy, Yale New Haven Health System, New Haven, CT
| | - Yu Yamamoto
- Clinical and Translational Research Accelerator, Department of Internal Medicine
| | - Tanima Arora
- Clinical and Translational Research Accelerator, Department of Internal Medicine
| | - Deepak S Atri
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA; and
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine
| | - Rana Gbyli
- Section of Hematology, Department of Internal Medicine
| | - Jennifer Kwan
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
| | - Christine H Won
- Section of Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Charles Dela Cruz
- Section of Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Christina Price
- Section of Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Jonathan Koff
- Section of Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, and
| | - Brett A King
- Section of Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Henry M Rinder
- Section of Hematology, Department of Internal Medicine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT
| | - F Perry Wilson
- Clinical and Translational Research Accelerator, Department of Internal Medicine
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
| | | | | | - David van Dijk
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
| | - Alfred I Lee
- Section of Hematology, Department of Internal Medicine
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
| |
Collapse
|
10
|
Gerber A, Goldklang M, Stearns K, Ma X, Xiao R, Zelonina T, D'Armiento J. Attenuation of pulmonary injury by an inhaled MMP inhibitor in the endotoxin lung injury model. Am J Physiol Lung Cell Mol Physiol 2020; 319:L1036-L1047. [PMID: 33026238 DOI: 10.1152/ajplung.00420.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by pulmonary edema and poor gas exchange resulting from severe inflammatory lung injury. Neutrophilic infiltration and increased pulmonary vascular permeability are hallmarks of early ARDS and precipitate a self-perpetuating cascade of inflammatory signaling. The biochemical processes initiating these events remain unclear. Typically associated with extracellular matrix degradation, recent data suggest matrix metalloproteinases (MMPs) are regulators of pulmonary inflammation. To demonstrate that inhalation of a broad MMP inhibitor attenuates LPS induced pulmonary inflammation. Nebulized CGS27023AM (CGS) was administered to LPS-injured mice. Pulmonary CGS levels were examined by mass spectroscopy. Inflammatory scoring of hematoxylin-eosin sections, examination of vascular integrity via lung wet/dry and bronchoalveolar lvage/serum FITC-albumin ratios were performed. Cleaved caspase-3 levels were also assessed. Differential cell counts and pulse-chase labeling were utilized to determine the effects of CGS on neutrophil migration. The effects of CGS on human neutrophil migration and viability were examined using Boyden chambers and MTT assays. Nebulization successfully delivered CGS to the lungs. Treatment decreased pulmonary inflammatory scores, edema, and apoptosis in LPS treated animals. Neutrophil chemotaxis was reduced by CGS treatment, with inhalation causing significant reductions in both the total number and newly produced bromodeoxyuridine-positive cells infiltrating the lung. Mechanistic studies on cells isolated from humans demonstrate that CGS-treated neutrophils exhibit decreased chemotaxis. The protective effect observed following treatment with a nonspecific MMP inhibitor indicates that one or more MMPs mediate the development of pulmonary edema and neutrophil infiltration in response to LPS injury. In accordance with this, inhaled MMP inhibitors warrant further study as a potential new therapeutic avenue for treatment of acute lung injury.
Collapse
Affiliation(s)
- Adam Gerber
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Monica Goldklang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Kyle Stearns
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Xinran Ma
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Tina Zelonina
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Jeanine D'Armiento
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
11
|
Meizlish ML, Pine AB, Bishai JD, Goshua G, Nadelmann ER, Simonov M, Chang CH, Zhang H, Shallow M, Bahel P, Owusu K, Yamamoto Y, Arora T, Atri DS, Patel A, Gbyli R, Kwan J, Won CH, Dela Cruz C, Price C, Koff J, King BA, Rinder HM, Wilson FP, Hwa J, Halene S, Damsky W, van Dijk D, Lee AI, Chun H. A neutrophil activation signature predicts critical illness and mortality in COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32908988 DOI: 10.1101/2020.09.01.20183897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of over 3,300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, HGF, IL-8, and G-CSF, as the strongest predictors of critical illness. Neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, we define an essential role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular neutrophil markers that distinguish patients at risk of future clinical decompensation.
Collapse
|
12
|
Sebina I, Phipps S. The Contribution of Neutrophils to the Pathogenesis of RSV Bronchiolitis. Viruses 2020; 12:E808. [PMID: 32726921 PMCID: PMC7472258 DOI: 10.3390/v12080808] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Acute viral bronchiolitis causes significant mortality in the developing world, is the number one cause of infant hospitalisation in the developed world, and is associated with the later development of chronic lung diseases such as asthma. A vaccine against respiratory syncytial virus (RSV), the leading cause of viral bronchiolitis in infancy, remains elusive, and hence new therapeutic modalities are needed to limit disease severity. However, much remains unknown about the underlying pathogenic mechanisms. Neutrophilic inflammation is the predominant phenotype observed in infants with both mild and severe disease, however, a clear understanding of the beneficial and deleterious effects of neutrophils is lacking. In this review, we describe the multifaceted roles of neutrophils in host defence and antiviral immunity, consider their contribution to bronchiolitis pathogenesis, and discuss whether new approaches that target neutrophil effector functions will be suitable for treating severe RSV bronchiolitis.
Collapse
Affiliation(s)
- Ismail Sebina
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Australia;
| | | |
Collapse
|
13
|
Carlton EF, Flori HR. Biomarkers in pediatric acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:505. [PMID: 31728358 DOI: 10.21037/atm.2019.09.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a heterogenous process resulting in a severe acute lung injury. A single indicator does not exist for PARDS diagnosis. Rather, current diagnosis requires a combination of clinical and physiologic variables. Similarly, there is little ability to predict the path of disease, identify those at high risk of poor outcomes or target therapies specific to the underlying pathophysiology. Biomarkers, a measured indicator of a pathologic state or response to intervention, have been studied in PARDS due to their potential in diagnosis, prognostication and measurement of therapeutic response. Additionally, PARDS biomarkers show great promise in furthering our understanding of specific subgroups or endotypes in this highly variable disease, and thereby predict which patients may benefit and which may be harmed by PARDS specific therapies. In this chapter, we review the what, when, why and how of biomarkers in PARDS and discuss future directions in this quickly changing landscape.
Collapse
Affiliation(s)
- Erin F Carlton
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Heidi R Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Protective effect of Cordyceps sinensis extract on lipopolysaccharide-induced acute lung injury in mice. Biosci Rep 2019; 39:BSR20190789. [PMID: 31186277 PMCID: PMC6591570 DOI: 10.1042/bsr20190789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/05/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background: To study the protective effect of Cordyceps sinensis extract (Dong Chong Xia Cao in Chinese [DCXC]) on experimental acute lung injury (ALI) mice. Methods and results: ALI model was induced by intratracheal-instilled lipopolysaccharide (LPS, 2.4 mg/kg) in BALB/c male mice. The mice were administrated DCXC (ig, 10, 30, 60 mg/kg) in 4 and 8 h after receiving LPS. Histopathological section, wet/dry lung weight ratio and myeloperoxidase activity were detected. Bronchoalveolar lavage fluid (BALF) was collected for cell count, the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and nitric oxide (NO) in BALF was detected by ELISA, the protein and mRNA expression of nuclear factor-κB p65 (NF-κB p65), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung tissue was detected by Western blot and RT-PCR. The result showed that DCXC could reduce the degree of histopathological injury, wet/dry weight ratio (W/D ratio) and myeloperoxidase activity (P<0.05) with a dose-dependent manner. The increased number of total cells, neutrophils and macrophages in BALF were significantly inhibited by DCXC treatment (P<0.05). The increased levels of TNF-α, IL-1β, IL-6 and NO in BALF after LPS administration was significantly reduced by DCXC (P<0.05). In addition, the increased protein and mRNA levels of iNOS, COX-2 and NF-κB p65 DNA binding ability in LPS group were dose-dependently reduced by DCXC treatment (P<0.05). Conclusion: DCXC could play an anti-inflammatory and antioxidant effect on LPS-induced ALI through inhibiting NF-κB p65 phosphorylation, and the expression of COX-2 and iNOS in lung. The result showed that DCXC has a potential protective effect on the ALI.
Collapse
|
15
|
Aschner Y, Davidson JA. Early Plasma Matrix Metalloproteinase Profiles Offer New Insight into the Biology and Prognosis of Pediatric Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 199:134-136. [PMID: 30160977 DOI: 10.1164/rccm.201808-1500ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yael Aschner
- 1 Department of Medicine University of Colorado Aurora, Colorado and
| | - Jesse A Davidson
- 2 Department of Pediatrics University of Colorado/Children's Hospital Colorado| Aurora, Colorado
| |
Collapse
|
16
|
Zinter MS, Delucchi KL, Kong MY, Orwoll BE, Spicer AS, Lim MJ, Alkhouli MF, Ratiu AE, McKenzie AV, McQuillen PS, Dvorak CC, Calfee CS, Matthay MA, Sapru A. Early Plasma Matrix Metalloproteinase Profiles. A Novel Pathway in Pediatric Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 199:181-189. [PMID: 30114376 PMCID: PMC6353006 DOI: 10.1164/rccm.201804-0678oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
RATIONALE MMPs (Matrix metalloproteinases) and their endogenous tissue inhibitors may contribute to lung injury through extracellular matrix degradation and modulation of inflammation and fibrosis. OBJECTIVES To test for an association between MMP pathway proteins and inflammation, endothelial dysfunction, and clinical outcomes. METHODS We measured MMPs in plasma collected on acute respiratory distress syndrome (ARDS) Day 1 from 235 children at five hospitals between 2008 and 2017. We used latent class analysis to identify patients with distinct MMP profiles and then associated those profiles with markers of inflammation (IL-1RA, -6, -8, -10, and -18; macrophage inflammatory protein-1α and -1β; tumor necrosis factor-α and -R2), endothelial injury (angiopoietin-2, von Willebrand factor, soluble thrombomodulin), impaired oxygenation (PaO2/FiO2 [P/F] ratio, oxygenation index), morbidity, and mortality. MEASUREMENTS AND MAIN RESULTS In geographically distinct derivation and validation cohorts, approximately one-third of patients demonstrated an MMP profile characterized by elevated MMP-1, -2, -3, -7, and -8 and tissue inhibitor of metalloproteinase-1 and -2; and depressed active and total MMP-9. This MMP profile was associated with multiple markers of inflammation, endothelial injury, and impaired oxygenation on Day 1 of ARDS, and conferred fourfold increased odds of mortality or severe morbidity independent of the P/F ratio and other confounders (95% confidence interval, 2.1-7.6; P < 0.001). Logistic regression using both the P/F ratio and MMP profiles was superior to the P/F ratio alone in prognosticating mortality or severe morbidity (area under the receiver operating characteristic curve, 0.75; 95% confidence interval, 0.68-0.82 vs. area under the receiver operating characteristic curve, 0.66; 95% confidence interval, 0.58-0.73; P = 0.009). CONCLUSIONS Pediatric patients with ARDS have specific plasma MMP profiles associated with inflammation, endothelial injury, morbidity, and mortality. MMPs may play a role in the pathobiology of children with ARDS.
Collapse
Affiliation(s)
| | | | - Michele Y. Kong
- Division of Critical Care Medicine, Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama; and
| | | | | | - Michelle J. Lim
- Division of Critical Care, Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles Geffen School of Medicine, Los Angeles, California
| | | | - Anna E. Ratiu
- Division of Critical Care, Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles Geffen School of Medicine, Los Angeles, California
| | | | | | - Christopher C. Dvorak
- Division of Allergy, Immunology, and Blood & Marrow Transplantation, Department of Pediatrics, Benioff Children’s Hospital
| | - Carolyn S. Calfee
- Department of Anesthesia and
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, California
| | - Michael A. Matthay
- Department of Anesthesia and
- Department of Medicine, Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, California
| | - Anil Sapru
- Division of Critical Care and
- Division of Critical Care, Department of Pediatrics, Mattel Children’s Hospital, University of California Los Angeles Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
17
|
Qin M, Qiu Z. Changes in TNF-α, IL-6, IL-10 and VEGF in rats with ARDS and the effects of dexamethasone. Exp Ther Med 2018; 17:383-387. [PMID: 30651808 PMCID: PMC6307422 DOI: 10.3892/etm.2018.6926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/19/2018] [Indexed: 01/13/2023] Open
Abstract
Changes in tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-10 and vascular endothelial growth factor (VEGF) in serum and bronchoalveolar lavage fluid (BALF) in rats with acute respiratory distress syndrome (ARDS) and the intervention effect of dexamethasone were observed to explore the theoretical basis of dexamethasone in the treatment of ARDS. Seventy-two rats were randomly divided into normal control group (group N, n=24), ARDS model group (group L, n=24) and dexamethasone group (group D, n=24). The ARDS rat model was established by jointly injecting oleic acid and lipopolysaccharide via the caudal vein, while rats in group D received intervention with dexamethasone. The wet/dry weight ratios of lung tissues were measured, and the levels of TNF-α, IL-6, IL-10 and VEGF in serum and BALF were measured via enzyme-linked immunosorbent assay. The wet/dry weight ratio of lung tissues of rats in group D was significantly decreased compared with that in group L (P<0.05 or P<0.01). The levels of TNF-α, IL-6 and VEGF in serum and BALF of rats in group L and D were obviously increased compared with those in group N at each time point (P<0.01). The levels of TNF-α, IL-6 and VEGF in serum and BALF of rats in group D were significantly decreased compared with those in group L (P<0.01). In conclusion, there is a serious imbalance between anti-inflammatory response and inflammatory response in rats with ARDS induced by oleic acid combined with lipopolysaccharide of Escherichia coli, whereas dexamethasone can alleviate lung injury through inhibiting expression levels of inflammatory factors and promoting expression levels of anti-inflammatory factors.
Collapse
Affiliation(s)
- Mengting Qin
- Department of Critical Care Medicine, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Zhongpeng Qiu
- Department of Orthopedics, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
18
|
Liu JW, Chen DQ. Correlations of MMP-2 and MMP-9 gene polymorphisms with the risk of hepatopulmonary syndrome in cirrhotic patients: A case-control study. Kaohsiung J Med Sci 2018; 34:634-642. [DOI: 10.1016/j.kjms.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/21/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
|
19
|
Sharma NS, Lal CV, Li JD, Lou XY, Viera L, Abdallah T, King RW, Sethi J, Kanagarajah P, Restrepo-Jaramillo R, Sales-Conniff A, Wei S, Jackson PL, Blalock JE, Gaggar A, Xu X. The neutrophil chemoattractant peptide proline-glycine-proline is associated with acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2018; 315:L653-L661. [PMID: 30091378 PMCID: PMC6295514 DOI: 10.1152/ajplung.00308.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by unrelenting polymorphonuclear neutrophil (PMN) inflammation and vascular permeability. The matrikine proline-glycine-proline (PGP) and acetylated PGP (Ac-PGP) have been shown to induce PMN inflammation and endothelial permeability in vitro and in vivo. In this study, we investigated the presence and role of airway PGP peptides in acute lung injury (ALI)/ARDS. Pseudomonas aeruginosa-derived lipopolysaccharide (LPS) was instilled intratracheally in mice to induce ALI, and increased Ac-PGP with neutrophil inflammation was noted. The PGP inhibitory peptide, arginine-threonine-arginine (RTR), was administered (it) 30 min before or 6 h after LPS injection. Lung injury was evaluated by detecting neutrophil infiltration and permeability changes in the lung. Pre- and posttreatment with RTR significantly inhibited LPS-induced ALI by attenuating lung neutrophil infiltration, pulmonary permeability, and parenchymal inflammation. To evaluate the role of PGP levels in ARDS, minibronchoalveolar lavage was collected from nine ARDS, four cardiogenic edema, and five nonlung disease ventilated patients. PGP levels were measured and correlated with Acute Physiology and Chronic Health Evaluation (APACHE) score, P a O 2 to F I O 2 (P/F), and ventilator days. PGP levels in subjects with ARDS were significantly higher than cardiogenic edema and nonlung disease ventilated patients. Preliminary examination in both ARDS and non-ARDS populations demonstrated PGP levels significantly correlated with P/F ratio, APACHE score, and duration on ventilator. These results demonstrate an increased burden of PGP peptides in ARDS and suggest the need for future studies in ARDS cohorts to examine correlation with key clinical parameters.
Collapse
Affiliation(s)
- Nirmal S Sharma
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital , Tampa, Florida
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Charitharth Vivek Lal
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Pediatrics, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jin-Dong Li
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Xiang-Yang Lou
- Biostatistics Program, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Liliana Viera
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Tarek Abdallah
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert W King
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| | - Jaskaran Sethi
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Prashanth Kanagarajah
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | | | - Amanda Sales-Conniff
- Division of Pulmonary and Critical Care, University of South Florida , Tampa, Florida
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Patricia L Jackson
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - J Edwin Blalock
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Program in Protease and Matrix Biology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham , Birmingham, Alabama
- Lung Health Center, University of Alabama at Birmingham , Birmingham, Alabama
- Medical Service at Birmingham Veterans Affairs Medical Center , Birmingham, Alabama
| |
Collapse
|
20
|
Wong JJM, Jit M, Sultana R, Mok YH, Yeo JG, Koh JWJC, Loh TF, Lee JH. Mortality in Pediatric Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. J Intensive Care Med 2017; 34:563-571. [PMID: 28460591 DOI: 10.1177/0885066617705109] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Sparse and conflicting evidence exists regarding mortality risk from pediatric acute respiratory distress syndrome (ARDS). We aimed to determine the pooled mortality in pediatric ARDS and to describe its trend over time. DATA SOURCES AND STUDY SELECTION MEDLINE, EMBASE, and Web of Science were searched from 1960 to August 2015. Keywords or medical subject headings (MESH) terms used included "respiratory distress syndrome, adult," "acute lung injury," "acute respiratory insufficiency," "acute hypoxemic respiratory failure," "pediatrics," and "child." Study inclusion criteria were (1) pediatric patients aged 0 days to 18 years, (2) sufficient baseline data described in the pediatric ARDS group, and (3) mortality data. Randomized controlled trials (RCTs) and prospective observational studies were eligible. DATA EXTRACTION AND SYNTHESIS Data on study characteristics, patient demographics, measures of oxygenation, and mortality were extracted using a standard data extraction form. Independent authors conducted the search, applied the selection criteria, and extracted the data. Methodological quality of studies was assessed. Meta-analysis using a random-effects model was performed to obtain pooled estimates of mortality. Meta-regression was performed to analyze variables contributing to change in mortality over time. Eight RCTs and 21 observational studies (n = 2274 patients) were included. Pooled mortality rate was 24% (95% confidence interval [CI]: 19-31). There was a decrease in mortality rates over 3 epochs (≤2000, 2001-2009, and ≥2010: 40% [95% CI: 24-59], 35% [95% CI: 21-51], and 18% [95% CI: 12-26], respectively, P < .001). Observational studies reported a higher mortality rate than RCTs (27% [95% CI: 24-29] versus 16% [95% CI: 12-20], P < .001). Earlier year of publication was an independent factor associated with mortality. CONCLUSION Overall mortality rate in pediatric ARDS is approximately 24%. Studies conducted and published later were associated with better survival.
Collapse
Affiliation(s)
- Judith Ju-Ming Wong
- 1 Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore.,2 Duke-NUS Medical School, Singapore, Singapore
| | - Mark Jit
- 3 Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom.,4 Modelling and Economics Unit, Public Health England, London, United Kingdom
| | - Rehena Sultana
- 5 Centre for Quantitative Medicine, Duke-NUS Medical School, The Academia, Singapore, Singapore
| | - Yee Hui Mok
- 2 Duke-NUS Medical School, Singapore, Singapore.,6 Children's Intensive Care Unit, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- 2 Duke-NUS Medical School, Singapore, Singapore.,6 Children's Intensive Care Unit, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | | | - Tsee Foong Loh
- 2 Duke-NUS Medical School, Singapore, Singapore.,6 Children's Intensive Care Unit, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jan Hau Lee
- 2 Duke-NUS Medical School, Singapore, Singapore.,6 Children's Intensive Care Unit, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
21
|
Abstract
Acute respiratory distress syndrome (ARDS) is common among mechanically ventilated children and accompanies up to 30% of all pediatric intensive care unit deaths. Though ARDS diagnosis is based on clinical criteria, biological markers of acute lung damage have been extensively studied in adults and children. Biomarkers of inflammation, alveolar epithelial and capillary endothelial disruption, disordered coagulation, and associated derangements measured in the circulation and other body fluids, such as bronchoalveolar lavage, have improved our understanding of pathobiology of ARDS. The biochemical signature of ARDS has been increasingly well described in adult populations, and this has led to the identification of molecular phenotypes to augment clinical classifications. However, there is a paucity of data from pediatric ARDS (pARDS) patients. Biomarkers and molecular phenotypes have the potential to identify patients at high risk of poor outcomes, and perhaps inform the development of targeted therapies for specific groups of patients. Additionally, because of the lower incidence of and mortality from ARDS in pediatric patients relative to adults and lack of robust clinical predictors of outcome, there is an ongoing interest in biological markers as surrogate outcome measures. The recent definition of pARDS provides additional impetus for the measurement of established and novel biomarkers in future pediatric studies in order to further characterize this disease process. This chapter will review the currently available literature and discuss potential future directions for investigation into biomarkers in ARDS among children.
Collapse
Affiliation(s)
- Benjamin E. Orwoll
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
| | - Anil Sapru
- Department of Pediatrics, Division of Critical Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, Division of Critical Care, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Yehya N, Thomas NJ, Margulies SS. Circulating nucleosomes are associated with mortality in pediatric acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1177-84. [PMID: 27130528 DOI: 10.1152/ajplung.00067.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022] Open
Abstract
Mechanisms underlying pediatric acute respiratory distress syndrome (PARDS) are poorly understood. The recent implication of circulating nucleosomes as pathogenic in sepsis and trauma-associated ARDS in adults led us to investigate the significance of nucleosomes in PARDS. We conducted a prospective, observational study on children with PARDS at the Children's Hospital of Philadelphia between July 2014 and September 2015. Plasma was collected within 48 h of PARDS onset and nucleosomes quantified by enzyme-linked immunosorbent assay. Samples from 76 children with PARDS (11 deaths, 14%) were collected early [median 15 (IQR 7, 21) h] after PARDS onset. Nucleosome levels were higher in nonsurvivors [0.59 AU (IQR 0.46, 0.84)] relative to survivors [0.21 AU (IQR 0.08, 0.33), rank sum P < 0.001]. Nucleosome levels were not associated with either Berlin (P = 0.845) or PALICC (P = 0.886) oxygenation categories, nor with etiology of PARDS (P = 0.527). Nucleosomes were correlated with increasing numbers of nonpulmonary organ failures (P = 0.009 for trend), and were higher in patients whose PaO2 /FiO2 worsened (P = 0.012) over the first 72 h of PARDS. In regression analysis, nucleosome levels were independently associated with mortality after adjusting for either age, severity of illness score, number of nonpulmonary organ failures, vasopressor score, or PaO2 /FiO2 (all P < 0.05). In conclusion, plasma nucleosome levels in early PARDS were associated with increased mortality, correlated with number of nonpulmonary organ failures, and preceded worsening oxygenation. The potential utility of this biomarker for prognostication, risk stratification, and mechanistic insight should be investigated further.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia;
| | - Neal J Thomas
- Department of Pediatrics and Public Health Science, Division of Pediatric Critical Care Medicine, Penn State Hershey Children's Hospital, Hershey
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Blondonnet R, Constantin JM, Sapin V, Jabaudon M. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome. DISEASE MARKERS 2016; 2016:3501373. [PMID: 26980924 PMCID: PMC4766331 DOI: 10.1155/2016/3501373] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/10/2016] [Indexed: 01/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is an acute-onset hypoxic condition with radiographic bilateral lung infiltration. It is characterized by an acute exudative phase combining diffuse alveolar damage and lung edema followed by a later fibroproliferative phase. Despite an improved understanding of ARDS pathobiology, our ability to predict the development of ARDS and risk-stratify patients with the disease remains limited. Biomarkers may help to identify patients at the highest risk of developing ARDS, assess response to therapy, predict outcome, and optimize enrollment in clinical trials. After a short description of ARDS pathobiology, here, we review the scientific evidence that supports the value of various ARDS biomarkers with regard to their major biological roles in ARDS-associated lung injury and/or repair. Ongoing research aims at identifying and characterizing novel biomarkers, in order to highlight relevant mechanistic explorations of lung injury and repair, and to ultimately develop innovative therapeutic approaches for ARDS patients. This review will focus on the pathophysiologic, diagnostic, and therapeutic implications of biomarkers in ARDS and on their utility to ultimately improve patient care.
Collapse
Affiliation(s)
- Raiko Blondonnet
- CHU Clermont-Ferrand, Intensive Care Unit, Department of Perioperative Medicine, Estaing University Hospital, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
| | - Jean-Michel Constantin
- CHU Clermont-Ferrand, Intensive Care Unit, Department of Perioperative Medicine, Estaing University Hospital, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Matthieu Jabaudon
- CHU Clermont-Ferrand, Intensive Care Unit, Department of Perioperative Medicine, Estaing University Hospital, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
| |
Collapse
|
24
|
Moazed F, Burnham EL, Vandivier RW, O'Kane CM, Shyamsundar M, Hamid U, Abbott J, Thickett DR, Matthay MA, McAuley DF, Calfee CS. Cigarette smokers have exaggerated alveolar barrier disruption in response to lipopolysaccharide inhalation. Thorax 2016; 71:1130-1136. [PMID: 26839359 DOI: 10.1136/thoraxjnl-2015-207886] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023]
Abstract
RATIONALE Cigarette smoke exposure is associated with an increased risk of the acute respiratory distress syndrome (ARDS); however, the mechanisms underlying this relationship remain largely unknown. OBJECTIVE To assess pathways of lung injury and inflammation in smokers and non-smokers with and without lipopolysaccharide (LPS) inhalation using established biomarkers. METHODS We measured plasma and bronchoalveolar lavage (BAL) biomarkers of inflammation and lung injury in smokers and non-smokers in two distinct cohorts of healthy volunteers, one unstimulated (n=20) and one undergoing 50 μg LPS inhalation (n=30). MEASUREMENTS AND MAIN RESULTS After LPS inhalation, cigarette smokers had increased alveolar-capillary membrane permeability as measured by BAL total protein, compared with non-smokers (median 274 vs 208 μg/mL, p=0.04). Smokers had exaggerated inflammation compared with non-smokers, with increased BAL interleukin-1β (p=0.002), neutrophils (p=0.02), plasma interleukin-8 (p=0.003), and plasma matrix metalloproteinase-8 (p=0.006). Alveolar epithelial injury after LPS was more severe in smokers than non-smokers, with increased plasma (p=0.04) and decreased BAL (p=0.02) surfactant protein D. Finally, smokers had decreased BAL vascular endothelial growth factor (VEGF) (p<0.0001) with increased soluble VEGF receptor-1 (p=0.0001). CONCLUSIONS Cigarette smoke exposure may predispose to ARDS through an abnormal response to a 'second hit,' with increased alveolar-capillary membrane permeability, exaggerated inflammation, increased epithelial injury and endothelial dysfunction. LPS inhalation may serve as a useful experimental model for evaluation of the acute pulmonary effects of existing and new tobacco products.
Collapse
Affiliation(s)
- Farzad Moazed
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Ellen L Burnham
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | | | - Cecilia M O'Kane
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Murali Shyamsundar
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Umar Hamid
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Jason Abbott
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - David R Thickett
- Lung Injury and Fibrosis Treatment Programme, University of Birmingham, Birmingham, UK
| | - Michael A Matthay
- Department of Medicine, UCSF, San Francisco, California, USA.,Cardiovascular Research Institute, UCSF, San Francisco, California, USA.,Department of Anesthesia, UCSF, San Francisco, California, USA
| | - Daniel F McAuley
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Carolyn S Calfee
- Department of Medicine, UCSF, San Francisco, California, USA.,Cardiovascular Research Institute, UCSF, San Francisco, California, USA.,Department of Anesthesia, UCSF, San Francisco, California, USA
| |
Collapse
|
25
|
Bhandari A, Carroll C, Bhandari V. BPD Following Preterm Birth: A Model for Chronic Lung Disease and a Substrate for ARDS in Childhood. Front Pediatr 2016; 4:60. [PMID: 27379219 PMCID: PMC4908128 DOI: 10.3389/fped.2016.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that pediatric acute respiratory distress syndrome (PARDS) may be a different entity, vis-à-vis adult acute respiratory distress syndrome (ARDS), based on its epidemiology and outcomes. A more pediatric-specific definition of PARDS to include the subgroup of patients with underlying lung (and heart) disease has been proposed. Epidemiological data suggest that up to 13% of the children with ARDS have a history of prematurity and/or underlying chronic lung disease. However, the specific contribution of bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infants, to the development of PARDS is not known. BPD leads to damaged lungs with long-term consequences secondary to disordered growth and immune function. These damaged lungs could potentially act as a substrate, which given the appropriate noxious stimuli, can predispose a child to PARDS. Interestingly, similar biomarkers [KL-6, interleukin (IL)-6, IL-8, sICAM-1, angiopoietin-2, and matrix metalloproteinase-8 and -9] of pulmonary injury have been associated both with BPD and ARDS. Recognition of a unique pattern of clinical symptomatology and/or outcomes of PARDS, if present, could potentially be useful for investigating targeted therapeutic interventions.
Collapse
Affiliation(s)
- Anita Bhandari
- Division of Pediatric Pulmonology, Connecticut Children's Medical Center, University of Connecticut School of Medicine , Hartford, CT , USA
| | - Christopher Carroll
- Division of Pediatric Critical Care Medicine, Connecticut Children's Medical Center, University of Connecticut School of Medicine , Hartford, CT , USA
| | - Vineet Bhandari
- Section of Neonatology, St. Christopher's Hospital for Children, Drexel University College of Medicine , Philadelphia, PA , USA
| |
Collapse
|
26
|
Dénervaud V, Gremlich S, Trummer-Menzi E, Schittny JC, Roth-Kleiner M. Gene expression profile in newborn rat lungs after two days of recovery of mechanical ventilation. Pediatr Res 2015; 78:641-9. [PMID: 26353077 DOI: 10.1038/pr.2015.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/18/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Preterm infants having immature lungs often require respiratory support, potentially leading to bronchopulmonary dysplasia (BPD). Conventional BPD rodent models based on mechanical ventilation (MV) present outcome measured at the end of the ventilation period. A reversible intubation and ventilation model in newborn rats recently allowed discovering that different sets of genes modified their expression related to time after MV. In a newborn rat model, the expression profile 48 h after MV was analyzed with gene arrays to detect potentially interesting candidates with an impact on BPD development. METHODS Rat pups were injected P4-5 with 2 mg/kg lipopolysaccharide (LPS). One day later, MV with 21 or 60% oxygen was applied during 6 h. Animals were sacrified 48 h after end of ventilation. Affymetrix gene arrays assessed the total gene expression profile in lung tissue. RESULTS In fully treated animals (LPS + MV + 60% O(2)) vs. controls, 271 genes changed expression significantly. All modified genes could be classified in six pathways: tissue remodeling/wound repair, immune system and inflammatory response, hematopoiesis, vasodilatation, and oxidative stress. Major alterations were found in the MMP and complement system. CONCLUSION MMPs and complement factors play a central role in several of the pathways identified and may represent interesting targets for BPD treatment/prevention.Bronchopulmonary dysplasia (BPD) is a chronic lung disease occurring in ~30% of preterm infants born less than 30 wk of gestation (1). Its main risk factors include lung immaturity due to preterm delivery, mechanical ventilation (MV), oxygen toxicity, chorioamnionitis, and sepsis. The main feature is an arrest of alveolar and capillary formation (2). Models trying to decipher genes involved in the pathophysiology of BPD are mainly based on MV and oxygen application to young mammals with immature lungs of different species (3). In newborn rodent models, analyses of lung structure and gene and protein expression are performed for practical reasons directly at the end of MV (4,5,6). However, later appearing changes of gene expression might also have an impact on lung development and the evolution towards BPD and cannot be discovered by such models. Recently, we developed a newborn rat model of MV using an atraumatic (orotracheal) intubation technique that allows the weaning of the newborn animal off anesthesia and MV, the extubation to spontaneous breathing, and therefore allows the evaluation of effects of MV after a ventilation-free period of recovery (7). Indeed, applying this concept of atraumatic intubation by direct laryngoscopy, we recently were able to show significant differences between gene expression changes appearing directly after MV compared to those measured after a ventilation-free interval of 48 h. Immediately after MV, inflammation-related genes showed a transitory modified expression, while another set of more structurally related genes changed their expression only after a delay of 2 d (7). Lung structure, analyzed by conventional 2D histology and also by 3D reconstruction using synchrotron x-ray tomographic microscopy revealed, 48 h after end of MV, a reduced complexity of lung architecture compared to the nonventilated rat lungs, similar to the typical findings in BPD. To extend these observations about late gene expression modifications, we performed with a similar model a full gene expression profile of lung tissue 48 h after the end of MV with either room air or 60% oxygen. Essentially, we measured changes in the expression of genes related to the MMPs and complement system which played a role in many of the six identified mostly affected pathways.
Collapse
Affiliation(s)
- Valérie Dénervaud
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sandrine Gremlich
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Eliane Trummer-Menzi
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Matthias Roth-Kleiner
- Department of Pediatrics, Clinic of Neonatology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Abstract
The unique characteristics of pulmonary circulation and alveolar-epithelial capillary-endothelial barrier allow for maintenance of the air-filled, fluid-free status of the alveoli essential for facilitating gas exchange, maintaining alveolar stability, and defending the lung against inhaled pathogens. The hallmark of pathophysiology in acute respiratory distress syndrome is the loss of the alveolar capillary permeability barrier and the presence of protein-rich edema fluid in the alveoli. This alteration in permeability and accumulation of fluid in the alveoli accompanies damage to the lung epithelium and vascular endothelium along with dysregulated inflammation and inappropriate activity of leukocytes and platelets. In addition, there is uncontrolled activation of coagulation along with suppression of fibrinolysis and loss of surfactant. These pathophysiological changes result in the clinical manifestations of acute respiratory distress syndrome, which include hypoxemia, radiographic opacities, decreased functional residual capacity, increased physiologic deadspace, and decreased lung compliance. Resolution of acute respiratory distress syndrome involves the migration of cells to the site of injury and re-establishment of the epithelium and endothelium with or without the development of fibrosis. Most of the data related to acute respiratory distress syndrome, however, originate from studies in adults or in mature animals with very few studies performed in children or juvenile animals. The lack of studies in children is particularly problematic because the lungs and immune system are still developing during childhood and consequently the pathophysiology of pediatric acute respiratory distress syndrome may differ in significant ways from that seen in acute respiratory distress syndrome in adults. This article describes what is known of the pathophysiologic processes of pediatric acute respiratory distress syndrome as we know it today while also presenting the much greater body of evidence on these processes as elucidated by adult and animal studies. It is also our expressed intent to generate enthusiasm for larger and more in-depth investigations of the mechanisms of disease and repair specific to children in the years to come.
Collapse
|
28
|
Kangelaris KN, Prakash A, Liu KD, Aouizerat B, Woodruff PG, Erle DJ, Rogers A, Seeley EJ, Chu J, Liu T, Osterberg-Deiss T, Zhuo H, Matthay MA, Calfee CS. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1102-13. [PMID: 25795726 DOI: 10.1152/ajplung.00380.2014] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/16/2015] [Indexed: 01/10/2023] Open
Abstract
The early sequence of events leading to the development of the acute respiratory distress syndrome (ARDS) in patients with sepsis remains inadequately understood. The purpose of this study was to identify changes in gene expression early in the course of illness, when mechanisms of injury may provide the most relevant treatment and prognostic targets. We collected whole blood RNA in critically ill patients admitted from the Emergency Department to the intensive care unit within 24 h of admission at a tertiary care center. Whole genome expression was compared in patients with sepsis and ARDS to patients with sepsis alone. We selected genes with >1 log2 fold change and false discovery rate <0.25, determined their significance in the literature, and performed pathway analysis. Several genes were upregulated in 29 patients with sepsis with ARDS compared with 28 patients with sepsis alone. The most differentially expressed genes included key mediators of the initial neutrophil response to infection: olfactomedin 4, lipocalin 2, CD24, and bactericidal/permeability-increasing protein. These gene expression differences withstood adjustment for age, sex, study batch, white blood cell count, and presence of pneumonia or aspiration. Pathway analysis demonstrated overrepresentation of genes involved in known respiratory and infection pathways. These data indicate that several neutrophil-related pathways may be involved in the early pathogenesis of sepsis-related ARDS. In addition, identifiable gene expression differences occurring early in the course of sepsis-related ARDS may further elucidate understanding of the neutrophil-related mechanisms in progression to ARDS.
Collapse
Affiliation(s)
- Kirsten Neudoerffer Kangelaris
- Department of Medicine, Division of Hospital Medicine, University of California-San Francisco, San Francisco, California;
| | - Arun Prakash
- Departments of Medicine and Anesthesia, University of California-San Francisco, San Francisco, California
| | - Kathleen D Liu
- Departments of Medicine and Anesthesia, University of California-San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California-San Francisco, San Francisco, California
| | - Bradley Aouizerat
- Department of Physiologic Nursing, University of California-San Francisco, San Francisco, California; Institute for Human Genetics, University of California-San Francisco, San Francisco, California
| | - Prescott G Woodruff
- Departments of Medicine and Anesthesia, University of California-San Francisco, San Francisco, California; Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California-San Francisco, San Francisco, California; and
| | - David J Erle
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California-San Francisco, San Francisco, California; and
| | - Angela Rogers
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California-San Francisco, San Francisco, California; and Department of Pulmonary and Critical Care, Stanford University, Stanford, California
| | - Eric J Seeley
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California-San Francisco, San Francisco, California; and
| | - Jeffrey Chu
- Departments of Medicine and Anesthesia, University of California-San Francisco, San Francisco, California
| | - Tom Liu
- Departments of Medicine and Anesthesia, University of California-San Francisco, San Francisco, California
| | - Thomas Osterberg-Deiss
- Departments of Medicine and Anesthesia, University of California-San Francisco, San Francisco, California
| | - Hanjing Zhuo
- Departments of Medicine and Anesthesia, University of California-San Francisco, San Francisco, California
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California-San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California-San Francisco, San Francisco, California; Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California-San Francisco, San Francisco, California; and
| | - Carolyn S Calfee
- Departments of Medicine and Anesthesia, University of California-San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California-San Francisco, San Francisco, California; Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California-San Francisco, San Francisco, California; and
| |
Collapse
|
29
|
Hahn CS, Scott DW, Xu X, Roda MA, Payne GA, Wells JM, Viera L, Winstead CJ, Bratcher P, Sparidans RW, Redegeld FA, Jackson PL, Folkerts G, Blalock JE, Patel RP, Gaggar A. The matrikine N-α-PGP couples extracellular matrix fragmentation to endothelial permeability. SCIENCE ADVANCES 2015; 1:e1500175. [PMID: 26229981 PMCID: PMC4517288 DOI: 10.1126/sciadv.1500175] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
The compartmentalization and transport of proteins and solutes across the endothelium is a critical biologic function altered during inflammation and disease, leading to pathology in multiple disorders. The impact of tissue damage and subsequent extracellular matrix (ECM) fragmentation in regulating this process is unknown. We demonstrate that the collagen-derived matrikine acetylated proline-glycine-proline (N-α-PGP) serves as a critical regulator of endothelial permeability. N-α-PGP activates human endothelial cells via CXC-chemokine receptor 2 (CXCR2), triggering monolayer permeability through a discrete intracellular signaling pathway. In vivo, N-α-PGP induces local vascular leak after subcutaneous administration and pulmonary vascular permeability after systemic administration. Furthermore, neutralization of N-α-PGP attenuates lipopolysaccharide-induced lung leak. Finally, we demonstrate that plasma from patients with acute respiratory distress syndrome (ARDS) induces VE-cadherin phosphorylation in human endothelial cells, and this activation is attenuated by N-α-PGP blockade with a concomitant improvement in endothelial monolayer impedance. These results identify N-α-PGP as a novel ECM-derived matrikine regulating paracellular permeability during inflammatory disease and demonstrate the potential to target this ligand in various disorders characterized by excessive matrix turnover and vascular leak such as ARDS.
Collapse
Affiliation(s)
- Cornelia S. Hahn
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David W. Scott
- Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xin Xu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mojtaba Abdul Roda
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Gregory A. Payne
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J. Michael Wells
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL 35233, USA
| | - Liliana Viera
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Colleen J. Winstead
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Preston Bratcher
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rolf W. Sparidans
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Frank A. Redegeld
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - Patricia L. Jackson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gert Folkerts
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, Netherlands
| | - J. Edwin Blalock
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL 35233, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
30
|
Bhargava M, Becker TL, Viken KJ, Jagtap PD, Dey S, Steinbach MS, Wu B, Kumar V, Bitterman PB, Ingbar DH, Wendt CH. Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors. PLoS One 2014; 9:e109713. [PMID: 25290099 PMCID: PMC4188744 DOI: 10.1371/journal.pone.0109713] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/11/2014] [Indexed: 01/02/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) continues to have a high mortality. Currently, there are no biomarkers that provide reliable prognostic information to guide clinical management or stratify risk among clinical trial participants. The objective of this study was to probe the bronchoalveolar lavage fluid (BALF) proteome to identify proteins that differentiate survivors from non-survivors of ARDS. Patients were divided into early-phase (1 to 7 days) and late-phase (8 to 35 days) groups based on time after initiation of mechanical ventilation for ARDS (Day 1). Isobaric tags for absolute and relative quantitation (iTRAQ) with LC MS/MS was performed on pooled BALF enriched for medium and low abundance proteins from early-phase survivors (n = 7), early-phase non-survivors (n = 8), and late-phase survivors (n = 7). Of the 724 proteins identified at a global false discovery rate of 1%, quantitative information was available for 499. In early-phase ARDS, proteins more abundant in survivors mapped to ontologies indicating a coordinated compensatory response to injury and stress. These included coagulation and fibrinolysis; immune system activation; and cation and iron homeostasis. Proteins more abundant in early-phase non-survivors participate in carbohydrate catabolism and collagen synthesis, with no activation of compensatory responses. The compensatory immune activation and ion homeostatic response seen in early-phase survivors transitioned to cell migration and actin filament based processes in late-phase survivors, revealing dynamic changes in the BALF proteome as the lung heals. Early phase proteins differentiating survivors from non-survivors are candidate biomarkers for predicting survival in ARDS.
Collapse
Affiliation(s)
- Maneesh Bhargava
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Trisha L. Becker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kevin J. Viken
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Pratik D. Jagtap
- Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sanjoy Dey
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael S. Steinbach
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Baolin Wu
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vipin Kumar
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Peter B. Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David H. Ingbar
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christine H. Wendt
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minneapolis VA Medical Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
31
|
Villalta PC, Rocic P, Townsley MI. Role of MMP2 and MMP9 in TRPV4-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L652-9. [PMID: 25150065 DOI: 10.1152/ajplung.00113.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ca(2+) entry through transient receptor potential vanilloid 4 (TRPV4) results in swelling, blebbing, and detachment of the epithelium and capillary endothelium in the intact lung. Subsequently, increased permeability of the septal barrier and alveolar flooding ensue. In this study, we tested the hypothesis that TRPV4 activation provides a Ca(2+) source necessary for proteolytic disruption of cell-cell or cell-matrix adhesion by matrix metalloproteinases (MMPs) 2 and 9, thus increasing septal barrier permeability. In our study, C57BL/6 or TRPV4(-/-) mouse lungs were perfused with varying doses of the TRPV4 agonist GSK-1016790A (Sigma) and then prepared for Western blot. Lung injury, assessed by increases in lung wet-to-dry weight ratios and total protein levels in the bronchoalveolar lavage fluid, was increased in a dose-dependent fashion in TRPV4(+/+) but not TRPV4(-/-) lungs. In concert with lung injury, we detected increased active MMP2 and MMP9 isoforms, suggesting that TRPV4 can provide the Ca(2+) source necessary for increased MMP2/9 activation. Furthermore, tissue inhibitor of metalloproteinases (TIMP) 2 levels in the TRPV4-injured lungs were decreased, suggesting that TRPV4 activation increases the availability of these active MMPs. We then determined whether MMP2 and MMP9 mediate TRPV4-induced lung injury. Pharmacological blockade (SB-3CT, 1 μM; Sigma) of MMP2 and MMP9 resulted in protection against TRPV4-induced lung injury. We conclude that TRPV4 activation and the subsequent Ca(2+) transient initiates a rapid cascade of events leading to release and activation of the gelatinase MMPs, which then contribute to lung injury.
Collapse
Affiliation(s)
- Patricia C Villalta
- Department of Physiology and Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Mary I Townsley
- Department of Physiology and Center for Lung Biology, University of South Alabama, Mobile, Alabama; Department of Medicine, University of South Alabama, Mobile, Alabama; and
| |
Collapse
|
32
|
Orgaz JL, Pandya P, Dalmeida R, Karagiannis P, Sanchez-Laorden B, Viros A, Albrengues J, Nestle FO, Ridley AJ, Gaggioli C, Marais R, Karagiannis SN, Sanz-Moreno V. Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat Commun 2014; 5:4255. [PMID: 24963846 PMCID: PMC4118761 DOI: 10.1038/ncomms5255] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022] Open
Abstract
Rounded-amoeboid cancer cells use actomyosin contractility driven by Rho-ROCK and JAK-STAT3 to migrate efficiently. It has been suggested that rounded-amoeboid cancer cells do not require matrix metalloproteinases (MMPs) to invade. Here we compare MMP levels in rounded-amoeboid and elongated-mesenchymal melanoma cells. Surprisingly, we find that rounded-amoeboid melanoma cells secrete higher levels of several MMPs, including collagenase MMP-13 and gelatinase MMP-9. As a result, rounded-amoeboid melanoma cells degrade collagen I more efficiently than elongated-mesenchymal cells. Furthermore, using a non-catalytic mechanism, MMP-9 promotes rounded-amoeboid 3D migration through regulation of actomyosin contractility via CD44 receptor. MMP-9 is upregulated in a panel of rounded-amoeboid compared with elongated-mesenchymal melanoma cell lines and its levels are controlled by ROCK-JAK-STAT3 signalling. MMP-9 expression increases during melanoma progression and it is particularly prominent in the invasive fronts of lesions, correlating with cell roundness. Therefore, rounded-amoeboid cells use both catalytic and non-catalytic activities of MMPs for invasion.
Collapse
Affiliation(s)
- Jose L Orgaz
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Rimple Dalmeida
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Panagiotis Karagiannis
- NIHR Biomedical Research Centre at Guy's and St Thomas' Hospitals, Cutaneous Medicine and Immunotherapy Unit, St John's Institute of Dermatology, Division of Genetics and Molecular Medicine at Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Berta Sanchez-Laorden
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Amaya Viros
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Jean Albrengues
- INSERM, U1081, CNRS, UMR7284, Institute for Research on Cancer and Aging in Nice (IRCAN), Faculté de Médecine, University of Nice Sophia-Antipolis, 28 Avenue de Valombrose, F-06107 Nice, France
| | - Frank O Nestle
- NIHR Biomedical Research Centre at Guy's and St Thomas' Hospitals, Cutaneous Medicine and Immunotherapy Unit, St John's Institute of Dermatology, Division of Genetics and Molecular Medicine at Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Anne J Ridley
- Cell Signalling in Invasion and Motility Team, Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Cedric Gaggioli
- INSERM, U1081, CNRS, UMR7284, Institute for Research on Cancer and Aging in Nice (IRCAN), Faculté de Médecine, University of Nice Sophia-Antipolis, 28 Avenue de Valombrose, F-06107 Nice, France
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Sophia N Karagiannis
- NIHR Biomedical Research Centre at Guy's and St Thomas' Hospitals, Cutaneous Medicine and Immunotherapy Unit, St John's Institute of Dermatology, Division of Genetics and Molecular Medicine at Guy's Hospital, King's College London, London SE1 9RT, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
33
|
Hästbacka J, Linko R, Tervahartiala T, Varpula T, Hovilehto S, Parviainen I, Vaara ST, Sorsa T, Pettilä V. Serum MMP-8 and TIMP-1 in critically ill patients with acute respiratory failure: TIMP-1 is associated with increased 90-day mortality. Anesth Analg 2014; 118:790-8. [PMID: 24651234 DOI: 10.1213/ane.0000000000000120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) likely have an important role in the pathophysiology of acute lung injury. In a recent study, high matrix metalloproteinases (MMP-8) levels in tracheal aspirates of pediatric acute respiratory distress syndrome (ARDS) patients were associated with worse outcome. In patients with sepsis, an imbalance between MMPs and their tissue inhibitors (TIMPs) has been associated with impaired survival. We hypothesized that the elevated systemic MMP-8 and TIMP-1 are associated with worse outcome in acute respiratory failure. METHODS This was a substudy of the observational FINNALI study conducted in 25 Finnish intensive care units over an 8-week period. All patients older than 16 years requiring mechanical ventilation for >6 hours were included. MMP-8 and TIMP-1 levels were analyzed from blood samples taken on enrollment in the study and 48 hours later. Laboratory analyses were performed by using immunofluorometric assay for MMP-8 and ELISA for TIMP-1. MMP-8 and TIMP-1 levels were compared between 90-day survivors and nonsurvivors. Survival was compared in quartiles based on TIMP-1 levels, and ROC analysis was performed to calculate areas under the curves. The relationship between MMP-8 and TIMP-1 levels and degree of hypoxemia was examined. RESULTS The final analyses included 563 patients. Admission TIMP-1 levels were higher in nonsurvivors, median 367 ng/mL (interquartile range 199-562), than survivors, median 240 ng/mL (interquartile range 142-412), WMWodds 1.68 (95% confidence interval [CI], 1.43-2.08). MMP-8 levels may have differed between survivors and nonsurvivors, WMWodds 1.20 (95% CI, 1.01-1.43), but no difference was found in the MMP-8/TIMP-1 molar ratio, WMWodds 0.83 (95% CI, 0.67-1.04). Difference in survival between quartiles based on TIMP-1 was significant (log-rank, P < 0.001). ROC analysis produced an area under the curve 0.63 (95% CI, 0.58-0.69) for TIMP-1. TIMP-1 was associated with severity of hypoxemia. TIMP-1 levels were higher in an ARDS subgroup than in the whole cohort, WMWodds 1.65 (95% CI, 1.15-2.44). CONCLUSIONS MMP-8 levels were possibly higher in 90-day nonsurvivors but performed poorly in predicting outcome. Increased systemic levels of TIMP-1 were associated with more severe hypoxemia and worse outcome in a large cohort of mechanically ventilated critically ill patients and in a subgroup of ARDS patients.
Collapse
Affiliation(s)
- Johanna Hästbacka
- From the *Intensive Care Units, Helsinki University Hospital; †Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and Biomedicum Helsinki, Helsinki; ‡Intensive Care Unit, South Carelia Central Hospital, Lappeenranta; and §Department of Anesthesiology and Intensive Care, Kuopio University Hospital, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li H, Wu H, Gao Y, Cai S. Effect of Yangyinqingfei decoction on radiation-induced lung injury via downregulation of MMP12 and TIMP-1 expression. Exp Ther Med 2014; 8:9-14. [PMID: 24944589 PMCID: PMC4061229 DOI: 10.3892/etm.2014.1686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 02/03/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to evaluate the effect and underlying mechanism of Yangyinqingfei decoction on radiation-induced lung injury in rats. Wistar rats (n=75) were randomly divided into five experimental groups (A-E). Rats in two of the groups were administered saline solution, whereas rats in the remaining three groups were administered different doses of Yangyinqingfei decoction. After one week, the rats were irradiated with a single dose of 25 Gy to their right hemi-thoraxes by a 60Co γ-ray, with the exception of the control group, which underwent sham irradiation. The effect of Yangyinqingfei decoction was assessed one, two and four weeks post-irradiation according to the pathological changes and the right lung index (wet weight of right lung/body weight ×100%). Expression levels of matrix metalloproteinase-12 (MMP-12) and tissue inhibitors of metalloproteinases-1 (TIMP-1) in lung tissue were determined using the reverse transcription-polymerase chain reaction and western blot analysis. Pretreatment with Yangyinqingfei resulted in a significant dose-dependent resistance to radiation-induced body weight loss. The expression of MMP-12 and TIMP-1 increased following irradiation. However, the levels of MMP-12 and TIMP-1 in groups receiving Yangyinqingfei were lower four weeks after irradiation compared with those in rats administered saline. Cumulatively, these results suggest that Yangyinqingfei has a protective effect on radiation-induced lung injury in rats, possibly by downregulating MMP-12 and TIMP-1 expression.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Respiratory Medicine, South Building, Special Inpatient Unit, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongying Wu
- Department of Respiratory Medicine, Special Inpatient Unit, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yue Gao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100039, P.R. China
| | - Shaohua Cai
- Department of Respiratory Medicine, Special Inpatient Unit, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
35
|
Shikata F, Sakaue T, Nakashiro KI, Okazaki M, Kurata M, Okamura T, Okura M, Ryugo M, Nakamura Y, Yasugi T, Higashiyama S, Izutani H. Pathophysiology of lung injury induced by common bile duct ligation in mice. PLoS One 2014; 9:e94550. [PMID: 24733017 PMCID: PMC3986091 DOI: 10.1371/journal.pone.0094550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/17/2014] [Indexed: 12/13/2022] Open
Abstract
Background Liver dysfunction and cirrhosis affect vasculature in several organ systems and cause impairment of organ functions, thereby increasing morbidity and mortality. Establishment of a mouse model of hepatopulmonary syndrome (HPS) would provide greater insights into the genetic basis of the disease. Our objectives were to establish a mouse model of lung injury after common bile duct ligation (CBDL) and to investigate pulmonary pathogenesis for application in future therapeutic approaches. Methods Eight-week-old Balb/c mice were subjected to CBDL. Immunohistochemical analyses and real-time quantitative reverse transcriptional polymerase chain reaction were performed on pulmonary tissues. The presence of HPS markers was detected by western blot and microarray analyses. Results We observed extensive proliferation of CD31-positive pulmonary vascular endothelial cells at 2 weeks after CBDL and identified 10 upregulated and 9 down-regulated proteins that were associated with angiogenesis. TNF-α and MMP-9 were highly expressed at 3 weeks after CBDL and were less expressed in the lungs of the control group. Conclusions We constructed a mouse lung injury model by using CBDL. Contrary to our expectation, lung pathology in our mouse model exhibited differences from that of rat models, and the mechanisms responsible for these differences are unknown. This phenomenon may be explained by contrasting processes related to TNF induction of angiogenic signaling pathways in the inflammatory phase. Thus, we suggest that our mouse model can be applied to pulmonary pathological analyses in the inflammatory phase, i.e., to systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Fumiaki Shikata
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Tomohisa Sakaue
- Department of Cell Growth and Tumor Regulation, Ehime University, Proteo-Science Center, Ehime University, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koh-ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mikio Okazaki
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mie Kurata
- Department of Pathology, Division of Pathogenomics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Toru Okamura
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masahiro Okura
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masahiro Ryugo
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yuki Nakamura
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takumi Yasugi
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Shigeki Higashiyama
- Department of Cell Growth and Tumor Regulation, Ehime University, Proteo-Science Center, Ehime University, Ehime, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hironori Izutani
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Ehime, Japan
- * E-mail:
| |
Collapse
|
36
|
Kong MYF, Clancy JP, Peng N, Li Y, Szul TJ, Xu X, Oster R, Sullender W, Ambalavanan N, Blalock JE, Gaggar A. Pulmonary matrix metalloproteinase-9 activity in mechanically ventilated children with respiratory syncytial virus. Eur Respir J 2013; 43:1086-96. [PMID: 24311764 DOI: 10.1183/09031936.00105613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory syncytial virus (RSV) infection is a potent stimulus for airway epithelial expression of matrix metalloproteinase (MMP)-9. MMP-9 activity in vivo is a predictor of disease severity in children with RSV-induced respiratory failure. Human airway epithelial cells were infected with RSV A2 strain and analysed for MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 (a natural inhibitor of MMP-9) release. In addition, endotracheal samples from children with RSV-RF and controls (non-RSV pneumonia and nonlung disease controls) were analysed for MMP-9, TIMP-1, human neutrophil elastase and myeloperoxidase activity. RSV infection of airway epithelia was sufficient to rapidly induce MMP-9 transcription and protein release. Pulmonary MMP-9 activity peaked at 48 h in infants with RSV-induced respiratory failure. In the RSV group, MMP-9 activity and MMP-9/TIMP-1 ratio imbalance predicted higher oxygen requirement and worse paediatric risk of mortality scores. The highest levels of human neutrophil elastase and myeloperoxidase activity were measured in the RSV cohort; however, unlike MMP-9, these neutrophil markers failed to predict disease severity. These results support the hypothesis that RSV is a potent stimulus for MMP-9 expression and release from human airway epithelium, and that MMP-9 is an important biomarker of disease severity in mechanically ventilated children with RSV lung infection.
Collapse
|
37
|
Luong KVQ, Nguyen LTH. Beneficial role of vitamin D3 in the prevention of certain respiratory diseases. Ther Adv Respir Dis 2013; 7:327-50. [PMID: 24056290 DOI: 10.1177/1753465813503029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is evidence of aberrations in the vitamin D-endocrine system in subjects with respiratory diseases. Vitamin D deficiency is highly prevalent in patients with respiratory diseases, and patients who receive vitamin D have significantly larger improvements in inspiratory muscle strength and maximal oxygen uptake. Studies have provided an opportunity to determine which proteins link vitamin D to respiratory pathology, including the major histocompatibility complex class II molecules, vitamin D receptor, vitamin D-binding protein, chromosome P450, Toll-like receptors, poly(ADP-ribose) polymerase-1, and the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on respiratory diseases through cell signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D plays a significant role in respiratory diseases. The best form of vitamin D for use in the treatment of respiratory diseases is calcitriol because it is the active metabolite of vitamin D3 and modulates inflammatory cytokine expression. Further investigation of calcitriol in respiratory diseases is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Luong
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA
| | | |
Collapse
|
38
|
McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Crit Rev Biochem Mol Biol 2000; 48:222-72. [PMID: 10947989 DOI: 10.3109/10409238.2013.770819] [Citation(s) in RCA: 560] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue degradation by the matrix metalloproteinase gelatinase A is pivotal to inflammation and metastases. Recognizing the catalytic importance of substrate-binding exosites outside the catalytic domain, we screened for extracellular substrates using the gelatinase A hemopexin domain as bait in the yeast two-hybrid system. Monocyte chemoattractant protein-3 (MCP-3) was identified as a physiological substrate of gelatinase A. Cleaved MCP-3 binds to CC-chemokine receptors-1, -2, and -3, but no longer induces calcium fluxes or promotes chemotaxis, and instead acts as a general chemokine antagonist that dampens inflammation. This suggests that matrix metalloproteinases are both effectors and regulators of the inflammatory response.
Collapse
Affiliation(s)
- G A McQuibban
- Department of Biochemistry and Molecular Biology, Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|