1
|
Krogstad KC, Vlietstra RJ, Pursley JR, Grilli E, Bradford BJ. On-farm supplementation of rumen-protected niacin: A randomized clinical trial. J Dairy Sci 2025; 108:968-979. [PMID: 39694252 DOI: 10.3168/jds.2024-25489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024]
Abstract
B vitamins, including niacin (vitamin B3), are synthesized by rumen microbes, but supplementation may provide additional benefits for ruminant health and productivity. Supplementing rumen-protected niacin (RPN) during the transition period can reduce lipolysis after calving and, consequently, may improve health and fertility of dairy cattle later in lactation. Our objective was to determine if supplementing RPN during the first 21 DIM would improve the health of dairy cows on a commercial dairy farm. We hypothesized that RPN would reduce mastitis, improve fertility, and reduce risk of leaving the herd during lactation. Holstein cows were blocked by parity and projected calving date, with treatments randomly assigned to cows within each block. Cows received RPN (n = 481; 26 g/d) through a supplement dispenser in the automated milk systems (AMS) in addition to their robot pellet, or the robot pellet only (CON; n = 593). Treatments were applied for the first 21 DIM, and cows were followed for the rest of their lactation. Milk yield, milk components (wk 1-3 of lactation), pre- and postpartum BCS, health records, and reproductive records were collected. Blood was collected from a random subset of 99 cows at 3 DIM and 97 cows at 10 DIM to assess plasma concentrations of niacin, metabolic biomarkers, and biomarkers of inflammatory status. Culling, proportion of cows pregnant, and mastitis risk were analyzed using Cox proportional hazard models. Mastitis incidence was analyzed with a linear mixed model and conception risk was analyzed using a χ2 test. Supplementing RPN increased plasma nicotinamide concentration by 1,740 nM ± 410.0 nM (SE; 50% increase), but it did not affect plasma nicotinic acid concentrations. Supplementing RPN reduced plasma insulin concentrations at 3 and 10 DIM across all parities. Circulating BHB and free fatty acid concentrations were greater for cows receiving RPN; the effect was greatest in cows in third or greater parity. Plasma haptoglobin was not affected by treatment. Rumen-protected niacin increased milk yield for first- and second-parity cows by wk 9 and 13 of lactation, respectively, and increased milk yield in those groups was sustained for the rest of lactation, resulting in 658 ± 259.4 kg and 675 ± 308.9 kg more milk for RPN-supplemented first- and second-parity cows. The risk of leaving the herd, mastitis incidence, and probability of pregnancy were not affected by RPN. Inquiries into the effects of RPN supplementation and its timing on metabolism are necessary to understand optimal supplementation strategies for RPN in dairy cattle.
Collapse
Affiliation(s)
- K C Krogstad
- Department of Animal Science, Michigan State University, East Lansing, MI 48824; Department of Animal Science, The Ohio State University, Wooster, OH 44691.
| | - R J Vlietstra
- West Michigan Veterinary Service, Coopersville, MI 49404
| | - J R Pursley
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - E Grilli
- Department of Veterinary Medical Sciences, University of Bologna: Bologna, 40126 Emilia-Romagna, Italy; Vetagro Inc., Chicago, IL 60605
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
2
|
TAKANO T, GOTO A, SUGINO T. The composition of early lactation milk in recipient dairy cows determines success in bovine embryo transfer. J Vet Med Sci 2024; 86:1198-1204. [PMID: 39343538 PMCID: PMC11569873 DOI: 10.1292/jvms.24-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
To identify new criteria for selecting recipient dairy cows for embryo transfer (ET), we retrospectively examined the effects of the composition of early lactation milk on fertility risk in ET. This study investigated the association between milk fat (FAT), milk protein (PRO), and milk urea nitrogen (MUN) levels during early lactation, based on production records, and subsequent fertility risk in ET using contingency table analysis and multivariable logistic regression analysis, which included five confounding variables. The results showed that MUN levels during early lactation were negatively associated with fertility risk in ET, while FAT and PRO levels showed no clear association. A reduction in MUN levels during the peak lactation period suggests a deficiency in dry matter intake, an inadequate protein supply, and an imbalance in the ratio of proteins to fermentable carbohydrates in the rumen, which may have adversely impacted fertility risk in ET. Monitoring MUN levels is crucial for maintaining a proper protein balance. The results obtained in this study suggest that MUN levels in the early lactation phase obtained from production records can be used as a predictor of fertility in recipients to improve the fertility risk in ET. No special techniques or costs are required for using production records, making them easy to use in clinical practice. Our findings provide valuable insights for optimizing cost-effectiveness and fertility risk in ET and their clinical applications.
Collapse
Affiliation(s)
- Toshihiro TAKANO
- Research Center for Animal Science, Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan
- Fukuoka Prefecture Dairy Cooperative Association, Fukuoka, Japan
| | - Akira GOTO
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Toshihisa SUGINO
- Research Center for Animal Science, Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Saeed HA, Sabir R, Lu X, Jiang Y, Koutonin BOM, Wang D, Fu Y, Jia C, Li J. 6-Gingerol and Astaxanthin Mitigate the Effects of Stearic Acid in Pig Oocyte Maturation. Reprod Domest Anim 2024; 59:e14746. [PMID: 39582146 DOI: 10.1111/rda.14746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Elevated non-esterified fatty acids (NEFAs), particularly stearic acid (SA), have a deleterious effect on oocyte maturation, leading to developmental damage and reproductive issues. High SA levels disrupt metabolic processes, inducing lipotoxicity that impairs oocyte quality and contributes to reproductive failures through early embryonic losses. This research investigates the lipotoxic effects of SA and assesses the protective potential of 6-Gingerol (6-G) and Astaxanthin (AX) on porcine oocytes during in vitro maturation (IVM). Herein, 6100 cumulus-oocyte complexes (COCs) were exposed to various concentrations of SA (25-250 μM) to elucidate the concentration-dependent effect on oocyte viability, polar body extrusion (PBE) and cumulus cell expansion index (CCEI). However, the efficacy of 6-G (5-15 μM) and AX (2.5 μM) in combination with SA at 150 μM (SA6) concentration was evaluated to mitigate these adverse effects. The results indicated that SA6 substantially reduced oocyte viability, PBE and CCEI, demonstrating its toxic impact on oocyte developmental competence (p < 0.0001). Moreover, treatment with antioxidants such as SA6 + 6-G (10 μM) and SA6 + AX showed a considerable increase in viability and PBE compared to SA6 alone (p < 0.05). These findings demonstrate the importance of lipid metabolism in oocyte health, where dysregulation impairs reproductive capacity. Both 6-G and AX protected against lipotoxicity induced by SA6 while enhancing lipid homeostasis and the anti-oxidative defences necessary for maintaining cellular integrity. This study finds substantial evidence that optimising the microenvironment with specific antioxidants can improve oocyte quality and provide invaluable knowledge in reproductive technologies and fertility treatments.
Collapse
Affiliation(s)
- Hussain Ahmad Saeed
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rabia Sabir
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinyue Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Dayu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yangfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Miller KL, Liu X, McSwain MG, Jauregui EJ, Langlais PR, Craig ZR. Quantitative label-free proteomic analysis of mouse ovarian antral follicles following oral exposure to a human-relevant mixture of three phthalates. Toxicol Sci 2024; 201:226-239. [PMID: 38995844 PMCID: PMC11424887 DOI: 10.1093/toxsci/kfae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), and benzyl butyl phthalate (BBP) are used in personal and medical care products. In the ovary, antral follicles are essential for steroidogenesis and ovulation. DBP, BBP, and DEHP are known to inhibit mouse antral follicle growth and ovulation in vitro, and associate with decreased antral follicle counts in women. Given that the in vivo effects of a three-phthalate mixture on antral follicles are unknown, we evaluated the effects of a human-relevant mixture of DBP, BBP, and DEHP on ovarian follicles through proteome profiling analysis. Adult CD-1 female mice were fed corn oil (vehicle), or two dose levels of a phthalate mixture based on estimated exposures in general (32 µg/kg/d; PHT 32) and occupationally exposed (500 µg/kg/d; PHT 500) populations for 10 d. Antral follicles (>250 µm) were isolated and subjected to proteome profiling via label-free tandem mass spectrometry. A total of 5,417 antral follicle proteins were detected, of which 194 were differentially abundant between vehicle and PHT 32, and 136 between vehicle and PHT 500. Bioinformatic analysis revealed significantly different responses between the two phthalate doses. Protein abundance differences in the PHT 32 exposure mapped to cytoplasm, mitochondria, and lipid metabolism; whereas those in the PHT 500 exposure mapped to cytoplasm, nucleus, and phosphorylation. When both doses altered proteins mapped to common processes, the associated predicted transcription factors were different. These findings provide novel mechanistic insight into phthalate-associated, ovary-driven reproductive outcomes in women.
Collapse
Affiliation(s)
- Kara L Miller
- Department of Pharmacology & Toxicology, The University of Arizona, Tucson, AZ 85721, United States
| | - Xiaosong Liu
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Maile G McSwain
- Environmental Health Transformative Research Undergraduate Experience, The University of Arizona, Tucson, AZ 85721, United States
| | - Estela J Jauregui
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Paul R Langlais
- Department of Medicine, The University of Arizona, Tucson, AZ 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
| | - Zelieann R Craig
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
5
|
Igal RA. Death and the desaturase: Implication of Stearoyl-CoA desaturase-1 in the mechanisms of cell stress, apoptosis, and ferroptosis. Biochimie 2024; 225:156-167. [PMID: 38823621 DOI: 10.1016/j.biochi.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Growth and proliferation of normal and cancerous cells necessitate a finely-tuned regulation of lipid metabolic pathways to ensure the timely supply of structural, energetic, and signaling lipid molecules. The synthesis and remodeling of lipids containing fatty acids with an appropriate carbon length and insaturation level are required for supporting each phase of the mechanisms of cell replication and survival. Mammalian Stearoyl-CoA desaturases (SCD), particularly SCD1, play a crucial role in modulating the fatty acid composition of cellular lipids, converting saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA) in the endoplasmic reticulum (ER). Extensive research has elucidated in great detail the participation of SCD1 in the molecular mechanisms that govern cell replication in normal and cancer cells. More recently, investigations have shed new light on the functional and regulatory role of the Δ9-desaturase in the processes of cell stress and cell death. This review will examine the latest findings on the involvement of SCD1 in the molecular pathways of cell survival, particularly on the mechanisms of ER stress and autophagy, as well in apoptotic and non-apoptotic cell death.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Irving Medical Center, New York City, New York, USA.
| |
Collapse
|
6
|
Olasege BS, van den Berg I, Haile-Mariam M, Ho PN, Yin Oh Z, Porto-Neto LR, Hayes BJ, Pryce JE, Fortes MRS. Dissecting loci that underpin the genetic correlations between production, fertility, and urea traits in Australian Holstein cattle. Anim Genet 2024; 55:540-558. [PMID: 38885945 DOI: 10.1111/age.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Unfavorable genetic correlations between milk production, fertility, and urea traits have been reported. However, knowledge of the genomic regions associated with these unfavorable correlations is limited. Here, we used the correlation scan method to identify and investigate the regions driving or antagonizing the genetic correlations between production vs. fertility, urea vs. fertility, and urea vs. production traits. Driving regions produce an estimate of correlation that is in the same direction as the global correlation. Antagonizing regions produce an estimate in the opposite direction of the global estimates. Our dataset comprised 6567, 4700, and 12,658 Holstein cattle with records of production traits (milk yield, fat yield, and protein yield), fertility (calving interval) and urea traits (milk urea nitrogen and blood urea nitrogen predicted using milk-mid-infrared spectroscopy), respectively. Several regions across the genome drive the correlations between production, fertility, and urea traits. Antagonizing regions were confined to certain parts of the genome and the genes within these regions were mostly involved in preventing metabolic dysregulation, liver reprogramming, metabolism remodeling, and lipid homeostasis. The driving regions were enriched for QTL related to puberty, milk, and health-related traits. Antagonizing regions were mostly related to muscle development, metabolic body weight, and milk traits. In conclusion, we have identified genomic regions of potential importance for dairy cattle breeding. Future studies could investigate the antagonizing regions as potential genomic regions to break the unfavorable correlations and improve milk production as well as fertility and urea traits.
Collapse
Affiliation(s)
- Babatunde S Olasege
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- CSIRO Agriculture and Food, Saint Lucia, Queensland, Australia
| | - Irene van den Berg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Mekonnen Haile-Mariam
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Phuong N Ho
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Zhen Yin Oh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland, Australia
| | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Kunnath AN, Parker SK, Crasta DN, Kunhiraman JP, Madhvacharya VV, Kumari S, Nayak G, Vani Lakshmi R, Modi PK, Keshava Prasad TS, Kumar A, Khandelwal A, Ghani NK, Kabekkodu SP, Adiga SK, Kalthur G. Metformin augments major cytoplasmic organization except for spindle organization in oocytes cultured under hyperglycemic and hyperlipidemic conditions: An in vitro study. Toxicol Appl Pharmacol 2024; 490:117039. [PMID: 39019093 DOI: 10.1016/j.taap.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The present study aimed to investigate the role of antidiabetic drug metformin on the cytoplasmic organization of oocytes. Germinal vesicle (GV) stage oocytes were collected from adult female Swiss albino mice and subjected to in vitro maturation (IVM) in various experimental groups- control, vehicle control (0.3% ethanol), metformin (50 μg/mL), high glucose and high lipid (HGHL, 10 mM glucose; 150 μM palmitic acid; 75 μM stearic acid and 200 μM oleic acid in ethanol), and HGHL supplemented with metformin. The metaphase II (MII) oocytes were analyzed for lipid accumulation, mitochondrial and endoplasmic reticulum (ER) distribution pattern, oxidative and ER stress, actin filament organization, cortical granule distribution pattern, spindle organization and chromosome alignment. An early polar body extrusion was observed in the HGHL group. However, the maturation rate at 24 h did not differ significantly among the experimental groups compared to the control. The HGHL conditions exhibited significantly higher levels of oxidative stress, ER stress, poor actin filament organization, increased lipid accumulation, altered mitochondrial distribution, spindle abnormalities, and chromosome misalignment compared to the control. Except for spindle organization, supplementation of metformin to the HGHL conditions improved all the parameters (non-significant for ER and actin distribution pattern). These results show that metformin exposure in the culture media helped to improve the hyperglycemia and hyperlipidemia-induced cytoplasmic anomalies except for spindle organization. Given the crucial role of spindle organization in proper chromosome segregation during oocyte maturation and meiotic resumption, the implications of metformin's limitations in this aspect warrant careful evaluation and further investigation.
Collapse
Affiliation(s)
- Amrutha Nedumbrakkad Kunnath
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shravani Kanakadas Parker
- Center of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Daphne Norma Crasta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jyolsna Ponnaratta Kunhiraman
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Vanishree Vasave Madhvacharya
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Guruprasad Nayak
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - R Vani Lakshmi
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, India
| | - Prashanth Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, University Road, Mangalore 575018, India
| | | | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allasandra, Yelahanka, Bangalore 560065, India
| | - Ayush Khandelwal
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Nadeem Khan Ghani
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Satish Kumar Adiga
- Center of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
8
|
Magata F, Kikuzawa M, Bollwein H, Matsuda F, Haneda S. Lipopolysaccharide-binding protein in follicular fluid is associated with the follicular inflammatory status and granulosa cell steroidogenesis in dairy cows. J Reprod Dev 2024; 70:169-176. [PMID: 38644218 PMCID: PMC11153122 DOI: 10.1262/jrd.2023-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/22/2024] [Indexed: 04/23/2024] Open
Abstract
Metabolic stress and subsequent hepatic dysfunction in high-producing dairy cows are associated with inflammatory diseases and declining fertility. Lipopolysaccharide (LPS)-binding protein (LBP) is produced by hepatocytes and controls the immune response, suggesting that it is involved in the pathophysiology of inflammation-related attenuation of reproductive functions during metabolic stress. This study investigated the effect of LBP on the inflammatory status, oocyte quality, and steroidogenesis in the follicular microenvironment of dairy cows. Using bovine ovaries obtained from a slaughterhouse, follicular fluid and granulosa cells were collected from large follicles to evaluate the follicular status of metabolism, inflammation, and steroidogenesis. Cumulus-oocyte complexes were aspirated from small follicles and subjected to in vitro embryo production. The results showed that follicular fluid LBP concentrations were significantly higher in cows with fatty livers and hepatitis than in those with healthy livers. Follicular fluid LBP and LPS concentrations were negatively correlated, whereas LPS concentration showed a positive correlation with the concentrations of non-esterified fatty acids (NEFA) and β-hydroxybutyric acid in follicular fluid. The blastulation rate of oocytes after in vitro fertilization was impaired in cows in which coexisting large follicles had high NEFA levels. Follicular fluid NEFA concentration was negatively correlated with granulosa cell expression of the estradiol (E2) synthesis-related gene (CYP19A1). Follicular fluid LBP concentration was positively correlated with follicular fluid E2 concentration and granulosa cell CYP19A1 expression. In conclusion, follicular fluid LBP may be associated with favorable conditions in the follicular microenvironment, including low LPS levels and high E2 production by granulosa cells.
Collapse
Affiliation(s)
- Fumie Magata
- Department of Veterinary Medical Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Misato Kikuzawa
- Department of Veterinary Medical Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Fuko Matsuda
- Department of Veterinary Medical Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shingo Haneda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
9
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
10
|
Pawlak P, Lipinska P, Sell-Kubiak E, Kajdasz A, Derebecka N, Warzych E. Energy metabolism disorders during in vitro maturation of bovine cumulus-oocyte complexes interfere with blastocyst quality and metabolism. Dev Biol 2024; 509:51-58. [PMID: 38342400 DOI: 10.1016/j.ydbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Glucose and fatty acids (FA) metabolism disturbances during oocyte in vitro maturation (IVM) affect their metabolism and surrounding cumulus cells, but only inhibition of glucose metabolism decreases embryo culture efficiency. Therefore, the present experiment aimed to reveal if glucose or FA metabolism inhibition leads to the disruption of embryo developmental potential, and to characterize the metabolic landscape of embryos reaching the blastocyst stage. Inhibitors of glucose (IO + DHEA) or FA (ETOMOXIR) metabolism were applied during IVM, and the control group was matured under standard conditions. Blastocysts obtained from experimental and control groups were analyzed with regard to lipidome and metabolome (mass spectrometry), transcriptome (RNA-Seq) and fluorescence lipid droplets staining (BODIPY). We showed that inhibition of glucose and fatty acid metabolism leads to cellular stress response compromising the quality of preimplantation embryos. The inhibition of energy metabolism affects membrane fluidity as well as downregulates fatty acids biosynthesis and gene expression of trophectoderm cell line markers. Therefore, we conclude that oocyte maturation environment exerts a substantial effect on preimplantation development programming at cellular and molecular levels.
Collapse
Affiliation(s)
- Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Paulina Lipinska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Ewa Sell-Kubiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Arkadiusz Kajdasz
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
11
|
Sun W, Li M, Ren H, Chen Y, Zeng W, Tan X, Jia X, Chen S, Wang J, Lai S. Comparative Metabolomic Profiling of L-Histidine and NEFA Treatments in Bovine Mammary Epithelial Cells. Animals (Basel) 2024; 14:1045. [PMID: 38612284 PMCID: PMC11010852 DOI: 10.3390/ani14071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Non-esterified fatty acids (NEFAs) are pivotal in energy metabolism, yet high concentrations can lead to ketosis, a common metabolic disorder in cattle. Our laboratory observed lower levels of L-histidine in cattle suffering from ketosis, indicating a potential interaction between L-histidine and NEFA metabolism. This relationship prompted us to investigate the metabolomic alterations in bovine mammary epithelial cells (BMECs) induced by elevated NEFA levels and to explore L-histidine's potential mitigating effects. Our untargeted metabolomic analysis revealed 893 and 160 metabolite changes in positive and negative models, respectively, with VIP scores greater than 1 and p-values below 0.05. Notable metabolites like 9,10-epoxy-12-octadecenoic acid were upregulated, while 9-Ethylguanine was downregulated. A pathway analysis suggested disruptions in fatty acid and steroid biosynthesis pathways. Furthermore, L-histidine treatment altered 61 metabolites in the positive model and 34 in the negative model, with implications for similar pathways affected by NEFA. Overlaying differential metabolites from both conditions uncovered a potential key mediator, 1-Linoleoylglycerophosphocholine, which was regulated in opposite directions by NEFA and L-histidine. Our study uncovered that both NEFA L- and histidine metabolomics analyses pinpoint similar lipid biosynthesis pathways, with 1-Linoleoylglycerophosphocholine emerging as a potential key metabolite mediating their interaction, a discovery that may offer insights for therapeutic strategies in metabolic diseases.
Collapse
Affiliation(s)
- Wenqiang Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengze Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hanjun Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Zeng
- Sichuan Province Animal Husbandry Science Research Institute (Yangping Breeding Bull Farm), Meishan 620360, China; (W.Z.); (X.T.)
| | - Xiong Tan
- Sichuan Province Animal Husbandry Science Research Institute (Yangping Breeding Bull Farm), Meishan 620360, China; (W.Z.); (X.T.)
| | - Xianbo Jia
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Songjia Lai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.S.); (M.L.); (H.R.); (Y.C.); (X.J.); (S.C.); (J.W.)
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Chen M, Liu Y, Zuo M, Zhang M, Wang Z, Li X, Yuan D, Xu H, Yu G, Li M. Integrated analysis reveals the regulatory mechanism of the neddylation inhibitor MLN4924 on the metabolic dysregulation in rabbit granulosa cells. BMC Genomics 2024; 25:254. [PMID: 38448814 PMCID: PMC10916191 DOI: 10.1186/s12864-024-10118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Neddylation, an important post-translational modification (PTM) of proteins, plays a crucial role in follicular development. MLN4924 is a small-molecule inhibitor of the neddylation-activating enzyme (NAE) that regulates various biological processes. However, the regulatory mechanisms of neddylation in rabbit ovarian cells have not been emphasized. Here, the transcriptome and metabolome profiles in granulosa cells (GCs) treated with MLN4924 were utilized to identify differentially expressed genes, followed by pathway analysis to precisely define the altered metabolisms. RESULTS The results showed that 563 upregulated and 910 downregulated differentially expressed genes (DEGs) were mainly enriched in pathways related to cancer, cell cycle, PI3K-AKT, progesterone-mediated oocyte maturation, and PPAR signaling pathway. Furthermore, we characterized that MLN4924 inhibits PPAR-mediated lipid metabolism, and disrupts the cell cycle by promoting the apoptosis and proliferation of GCs. Importantly, we found the reduction of several metabolites in the MLN4924 treated GCs, including glycerophosphocholine, arachidic acid, and palmitic acid, which was consistent with the deregulation of PPAR signaling pathways. Furthermore, the increased metabolites included 6-Deoxy-6-sulfo-D-glucono-1,5-lactone and N-Acetyl-D-glucosaminyldiphosphodolichol. Combined with transcriptome data analyses, we identified genes that strongly correlate with metabolic dysregulation, particularly those related to glucose and lipid metabolism. Therefore, neddylation inhibition may disrupt the energy metabolism of GCs. CONCLUSIONS These results provide a foundation for in-depth research into the role and molecular mechanism of neddylation in ovary development.
Collapse
Affiliation(s)
- Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Meina Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Zhitong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Dongdong Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| |
Collapse
|
13
|
Marei WFA, Mohey-Elsaeed O, Pintelon I, Leroy JLMR. Risks of using mitoquinone during in vitro maturation and its potential protective effects against lipotoxicity-induced oocyte mitochondrial stress. J Assist Reprod Genet 2024; 41:371-383. [PMID: 38146030 PMCID: PMC10894804 DOI: 10.1007/s10815-023-02994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 12/27/2023] Open
Abstract
PURPOSE Oxidative stress and mitochondrial dysfunction play central roles in reduced oocyte quality and infertility in obese patients. Mitochondria-targeted treatments containing co-enzyme Q10 such as mitoquinone (MitoQ) can increase mitochondrial antioxidative capacity; however, their safety and efficiency when supplemented to oocytes under lipotoxic conditions have not been described. METHODS We tested the effect of different concentrations of MitoQ or its cationic carrier (TPP) (0, 0.1, 0.5, 1.0 μM each) during bovine oocyte IVM. Then, we tested the protective capacity of MitoQ (0.1 μM) against palmitic acid (PA)-induced lipotoxicity and mitochondrial dysfunction in oocytes. RESULTS Exposure to MitoQ, or TPP only, at 1 μM significantly (P<0.05) reduced oocyte mitochondrial inner membrane potential (JC-1 staining) and resulted in reduced cleavage and blastocyst rates compared with solvent control. Lower concentrations of MitoQ or TPP had no effects on embryo development under control (PA-free) conditions. As expected, PA increased the levels of MMP and ROS in oocytes (CellROX staining) and reduced cleavage and blastocyst rates compared with the controls (P<0.05). These negative effects were ameliorated by 0.1 μM MitoQ. In contrast, 0.1 μM TPP alone had no protective effects. MitoQ also normalized the expression of HSP10 and TFAM, and partially normalized HSP60 in the produced blastocysts, indicating at least a partial alleviation of PA-induced mitochondrial stress. CONCLUSION Oocyte exposure to MitoQ may disturb mitochondrial bioenergetic functions and developmental capacity due to a TPP-induced cationic overload. A fine-tuned concentration of MitoQ can protect against lipotoxicity-induced mitochondrial stress during IVM and restore developmental competence and embryo quality.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Omnia Mohey-Elsaeed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Bresnahan DR, Catandi GD, Peters SO, Maclellan LJ, Broeckling CD, Carnevale EM. Maturation and culture affect the metabolomic profile of oocytes and follicular cells in young and old mares. Front Cell Dev Biol 2024; 11:1280998. [PMID: 38283993 PMCID: PMC10811030 DOI: 10.3389/fcell.2023.1280998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Oocytes and follicular somatic cells within the ovarian follicle are altered during maturation and after exposure to culture in vitro. In the present study, we used a nontargeted metabolomics approach to assess changes in oocytes, cumulus cells, and granulosa cells from dominant, follicular-phase follicles in young and old mares. Methods: Samples were collected at three stages associated with oocyte maturation: (1) GV, germinal vesicle stage, prior to the induction of follicle/oocyte maturation in vivo; (2) MI, metaphase I, maturing, collected 24 h after induction of maturation in vivo; and (3) MIIC, metaphase II, mature with collection 24 h after induction of maturation in vivo plus 18 h of culture in vitro. Samples were analyzed using gas and liquid chromatography coupled to mass spectrometry only when all three stages of a specific cell type were obtained from the same mare. Results and Discussion: Significant differences in metabolite abundance were most often associated with MIIC, with some of the differences appearing to be linked to the final stage of maturation and others to exposure to culture medium. While differences occurred for many metabolite groups, some of the most notable were detected for energy and lipid metabolism and amino acid abundance. The study demonstrated that metabolomics has potential to aid in optimizing culture methods and evaluating cell culture additives to support differences in COCs associated with maternal factors.
Collapse
Affiliation(s)
- D. R. Bresnahan
- Department of Animal Sciences, Berry College, Mount Berry, GA, United States
| | - G. D. Catandi
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - S. O. Peters
- Department of Animal Sciences, Berry College, Mount Berry, GA, United States
| | - L. J. Maclellan
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - C. D. Broeckling
- Proteomic and Metabolomics Core Facility, Colorado State University, Fort Collins, CO, United States
| | - E. M. Carnevale
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Serbetci I, González-Grajales LA, Herrera C, Ibanescu I, Tekin M, Melean M, Magata F, Malama E, Bollwein H, Scarlet D. Impact of negative energy balance and postpartum diseases during the transition period on oocyte quality and embryonic development in dairy cows. Front Vet Sci 2024; 10:1328700. [PMID: 38249554 PMCID: PMC10797029 DOI: 10.3389/fvets.2023.1328700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Transition period is a critical time for dairy cows because a large proportion of clinical and subclinical diseases are observed in the first month after parturition. Occurrence of negative energy balance is associated with depressed immunity and these conditions can affect oocyte quality and further embryonic development. The aim of this study was to assess the effects of negative energy balance-associated disorders on in vitro embryo production (IVP) in dairy cattle. We hypothesized that subclinical metabolic and/or inflammatory disorders have a negative effect on oocyte developmental competence and morphokinetic parameters of the resulting embryos. The study was conducted on 30 lactating Holstein-Friesian cows which were assigned into four groups: healthy (HEAL, n = 6), metabolic disease (META, n = 8), inflammatory disease (INFL, n = 8), or combined metabolic and inflammatory disease (COMB, n = 8). Ovum pick-up (OPU) was performed twice weekly on all cows over a period of four weeks (n = 8 OPU sessions/cow) starting on the fifth week postpartum, and the collected oocytes were subjected to routine IVP. Donor's health status did not affect the number of oocytes/OPU or the recovery rate (p > 0.05). The number of quality 1 oocytes collected from INFL and COMB cows was lower compared to HEAL cows (p < 0.05). Also, the percentage of quality 1 embryos was reduced in META and COMB compared to HEAL cows (p < 0.05). Cleavage, blastocyst and hatching rates were similar among groups (p > 0.05). Presence of disease did not affect the time required by zygotes to reach specific developmental stages, as recorded by means of time-lapse monitoring. Nevertheless, there was a higher probability of direct cleavage after IVF in oocytes of COMB cows compared to those of HEAL cows (p < 0.05). In conclusion, oocytes and embryos derived from dairy cows diagnosed with subclinical metabolic and/or inflammatory diseases during the transition period showed reduced quality but similar developmental potential and morphokinetics when compared to healthy cows. These results shed light on the consequences of subclinical disease on embryonic development in dairy cows which might be important for embryo transfer programs.
Collapse
Affiliation(s)
- Idil Serbetci
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Carolina Herrera
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Iulian Ibanescu
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Muhittin Tekin
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Manuel Melean
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Fumie Magata
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Eleni Malama
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Dragos Scarlet
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Isobe T, Kajihara Y, Ikebata Y. Influences of oxidative stress and energy balance on pregnancy rates after the transfer of embryos to repeat-breeder Japanese Black cattle. Anim Sci J 2024; 95:e13947. [PMID: 38661251 DOI: 10.1111/asj.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
The purpose of this study is to reassess our previously reported findings on the diminished pregnancy rate of embryo transfer (ET) in summer for repeat-breeder (RB) cows compared with other seasons, with a focus on oxidative stress and energy balance. The study involved Japanese Black cattle, including 224 heifers (aged <3 years) and 278 (aged <9 years) cows with one or more deliveries, defined as RB animals. Evaluation of the effects of season on pregnancy rates revealed significantly lower rates in RB cows during summer compared with spring and autumn. Moreover, serum malondialdehyde (MDA) concentration in RB cows during summer was significantly higher than in winter, with no difference in RB heifers. Seasonal effects on serum nonesterified fatty acid (NEFA) concentration in both RB heifers and RB cows showed no significant differences. However, median MDA and NEFA concentrations in RB cows were significantly elevated compared with RB heifers, suggesting that factors contributing to low fertility should consider parity. Furthermore, our study indicated that RB cows were under oxidative stress, as demonstrated by significantly elevated MDA concentrations compared with normally reproducing cows in summer. Further investigation is necessary to gain a better understanding of these observations in the future.
Collapse
Affiliation(s)
- Tomohiro Isobe
- Laboratory of Cell Genetics and Embryo Transfer, Cattle Breeding Development Institute, Kagoshima, Kagoshima Prefecture, Japan
| | - Yuusuke Kajihara
- Laboratory of Cell Genetics and Embryo Transfer, Cattle Breeding Development Institute, Kagoshima, Kagoshima Prefecture, Japan
| | - Yoshihisa Ikebata
- Laboratory of Cell Genetics and Embryo Transfer, Cattle Breeding Development Institute, Kagoshima, Kagoshima Prefecture, Japan
| |
Collapse
|
17
|
Sarvari A, Niasari-Naslaji A, Shirazi A, Heidari B, Boroujeni SB, Moradi MH, Naderi MM, Behzadi B, Mehrazar MM, Dehghan MM. Effect of Intra-ovarian Injection of Mesenchymal Stem Cells or its Conditioned Media on Repeated OPU-IVEP Outcomes in Jersey Heifers and Its Relationship with Follicular Fluid Inflammatory Markers. Avicenna J Med Biotechnol 2024; 16:16-28. [PMID: 38605741 PMCID: PMC11005394 DOI: 10.18502/ajmb.v16i1.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 04/13/2024] Open
Abstract
Background Repeated Ovum Pick Up (OPU) could have a detrimental effect on ovarian function, reducing In Vitro Embryo Production (IVEP). The present study examined the therapeutic effect of adipose-derived Mesenchymal Stem Cells (MSCs) or its Conditioned Medium (ConM) on ovarian trauma following repeated OPU. Resolvin E1 (RvE1) and Interleukin-12 (IL-12) were investigated as biomarkers. Methods Jersey heifers (n=8) experienced 11 OPU sessions including 5 pre-treatment and 6 treatment sessions. Heifers received intra-ovarian administration of MSCs or ConM (right ovary) and Dulbecco's Modified Phosphate Buffer Saline (DMPBS; left ovary) after OPU in sessions 5 and 8 and 2 weeks after session 11. The concentrations of RvE1 and IL-12 in follicular fluid was evaluated on sessions 1, 5, 6, 9, and 4 weeks after session 11. Following each OPU session, the IVEP parameters were recorded. Results Intra-ovarian administration of MSCs, ConM, and DMPBS did not affect IVEP parameters (p>0.05). The concentration of IL-12 in follicular fluid increased at the last session of pre-treatment (Session 5; p<0.05) and remained elevated throughout the treatment period. There was no correlation between IL-12 and IVEP parameters (p>0.05). However, RvE1 remained relatively high during the pre-treatment and decreased toward the end of treatment period (p<0.05). This in turn was associated with decline in some IVEP parameters (p<0.05). Conclusion Intra-ovarian administration of MSCs or ConM during repeated OPU did not enhance IVEP outcomes in Bos taurus heifers. The positive association between RvE1 and some of IVEP parameters could nominate RvE1 as a promising biomarker to predict IVEP parameters following repeated OPU.
Collapse
Affiliation(s)
- Ali Sarvari
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir Niasari-Naslaji
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Banafsheh Heidari
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Sara Borjian Boroujeni
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Moradi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Mohammad-Mahdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Bahareh Behzadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Mahdi Mehrazar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
Missio D, Leivas FG, Cibin F, Emanuelli T, Somacal S, Buss V, Gasperin B, Oliveira DED, Gonçalves PBD, Ferreira R. Vitamin E reduces the reactive oxygen species production in dominant follicle during the negative energy balance in cattle. Reprod Domest Anim 2023; 58:1662-1671. [PMID: 37743826 DOI: 10.1111/rda.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
In the postpartum period, there is an increase in non-esterified fatty acids (NEFA) in both serum and follicular fluid (FF) of cattle. The increase in fatty acid concentration results in increased production of reactive oxygen species (ROS) that can compromise bovine fertility. The objectives of this study were to characterize the lipid profile found in the FF of cows experiencing induced negative energy balance (NEB) and to evaluate the effect of α-tocopherol in the prevention of oxidative stress in the serum and FF of cows. Twenty-nine beef cows were divided into groups: (1) control; (2) Fasting for 24 days; and (3) Fasting + VitE. Between D0 and D4 blood samples were taken to assess concentrations of NEFA, ROS production, total antioxidant capacity (FRAP), lipid peroxidation, and α-tocopherol (vitamin E). On D4, follicular aspiration was performed for analysis of FF from the dominant follicle. Our results demonstrate that fasting was effective in causing increased fat mobilization in animals. The increase in serum concentration of C18:1c9 was reflected in the FF of fasting cows. Serum α-tocopherol concentration was higher in the control and Fasting + VitE groups compared to the Fasting group. In FF, there was an increase of α-tocopherol in the Fasting + VitE group in comparison to Fasting cows. There was an increase in ROS production in the serum of fasting cows. ROS production in FF was higher in the Fasting compared to the Fasting + VitE group. Vitamin E has beneficial effects in reducing ROS production in the dominant follicle of cows in NEB.
Collapse
Affiliation(s)
- Daniele Missio
- Laboratory of Biotechnology of Reproduction, Federal University of Santa Maria, Santa Maria, Brazil
| | - Fabio Gallas Leivas
- Laboratory of Biotechnology of Reproduction, BIOTECH, Federal University of Pampa, Uruguaiana, Brazil
| | - Francielli Cibin
- Laboratory of Biotechnology of Reproduction, BIOTECH, Federal University of Pampa, Uruguaiana, Brazil
| | - Tatiana Emanuelli
- Department of Alimentary Technology and Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Sabrina Somacal
- Department of Alimentary Technology and Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Vanessa Buss
- Laboratory of Biotechnology of Reproduction, BIOTECH, Federal University of Pampa, Uruguaiana, Brazil
| | - Bernardo Gasperin
- Department of Animal Pathology, Federal University of Pelotas, Capão do Leão, Brazil
| | | | | | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Chapecó, Brazil
| |
Collapse
|
19
|
Edvardsson Rasmussen A, Båge R, Holtenius K, Strandberg E, von Brömssen C, Åkerlind M, Kronqvist C. A randomized study on the effect of an extended voluntary waiting period in primiparous dairy cows on fertility, health, and culling during first and second lactation. J Dairy Sci 2023; 106:8897-8909. [PMID: 37641320 DOI: 10.3168/jds.2023-23470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023]
Abstract
When the voluntary waiting period (VWP), defined as the days between calving and when the cow is eligible to receive the first insemination, is extended, high-yielding dairy cows may have better opportunities to regain energy balance before first insemination. This study investigated the effect of an extended (145-215 days in milk [DIM], n = 280) or conventional (25-95 DIM, n = 251) VWP treatment on fertility, disease incidence, and culling rate in cows during their first lactation. The cows were also followed through a second lactation without intervention regarding VWP, during which the farmers could decide when they wished to start the inseminations. This was done in a randomized-controlled study on 16 high-yielding commercial herds in southern Sweden, containing a total of 531 primiparous cows of the Holstein and Red Dairy Cattle breeds. Data from the Swedish national dairy herd recording scheme collected between August 2018 and September 2021 were used in the analysis, including records on breed, calvings, estrus intensity, inseminations, disease, somatic cell count, culling date, and culling reason. During first lactation, more cows receiving the extended VWP treatment showed strong estrus intensity (score 4-5, 55% vs. 48%) and fewer showed moderate estrus intensity (score 3, 35% vs. 43%) at first insemination, compared with cows receiving the conventional VWP treatment. First service conception rate (FSCR) was higher (67% vs. 51%) and number of inseminations per conception (NINS) was lower (1.6 vs. 2.0) during the first lactation for cows receiving the extended compared with the conventional VWP treatment. For disease incidence rate or culling rate expressed as number of events per cow-time in the study, we found no differences between the cows receiving the 2 VWP treatments in any lactation. Calving to first service interval during second lactation was longer (86 vs. 74 d) for cows with extended compared with conventional VWP. In conclusion, primiparous cows with extended VWP showed improved reproductive functions, in the form of higher estrus intensity, greater FSCR, and lower NINS, during the first lactation. However, we observed no apparent effect on these fertility measures during the following lactation (without VWP intervention) and no differences in disease prevalence or culling between cows receiving the 2 different VWP treatments in either lactation. Compliance with the planned VWP treatment was lower for cows with planned extended compared with planned conventional VWP treatment. We studied the "intention-to-treat" effect (i.e., the results for all cows randomized to each treatment regardless of whether the planned VWP was achieved or not) to identify any bias arising due to degree of compliance. However, we found no difference in culling rate between cows randomized to an extended VWP compared with those randomized to a conventional VWP. These findings can be used to support management decisions on VWP length in high-yielding dairy herds.
Collapse
Affiliation(s)
- A Edvardsson Rasmussen
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
| | - R Båge
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - K Holtenius
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - E Strandberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - C von Brömssen
- Department of Energy and Technology, Unit of Applied Statistics and Mathematics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | | | - C Kronqvist
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
20
|
Trohl J, Schindler M, Buske M, de Nivelle J, Toto Nienguesso A, Navarrete Santos A. Advanced maternal age leads to changes within the insulin/IGF system and lipid metabolism in the reproductive tract and preimplantation embryo: insights from the rabbit model. Mol Hum Reprod 2023; 29:gaad040. [PMID: 38001038 DOI: 10.1093/molehr/gaad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Reproductive potential in women declines with age. The impact of ageing on embryo-maternal interactions is still unclear. Rabbits were used as a reproductive model to investigate maternal age-related alterations in reproductive organs and embryos on Day 6 of pregnancy. Blood, ovaries, endometrium, and blastocysts from young (16-20 weeks) and advanced maternal age phase (>108 weeks, old) rabbits were analysed at the mRNA and protein levels to investigate the insulin-like growth factor (IGF) system, lipid metabolism, and stress defence system. Older rabbits had lower numbers of embryos at Day 6 of pregnancy. Plasma insulin and IGF levels were reduced, which was accompanied by paracrine regulation of IGFs and their receptors in ovaries and endometrium. Embryos adapted to hormonal changes as indicated by reduced embryonic IGF1 and 2 levels. Aged reproductive organs increased energy generation from the degradation of fatty acids, leading to higher oxidative stress. Stress markers, including catalase, superoxide dismutase 2, and receptor for advanced glycation end products were elevated in ovaries and endometrium from aged rabbits. Embryonic fatty acid uptake and β-oxidation were increased in both embryonic compartments (embryoblast and trophoblast) in old rabbits, associated with minor changes in the oxidative and glycative stress defence systems. In summary, the insulin/IGF system, lipid metabolism, and stress defence were dysregulated in reproductive tissues of older rabbits, which is consistent with changes in embryonic metabolism and stress defence. These data highlight the crucial influence of maternal age on uterine adaptability and embryo development.
Collapse
Affiliation(s)
- Juliane Trohl
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Maximilian Buske
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Johanna de Nivelle
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| |
Collapse
|
21
|
Chen X, Li Y, Zhou J, Wei X, Ning N, Huang Q, Pang X, Yang D. Effects of the Zishen Yutai Pill compared with placebo on pregnancy outcomes among women in a fresh embryo transfer cycle: a Post Hoc subgroup analysis of a randomized controlled trial. Front Endocrinol (Lausanne) 2023; 14:1196636. [PMID: 38075073 PMCID: PMC10703301 DOI: 10.3389/fendo.2023.1196636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Objective To assess whether the administration of Zishen Yutai Pill (ZYP) could improve the pregnancy outcomes in different subgroups of women undergoing fresh embryo transfer cycles. Materials and methods This is a post hoc analysis of a large scale, placebo-controlled, double blind, randomized clinical trial (RCT) regarding the use of ZYP during assisted reproductive technology (ART) treatment. The RCT was conducted at 19 in vitro fertilization (IVF) centers between April 2014 and June 2017. A total of 2265 women undergoing fresh embryo transfer cycles were randomly assigned in a 1:1 ratio to receive ZYP (n = 1131) or placebo (n = 1134). Post hoc logistic regression analyses were applied in this study to examine the between-group differences of ZYP and placebo on clinical pregnancy rate among different subgroups. Detailed analyses, both in intention-to-treat (ITT) and per-protocol population, were also conducted in specific subgroups with regards to rates of implantation, biochemical pregnancy, clinical pregnancy, live birth, pregnancy loss, as well as other neonatal indices. Results ZYP showed a significantly higher clinical pregnancy rates than placebo in the ITT population. Detailed subgroup analyses were conducted in subgroup in advanced maternal age (AMA, ≥ 35 years old) and overweight/obese patients (BMI > 24), due to the clinical importance and statistical results. In these subgroups, baseline characteristics were similar between two arms (all P > 0.05). Significantly elevated clinical pregnancy rates were observed in ZYP cohort (both P < 0.05) compared with the placebo group. Results also showed that ZYP treatment resulted in significantly higher rates of implantation, biochemical pregnancy in AMA or overweight/obese patients in ITT analysis (all P < 0.05). Conclusions The current post hoc subgroup analysis suggested that AMA and overweight/obese women could experience clinical benefits when treated with ZYP in their fresh embryo transfer cycles. The study provides references for the use of ZYP in ART practices. However, further studies in specific subgroups should be examined in more rigorous clinical trial settings. Clinical trial registration Chictr.org.cn, ChictrTRC-14004494.
Collapse
Affiliation(s)
- Xiaoli Chen
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu Li
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiewen Zhou
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuemei Wei
- Guangdong Development Engineering Laboratory of Southern Chinese Herbal Drugs, Guangzhou, China
| | - Na Ning
- Guangdong Development Engineering Laboratory of Southern Chinese Herbal Drugs, Guangzhou, China
| | - Qiuling Huang
- Guangdong Development Engineering Laboratory of Southern Chinese Herbal Drugs, Guangzhou, China
| | - Xiufei Pang
- Guangdong Development Engineering Laboratory of Southern Chinese Herbal Drugs, Guangzhou, China
| | - Dongzi Yang
- Center for Reproductive Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Zhang CH, Liu XY, Wang J. Essential Role of Granulosa Cell Glucose and Lipid Metabolism on Oocytes and the Potential Metabolic Imbalance in Polycystic Ovary Syndrome. Int J Mol Sci 2023; 24:16247. [PMID: 38003436 PMCID: PMC10671516 DOI: 10.3390/ijms242216247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Granulosa cells are crucial for the establishment and maintenance of bidirectional communication among oocytes. Various intercellular material exchange modes, including paracrine and gap junction, are used between them to achieve the efficient delivery of granulosa cell structural components, energy substrates, and signaling molecules to oocytes. Glucose metabolism and lipid metabolism are two basic energy metabolism pathways in granulosa cells; these are involved in the normal development of oocytes. Pyruvate, produced by granulosa cell glycolysis, is an important energy substrate for oocyte development. Granulosa cells regulate changes in intrafollicular hormone levels through the processing of steroid hormones to control the development process of oocytes. This article reviews the material exchange between oocytes and granulosa cells and expounds the significance of granulosa cells in the development of oocytes through both glucose metabolism and lipid metabolism. In addition, we discuss the effects of glucose and lipid metabolism on oocytes under pathological conditions and explore its relationship to polycystic ovary syndrome (PCOS). A series of changes were found in the endogenous molecules and ncRNAs that are related to glucose and lipid metabolism in granulosa cells under PCOS conditions. These findings provide a new therapeutic target for patients with PCOS; additionally, there is potential for improving the fertility of patients with PCOS and the clinical outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Xiang-Yi Liu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Jing Wang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
23
|
da Fonseca Junior AM, Ispada J, Dos Santos EC, de Lima CB, da Silva JVA, Paulson E, Goszczynski DE, Goissis MD, Ross PJ, Milazzotto MP. Adaptative response to changes in pyruvate metabolism on the epigenetic landscapes and transcriptomics of bovine embryos. Sci Rep 2023; 13:11504. [PMID: 37460590 PMCID: PMC10352246 DOI: 10.1038/s41598-023-38686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The epigenetic reprogramming that occurs during the earliest stages of embryonic development has been described as crucial for the initial events of cell specification and differentiation. Recently, the metabolic status of the embryo has gained attention as one of the main factors coordinating epigenetic events. In this work, we investigate the link between pyruvate metabolism and epigenetic regulation by culturing bovine embryos from day 5 in the presence of dichloroacetate (DCA), a pyruvate analog that increases the pyruvate to acetyl-CoA conversion, and iodoacetate (IA), which inhibits the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to glycolysis inhibition. After 8 h of incubation, both DCA and IA-derived embryos presented higher mitochondrial membrane potential. Nevertheless, in both cases, lower levels of acetyl-CoA, ATP-citrate lyase and mitochondrial membrane potential were found in blastocysts, suggesting an adaptative metabolic response, especially in the DCA group. The metabolic alteration found in blastocysts led to changes in the global pattern of H3K9 and H3K27 acetylation and H3K27 trimethylation. Transcriptome analysis revealed that such alterations resulted in molecular differences mainly associated to metabolic processes, establishment of epigenetic marks, control of gene expression and cell cycle. The latter was further confirmed by the alteration of total cell number and cell differentiation in both groups when compared to the control. These results corroborate previous evidence of the relationship between the energy metabolism and the epigenetic reprogramming in preimplantation bovine embryos, reinforcing that the culture system is decisive for precise epigenetic reprogramming, with consequences for the molecular control and differentiation of cells.
Collapse
Affiliation(s)
- Aldcejam Martins da Fonseca Junior
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Jessica Ispada
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Erika Cristina Dos Santos
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | | | - João Vitor Alcantara da Silva
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Erika Paulson
- Department of Animal Science, University of California, UC - Davis, Davis, USA
| | | | | | - Pablo Juan Ross
- Department of Animal Science, University of California, UC - Davis, Davis, USA
| | - Marcella Pecora Milazzotto
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil.
| |
Collapse
|
24
|
Catandi GD, Cheng MH, Chicco AJ, Chen T, Carnevale EM. L-carnitine enhances developmental potential of bovine oocytes matured under high lipid concentrations in vitro. Anim Reprod Sci 2023; 252:107249. [PMID: 37119563 DOI: 10.1016/j.anireprosci.2023.107249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Maternal obesity elevates non-esterified fatty acids (NEFA) follicular concentrations. Bovine cumulus-oocyte complexes (COCs) matured in vitro under high NEFA have altered metabolism and reduced quality. Systemically, obesity promotes altered mitochondrial metabolism linked to L-carnitine insufficiency. We hypothesized that L-carnitine supplementation during IVM of bovine COCs in the presence of high NEFA would lessen the negative effects of exposure to excessive lipids on embryonic development and oxidative stress. COCs were collected from abattoir ovaries and matured in four groups: CON (control), LC (3 mM L-carnitine), HN (high NEFA: 200uM oleic, 150uM palmitic and 75uM stearic acid), and HNLC (HN and LC). Mature oocytes were assayed for aerobic and anaerobic metabolism utilizing oxygen and pH microsensors or fertilized in vitro (D0). Cleavage (D3) and blastocyst (D7, D8) rates were assessed. D3 embryos with ≥ 4 cells were stained for cytosolic and mitochondrial ROS. D8 blastocysts were assayed for gene transcript abundance of metabolic enzymes. Oocyte metabolism was not affected by IVM treatment. D3 formation of embryos with ≥ 4 cells were lower in LC or HN than CON or HNLC; blastocyst rates were greater for CON and lower for HN than LC and HNLC. D3 embryo mitochondrial and cytosolic ROS were reduced in HNLC when compared to other groups. IVM in HN altered blastocyst gene transcript abundance when compared to CON, but not LC or HNLC. In conclusion, supplementation with L-carnitine protects oocytes exposed to high NEFA during IVM and improves their developmental competence, suggesting that high lipid exposure may lead to L-carnitine insufficiency in bovine oocytes.
Collapse
Affiliation(s)
- Giovana D Catandi
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO 80521, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ming-Hao Cheng
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Tom Chen
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Elaine M Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO 80521, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
25
|
Zeng X, Li S, Liu L, Cai S, Ye Q, Xue B, Wang X, Zhang S, Chen F, Cai C, Wang F, Zeng X. Role of functional fatty acids in modulation of reproductive potential in livestock. J Anim Sci Biotechnol 2023; 14:24. [PMID: 36788613 PMCID: PMC9926833 DOI: 10.1186/s40104-022-00818-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 02/16/2023] Open
Abstract
Fatty acids are not only widely known as energy sources, but also play important roles in many metabolic pathways. The significance of fatty acids in modulating the reproductive potential of livestock has received greater recognition in recent years. Functional fatty acids and their metabolites improve follicular development, oocyte maturation and embryo development, as well as endometrial receptivity and placental vascular development, through enhancing energy supply and precursors for the synthesis of their productive hormones, such as steroid hormones and prostaglandins. However, many studies are focused on the impacts of individual functional fatty acids in the reproductive cycle, lacking studies involved in deeper mechanisms and optimal fatty acid requirements for specific physiological stages. Therefore, an overall consideration of the combination and synergy of functional fatty acids and the establishment of optimal fatty acid requirement for specific stages is needed to improve reproductive potential in livestock.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Siyu Li
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Lu Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shuang Cai
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Qianhong Ye
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei China
| | - Bangxin Xue
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xinyu Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shihai Zhang
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Fang Chen
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chuanjiang Cai
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fenglai Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193, Beijing, P. R. China. .,Beijing Key Laboratory of Bio feed Additives, 100193, Beijing, P. R. China.
| |
Collapse
|
26
|
Leroy JLMR, Meulders B, Moorkens K, Xhonneux I, Slootmans J, De Keersmaeker L, Smits A, Bogado Pascottini O, Marei WFA. Maternal metabolic health and fertility: we should not only care about but also for the oocyte! Reprod Fertil Dev 2022; 35:1-18. [PMID: 36592978 DOI: 10.1071/rd22204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabolic disorders due to obesity and unhealthy lifestyle directly alter the oocyte's microenvironment and impact oocyte quality. Oxidative stress and mitochondrial dysfunction play key roles in the pathogenesis. Acute effects on the fully grown oocytes are evident, but early follicular stages are also sensitive to metabolic stress leading to a long-term impact on follicular cells and oocytes. Improving the preconception health is therefore of capital importance but research in animal models has demonstrated that oocyte quality is not fully recovered. In the in vitro fertilisation clinic, maternal metabolic disorders are linked with disappointing assisted reproductive technology results. Embryos derived from metabolically compromised oocytes exhibit persistently high intracellular stress levels due to weak cellular homeostatic mechanisms. The assisted reproductive technology procedures themselves form an extra burden for these defective embryos. Minimising cellular stress during culture using mitochondrial-targeted therapy could rescue compromised embryos in a bovine model. However, translating such applications to human in vitro fertilisation clinics is not simple. It is crucial to consider the sensitive epigenetic programming during early development. Research in humans and relevant animal models should result in preconception care interventions and in vitro strategies not only aiming at improving fertility but also safeguarding offspring health.
Collapse
Affiliation(s)
- J L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - B Meulders
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - K Moorkens
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - I Xhonneux
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - J Slootmans
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - L De Keersmaeker
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - A Smits
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - O Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - W F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
27
|
Zeng X, Li S, Ye Q, Cai S, Quan S, Liu L, Zhang S, Chen F, Cai C, Wang F, Qiao S, Zeng X. The Combined Use of Medium- and Short-Chain Fatty Acids Improves the Pregnancy Outcomes of Sows by Enhancing Ovarian Steroidogenesis and Endometrial Receptivity. Nutrients 2022; 14:nu14204405. [PMID: 36297089 PMCID: PMC9607977 DOI: 10.3390/nu14204405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acids play important roles in maintaining ovarian steroidogenesis and endometrial receptivity. Porcine primary ovarian granulosa cells (PGCs) and endometrial epithelial cells (PEECs) were treated with or without medium- and short-chain fatty acids (MSFAs) for 24 h. The mRNA abundance of genes was detected by fluorescence quantitative PCR. The hormone levels in the PGCs supernatant and the rate of adhesion of porcine trophoblast cells (pTrs) to PEECs were measured. Sows were fed diets with or without MSFAs supplementation during early gestation. The fecal and vaginal microbiomes were identified using 16S sequencing. Reproductive performance was recorded at parturition. MSFAs increased the mRNA abundance of genes involved in steroidogenesis, luteinization in PGCs and endometrial receptivity in PEECs (p < 0.05). The estrogen level in the PGC supernatant and the rate of adhesion increased (p < 0.05). Dietary supplementation with MSFAs increased serum estrogen levels and the total number of live piglets per litter (p < 0.01). Moreover, MSFAs reduced the fecal Trueperella abundance and vaginal Escherichia-Shigella and Clostridium_sensu_stricto_1 abundance. These data revealed that MSFAs improved pregnancy outcomes in sows by enhancing ovarian steroidogenesis and endometrial receptivity while limiting the abundance of several intestinal and vaginal pathogens at early stages of pregnancy.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Qianhong Ye
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Xi’an 712100, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
- Correspondence:
| |
Collapse
|
28
|
Di Berardino C, Peserico A, Capacchietti G, Zappacosta A, Bernabò N, Russo V, Mauro A, El Khatib M, Gonnella F, Konstantinidou F, Stuppia L, Gatta V, Barboni B. High-Fat Diet and Female Fertility across Lifespan: A Comparative Lesson from Mammal Models. Nutrients 2022; 14:nu14204341. [PMID: 36297035 PMCID: PMC9610022 DOI: 10.3390/nu14204341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Female reproduction focuses mainly on achieving fully grown follicles and competent oocytes to be successfully fertilized, as well as on nourishing the developing offspring once pregnancy occurs. Current evidence demonstrates that obesity and/or high-fat diet regimes can perturbate these processes, leading to female infertility and transgenerational disorders. Since the mechanisms and reproductive processes involved are not yet fully clarified, the present review is designed as a systematic and comparative survey of the available literature. The available data demonstrate the adverse influences of obesity on diverse reproductive processes, such as folliculogenesis, oogenesis, and embryo development/implant. The negative reproductive impact may be attributed to a direct action on reproductive somatic and germinal compartments and/or to an indirect influence mediated by the endocrine, metabolic, and immune axis control systems. Overall, the present review highlights the fragmentation of the current information limiting the comprehension of the reproductive impact of a high-fat diet. Based on the incidence and prevalence of obesity in the Western countries, this topic becomes a research challenge to increase self-awareness of dietary reproductive risk to propose solid and rigorous preventive dietary regimes, as well as to develop targeted pharmacological interventions.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence:
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alex Zappacosta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Francesca Gonnella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fani Konstantinidou
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
29
|
Tian H, Niu H, Luo J, Yao W, Gao W, Wen Y, Cheng M, Lei A, Hua J. Effects of CRISPR/Cas9-mediated stearoyl-Coenzyme A desaturase 1 knockout on mouse embryo development and lipid synthesis. PeerJ 2022; 10:e13945. [PMID: 36124130 PMCID: PMC9482360 DOI: 10.7717/peerj.13945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Background Lipid synthesis is an indispensable process during embryo and growth development. Abnormal lipid synthesis metabolism can cause multiple metabolic diseases including obesity and hyperlipidemia. Stearoyl-Coenzyme A desaturase 1 (SCD1) is responsible for catalyzing the synthesis of monounsaturated fatty acids (MUFA) and plays an essential role in lipid metabolism. The aim of our study was to evaluate the effects of SCD1 on embryo development and lipid synthesis in a knockout mice model. Methods We used the CRISPR/Cas9 system together with microinjection for the knockout mouse model generation. Ten-week-old female C57BL/6 mice were used for zygote collection. RNase-free water was injected into mouse zygotes at different cell phases in order to select the optimal time for microinjection. Five sgRNAs were designed and in vitro transcription was performed to obtain sgRNAs and Cas9 mRNA. RNase-free water, NC sgRNA/Cas9 mRNA, and Scd1 sgRNA/Cas9 mRNA were injected into zygotes to observe the morula and blastocyst formation rates. Embryos that were injected with Scd1 sgRNA/Cas9 mRNA and developed to the two-cell stage were used for embryo transfer. Body weight, triacylglycerol (TAG), and cholesterol in Scd1 knockout mice serum were analyzed to determine the effects of SCD1 on lipid metabolism. Results Microinjection performed during the S phase presented with the highest zygote survival rate (P < 0.05). Of the five sgRNAs targeted to Scd1, two sgRNAs with relatively higher gene editing efficiency were used for Scd1 knockout embryos and mice generation. Genome sequence modification was observed at Scd1 exons in embryos, and Scd1 knockout reduced blastocyst formation rates (P < 0.05). Three Scd1 monoallelic knockout mice were obtained. In mice, the protein level of SCD1 decreased (P < 0.05), and the body weight and serum TAG and cholesterol contents were all reduced (P < 0.01).
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Wen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Ruebel ML, Martins LR, Schall PZ, Pursley JR, Latham KE. Effects of early lactation body condition loss in dairy cows on serum lipid profiles and on oocyte and cumulus cell transcriptomes. J Dairy Sci 2022; 105:8470-8484. [DOI: 10.3168/jds.2022-21919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
|
31
|
He X, Wang D, Zhu F, Jiang Y, Bi J, Lu X, Zhao M, Wu W, Li J. Astaxanthin alleviates palmitic acid‐induced hindrance of porcine oocyte maturation. Reprod Domest Anim 2022; 57:1440-1449. [DOI: 10.1111/rda.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Xu He
- College of Animal Science and Technology Nanjing Agricultural University, Nanjing Weigang No.1 Nanjing Jiangsu China
| | - Dayu Wang
- College of Animal Science and Technology Nanjing Agricultural University, Nanjing Weigang No.1 Nanjing Jiangsu China
| | - Fuquan Zhu
- College of Animal Science and Technology Nanjing Agricultural University, Nanjing Weigang No.1 Nanjing Jiangsu China
| | - Yuan Jiang
- College of Animal Science and Technology Nanjing Agricultural University, Nanjing Weigang No.1 Nanjing Jiangsu China
| | - Jiaying Bi
- College of Animal Science and Technology Nanjing Agricultural University, Nanjing Weigang No.1 Nanjing Jiangsu China
| | - Xinyue Lu
- College of Animal Science and Technology Nanjing Agricultural University, Nanjing Weigang No.1 Nanjing Jiangsu China
| | - Mingyue Zhao
- College of Animal Science and Technology Nanjing Agricultural University, Nanjing Weigang No.1 Nanjing Jiangsu China
| | - Weidong Wu
- Reproductive Research Central Lab, Swine Research Institutes of TechBank Foods, Xuyi County, Huaian Jiangsu China
| | - Juan Li
- College of Animal Science and Technology Nanjing Agricultural University, Nanjing Weigang No.1 Nanjing Jiangsu China
| |
Collapse
|
32
|
Missio D, Fritzen A, Cupper Vieira C, Germano Ferst J, Farias Fiorenza M, Guedes de Andrade L, Martins de Menezes B, Tomazele Rovani M, Gazieira Gasperin B, Dias Gonçalves PB, Ferreira R. Increased β-hydroxybutyrate (BHBA) concentration affect follicular growth in cattle. Anim Reprod Sci 2022; 243:107033. [PMID: 35816934 DOI: 10.1016/j.anireprosci.2022.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/12/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Metabolic stress conditions caused by negative energy balance (NEB) have been associated with reduced fertility in cows. β-hydroxybutyrate (BHBA) is the main circulating ketone body, which accumulates within follicular fluid. The aim of this study was to evaluate the effects of BHBA on follicle growth and on ovulatory mechanisms in cattle. At 72 h after intrafollicular injection, there was a decrease in follicular diameter in BHBA group compared to control (P = 0.02). Furthermore, follicle growth rate was reduced post-treatment with BHBA in comparison to the control group (P < 0.03). The BHBA intrafollicular injection in follicles ≥ 12 mm, however, did not affect E2 and P4 concentrations in the follicular fluid. In addition, the relative abundance of genes involved in the ovulatory cascade (ADAM 17, AREG, EREG, PTGS2), steroidogenesis (CYP19A1, 3BHSD, STAR), cellular stress (SOD1, CAT, GPX1, HSPA5, XBP1s, XBP1u, ATF4, ATF6), monocarboxylic acid transporters (SLC16A1, SLC16A7) and apoptosis (XIAP) was similar between groups. In conclusion, the results of this study indicate that the increase in intrafollicular concentrations of BHBA affects follicular growth, but it does not compromise the ovulatory cascade and cellular homeostasis in bovine granulosa cells.
Collapse
Affiliation(s)
- Daniele Missio
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alexandro Fritzen
- Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil
| | - Camila Cupper Vieira
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Juliana Germano Ferst
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Mariani Farias Fiorenza
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leonardo Guedes de Andrade
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bento Martins de Menezes
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Monique Tomazele Rovani
- Department of Animal Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Paulo Bayard Dias Gonçalves
- Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Chapecó, SC, Brazil.
| |
Collapse
|
33
|
Gilbert I, Gervais R, Robert C. Corn or wheat-based diet to manipulate lipid content in early embryos of Jersey cows. Theriogenology 2022; 187:42-50. [DOI: 10.1016/j.theriogenology.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
34
|
Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res 2022; 38:18. [PMID: 35778730 PMCID: PMC9247923 DOI: 10.1186/s42826-022-00128-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological studies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the importance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous importance in drug development, development of medical devices, tissue engineering, wound healing, and bone and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regeneration surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized the importance of various small and large animal models in pharmaceutical drug development, transgenic animal models, models for medical device developments, studies for various human diseases, bone and cartilage regeneration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process of using the animal model has facilitated researchers to carry out the researches that would have been impossible to accomplish in human considering the ethical prohibitions.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - S Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - D Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - S K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
35
|
Epperson KM, Beck EE, Rich JJ, Northrop-Albrecht EJ, Perkins SD, Zezeski AL, Ketchum JN, Zoca SM, Walker JA, Geary TW, Perry GA. Modulation of expression of estrus, steroidogenesis and embryo development following peri-Artificial Insemination nutrient restriction in beef heifers. Anim Reprod Sci 2022; 244:107045. [DOI: 10.1016/j.anireprosci.2022.107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 11/01/2022]
|
36
|
Pascottini OB, Leroy JLMR, Opsomer G. Maladaptation to the transition period and consequences on fertility of dairy cows. Reprod Domest Anim 2022; 57 Suppl 4:21-32. [PMID: 35686392 DOI: 10.1111/rda.14176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
After parturition, dairy cows undergo a plethora of metabolic, inflammatory, and immunologic changes to adapt to the onset of lactation. These changes are mainly due to the homeorhetic shift to support milk production when nutrient demand exceeds dietary intake, resulting in a state of negative energy balance. Negative energy balance in postpartum dairy cows is characterized by upregulated adipose tissue modelling, insulin resistance, and systemic inflammation. However, half of the postpartum cows fail to adapt to these changes and develop one or more types of clinical and subclinical disease within 5 weeks after calving, and this is escorted by impaired reproductive performance in the same lactation. Maladaptation to the transition period exerts molecular and structural changes in the follicular and reproductive tract fluids, the microenvironment in which oocyte maturation, fertilization, and embryo development occur. Although the negative effects of transition diseases on fertility are well-known, the involved pathways are only partially understood. This review reconstructs the mechanism of maladaptation to lactation in the transition period, explores their key (patho)physiological effects on reproductive organs, and briefly describes potential carryover effects on fertility in the same lactation.
Collapse
Affiliation(s)
- Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Jo L M R Leroy
- Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
37
|
Pedroza GH, Lanzon LF, Rabaglino MB, Walker WL, Vahmani P, Denicol AC. Exposure to non-esterified fatty acids in vitro results in changes in the ovarian and follicular environment in cattle. Anim Reprod Sci 2022; 238:106937. [DOI: 10.1016/j.anireprosci.2022.106937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
|
38
|
Mann S. Symposium review: The role of adipose tissue in transition dairy cows: Current knowledge and future opportunities. J Dairy Sci 2022; 105:3687-3701. [PMID: 34998568 DOI: 10.3168/jds.2021-21215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/14/2021] [Indexed: 11/19/2022]
Abstract
Adipose tissue (AT) is a central reservoir of energy stored in the form of lipids. In addition, AT has been recognized as an immunologically and endocrinologically active tissue of dairy cattle. The recent literature on AT biology of transition dairy cows has often focused on the possible negative effects that originate from excessive body fat. However, the highly efficient energy-storage capability of this tissue is also vital to the adaptability of dairy cattle to the change in nutrient availability, and to support lactation and reproduction. An excessive degree of mobilization of this tissue, however, is associated with high circulating fatty acid concentrations, and this may have direct and indirect negative effects on reproductive health, productivity, and disease risk. Furthermore, rapid lipolysis may be associated with postpartum inflammation. Research on the role of AT is complicated by the greater difficulty of accessing and measuring visceral AT compared with subcutaneous AT. The objective of this review is to provide a transition cow-centric summary of AT biology with a focus on reviewing methods of measuring AT mass as well as to describe the importance for production, health, and reproductive success.
Collapse
Affiliation(s)
- S Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine Cornell University, Ithaca, NY 14853.
| |
Collapse
|
39
|
Turathum B, Gao EM, Grataitong K, Liu YB, Wang L, Dai X, Chian RC. Dysregulated sphingolipid metabolism and autophagy in granulosa cells of women with endometriosis. Front Endocrinol (Lausanne) 2022; 13:906570. [PMID: 35992117 PMCID: PMC9381821 DOI: 10.3389/fendo.2022.906570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
We evaluated metabolic profiles between cumulus cells (CCs) and mural granulosa cells (MGCs) derived from women with endometriosis to identify their correlations with oocyte quality. CCs and MGCs were collected from women with and without endometriosis undergoing in vitro fertilization/intracytoplasmic sperm injection treatment. The metabolomics of CCs and MGCs were measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed by a quantitative polymerase chain reaction to further confirm the genes involved in the metabolic results. LC-MS/MS analysis revealed differences in 24 metabolites of CCs and 71 metabolites of MGCs between groups. Among them, five metabolites were upregulated and 19 metabolites were downregulated in CCs with endometriosis, whereas three metabolites were upregulated and 68 metabolites were downregulated in MGCs with endometriosis. Metabolites related to sphingolipid metabolism, which included palmitic acid (PA) and docosahexaenoic acid, increased significantly only in CCs with endometriosis, whereas sphingosine and PA were significantly downregulated in MGCs with endometriosis compared with CCs and MGCs without endometriosis. Gene expression involved in ceramide synthesis (CERS1, SPTL1, and SMPD1) and autophagy (BECN1, LAMP, and PC3) were significantly higher in CCs with endometriosis according to FASN, BECN1, and LAMP protein expressions. However, gene expression involved in ceramide synthesis (SPHK1, ASAH1, and SGPP1) and autophagy (BECN1, LAMP, and PC3) were significantly lower in MGCs with endometriosis, whereas CERS1 and UGCG expression increased. There are differences in sphingolipid metabolites in CCs and MGCs with endometriosis compared with women without endometriosis. These differences seem to be involved in the regulation of autophagic cell death in preovulatory follicles.
Collapse
Affiliation(s)
- Bongkoch Turathum
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Er-Meng Gao
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
| | - Khwanthana Grataitong
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Yu-Bing Liu
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
| | - Ling Wang
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
| | - Xue Dai
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
| | - Ri-Cheng Chian
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai, China
- Shanghai Clinical College, Anhui Medical University, Hefei, China
- *Correspondence: Ri-Cheng Chian,
| |
Collapse
|
40
|
Reed CB, Meier S, Murray LA, Burke CR, Pitman JL. The microenvironment of ovarian follicles in fertile dairy cows is associated with high oocyte quality. Theriogenology 2022; 177:195-205. [PMID: 34757242 DOI: 10.1016/j.theriogenology.2021.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
We hypothesised that heifers and cows with positive genetic merit for fertility would have a follicular microenvironment that resulted in better quality oocytes. To test this, we compared cumulus cell-oocyte complexes (COC) and follicular fluid from preovulatory follicles of 36 Holstein-Friesian nulliparous heifers and 50 primiparous lactating cows with either positive (POS, +5%) or negative (NEG, -5%) fertility breeding values (FertBV). Established gene markers of oocyte quality were measured in individual cumulus cell masses and oocytes, and concentrations of amino acids, steroids, and metabolites were quantified in corresponding follicular fluid and plasma. The timing of visually detectable oestrus in NEG FertBV heifers was inconsistent with their stage of COC maturation. Retrospective analyses of oestrous activity data indicated that NEG FertBV heifers were sampled earlier. Their recovered COC were morphologically less mature and exhibited differential expression of genes that are associated with follicular maturation (lower levels of BMPR2) and protein processing (higher levels of HSP90B1). Despite consistent sampling times being achieved in the lactating cows, lower concentrations of serine, proline, methionine, isoleucine, and non-esterified fatty acids were present in follicular fluid from POS FertBV cows. This was associated with higher expression of gene biomarkers of good oocyte quality (VCAN, PDE8A) in COC recovered from POS FertBV cows. This study supports our hypothesis that the follicular microenvironment in lactating dairy cows with high genetic merit leads to COC with higher metabolic rates and oocytes of superior quality. Moreover, an additional stressor such as lactation is required for this difference to be pronounced.
Collapse
Affiliation(s)
- C B Reed
- DairyNZ Ltd., Private Bag, 3221, Hamilton, New Zealand.
| | - S Meier
- DairyNZ Ltd., Private Bag, 3221, Hamilton, New Zealand
| | - L A Murray
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - C R Burke
- DairyNZ Ltd., Private Bag, 3221, Hamilton, New Zealand
| | - J L Pitman
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| |
Collapse
|
41
|
Tremblay PG, Fortin C, Sirard MA. Gene cascade analysis in human granulosa tumor cells (KGN) following exposure to high levels of free fatty acids and insulin. J Ovarian Res 2021; 14:178. [PMID: 34930403 PMCID: PMC8690403 DOI: 10.1186/s13048-021-00934-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal metabolic disorders such as obesity and diabetes are detrimental factors that compromise fertility and the success rates of medically assisted procreation procedures. During metabolic stress, adipose tissue is more likely to release free fatty acids (FFA) in the serum resulting in an increase of FFA levels not only in blood, but also in follicular fluid (FF). In humans, high concentrations of palmitic acid and stearic acid reduced granulosa cell survival and were associated with poor cumulus-oocyte complex (COC) morphology. Obesity and high levels of circulating FFA were also causatively linked to hampered insulin sensitivity in cells and compensatory hyperinsulinemia. To provide a global picture of the principal upstream signaling pathways and genomic mechanisms involved in this metabolic context, human granulosa-like tumor cells (KGN) were treated with a combination of palmitic acid, oleic acid, and stearic acid at the higher physiological concentrations found in the follicular fluid of women with a higher body mass index (BMI) (≥ 30.0 kg/m2). We also tested a high concentration of insulin alone and in combination with high concentrations of fatty acids. Transcription analysis by RNA-seq with a cut off for fold change of 1.5 and p-value 0.05 resulted in thousands of differentially expressed genes for each treatment. Using analysis software such as Ingenuity Pathway Analysis (IPA), we were able to establish that high concentrations of FFA affected the expression of genes mainly related to glucose and insulin homoeostasis, fatty acid metabolism, as well as steroidogenesis and granulosa cell differentiation processes. The combination of insulin and high concentrations of FFA affected signaling pathways related to apoptosis, inflammation, and oxidative stress. Taken together, our results provided new information on the mechanisms that might be involved in human granulosa cells exposed to high concentrations of FFA and insulin in the contexts of metabolism disorders.
Collapse
Affiliation(s)
- Patricia G Tremblay
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Chloé Fortin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
42
|
Marei WFA, Leroy JLMR. Cellular Stress Responses in Oocytes: Molecular Changes and Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1387:171-189. [PMID: 34921349 DOI: 10.1007/5584_2021_690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The oocyte may be exposed to several sources of stress during its growth and maturation, which may lead to reduced fertility. Unfolded protein responses (UPRs) play a central role to maintain cell survival and repair. Transcription of heat shock proteins (HSPs) is a key element to facilitate reestablishment of cellular homeostasis. Unlike somatic cells, cellular mechanisms by which oocytes can sense and respond to stress are not well described. In here, we provide an overview about the impact of cellular stress, particularly due to lipotoxicity, oxidative stress, and heat stress on oocyte developmental competence. Next, we focus on the expression of HSPs in oocytes and their potential role in UPRs in oocytes and embryos. This is based on a comprehensive shotgun proteomic analysis of mature bovine oocytes performed in our laboratory, as well as a literature review. The topic is discussed in light of our understanding of similar mechanisms in other cell types and the limited transcriptional activity in oocytes. More fundamental research is needed both at the transcriptomic and proteomic levels to further understand cell stress response mechanisms in oocytes and early developing embryos, their critical interactions, and their long-term effects. Strategies to provide targeted external support to prevent or reduce cell stress levels during oocyte maturation or early embryo development under maternal metabolic stress conditions should be developed to maximize the odds of producing good quality embryos and guarantee optimal viability.
Collapse
Affiliation(s)
- Waleed F A Marei
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium. .,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Jo L M R Leroy
- Gamete Research Centre, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
43
|
Uzbekova S, Bertevello PS, Dalbies-Tran R, Elis S, Labas V, Monget P, Teixeira-Gomes AP. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod Fertil Dev 2021; 34:1-26. [PMID: 35231385 DOI: 10.1071/rd21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and LK Ernst Federal Science Centre for Animal Husbandry, Podolsk, Russia
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Valerie Labas
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| | - Philippe Monget
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; and INRAE, Université de Tours, CHRU Tours, Plate-Forme PIXANIM, F-37380 Nouzilly, France
| |
Collapse
|
44
|
Shi M, Sirard MA. Effects of NEFAs during IVM on pig embryos from granulosa cell-cocultured oocytes. Mol Reprod Dev 2021; 88:805-816. [PMID: 34841613 DOI: 10.1002/mrd.23548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022]
Abstract
Circulating levels of nonesterified fatty acids (NEFAs) are elevated in some females, which can impair oocyte maturation and embryo development, and may alter the phenotype of the progeny. However, the effects of NEFAs on human embryo development are not clear due to ethical limitations. Thus, we used pig as the model to investigate the impacts of NEFAs on oocyte and embryo due to their similar reproductive and metabolic physiologies to humans. In this study, porcine cumulus-oocyte complexes were in vitro maturated under a pathologically high concentration of NEFAs (468 μM palmitic acid, 194 μM stearic acid, and 534 μM oleic acid) with the presence of granulosa cell monolayer, in contrast to control without NEFAs. The mature oocytes were fertilized to produce embryos for further analysis of the transcriptome and DNA methylation patterns. The elevated level of NEFAs decreased the blastocyst rate and delayed the blastocyst development. Ingenuity pathway analysis showed that the most affected gene pathways were related mainly to cell activities, metabolism, and inflammation. These findings indicated that oocytes exposed to the exogenous high level of NEFAs during in vitro maturation resulted in altered gene expression and DNA methylation of early embryos, which have detrimental impacts on blastocyst quality.
Collapse
Affiliation(s)
- Meihong Shi
- Département des Sciences Animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Pavillon Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, Québec, Canada
| | - Marc-André Sirard
- Département des Sciences Animales, Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des sciences de l'Agriculture et de l'Alimentation, Pavillon Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
45
|
Shi M, Sirard MA. Cocultured porcine granulosa cells respond to excess non-esterified fatty acids during in vitro maturation. J Ovarian Res 2021; 14:142. [PMID: 34711256 PMCID: PMC8554973 DOI: 10.1186/s13048-021-00904-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023] Open
Abstract
Background Non-esterified fatty acids (NEFAs) are one of the main lipid components of follicular fluid at concentrations that depend on circulating levels. Elevated levels of NEFAs impair oocyte quality, development potential, and may subsequently influence the metabolism and reproductive fitness of offspring. Granulosa cells (GCs) are the follicular cells that are closely communicating with the oocyte. However, the responses of GCs exposed to high levels of NEFAs when cocultured with cumulus-oocyte complexes (COCs), and how they attenuate the negative effects of NEFAs on oocytes, are unclear. Results To better understand this protective effect, monolayers of porcine GCs were cocultured with COCs during in vitro maturation (IVM) in the presence of elevated levels of NEFAs. Genomic expression analysis was conducted to explore the responses of the GCs to the elevated levels of NEFAs. After limma algorithm analysis, 1,013 genes were differentially expressed between GCs cultured with and without elevated NEFAs. Among them, 438 genes were upregulated and 575 were downregulated. The differentially expressed genes were enriched in pathways related to metabolism, inflammation, and epithelial-mesenchymal transition. Conclusions The pathways and upstream regulators suggested that the cocultured GCs responded to the elevated NEFAs with (1) inhibition of the transition from granulosa to luteal cell, (2) interactions of metabolism change, anti-inflammation, mitochondrial function, and cell transition, (3) intercommunication with cocultured COCs of anti-inflammatory factors. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00904-y.
Collapse
Affiliation(s)
- Meihong Shi
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Québec, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Pavillon Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
46
|
Furukawa E, Chen Z, Ueshiba H, Wu Y, Chiba H, Yanagawa Y, Katagiri S, Nagano M, Hui SP. Postpartum cows showed high oocyte triacylglycerols concurrently with high plasma free fatty acids. Theriogenology 2021; 176:174-182. [PMID: 34624811 DOI: 10.1016/j.theriogenology.2021.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Impaired oocyte quality is one of the main causes of low fertility in modern high-yielding dairy cows. One of the potential factors of the impaired oocyte quality is the effects of free fatty acids (FFA). In fact, high FFA supplementation to culture media exacerbated oocyte developmental competence in vitro. Meanwhile, artificially induced high blood FFA levels in heifers did not affect the lipid composition of oocytes in vivo; however, the oocyte lipid profile of postpartum cows has not yet been investigated. Therefore, the profile of lipids involved in energy metabolism, including FFA and triacylglycerols (TAG), and their relationship between plasma and oocytes were compared among cows at different lactation stages. Heifers were used as a control group that was not affected by lactation. Plasma and oocytes were collected from heifers (n = 4) and 14 Holstein cows categorized to the early lactation stage: 25-47 days in milk (DIM) (n = 6), peak lactation stage: 61-65 DIM (n = 4), and middle lactation stage: 160-202 DIM (n = 4). The FFA and TAG profiles of plasma and oocytes were examined by liquid chromatography mass spectrometry. Plasma FFA positively correlated with oocyte TAG (P < 0.05). Plasma FFA and oocyte TAG were significantly higher in cows in the early lactation stage than in heifers (P < 0.05), while the peak and middle lactation stage groups had intermediate levels. The proportion of oleic acid in plasma increased concurrently with elevations in total FFA, while the compositions of oocyte FFA and TAG fatty acyls were constant regardless of plasma FFA concentration or oocyte TAG content. The present results suggest that high postpartum plasma FFA concentrations affect the quantity of oocyte TAG. Taken together with the adverse effects of high FFA concentrations on oocyte developmental competence in vitro, oocyte quality in postpartum cows may be impaired due to high circulating FFA concentrations. These results provide a more detailed understanding of the effects of postpartum high circulating FFA concentrations on the low fertility of cows.
Collapse
Affiliation(s)
- Eri Furukawa
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hiroki Ueshiba
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo, Hokkaido, 007-0894, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Seiji Katagiri
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori, 034-8628, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
47
|
Ferst JG, Glanzner WG, Gutierrez K, de Macedo MP, Ferreira R, Gasperin BG, Duggavathi R, Gonçalves PB, Bordignon V. Supplementation of oleic acid, stearic acid, palmitic acid and β-hydroxybutyrate increase H3K9me3 in endometrial epithelial cells of cattle cultured in vitro. Anim Reprod Sci 2021; 233:106851. [PMID: 34560342 DOI: 10.1016/j.anireprosci.2021.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
There is growing evidence that greater than homeostatic blood concentrations of nonesterified fatty acids (NEFAs) and β-hydroxybutyrate (BHBA) have negative consequences on dairy cow's fertility, but effects on cell homeostasis in the reproductive system is not completely understood. In this study, lipids accumulation, reactive oxygen species (ROS) concentrations, abundance of gene transcripts, and immunofluorescence signal of H3K4me3 and H3K9me3 were evaluated in endometrial epithelial cells of cattle cultured with NEFAs (Oleic (OA), Stearic (SA) and Palmitic (PA) acids), BHBA, NEFAs + BHBA or each of the three NEFAs alone. The cellular lipids were in greater concentrations as a result of NEFAs + BHBA, NEFAs, SA or OA supplementation, but not by BHBA or PA. The ROS concentrations were greater when there were treatments with NEFAs + BHBA, NEFAs or BHBA. The relative mRNA abundance for genes involved in the regulation of apoptosis (XIAP), glucose transport (GLUT3), and DNA methylation (DNMT1) were greater when there were NEFAs + BHBA, but not NEFAs, BHBA, OA, SA or PA treatments. The immunofluorescence signal for H3K9me3 was greater when there were NEFAs + BHBA, NEFAs or PA, but not by BHBA, OA or SA treatments. These findings indicate that NEFAs and BHBA have an additive effect on endometrial cells of cattle by altering epigenetic markers and the expression of genes controlling important cellular pathways. Furthermore, there was cellular lipid accumulation and increased H3K9me3 in cultured bovine endometrial cells that was mainly induced by OA and PA treatments, respectively.
Collapse
Affiliation(s)
- Juliana G Ferst
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| | - Werner G Glanzner
- Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| | - Mariana P de Macedo
- Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| | - Rogério Ferreira
- Department of Animal Production, Santa Catarina State University, Lages, SC, Brazil.
| | - Bernardo G Gasperin
- Department of Animal Pathology, Federal University of Pelotas, Capão do Leão, RS, Brazil.
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| | - Paulo Bayard Gonçalves
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria, Santa Maria, RS, Brazil; Molecular and Integrative Physiology of Reproduction Laboratory, MINT, Federal University of Pampa, Uruguaiana, RS, Brazil.
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Saint-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
48
|
Wang N, Si C, Xia L, Wu X, Zhao S, Xu H, Ding Z, Niu Z. TRIB3 regulates FSHR expression in human granulosa cells under high levels of free fatty acids. Reprod Biol Endocrinol 2021; 19:139. [PMID: 34503515 PMCID: PMC8428109 DOI: 10.1186/s12958-021-00823-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Granulosa cells (GCs) in cumulus oophorus highly express follicle stimulating hormone receptor (FSHR), which is the most important mediator of both estradiol synthesis and oocyte maturation. Obese women have elevated free fatty acids (FFAs) levels in their follicular fluids and decreased FSHR expression in GCs, which is related to an altered protein kinase B/glycogen synthase kinase 3β (Akt/GSK3β) signaling pathway. Such FFA increases accompany 3-fold rises in pseudokinase 3 (TRIB3) expression and reduce the Akt phosphorylation status in both the human liver and in insulinoma cell lines. Therefore, in a high FFA environment, we determined if TRIB3 mediates regulation of FSHR via the Akt/GSK3β signaling pathway in human GCs. METHODS GCs from women undergoing in vitro fertilization were collected and designated as high and low FFAs cohorts based on their follicular fluid FFA content. GCs with low FFA levels and a human granulosa-like tumor (KGN) cell line were exposed to palmitic acid (PA), which is a dominate FFA follicular fluid constituent. The effects were assessed of this substitution on the Akt/GSK3β signaling pathway activity as well as the expressions of TRIB3 and FSHR at both the gene and protein levels by qPCR, Western blot and immunofluorescence staining analyses. Meanwhile, the individual effects of TRIB3 knockdown in KGN cells and p-AKT inhibitors were compared to determine the mechanisms of FFA-induced FSHR downregulation. RESULTS The average FSH dose consuming per oocyte (FSH dose/oocyte) was elevated and Top embryo quality ratio was decreased in women with high levels of FFAs in their follicular fluid. In these women, the GC TRIB3 and ATF4 protein expression levels were upregulated which was accompanied by FSHR downregulation. Such upregulation was confirmed based on corresponding increases in their gene expression levels. On the other hand, the levels of p-Akt decreased while p-GSK3β increased in the GCs. Moreover, TRIB3 knockdown reversed declines in FSHR expression and estradiol (E2) production in KGN cells treated with PA, which also resulted in increased p-Akt levels and declines in the p-GSK3β level. In contrast, treatment of TRIB3-knockdown cells with an inhibitor of p-Akt (Ser473) resulted in rises in the levels of both p-GSK3β as well as FSHR expression whereas E2 synthesis fell. CONCLUSIONS During exposure to a high FFA content, TRIB3 can reduce FSHR expression through stimulation of the Akt/GSK3β pathway in human GCs. This response may contribute to inducing oocyte maturation.
Collapse
Affiliation(s)
- Nan Wang
- Department of Gynecology and Obstetrics, Ruijin Hospital Affiliated with the Medical School of Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chenchen Si
- Department of Gynecology and Obstetrics, Ruijin Hospital Affiliated with the Medical School of Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lan Xia
- Department of Gynecology and Obstetrics, Ruijin Hospital Affiliated with the Medical School of Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xian Wu
- Department of Gynecology and Obstetrics, Ruijin Hospital Affiliated with the Medical School of Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Sheng Zhao
- Department of Gynecology and Obstetrics, Ruijin Hospital Affiliated with the Medical School of Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Huihui Xu
- Department of Gynecology and Obstetrics, Ruijin Hospital Affiliated with the Medical School of Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhihong Niu
- Department of Gynecology and Obstetrics, Ruijin Hospital Affiliated with the Medical School of Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
49
|
Gimeno I, García-Manrique P, Carrocera S, López-Hidalgo C, Valledor L, Martín-González D, Gómez E. The Metabolic Signature of In Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer. Metabolites 2021; 11:484. [PMID: 34436426 PMCID: PMC8399324 DOI: 10.3390/metabo11080484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
In vitro produced (IVP) embryos show large metabolic variability induced by breed, culture conditions, embryonic stage and sex and gamete donors. We hypothesized that the birth potential could be accurately predicted by UHPLC-MS/MS in culture medium (CM) with the discrimination of factors inducing metabolic variation. Day-6 embryos were developed in single CM (modified synthetic oviduct fluid) for 24 h and transferred to recipients as fresh (28 ETs) or frozen/thawed (58 ETs) Day-7 blastocysts. Variability was induced with seven bulls, slaughterhouse oocyte donors, culture conditions (serum + Bovine Serum Albumin [BSA] or BSA alone) prior to single culture embryonic stage records (Day-6: morula, early blastocyst, blastocyst; Day-7: expanding blastocyst; fully expanded blastocysts) and cryopreservation. Retained metabolite signals (6111) were analyzed as a function of pregnancy at Day-40, Day-62 and birth in a combinatorial block study with all fixed factors. We identified 34 accumulated metabolites through 511 blocks, 198 for birth, 166 for Day-62 and 147 for Day-40. The relative abundance of metabolites was higher within blocks from non-pregnant (460) than from pregnant (51) embryos. Taxonomy classified lipids (12 fatty acids and derivatives; 224 blocks), amino acids (12) and derivatives (3) (186 blocks), benzenoids (4; 58 blocks), tri-carboxylic acids (2; 41 blocks) and 5-Hydroxy-l-tryptophan (2 blocks). Some metabolites were effective as single biomarkers in 95 blocks (Receiver Operating Characteristic - Area Under the Curve [ROC-AUC]: 0.700-1.000). In contrast, more accurate predictions within the largest data sets were obtained with combinations of 2, 3 and 4 single metabolites in 206 blocks (ROC-AUC = 0.800-1.000). Pregnancy-prone embryos consumed more amino acids and citric acid, and depleted less lipids and cis-aconitic acid. Big metabolic differences between embryos support efficient pregnancy and birth prediction when analyzed in discriminant conditions.
Collapse
Affiliation(s)
- Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Pablo García-Manrique
- Molecular Mass Spectrometry Unit, Scientific and Technical Services, University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain;
| | - Susana Carrocera
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Cristina López-Hidalgo
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain; (C.L.-H.); (L.V.)
| | - Luis Valledor
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain; (C.L.-H.); (L.V.)
| | - David Martín-González
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| |
Collapse
|
50
|
Stamperna K, Dovolou E, Giannoulis T, Kalemkeridou M, Nanas I, Dadouli K, Moutou K, Mamuris Z, Amiridis GS. Developmental competence of heat stressed oocytes from Holstein and Limousine cows matured in vitro. Reprod Domest Anim 2021; 56:1302-1314. [PMID: 34289185 DOI: 10.1111/rda.13993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
The negative effects of heat stress on dairy cattle's fertility have been extensively studied, but the relevant knowledge for beef cattle is rather limited. The aims of this study were to investigate the effects of HS during in vitro maturation on the developmental potential of oocytes derived from Limousine and Holstein cows and to estimate the effect of the differential gene expression of important genes in oocytes, cumulus cells and blastocysts in the growth competence between the breeds. In seven replicates, cumulus oocyte complexes from Holstein and Limousine cows were matured for 24 hr at 39°C (controls C; Hol_39, Lim_39) or at 41°C from hour 2 to hour 8 of IVM (treated T; Hol_41, Lim_41), fertilized, and presumptive zygotes were cultured for 9 days at 39°C. Cleavage and embryo formation rates were evaluated 48 hr post-insemination and on days 7, 8 and 9, respectively. From all groups, subsets of cumulus cells, oocytes and blastocysts were analysed for the relative expression of genes related to metabolism, stress, apoptosis and placentation. No difference was detected in cleavage rate or in blastocyst formation rate among the control groups. In both breeds, heat stress reduced blastocyst yield, but at all days the suppression was higher in Limousines. In Holsteins, altered gene expression was detected in cumulus cells (G6PD, GLUT1) and blastocysts (PLAC8), while in Limousines, differences were found in oocytes (G6PD, HSP90AA1), in cumulus cells (CPT1B, HSP90AA1, SOD2) and blastocysts (DNMT, HSP90AA1, SOD2). It appears that Holstein COCs are more tolerant than Limousine COCs, possibly due to compulsory, production driven selection.
Collapse
Affiliation(s)
- Konstantina Stamperna
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Eleni Dovolou
- Department of Animal Science, University of Thessaly, Larissa, Greece
| | | | - Maria Kalemkeridou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Nanas
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Katerina Dadouli
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Katerina Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Georgios S Amiridis
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| |
Collapse
|