1
|
Han M, Yu H, Huang J, Wang C, Li X, Wang X, Xu L, Zhao J, Jiang H. Limited Microbial Contribution in Salt Lake Sediment and Water to Each Other's Microbial Communities. Microorganisms 2024; 12:2534. [PMID: 39770736 PMCID: PMC11676918 DOI: 10.3390/microorganisms12122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Climate change and human activities have led to frequent exchanges of sedimentary and aquatic microorganisms in lakes. However, the ability of these microorganisms to survive in their respective habitats between saline lake sediment and water remains unclear. In this study, we investigated microbial sources and community composition and metabolic functions in sediments and water in Yuncheng Salt Lake using a combination of source tracking and Illumina MiSeq sequencing. The results showed that 0.10-8.47% of the microbial communities in the sediment came from the corresponding water bodies, while 0.12-10.78% of the sedimentary microorganisms contributed to the aquatic microbial populations, and the microbial contributions depended on the salinity difference between sediment and water. Habitat heterogeneity and salinity variations led to the differences in microbial diversity, community composition, and assembly between sediment and water communities. The assembly of sedimentary communities was mainly controlled by stochastic processes (>59%), whereas the assembly of aquatic communities was mainly controlled by deterministic processes (>88%). Furthermore, sediments had a higher potential for metabolic pathways related to specific biogeochemical functions than lake water. These results provide insights into the survival ability of microorganisms and the mechanisms of microbial community assembly under frequent exchange conditions in saline lakes.
Collapse
Affiliation(s)
- Mingxian Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| | - Huiying Yu
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, College of Life Sciences, Yuncheng University, Yuncheng 044000, China; (C.W.); (X.L.)
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| | - Chuanxu Wang
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, College of Life Sciences, Yuncheng University, Yuncheng 044000, China; (C.W.); (X.L.)
| | - Xin Li
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, College of Life Sciences, Yuncheng University, Yuncheng 044000, China; (C.W.); (X.L.)
| | - Xiaodong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| | - Liu Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| | - Jingjing Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; (M.H.); (J.H.); (X.W.); (L.X.); (J.Z.)
| |
Collapse
|
2
|
Morales MLP, Guimarães PS, de Martinez Gaspar Martins C, Míguez D, Bentos FR, Boccardi L, Brugnoli E, Shaik A, Chenia H, Cavalli RO, They NH, Pinho GLL, Agostini VO. Aquatic macrophytes as a source of antifouling non-toxic against bacterial biofilms and golden mussel attachment: a possible role of quorum-sensing interference. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66977-66993. [PMID: 39658762 DOI: 10.1007/s11356-024-35744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Biofouling in freshwater and marine environments developed on man-made aquatic surfaces causes significant economic losses. Still, this problem is magnified when it comes to invasive species, such as the golden mussel. One of the alternatives to combat it is the use of antifouling solutions; however, the vast majority focus on solutions for the marine environment. In this same context, natural antifouling solutions from macrophytes have been reported as promising to combat estuarine biofouling; however, trials with freshwater organisms are still incipient. Thus, this study evaluated the performance of 25 macrophyte extracts in inhibiting the formation and/or eradication of bacterial biofilms, settlement of the golden mussel (Limnoperna fortunei), as well as its toxicity effect on three different non-target model organisms of three trophic levels. Among the 25 extracts, nine demonstrated ≥ 60% inhibition of biofilm formation, with only the extracts of Typha domingensis and Eichhornia crassipes having a biofilm inhibitory effect of ≥ 70% for bacterial isolates and ≥ 60% for multispecies biofilms. Planktonic growth had distinct responses, ranging from induction, inhibition, and no effect on growth. The T. domingensis extract showed quorum sensing inhibition (QSI) with a dose-dependent relationship, while the E. crassipes extract showed QSI only at a dilution of 1.2%. These same extracts prevented the golden mussel from attaching and showed safe concentrations of 35.35% for Pseudopediastrum boryanum and Daphnia magna and 70.71% for Pimephales promelas. This study highlights the biotechnological potential of macrophyte extracts as a sustainable and environmentally harmless alternative for the control of micro and macrofouling in freshwater environments.
Collapse
Affiliation(s)
- Mikael Luiz Pereira Morales
- Programa de Pós-Graduação Em Oceanologia, Instituto de Oceanografia (IO) da Universidade Federal Do Rio Grande (FURG), Rio Grande, Rio Grande Do Sul, Brazil.
| | - Pablo Santos Guimarães
- Programa de Pós-Graduação Em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas (ICB), FURG, Rio Grande, Rio Grande Do Sul, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação Em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas (ICB), FURG, Rio Grande, Rio Grande Do Sul, Brazil
| | - Diana Míguez
- Latitud - Fundación del Laboratório Tecnológico del Uruguay (LATU), Montevideo, Uruguay
| | - Fabiana Rey Bentos
- Latitud - Fundación del Laboratório Tecnológico del Uruguay (LATU), Montevideo, Uruguay
| | - Lucía Boccardi
- Latitud - Fundación del Laboratório Tecnológico del Uruguay (LATU), Montevideo, Uruguay
| | - Ernesto Brugnoli
- Oceanografía E Ecología Marina, Facultad de Ciencias, Universidad de La República (Udelar), Montevideo, Uruguay
| | - Ayman Shaik
- Discipline: Microbiology, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, Cuazulo-Natal, South Africa
| | - Hafizah Chenia
- Discipline: Microbiology, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, Cuazulo-Natal, South Africa
| | - Ronaldo Olivera Cavalli
- Laboratório de Aquicultura de Bivalves, Instituto de Oceanografia (IO) da FURG, Rio Grande, Rio Grande Do Sul, Brazil
| | - Ng Haig They
- Programa de Pós-Graduação Em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas (ICB), FURG, Rio Grande, Rio Grande Do Sul, Brazil
- Departamento Interdisciplinar, Campus Litoral Norte, Centro de Estudos Costeiros Limnológicos E Marinhos (CECLIMAR) da Universidade Federal Do Rio Grande Do Sul (UFRGS), Imbé, Rio Grande Do Sul, Brazil
| | - Grasiela Lopes Leães Pinho
- Programa de Pós-Graduação Em Oceanologia, Instituto de Oceanografia (IO) da Universidade Federal Do Rio Grande (FURG), Rio Grande, Rio Grande Do Sul, Brazil
| | | |
Collapse
|
3
|
Castillo-Ilabaca C, Gutiérrez MH, Aranda M, Henríquez-Aedo K, Pereira A, Salamanca M, Galand PE, Jessen GL, Pantoja-Gutiérrez S. PAH contamination in coastal surface sediments and associated bacterial communities. Sci Rep 2024; 14:29053. [PMID: 39580451 PMCID: PMC11585583 DOI: 10.1038/s41598-024-78905-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) are semi-volatile, lipophilic, and harmful compounds that can persist for decades in a range of marine environments. There are several marine and soil microorganisms that possess enzymes involved in arene degradation. Here, we analyzed the structure (16S rRNA amplicons) and metabolic potential (inferred using phylogenetic placement) of the bacterial community in surface marine sediments from coastal waters off Concepción, Chile, and describe how microbial community patterns are shaped and altered by PAH contamination. Two depositional zones were identified, a "High PAH" area containing a mix of high and low molecular weight PAH of up to 10,350 ng∑PAH gdw-1 and with high organic matter content; and a "Low PAH" zone mostly characterized by low molecular weight PAH of up to 1810 ng∑PAH gdw-1 and lower levels of organic matter. We identified 53 hydrocarbonoclastic bacteria genera, with eight showing relatively high abundances at High PAH sites, although known PAH degrader clades were also present at Low PAH sites. With potential enzymes inferred in almost all samples, we suggest that breakdown of PAH is widespread in this area, likely resulting from the long history of local PAH emissions that may have promoted a stored microbial capacity for these degradation processes.
Collapse
Affiliation(s)
- Cristóbal Castillo-Ilabaca
- Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Marcelo H Gutiérrez
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Mario Aranda
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
- Departamento de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karem Henríquez-Aedo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Biobío, Chillán, Chile
| | - Alexandra Pereira
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Marco Salamanca
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Pierre E Galand
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), CNRS, Sorbonne Université, Observatoire Océanologique de Banyuls, 66650, Banyuls Sur Mer, France
| | - Gerdhard L Jessen
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile.
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
| | - Silvio Pantoja-Gutiérrez
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile.
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Ortiz-Severín J, Hodar C, Stuardo C, Aguado-Norese C, Maza F, González M, Cambiazo V. Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile. Biol Res 2024; 57:84. [PMID: 39523335 PMCID: PMC11552226 DOI: 10.1186/s40659-024-00556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance. RESULTS The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site. CONCLUSIONS Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics.
Collapse
Affiliation(s)
- Javiera Ortiz-Severín
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Christian Hodar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Laboratorio de Bioinformática y Bioestadística del Genoma, INTA, Universidad de Chile, Santiago, Chile
| | - Camila Stuardo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Constanza Aguado-Norese
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Felipe Maza
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano, 5524, Santiago, Chile.
- Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
5
|
Nguyen NL, Pawłowska J, Zajaczkowski M, Weiner AKM, Cordier T, Grant DM, De Schepper S, Pawłowski J. Taxonomic and abundance biases affect the record of marine eukaryotic plankton communities in sediment DNA archives. Mol Ecol Resour 2024; 24:e14014. [PMID: 39188124 DOI: 10.1111/1755-0998.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/09/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
Environmental DNA (eDNA) preserved in marine sediments is increasingly being used to study past ecosystems. However, little is known about how accurately marine biodiversity is recorded in sediment eDNA archives, especially planktonic taxa. Here, we address this question by comparing eukaryotic diversity in 273 eDNA samples from three water depths and the surface sediments of 24 stations in the Nordic Seas. Analysis of 18S-V9 metabarcoding data reveals distinct eukaryotic assemblages between water and sediment eDNA. Only 40% of Amplicon Sequence Variants (ASVs) detected in water were also found in sediment eDNA. Remarkably, the ASVs shared between water and sediment accounted for 80% of total sequence reads suggesting that a large amount of plankton DNA is transported to the seafloor, predominantly from abundant phytoplankton taxa. However, not all plankton taxa were equally archived on the seafloor. The plankton DNA deposited in the sediments was dominated by diatoms and showed an underrepresentation of certain nano- and picoplankton taxa (Picozoa or Prymnesiophyceae). Our study offers the first insights into the patterns of plankton diversity recorded in sediment in relation to seasonality and spatial variability of environmental conditions in the Nordic Seas. Our results suggest that the genetic composition and structure of the plankton community vary considerably throughout the water column and differ from what accumulates in the sediment. Hence, the interpretation of sedimentary eDNA archives should take into account potential taxonomic and abundance biases when reconstructing past changes in marine biodiversity.
Collapse
Affiliation(s)
- Ngoc-Loi Nguyen
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Joanna Pawłowska
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Marek Zajaczkowski
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Agnes K M Weiner
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Tristan Cordier
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Danielle M Grant
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Stijn De Schepper
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Jan Pawłowski
- Department of Paleoceanography, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
6
|
Fu Q, Ma K, Zhao J, Li J, Wang X, Zhao M, Fu X, Huang D, Chen H. Metagenomics unravel distinct taxonomic and functional diversities between terrestrial and aquatic biomes. iScience 2024; 27:111047. [PMID: 39435150 PMCID: PMC11492093 DOI: 10.1016/j.isci.2024.111047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Microbes in terrestrial and aquatic ecosystems play crucial roles in driving ecosystem functions, but currently, there is a lack of comparison regarding their taxonomic and functional diversities. Here, we conducted a global analysis to investigate the disparities in microbial taxonomy and microbial-mediated biogeochemical cycles between terrestrial and aquatic ecosystems. Results showed a higher relative abundance of bacteria, especially Actinobacteria and Acidobacteria, in soil than water metagenomes, leading to a greater proportion of genes related to membrane transport, regulatory, and cellular signaling. Moreover, there was a higher abundance of genes associated with carbohydrate, sulfur, and potassium metabolisms in the soil, while those involved in nitrogen and iron metabolisms were more prevalent in the water. Thus, both soil and water microbiomes exhibited unique taxonomic and functional properties associated with biogeochemical processes, providing valuable insights into predicting and understanding the adaptation of microbes in different ecosystems in the face of climate change.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Kayan Ma
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xueying Wang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Meiqi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Dandan Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
7
|
Lin X, Waring K, Ghezzi H, Tropini C, Tyson J, Ziels RM. High accuracy meets high throughput for near full-length 16S ribosomal RNA amplicon sequencing on the Nanopore platform. PNAS NEXUS 2024; 3:pgae411. [PMID: 39386005 PMCID: PMC11462149 DOI: 10.1093/pnasnexus/pgae411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Small subunit (SSU) ribosomal RNA (rRNA) gene amplicon sequencing is a foundational method in microbial ecology. Currently, short-read platforms are commonly employed for high-throughput applications of SSU rRNA amplicon sequencing, but at the cost of poor taxonomic classification due to limited fragment lengths. The Oxford Nanopore Technologies (ONT) platform can sequence full-length SSU rRNA genes, but its lower raw-read accuracy has so-far limited accurate taxonomic classification and de novo feature generation. Here, we present a sequencing workflow, termed ssUMI, that combines unique molecular identifier (UMI)-based error correction with newer (R10.4+) ONT chemistry and sample barcoding to enable high throughput near full-length SSU rRNA (e.g. 16S rRNA) amplicon sequencing. The ssUMI workflow generated near full-length 16S rRNA consensus sequences with 99.99% mean accuracy using a minimum subread coverage of 3×, surpassing the accuracy of Illumina short reads. The consensus sequences generated with ssUMI were used to produce error-free de novo sequence features with no false positives with two microbial community standards. In contrast, Nanopore raw reads produced erroneous de novo sequence features, indicating that UMI-based error correction is currently necessary for high-accuracy microbial profiling with R10.4+ ONT sequencing chemistries. We showcase the cost-competitive scalability of the ssUMI workflow by sequencing 87 time-series wastewater samples and 27 human gut samples, obtaining quantitative ecological insights that were missed by short-read amplicon sequencing. ssUMI, therefore, enables accurate and low-cost full-length 16S rRNA amplicon sequencing on Nanopore, improving accessibility to high-resolution microbiome science.
Collapse
Affiliation(s)
- Xuan Lin
- Civil Engineering, The University of British Columbia, 6250 Applied Science Ln #2002, Vancouver, BC, CanadaV6T 1Z4
| | - Katherine Waring
- Civil Engineering, The University of British Columbia, 6250 Applied Science Ln #2002, Vancouver, BC, CanadaV6T 1Z4
| | - Hans Ghezzi
- Graduate Program in Bioinformatics, The University of British Columbia, Vancouver, BC, CanadaV5Z 4S6
| | - Carolina Tropini
- Graduate Program in Bioinformatics, The University of British Columbia, Vancouver, BC, CanadaV5Z 4S6
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, CanadaV6T 1Z3
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, CanadaV6T 2B9
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, CanadaM5G 1M1
| | - John Tyson
- British Columbia Center for Disease Control Public Health Laboratory, Vancouver, BC, CanadaV5Z 4R4
- Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, CanadaV6T 1Z7
| | - Ryan M Ziels
- Civil Engineering, The University of British Columbia, 6250 Applied Science Ln #2002, Vancouver, BC, CanadaV6T 1Z4
| |
Collapse
|
8
|
Huber P, De Angelis D, Sarmento H, Metz S, Giner CR, Vargas CD, Maiorano L, Massana R, Logares R. Global distribution, diversity, and ecological niche of Picozoa, a widespread and enigmatic marine protist lineage. MICROBIOME 2024; 12:162. [PMID: 39232839 PMCID: PMC11373171 DOI: 10.1186/s40168-024-01874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The backbone of the eukaryotic tree of life contains taxa only found in molecular surveys, of which we still have a limited understanding. Such is the case of Picozoa, an enigmatic lineage of heterotrophic picoeukaryotes within the supergroup Archaeplastida, which has emerged as a significant component of marine microbial planktonic communities. To enhance our understanding of the diversity, distribution, and ecology of Picozoa, we conduct a comprehensive assessment at different levels, from assemblages to taxa, employing phylogenetic analysis, species distribution modeling, and ecological niche characterization. RESULTS Picozoa was among the ten most abundant eukaryotic groups, found almost exclusively in marine environments. The phylum was represented by 179 Picozoa's OTU (pOTUs) placed in five phylogenetic clades. Picozoa community structure had a clear latitudinal pattern, with polar assemblages tending to cluster separately from non-polar ones. Based on the abundance and occupancy pattern, the pOTUs were classified into four categories: Low-abundant, Widespread, Polar, and Non-polar. We calculated the ecological niche of each of these categories. Notably, pOTUs sharing similar ecological niches were not closely related species, indicating a phylogenetic overdispersion in Picozoa communities. This could be attributed to competitive exclusion and the strong influence of the seasonal amplitude of variations in environmental factors, such as temperature, shaping physiological and ecological traits. CONCLUSIONS Overall, this work advances our understanding of uncharted protists' evolutionary dynamics and ecological strategies. Our results highlight the importance of understanding the species-level ecology of marine heteroflagellates like Picozoa. The observed phylogenetic overdispersion challenges the concept of phylogenetic niche conservatism in protist communities, suggesting that closely related species do not necessarily share similar ecological niches. Video Abstract.
Collapse
Affiliation(s)
- Paula Huber
- Departamento de Hidrobiología, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Daniele De Angelis
- Dipartimento Di Biologia E Biotecnologie "Charles Darwin", Università Di Roma La Sapienza, Rome, Italy
| | - Hugo Sarmento
- Departamento de Hidrobiología, Universidade Federal de São Carlos, São Carlos, Brazil.
| | | | - Caterina R Giner
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Colomban De Vargas
- Sorbonne Universités, CNRS, Station Biologique de Roscoff, Roscoff, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Luigi Maiorano
- Dipartimento Di Biologia E Biotecnologie "Charles Darwin", Università Di Roma La Sapienza, Rome, Italy
| | - Ramon Massana
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Ramiro Logares
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Vijayan J, Ezhuthanikkunnel AP, Punnorkodu SAK, Poikayil SS, Mohan M, Ammanamveetil MHA. Sediment microbial diversity, functional potentials, and antibiotic resistance pattern: a case study of Cochin Estuary core sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52132-52146. [PMID: 39143383 DOI: 10.1007/s11356-024-34665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Marine sediments are an important part of the marine environment and the world's greatest organic carbon source. Sediment microorganisms are important regulators of major geochemical and eco-environmental processes in marine environments, especially nutrient dynamics and biogeochemical cycles. Despite their importance, core marine microorganisms are virtually unknown due to a lack of consensus on how to identify them. Most core microbiotas have been characterized thus far based on species abundance and occurrence. The combined effects of habitat and depth on benthic bacterial communities and ecological functions were studied using "Next-Generation sequencing (NGS) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predictive functional profiling" at the surface (0.2 cm) and bottom depth (250 cm) in a sediment core sample from Cochin Estuary, Kerala, India. The results showed that bacterial diversity and richness were significantly higher in the surface sediment sample with the most abundant phyla being Proteobacteria, Acidobacteria, Chloroflexi, and Bacteroidetes. The major metabolic functions were metabolism, followed by environmental information processing and genetic information processing. Antibiotic resistance genes between the surface and bottom samples help to understand the resistance pattern among multidrug resistance is the most prominent one. Among viruses, Siphoviridae is the dominant family, followed by Myoviridae. In the case of Archea, Crenarchaeota is dominant, whereas among eukaryotes phyla Streptophyta and Chordata were dominant in the surface and the bottom samples respectively.
Collapse
Affiliation(s)
- Jasna Vijayan
- Department of Marine Biology, Microbiology and Biochemistry; School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India.
| | - Akhil Prakash Ezhuthanikkunnel
- Department of Marine Biology, Microbiology and Biochemistry; School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India
| | - Sabira Abdul Kareem Punnorkodu
- Department of Marine Biology, Microbiology and Biochemistry; School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India
| | - Sunil Sukumaran Poikayil
- Department of Marine Geology and Geophysics; School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Kottayam, 686560, Kerala, India
| | - Mohamed Hatha Abdulla Ammanamveetil
- Department of Marine Biology, Microbiology and Biochemistry; School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India
| |
Collapse
|
10
|
Harbeitner RC, Wittmers F, Yung CCM, Eckmann CA, Hehenberger E, Blum M, Needham DM, Worden AZ. Gradients of bacteria in the oceanic water column reveal finely-resolved vertical distributions. PLoS One 2024; 19:e0298139. [PMID: 38564528 PMCID: PMC10986988 DOI: 10.1371/journal.pone.0298139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024] Open
Abstract
Bacterial communities directly influence ecological processes in the ocean, and depth has a major influence due to the changeover in primary energy sources between the sunlit photic zone and dark ocean. Here, we examine the abundance and diversity of bacteria in Monterey Bay depth profiles collected from the surface to just above the sediments (e.g., 2000 m). Bacterial abundance in these Pacific Ocean samples decreased by >1 order of magnitude, from 1.22 ±0.69 ×106 cells ml-1 in the variable photic zone to 1.44 ± 0.25 ×105 and 6.71 ± 1.23 ×104 cells ml-1 in the mesopelagic and bathypelagic, respectively. V1-V2 16S rRNA gene profiling showed diversity increased sharply between the photic and mesopelagic zones. Weighted Gene Correlation Network Analysis clustered co-occurring bacterial amplicon sequence variants (ASVs) into seven subnetwork modules, of which five strongly correlated with depth-related factors. Within surface-associated modules there was a clear distinction between a 'copiotrophic' module, correlating with chlorophyll and dominated by e.g., Flavobacteriales and Rhodobacteraceae, and an 'oligotrophic' module dominated by diverse Oceanospirillales (such as uncultured JL-ETNP-Y6, SAR86) and Pelagibacterales. Phylogenetic reconstructions of Pelagibacterales and SAR324 using full-length 16S rRNA gene data revealed several additional subclades, expanding known microdiversity within these abundant lineages, including new Pelagibacterales subclades Ia.B, Id, and IIc, which comprised 4-10% of amplicons depending on the subclade and depth zone. SAR324 and Oceanospirillales dominated in the mesopelagic, with SAR324 clade II exhibiting its highest relative abundances (17±4%) in the lower mesopelagic (300-750 m). The two newly-identified SAR324 clades showed highest relative abundances in the photic zone (clade III), while clade IV was extremely low in relative abundance, but present across dark ocean depths. Hierarchical clustering placed microbial communities from 900 m samples with those from the bathypelagic, where Marinimicrobia was distinctively relatively abundant. The patterns resolved herein, through high resolution and statistical replication, establish baselines for marine bacterial abundance and taxonomic distributions across the Monterey Bay water column, against which future change can be assessed.
Collapse
Affiliation(s)
- Rachel C. Harbeitner
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, United States of America
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
| | - Fabian Wittmers
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
- Marine Biological Laboratory, Woods Hole, MA, United States of America
| | - Charmaine C. M. Yung
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
| | - Charlotte A. Eckmann
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, United States of America
- Marine Biological Laboratory, Woods Hole, MA, United States of America
| | - Elisabeth Hehenberger
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
| | - Marguerite Blum
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States of America
| | - David M. Needham
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
| | - Alexandra Z. Worden
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA, United States of America
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, DE, Germany
- Marine Biological Laboratory, Woods Hole, MA, United States of America
| |
Collapse
|
11
|
Shah S, Damare SR, Mascarenhas-Pereira MBL, Patil J, Parab S, Nair S, Ghosh A. An insight into the prokaryotic diversity from a polymetallic nodule-rich region in the Central Indian Ocean Basin using next generation sequencing approach. Front Microbiol 2024; 15:1295149. [PMID: 38567074 PMCID: PMC10985493 DOI: 10.3389/fmicb.2024.1295149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Deep sea is a vast, dark, and difficult-to-access terrain and is now looked upon as a unique niche harboring diverse microorganism. We used a metataxonomic approach to decipher the microbial diversity present in the water column (surface to near bottom), water overlaying the sediments, and the deep-sea sediments (up to 35 cm) from the Indian Contract Region (ICR) in the Central Indian Ocean Basin (CIOB). Samples were collected from #IRZ (Impact Reference Zone), #PRZ (Potential Reference Zone), and #BC20 (Control site, outside potential mining area) with an average water depth of 5,200 m. 16S rRNA (V3-V4 region) amplicon sequencing on the MiSeq platform resulted in 942,851 ASVs across 65 water and sediment samples. Higher prokaryotic diversity was observed below 200 m in the water column to the seafloor. Proteobacteria was the most dominant bacterial phylum among all the water samples while Firmicutes, Actinobacteria and, Bacteroidota dominated the sediments. Sediment (below 10 cm) was co-dominated by Firmicutes. Thermoplasmata was the dominant archaeal group in the water column while Crenarchaeota was in the sediments. BC20 was less diverse than IRZ and PRZ. Deep Sea microorganisms could play a vital role in the mineralization processes, nutrient cycling, and also different biogeochemical cycles.
Collapse
Affiliation(s)
- Shruti Shah
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
- School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigão, India
| | - Samir R. Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | | | - Jayesh Patil
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | - Sneha Parab
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | - Sushil Nair
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, India
| | | |
Collapse
|
12
|
Banchi E, Corre E, Del Negro P, Celussi M, Malfatti F. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:126-142. [PMID: 38433960 PMCID: PMC10902248 DOI: 10.1007/s42995-023-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from 'omics' approaches. Here, we characterized metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiversity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which (35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic patterns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resistance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and stability toward environmental pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00192-z.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Erwan Corre
- FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), Sorbonne Université CNRS, 29680 Roscoff, France
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Francesca Malfatti
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
13
|
Meyneng M, Lemonnier H, Le Gendre R, Plougoulen G, Antypas F, Ansquer D, Serghine J, Schmitt S, Siano R. Subtropical coastal microbiome variations due to massive river runoff after a cyclonic event. ENVIRONMENTAL MICROBIOME 2024; 19:10. [PMID: 38291506 PMCID: PMC10829310 DOI: 10.1186/s40793-024-00554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Coastal ecosystem variability at tropical latitudes is dependent on climatic conditions. During the wet, rainy season, extreme climatic events such as cyclones, precipitation, and winds can be intense over a short period and may have a significant impact on the entire land‒sea continuum. This study focused on the effect of river runoff across the southwest coral lagoon ecosystem of Grand Terre Island of New Caledonia (South Pacific) after a cyclonic event, which is considered a pulse disturbance at our study site. The variability of coastal microbiomes, studied by the metabarcoding of V4 18S (protists) and V4-V5 16S (bacteria) rDNA genes, after the cyclone passage was associated with key environmental parameters describing the runoff impact (salinity, organic matter proxies, terrestrial rock origin metals) and compared to community structures observed during the dry season. RESULTS Microbiome biodiversity patterns of the dry season were destructured because of the runoff impact, and land-origin taxa were observed in the coastal areas. After the rainy event, different daily community dynamics were observed locally, with specific microbial taxa explaining these variabilities. Plume dispersal modeling revealed the extent of low salinity areas up to the coral reef area (16 km offshore), but a rapid (< 6 days) recovery to typical steady conditions of the lagoon's hydrology was observed. Conversely, during the same time, some biological components (microbial communities, Chl a) and biogeochemical components (particulate nickel, terrigenous organic matter) of the ecosystem did not recover to values observed during the dry season conditions. CONCLUSION The ecosystem resilience of subtropical ecosystems must be evaluated from a multidisciplinary, holistic perspective and over the long term. This allows evaluating the risk associated with a potential continued and long-term disequilibrium of the ecosystem, triggered by the change in the frequency and intensity of extreme climatic events in the era of planetary climatic changes.
Collapse
Affiliation(s)
- M Meyneng
- IFREMER, DYNECO, BP70, Plouzané, France
| | - H Lemonnier
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - R Le Gendre
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - G Plougoulen
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - F Antypas
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - D Ansquer
- French Institute for Research in the Science of the Sea (IFREMER), Research Institute for Development (IRD), University of New Caledonia, University of Reunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | | | - S Schmitt
- IFREMER, DYNECO, BP70, Plouzané, France
| | - R Siano
- IFREMER, DYNECO, BP70, Plouzané, France.
| |
Collapse
|
14
|
Xie C, Ouyang H, Zheng H, Wang M, Gu J, Wang Z, Tang Y, Xiao L. Community structure and association network of prokaryotic community in surface sediments from the Bering-Chukchi shelf and adjacent sea areas. Front Microbiol 2024; 14:1312419. [PMID: 38264483 PMCID: PMC10803617 DOI: 10.3389/fmicb.2023.1312419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
The Bering-Chukchi shelf is one of the world's most productive areas and characterized by high benthic biomass. Sedimentary microbial communities play a crucial role in the remineralization of organic matter and associated biogeochemical cycles, reflecting both short-term changes in the environment and more consistent long-term environmental characteristics in a given habitat. In order to get a better understanding of the community structure of sediment-associated prokaryotes, surface sediments were collected from 26 stations in the Bering-Chukchi shelf and adjacent northern deep seas in this study. Prokaryote community structures were analyzed by metabarcoding of the 16S rRNA gene, and potential interactions among prokaryotic groups were analyzed by co-occurrence networks. Relationships between the prokaryote community and environmental factors were assessed. Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the dominant bacterial classes, contributing 35.0, 18.9, and 17.3% of the bacterial reads, respectively. The phototrophic cyanobacteria accounted for 2.7% of the DNA reads and occurred more abundantly in the Bering-Chukchi shelf. Prokaryotic community assemblages were different in the northern deep seas compared to the Bering-Chukchi shelf, represented by the lowered diversity and the increased abundant operational Taxonomic Units (OTU), suggesting that the abundant taxa may play more important roles in the northern deep seas. Correlation analysis showed that latitude, water depth, and nutrients were important factors affecting the prokaryote community structure. Abundant OTUs were distributed widely in the study area. The complex association networks indicated a stable microbial community structure in the study area. The high positive interactions (81.8-97.7%) in this study suggested that symbiotic and/or cooperative relationships accounted for a dominant proportion of the microbial networks. However, the dominant taxa were generally located at the edge of the co-occurrence networks rather than in the major modules. Most of the keystone OTUs were intermediately abundant OTUs with relative reads between 0.01 and 1%, suggesting that taxa with moderate biomass might have considerable impacts on the structure and function of the microbial community. This study enriched the understanding of prokaryotic community in surface sediments from the Bering-Chukchi shelf and adjacent sea areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yali Tang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lijuan Xiao
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Moncada C, Arnosti C, Brüwer JD, de Beer D, Amann R, Knittel K. Niche separation in bacterial communities and activities in porewater, loosely attached, and firmly attached fractions in permeable surface sediments. THE ISME JOURNAL 2024; 18:wrae159. [PMID: 39115410 PMCID: PMC11368169 DOI: 10.1093/ismejo/wrae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Heterotrophic microbes are central to organic matter degradation and transformation in marine sediments. Currently, most investigations of benthic microbiomes do not differentiate between processes in the porewater and on the grains and, hence, only show a generalized picture of the community. This limits our understanding of the structure and functions of sediment microbiomes. To address this problem, we fractionated sandy surface sediment microbial communities from a coastal site in Isfjorden, Svalbard, into cells associated with the porewater, loosely attached to grains, and firmly attached to grains; we found dissimilar bacterial communities and metabolic activities in these fractions. Most (84%-89%) of the cells were firmly attached, and this fraction comprised more anaerobes, such as sulfate reducers, than the other fractions. The porewater and loosely attached fractions (3% and 8%-13% of cells, respectively) had more aerobic heterotrophs. These two fractions generally showed a higher frequency of dividing cells, polysaccharide (laminarin) hydrolysis rates, and per-cell O2 consumption than the firmly attached cells. Thus, the different fractions occupy distinct niches within surface sediments: the firmly attached fraction is potentially made of cells colonizing areas on the grain that are protected from abrasion, but might be more diffusion-limited for organic matter and electron acceptors. In contrast, the porewater and loosely attached fractions are less resource-limited and have faster growth. Their cell numbers are kept low possibly through abrasion and exposure to grazers. Differences in community composition and activity of these cell fractions point to their distinct roles and contributions to carbon cycling within surface sediments.
Collapse
Affiliation(s)
- Chyrene Moncada
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Carol Arnosti
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jan D Brüwer
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Dirk de Beer
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
16
|
Zhang Y, Qu Z, Zhang K, Li J, Lin X. Different Microeukaryotic Trophic Groups Show Different Latitudinal Spatial Scale Dependences in Assembly Processes across the Continental Shelves of China. Microorganisms 2024; 12:124. [PMID: 38257952 PMCID: PMC10821338 DOI: 10.3390/microorganisms12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The relative role of stochasticity versus determinism is critically dependent on the spatial scale over which communities are studied. However, only a few studies have attempted to reveal how spatial scales influence the balance of different assembly processes. In this study, we investigated the latitudinal spatial scale dependences in assembly processes of microeukaryotic communities in surface water and sediment along the continental shelves of China. It was hypothesized that different microeukaryotic trophic groups (i.e., autotroph, heterotroph, mixotroph, and parasite) showed different latitudinal scale dependences in their assembly processes. Our results disclosed that the relative importance of different assembly processes depended on a latitudinal space scale for planktonic microeukaryotes. In surface water, as latitudinal difference increased, the relative contributions of homogenous selection and homogenizing dispersal decreased for the entire community, while those of heterogeneous selection and drift increased. The planktonic autotrophic and heterotrophic groups shifted from stochasticity-dominated processes to heterogeneous selection as latitudinal differences surpassed thresholds of 8° and 16°, respectively. For mixotrophic and parasitic groups, however, the assembly processes were always dominated by drift across different spatial scales. The balance of different assembly processes for the autotrophic group was mainly driven by temperature, whereas that of the heterotrophic group was driven by salinity and geographical distance. In sediment, neither the entire microeukaryotic community nor the four trophic groups showed remarkable spatial scale dependences in assembly processes; they were always overwhelmingly dominated by the drift. This work provides a deeper understanding of the distribution mechanisms of microeukaryotes along the continental shelves of China from the perspective of trophic groups.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Zhishuai Qu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Kexin Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Jiqiu Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Xiaofeng Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| |
Collapse
|
17
|
Zhong S, Feng J, Kong J, Huang Y, Chen X, Zhang S. Differences in Bacterial Co-Occurrence Networks and Ecological Niches at the Surface Sediments and Bottom Seawater in the Haima Cold Seep. Microorganisms 2023; 11:3001. [PMID: 38138145 PMCID: PMC10745737 DOI: 10.3390/microorganisms11123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Cold seeps are highly productive chemosynthetic ecosystems in the deep-sea environment. Although microbial communities affected by methane seepage have been extensively studied in sediments and seawater, there is a lack of investigation of prokaryotic communities at the surface sediments and bottom seawater. We revealed the effect of methane seepage on co-occurrence networks and ecological niches of prokaryotic communities at the surface sediments and bottom seawater in the Haima cold seep. The results showed that methane seepage could cause the migration of Mn and Ba from the surface sediments to the overlying seawater, altering the elemental distribution at seepage sites (IS) compared with non-seepage sites (NS). Principal component analysis (PCA) showed that methane seepage led to closer distances of bacterial communities between surface sediments and bottom seawater. Co-occurrence networks indicated that methane seepage led to more complex interconnections at the surface sediments and bottom seawater. In summary, methane seepage caused bacterial communities in the surface sediments and bottom seawater to become more abundant and structurally complex. This study provides a comprehensive comparison of microbial profiles at the surface sediments and bottom seawater of cold seeps in the South China Sea (SCS), illustrating the impact of seepage on bacterial community dynamics.
Collapse
Affiliation(s)
- Song Zhong
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China;
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
| | - Jingchun Feng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China;
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jie Kong
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yongji Huang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiao Chen
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Si Zhang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
18
|
Bonthond G, Beermann J, Gutow L, Neumann A, Barboza FR, Desiderato A, Fofonova V, Helber SB, Khodami S, Kraan C, Neumann H, Rohde S, Schupp PJ. Benthic microbial biogeographic trends in the North Sea are shaped by an interplay of environmental drivers and bottom trawling effort. ISME COMMUNICATIONS 2023; 3:132. [PMID: 38102238 PMCID: PMC10724143 DOI: 10.1038/s43705-023-00336-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Microbial composition and diversity in marine sediments are shaped by environmental, biological, and anthropogenic processes operating at different scales. However, our understanding of benthic microbial biogeography remains limited. Here, we used 16S rDNA amplicon sequencing to characterize benthic microbiota in the North Sea from the top centimeter of 339 sediment samples. We utilized spatially explicit statistical models, to disentangle the effects of the different predictors, including bottom trawling intensity, a prevalent industrial fishing practice which heavily impacts benthic ecosystems. Fitted models demonstrate how the geographic interplay of different environmental and anthropogenic drivers shapes the diversity, structure and potential metabolism of benthic microbial communities. Sediment properties were the primary determinants, with diversity increasing with sediment permeability but also with mud content, highlighting different underlying processes. Additionally, diversity and structure varied with total organic matter content, temperature, bottom shear stress and bottom trawling. Changes in diversity associated with bottom trawling intensity were accompanied by shifts in predicted energy metabolism. Specifically, with increasing trawling intensity, we observed a transition toward more aerobic heterotrophic and less denitrifying predicted metabolism. Our findings provide first insights into benthic microbial biogeographic patterns on a large spatial scale and illustrate how anthropogenic activity such as bottom trawling may influence the distribution and abundances of microbes and potential metabolism at macroecological scales.
Collapse
Affiliation(s)
- Guido Bonthond
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany.
| | - Jan Beermann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Lars Gutow
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | | | | | - Andrea Desiderato
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 90-136, Lodz, Poland
| | - Vera Fofonova
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Stephanie B Helber
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| | - Sahar Khodami
- Senckenberg am Meer Wilhelmshaven, German Centre for Marine Biodiversity Research, Südstrand 44, 26382, Wilhelmshaven, Germany
| | - Casper Kraan
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Hermann Neumann
- Thünen Institute of Sea Fisheries, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, D-26129, Oldenburg, Germany
| |
Collapse
|
19
|
El-Malah SS, Rasool K, Jabbar KA, Sohail MU, Baalousha HM, Mahmoud KA. Marine Bacterial Community Structures of Selected Coastal Seawater and Sediment Sites in Qatar. Microorganisms 2023; 11:2827. [PMID: 38137970 PMCID: PMC10745943 DOI: 10.3390/microorganisms11122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/24/2023] Open
Abstract
Severe environmental conditions can have a diverse impact on marine microorganisms, including bacteria. This can have an inevitable impact on the biofouling of membrane-based desalination plants. In this work, we have utilized indicator bacteria such as total coliform, fecal coliform, and Pseudomonas aeruginosa, as well as 16S rRNA sequencing, to investigate the impact of environmental conditions and spatial variations on the diversity of bacterial communities in the coastal waters and sediments from selected sites in Qatar. The concentration levels of indicator bacteria were affected by increasing temperatures and pH, and by decreasing salinity of seawater samples. Diversity indices and the molecular phylogeny demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria were the dominant phyla in all locations. The most abundant operational taxonomic units (OTUs) at the family level were from Flavobacteriaceae (27.07%, 4.31%) and Rhodobacteraceae (22.51%, 9.86%) in seawater and sediment, respectively. Alphaproteobacteria (33.87%, 16.82%), Flavobacteria (30.68%, 5.84%), and Gammaproteobacteria (20.35%, 12.45%) were abundant at the species level in both seawater and sediment, while Clostridia (13.72%) was abundant in sediment only. The results suggest that sediment can act as a reservoir for indicator bacteria, with higher diversity and lower abundance compared to seawater.
Collapse
Affiliation(s)
- Shimaa S. El-Malah
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| | - Khadeeja Abdul Jabbar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| | | | - Husam Musa Baalousha
- Department of Geosciences, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Khaled A. Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| |
Collapse
|
20
|
Centeno Mejia AA, Bravo Gaete MF. Exploring the Entropy Complex Networks with Latent Interaction. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1535. [PMID: 37998227 PMCID: PMC10670619 DOI: 10.3390/e25111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
In the present work, we study the introduction of a latent interaction index, examining its impact on the formation and development of complex networks. This index takes into account both observed and unobserved heterogeneity per node in order to overcome the limitations of traditional compositional similarity indices, particularly when dealing with large networks comprising numerous nodes. In this way, it effectively captures specific information about participating nodes while mitigating estimation problems based on network structures. Furthermore, we develop a Shannon-type entropy function to characterize the density of networks and establish optimal bounds for this estimation by leveraging the network topology. Additionally, we demonstrate some asymptotic properties of pointwise estimation using this function. Through this approach, we analyze the compositional structural dynamics, providing valuable insights into the complex interactions within the network. Our proposed method offers a promising tool for studying and understanding the intricate relationships within complex networks and their implications under parameter specification. We perform simulations and comparisons with the formation of Erdös-Rényi and Barabási-Alber-type networks and Erdös-Rényi and Shannon-type entropy. Finally, we apply our models to the detection of microbial communities.
Collapse
Affiliation(s)
- Alex Arturo Centeno Mejia
- Doctorado en Modelamiento Matemático Aplicado, Universidad Católica del Maule, Avenida San Miguel, Talca 3605, Chile
| | - Moisés Felipe Bravo Gaete
- Departamento de Matemáticas, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Avenida San Miguel, Talca 3605, Chile;
| |
Collapse
|
21
|
Gusmão ACB, Peres FV, Paula FS, Pellizari VH, Kolm HE, Signori CN. Microbial communities in the deep-sea sediments of the South São Paulo Plateau, Southwestern Atlantic Ocean. Int Microbiol 2023; 26:1041-1051. [PMID: 37093322 DOI: 10.1007/s10123-023-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Microbial communities play a key role in the ocean, acting as primary producers, nutrient recyclers, and energy providers. The São Paulo Plateau is a region located on the southeastern coast of Brazil within economic importance, due to its oil and gas reservoirs. With this focus, this study examined the diversity and composition of microbial communities in marine sediments located at three oceanographic stations in the southern region of São Paulo Plateau using the HOV Shinkai 6500 in 2013. The 16S rRNA gene was sequenced using the universal primers (515F and 926R) by the Illumina Miseq platform. The taxonomic compositions of samples recovered from SP3 station were markedly distinct from those obtained from SP1 and SP2. Although all three stations exhibited a high abundance of Gammaproteobacteria (> 15%), this taxon dominated more than 90% of composition of the A and C sediment layers at SP3. The highest abundance of the archaeal class Nitrososphaeria was presented at SP1, mainly at layer C (~ 21%), being absent at SP3 station. The prediction of chemoheterotrophy and fermentation as important microbial functions was supported by the data. Additionally, other metabolic pathways related to the cycles of nitrogen, carbon and sulfur were also predicted. The core microbiome analysis comprised only two ASVs. Our study contributes to a better understanding of microbial communities in an economically important little-explored region. This is the third microbiological survey in plateau sediments and the first focused on the southern region.
Collapse
Affiliation(s)
- Ana Carolina Bercini Gusmão
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil.
| | - Francielli Vilela Peres
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Fabiana S Paula
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Vivian Helena Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Hedda Elisabeth Kolm
- Department of Oceanography, Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil
| | - Camila Negrão Signori
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| |
Collapse
|
22
|
Wang J, Lin L, Wu Q, Liu B, Li B. Design of a multi-band Raman tweezers objective for in situ studies of deep-sea microorganisms. OPTICS EXPRESS 2023; 31:36883-36902. [PMID: 38017829 DOI: 10.1364/oe.503218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/19/2023] [Indexed: 11/30/2023]
Abstract
The investigation of deep-sea microorganisms holds immense significance and value in advancing the fields of life sciences, biotechnology, and environmental conservation. However, the current lack of specialized underwater objectives specifically designed for in situ studies of deep-sea microorganisms hampers progress in this area. To address this limitation, we present the design of a multi-band Raman tweezer objective tailored for deep-sea environments. The objective is integrated into a high-pressure chamber capable of withstanding depths up to 1.5 km, enabling in situ microscopic imaging, optical tweezer capture, and Raman detection of deep-sea microorganisms. Through meticulous structural optimization, meticulous material selection, and thorough mechanical analysis of the underwater optical window, the objective exhibits remarkable attributes such as multi-band functionality, extended working distance, and high numerical aperture. Our design yields image quality near the diffraction limit, successfully achieving flat-field and apochromatic performance in each respective wavelength bands. Moreover, the tolerance analysis demonstrates that the full-field root mean square (RMS) wave aberration approaches λ/14, effectively meeting the demands of manufacturing and practical applications. This objective lens constitutes a vital tool for the in situ exploration of deep-sea microorganisms.
Collapse
|
23
|
An T, Lu X, Han Y, Guo C, Guo J, Zhu G, Tian W, Lv B. Exploring the bacterial diversity and composition with special emphasis on pathogens in ship ballast water and sediments using full-length 16S rRNA gene sequencing. MARINE POLLUTION BULLETIN 2023; 194:115336. [PMID: 37542926 DOI: 10.1016/j.marpolbul.2023.115336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Accurate detecting bacterial communities in ballast water and sediments supports risk management. This study uses full-length 16S rRNA gene sequencing to investigate the bacterial communities in ballast water and sediments, focusing on detecting pathogens. The results indicate that full-length sequencing more accurately reveals the species diversity. There is a significant difference (P < 0.05) in bacterial communities between ballast water and sediments, despite both being dominated by the Proteobacteria phylum. Thirty human and fish pathogens were identified by full-length sequencing, yet only five pathogens were detected from V3-V4 sequencing. Notably, emerging pathogens such as Citrobacter freundii and Nocardia nova are detected in samples, which are harmful to aquaculture and human health. Several opportunistic pathogens were also identified. In summary, this study provides important insights into the bacterial communities in ballast water and sediments, highlighting the need for strict management.
Collapse
Affiliation(s)
- Tingxuan An
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xiaolan Lu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | | | - Chong Guo
- Maritime Safety Bureau of Yangshan Port, Shanghai 201306, China
| | | | - Guorong Zhu
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wen Tian
- Jiangyin Customs, Jiangyin 214400, China
| | - Baoyi Lv
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
24
|
Li H, Zhou H, Yang S, Dai X. Stochastic and Deterministic Assembly Processes in Seamount Microbial Communities. Appl Environ Microbiol 2023; 89:e0070123. [PMID: 37404136 PMCID: PMC10370332 DOI: 10.1128/aem.00701-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Seamounts are ubiquitous in the ocean. However, little is known about how seamount habitat features influence the local microbial community. In this study, the microbial populations of sediment cores from sampling depths of 0.1 to 35 cm from 10 seamount summit sites with a water depth of 1,850 to 3,827 m across the South China Sea (SCS) Basin were analyzed. Compared with nonseamount ecosystems, isolated seamounts function as oases for microbiomes, with average moderate to high levels of microbial abundance, richness, and diversity, and they harbor distinct microbial communities. The distinct characteristics of different seamounts provide a high level of habitat heterogeneity, resulting in the wide range of microbial community diversity observed across all seamounts. Using dormant thermospores as tracers to study the effect of dispersal by ocean currents, the observed distance-decay biogeography across different seamounts shaped simultaneously by the seamounts' naturally occurring heterogeneous habitat and the limitation of ocean current dispersal was found. We also established a framework that links initial community assembly with successional dynamics in seamounts. Seamounts provide resource-rich and dynamic environments, which leads to a dominance of stochasticity during initial community establishment in surface sediments. However, a progressive increase in deterministic environmental selection, correlated with resource depletion in subsurface sediments, leads to the selective growth of rare species of surface sediment communities in shaping the subsurface community. Overall, the study indicates that seamounts are a previously ignored oasis in the deep sea. This study also provides a case study for understanding the microbial ecology in globally widespread seamounts. IMPORTANCE Although there are approximately 25 million seamounts in the ocean, surprisingly little is known about seamount microbial ecology. We provide evidence that seamounts are island-like habitats harboring microbial communities distinct from those of nonseamount habitats, and they exhibit a distance-decay pattern. Environmental selection and dispersal limitation simultaneously shape the observed biogeography. Coupling empirical data with a null mode revealed a shift in the type and strength, which controls microbial community assembly and succession from the seamount surface to the subsurface sediments as follows: (i) community assembly is initially primarily driven by stochastic processes such as dispersal limitation, and (ii) changes in the subsurface environment progressively increase the importance of environmental selection. This case study contributes to the mechanistic understanding essential for a predictive microbial ecology of seamounts.
Collapse
Affiliation(s)
- Haizhou Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Shanghai, China
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Huaiyang Zhou
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Shanshan Yang
- College of Marine Science and Technology, China University of Geosciences, Wuhan, Hubei, China
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institutes of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Galván V, Pascutti F, Sandoval NE, Lanfranconi MP, Lozada M, Arabolaza AL, Mac Cormack WP, Alvarez HM, Gramajo HC, Dionisi HM. High wax ester and triacylglycerol biosynthesis potential in coastal sediments of Antarctic and Subantarctic environments. PLoS One 2023; 18:e0288509. [PMID: 37459319 PMCID: PMC10351704 DOI: 10.1371/journal.pone.0288509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
The wax ester (WE) and triacylglycerol (TAG) biosynthetic potential of marine microorganisms is poorly understood at the microbial community level. The goal of this work was to uncover the prevalence and diversity of bacteria with the potential to synthesize these neutral lipids in coastal sediments of two high latitude environments, and to characterize the gene clusters related to this process. Homolog sequences of the key enzyme, the wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) were retrieved from 13 metagenomes, including subtidal and intertidal sediments of a Subantarctic environment (Ushuaia Bay, Argentina), and subtidal sediments of an Antarctic environment (Potter Cove, Antarctica). The abundance of WS/DGAT homolog sequences in the sediment metagenomes was 1.23 ± 0.42 times the abundance of 12 single-copy genes encoding ribosomal proteins, higher than in seawater (0.13 ± 0.31 times in 338 metagenomes). Homolog sequences were highly diverse, and were assigned to the Pseudomonadota, Actinomycetota, Bacteroidota and Acidobacteriota phyla. The genomic context of WS/DGAT homologs included sequences related to WE and TAG biosynthesis pathways, as well as to other related pathways such as fatty-acid metabolism, suggesting carbon recycling might drive the flux to neutral lipid synthesis. These results indicate the presence of abundant and taxonomically diverse bacterial populations with the potential to synthesize lipid storage compounds in marine sediments, relating this metabolic process to bacterial survival.
Collapse
Affiliation(s)
- Virginia Galván
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Federico Pascutti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Natalia E. Sandoval
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana P. Lanfranconi
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana Lozada
- Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Puerto Madryn, Chubut, Argentina
| | - Ana L. Arabolaza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Walter P. Mac Cormack
- Instituto de Nanobiotecnología (NANOBIOTEC-UBA-CONICET), San Martín, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Antártico Argentino (IAA), San Martín, Buenos Aires, Argentina
| | - Héctor M. Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Hugo C. Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Hebe M. Dionisi
- Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
26
|
Sun X, Jiang D, Shao Y, Zhang S. A dataset of micro biodiversity in benthic sediment at a global scale. Sci Data 2023; 10:383. [PMID: 37322057 PMCID: PMC10272205 DOI: 10.1038/s41597-023-02292-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Microorganisms, occupying the largest biomass in deep sea, play essential roles in deep-sea ecosystem. It is believed that the microbes in deep-sea sediments are more representative of deep-sea microbial communities, the microbial composition of which is seldom affected by ocean currents. However, the community of benthic microbes on a global scale has not been adequately explored. Herein, we build a comprehensive global dataset determined by 16S rRNA gene sequencing to characterize the biodiversity of microorganisms in benthic sediment. The dataset comprised 212 records from 106 sites, included sequencing of bacteria and archaea for each site and yielded 4,766,502 and 1,562,989 reads, respectively. Through annotation, a total of 110,073 and 15,795 OTUs of bacteria and archaea were obtained, and 61 bacterial phyla and 15 archaeal phyla were identified, of which the dominant phyla were Proteobacteria and Thaumarchaeota in deep-sea sediment. Therefore, our findings provided a biodiversity data of microbial communities in deep-sea sediment at global-scale and laid a foundation to further reveal the structures of microorganism communities in deep sea.
Collapse
Affiliation(s)
- Xumei Sun
- School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Danni Jiang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Siyuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
27
|
Galand PE, Ruscheweyh HJ, Salazar G, Hochart C, Henry N, Hume BCC, Oliveira PH, Perdereau A, Labadie K, Belser C, Boissin E, Romac S, Poulain J, Bourdin G, Iwankow G, Moulin C, Armstrong EJ, Paz-García DA, Ziegler M, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Gilson E, Lombard F, Pesant S, Reynaud S, Thomas OP, Troublé R, Zoccola D, Voolstra CR, Thurber RV, Sunagawa S, Wincker P, Allemand D, Planes S. Diversity of the Pacific Ocean coral reef microbiome. Nat Commun 2023; 14:3039. [PMID: 37264002 DOI: 10.1038/s41467-023-38500-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.
Collapse
Affiliation(s)
- Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France.
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Nicolas Henry
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | | | - Pedro H Oliveira
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Aude Perdereau
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Julie Poulain
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | | | - Eric J Armstrong
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, México
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
- Institut Universitaire de France, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Fondation Tara Océan, Paris, France
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | | | | | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| |
Collapse
|
28
|
Li J, Liang Y, He Z, An L, Liu Y, Zhong M, Hu Z. Tamlana laminarinivorans sp. nov. and Tamlana sargassicola sp. nov., two novel species isolated from Sargassum, show genomic and physiological adaptations for a Sargassum-associated lifestyle. Int J Syst Evol Microbiol 2023; 73. [PMID: 36884369 DOI: 10.1099/ijsem.0.005706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
The genus Tamlana from the Bacteroidota currently includes six validated species. Two strains designated PT2-4T and 62-3T were isolated from Sargassum abundant at the Pingtan island coast in the Fujian Province of China. 16S rRNA gene sequence analysis showed that the closest described relative of strains PT2-4T and 62-3T is Tamlana sedimentorum JCM 19808T with 98.40 and 97.98% sequence similarity, respectively. The 16S rRNA gene sequence similarity between strain PT2-4T and strain 62-3T was 98.68 %. Furthermore, the highest average nucleotide identity values were 87.34 and 88.97 % for strains PT2-4T and 62-3T, respectively. The highest DNA-DNA hybridization (DDH) value of strain PT2-4T was 35.2 % with strain 62-3T, while the DDH value of strain 62-3T was 37.7 % with T. sedimentorum JCM 19808T. Growth of strains PT2-4T and 62-3T occurs at 15-40 °C (optimum, 30 °C) with 0-4 % (w/v) NaCl (optimum 0-1 %). Strains PT2-4T and 62-3T can grow from pH 5.0 to 10.0 (optimum, pH 7.0). The major fatty acids of strains PT2-4T and 62-3T are iso-C15 : 0 and iso G-C15 : 1. MK-6 is the sole respiratory quinone. Genomic and physiological analyses of strains PT2-4T and 62-3T showed corresponding adaptive features. Significant adaptation to the growth environment of macroalgae includes the degradation of brown algae-derived diverse polysaccharides (alginate, laminarin and fucoidan). Notably, strain PT2-4T can utilize laminarin, fucoidan and alginate via specific carbohydrate-active enzymes encoded in polysaccharide utilization loci, rarely described for the genus Tamlana to date. Based on their distinct physiological characteristics and the traits of utilizing polysaccharides from Sargassum, strains PT2-4T and 62-3T are suggested to be classified into two novel species, Tamlana laminarinivorans sp. nov. and Tamlana sargassicola sp. nov. (type strain PT2-4T=MCCC 1K04427T=KCTC 92183T and type strain 62-3T=MCCC 1K04421T=KCTC 92182T).
Collapse
Affiliation(s)
- Jin Li
- Department of Biology, College of Science, Shantou University, Shantou, 515063, PR China
| | - Yumei Liang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, PR China
| | - Zhixiao He
- Department of Biology, College of Science, Shantou University, Shantou, 515063, PR China
| | - Lu An
- Department of Biology, College of Science, Shantou University, Shantou, 515063, PR China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, PR China
| | - Mingqi Zhong
- Department of Biology, College of Science, Shantou University, Shantou, 515063, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, PR China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China
| |
Collapse
|
29
|
Subsurface Bacterioplankton Structure and Diversity in the Strongly-Stratified Water Columns within the Equatorial Eastern Indian Ocean. Microorganisms 2023; 11:microorganisms11030592. [PMID: 36985166 PMCID: PMC10058062 DOI: 10.3390/microorganisms11030592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The consequences of climate change may directly or indirectly impact the marine biosphere. Although ocean stratification has been recognized as one of the crucial consequences of ocean warming, its impacts on several critical aspects of marine microbes remain largely unknown in the Indian Ocean. Here, we investigate the effects of water stratification, in both surface and subsurface layers, on hydrogeographic parameters and bacterioplankton diversity within the equatorial eastern Indian Ocean (EIO). Strong stratification in the upper 200 m of equatorial EIO was detected with evidential low primary productivity. The vertical bacterioplankton diversity of the whole water columns displayed noticeable variation, with lower diversity occurring in the surface layer than in the subsurface layers. Horizontal heterogeneity of bacterioplankton communities was also in the well-mixed layer among different stations. SAR11 and Prochlorococcus displayed uncharacteristic low abundance in the surface water. Some amplicon sequence variants (ASVs) were identified as potential biomarkers for their specific depths in strongly-stratified water columns. Thus, barriers resulting from stratification are proposed to function as an ‘ASV filter’ to regulate the vertical bacterioplankton community diversity along the water columns. Overall, our results suggest that the effects of stratification on the structure and diversity of bacterioplankton can extend up to the bathypelagic zone in the strongly-stratified waters of the equatorial EIO. This study provides the first insight into the effect of stratification on the subsurface microbial communities in the equatorial eastern Indian Ocean.
Collapse
|
30
|
Impact of environmental factors on diversity of fungi in sediments from the Shenzhen River Estuary. Arch Microbiol 2023; 205:96. [PMID: 36820941 PMCID: PMC9950236 DOI: 10.1007/s00203-023-03438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In this study, to explore the relationship between environmental factors and fungal diversity in the Shenzhen River ecosystem, multiple methods including chemical analysis, culture isolation, qPCR analysis of fungal ITS region and ITS-based Illumina next-generation-sequencing were integrated. A total of 115 isolates were finally isolated and could be classified into 23 genera. Top three abundant genera isolated were Meyerozyma (18 strains), Aspergillus (17 strains) and Penicillium (14 strains). Based on the Illumina sequencing approach, 829 OTUs were affiliated to seven phyla, 17 known classes, and 162 genera, indicating the Shenzhen estuary sediments are rich in fungal diversity. The major fungal genera were Meyerozyma, Trichoderma and Talaromyces. Environmental factors showed a gradient change in Shenzhen estuary, and fungal abundance was only significantly correlated with NH4+. Shannon index was significantly correlated with pH and IC (P < 0.05). Principal coordinate analysis based on OTU level grouped into three clusters among sampling sites along with the IC and pH gradient. Functional guilds analysis suggests most of the fungi in this studying area were almost all saprotrophs, suggesting a large number of saprophytic fungi may play a significant role in the organic matter decomposition and nutrient cycling process. In summary, this study will deepen our understanding of fungi community in Shenzhen River ecosystem and their distribution and potential function shaped by environmental factors.
Collapse
|
31
|
Zárate A, Molina V, Valdés J, Icaza G, Vega SE, Castillo A, Ugalde JA, Dorador C. Spatial co-occurrence patterns of benthic microbial assemblage in response to trace metals in the Atacama Desert Coastline. Front Microbiol 2023; 13:1020491. [PMID: 36726571 PMCID: PMC9885135 DOI: 10.3389/fmicb.2022.1020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/31/2022] [Indexed: 01/17/2023] Open
Abstract
Taxonomic and functional microbial communities may respond differently to anthropogenic coastal impacts, but ecological quality monitoring assessments using environmental DNA and RNA (eDNA/eRNA) in response to pollution are poorly understood. In the present study, we investigated the utility of the co-occurrence network approach's to comprehensively explore both structure and potential functions of benthic marine microbial communities and their responses to Cu and Fe fractioning from two sediment deposition coastal zones of northern Chile via 16S rRNA gene metabarcoding. The results revealed substantial differences in the microbial communities, with the predominance of two distinct module hubs based on study zone. This indicates that habitat influences microbial co-occurrence networks. Indeed, the discriminant analysis allowed us to identify keystone taxa with significant differences in eDNA and eRNA comparison between sampled zones, revealing that Beggiatoaceae, Carnobacteriaceae, and Nitrosococcaceae were the primary representatives from Off Loa, whereas Enterobacteriaceae, Corynebacteriaceae, Latescibacteraceae, and Clostridiaceae were the families responsible for the observed changes in Mejillones Bay. The quantitative evidence from the multivariate analyses supports that the benthic microbial assemblages' features were linked to specific environments associated with Cu and Fe fractions, mainly in the Bay. Furthermore, the predicted functional microbial structure suggested that transporters and DNA repair allow the communities to respond to metals and endure the interacting variable environmental factors like dissolved oxygen, temperature, and salinity. Moreover, some active taxa recovered are associated with anthropogenic impact, potentially harboring antibiotic resistance and other threats in the coastal zone. Overall, the method of scoping eRNA in parallel with eDNA applied here has the capacity to significantly enhance the spatial and functional understanding of real-time microbial assemblages and, in turn, would have the potential to increase the acuity of biomonitoring programs key to responding to immediate management needs for the marine environment.
Collapse
Affiliation(s)
- Ana Zárate
- Doctorado en Ciencias Aplicadas mención Sistemas Marinos Costeros, Universidad de Antofagasta, Antofagasta, Chile,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile,Laboratorio de Biotecnología en Ambientes Extremos, Centro de Excelencia en Medicina Traslacional, Universidad de la Frontera, Temuco, Chile,*Correspondence: Ana Zárate, ✉
| | - Verónica Molina
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas y HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile,Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile,Verónica Molina, ✉
| | - Jorge Valdés
- Laboratorio de Sedimentología y Paleoambientes, Facultad de Ciencias del Mar y de Recursos Biológicos, Instituto de Ciencias Naturales A. von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Icaza
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | | | - Alexis Castillo
- Centro de Investigación y Estudios Avanzados del Maule, Vicerrectoría de Investigación de Investigación y Posgrado, Universidad Católica del Maule, Campus San Miguel, Talca, Chile,J’EAI CHARISMA (IRD-France, UMNG-Colombia, UA-Chile, UCM-Chile, UCH-Chile, IGP-Peru, UPCH-Peru) and Nucleo Milenio UPWELL, Concepción, Chile
| | - Juan A. Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile,Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile,Cristina Dorador, ✉
| |
Collapse
|
32
|
Liu H, Lin G, Gao D, Chen H, He M, Lu J. Geographic Scale Influences the Interactivities Between Determinism and Stochasticity in the Assembly of Sedimentary Microbial Communities on the South China Sea Shelf. MICROBIAL ECOLOGY 2023; 85:121-136. [PMID: 35039906 DOI: 10.1007/s00248-021-01946-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Determinism and stochasticity in microbial community composition decisions have attracted wide attention. However, there is no consensus on their interrelationships and relative importance, and the mechanism controlling the interaction between the two ecological processes remains to be revealed. The interaction of the two ecological processes on the continental shelf of the South China Sea was studied by performing 16S rRNA gene amplicon sequencing on 90 sediments at multiple depths in five sites. Three nearshore sites have higher microbial diversity than those two close to the shelf margin. Different microbial composition was observed between sites and microbial composition of nearshore sites was positively correlated with total nitrogen, total sulfur, total organic carbon, and dissolved oxygen, while that of offshore was positively correlated with total carbon, salinity, and photosynthetically active radiation. The null model test showed that the community composition among layers of the same site and between nearby sites was mainly dominated by the homogeneous selection, while that between distant sites was mainly affected by dispersal limitation, which indicates that geographic scale influences the interactivities of determinism and stochasticity. Our research indicates that the balance of these two ecological processes along the geographic scale is mainly determined by the dispersal ability of microbes and environmental heterogeneity between areas. The study provides new insights into how deterministic and stochastic processes shape microbial community composition on the continental shelf.
Collapse
Affiliation(s)
- Hualin Liu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Hongyu Chen
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Miao He
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
33
|
Patin NV, Goodwin KD. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes. mSystems 2022; 7:e0059522. [PMID: 36448813 PMCID: PMC9765425 DOI: 10.1128/msystems.00595-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Long-read sequencing offers the potential to improve metagenome assemblies and provide more robust assessments of microbial community composition and function than short-read sequencing. We applied Pacific Biosciences (PacBio) CCS (circular consensus sequencing) HiFi shotgun sequencing to 14 marine water column samples and compared the results with those for short-read metagenomes from the corresponding environmental DNA samples. We found that long-read metagenomes varied widely in quality and biological information. The community compositions of the corresponding long- and short-read metagenomes were frequently dissimilar, suggesting higher stochasticity and/or bias associated with PacBio sequencing. Long reads provided few improvements to the assembly qualities, gene annotations, and prokaryotic metagenome-assembled genome (MAG) binning results. However, only long reads produced high-quality eukaryotic MAGs and contigs containing complete zooplankton marker gene sequences. These results suggest that high-quality long-read metagenomes can improve marine community composition analyses and provide important insight into eukaryotic phyto- and zooplankton genetics, but the benefits may be outweighed by the inconsistent data quality. IMPORTANCE Ocean microbes provide critical ecosystem services, but most remain uncultivated. Their communities can be studied through shotgun metagenomic sequencing and bioinformatic analyses, including binning draft microbial genomes. However, most sequencing to date has been done using short-read technology, which rarely yields genome sequences of key microbes like SAR11. Long-read sequencing can improve metagenome assemblies but is hampered by technological shortcomings and high costs. In this study, we compared long- and short-read sequencing of marine metagenomes. We found a wide range of long-read metagenome qualities and minimal improvements to microbiome analyses. However, long reads generated draft genomes of eukaryotic algal species and provided full-length marker gene sequences of zooplankton species, including krill and copepods. These results suggest that long-read sequencing can provide greater genetic insight into the wide diversity of eukaryotic phyto- and zooplankton that interact as part of and with the marine microbiome.
Collapse
Affiliation(s)
- N. V. Patin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, Florida, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| | - K. D. Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, USA
| |
Collapse
|
34
|
Laas P, Künnis-Beres K, Talas L, Tammert H, Kuprijanov I, Herlemann DPR, Kisand V. Bacterial communities in ballast tanks of cargo vessels - Shaped by salinity, treatment and the point of origin of the water but "hatch" its typical microbiome. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116403. [PMID: 36352729 DOI: 10.1016/j.jenvman.2022.116403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Ballast water is a main vector of introduction of potentially harmful or pathogenic aquatic organisms. The development of genetic tools for ballast water monitoring has been underway and highlighted as a source for accurate and reliable data for decision making. We used 16S rRNA gene amplicon sequencing to analyze the microbial communities found in the ballast water of fifteen commercial ships routed through two Estonian ports. In parallel, samples from the port area were collected at the same time each ship visited. Fluorescence microscopy was utilized to assess the effectiveness of the treatment applied to ballast water. In addition, supplemental samples were collected from Hamburg Port (Germany) and a ballast tank decontamination system used at this port. The composition and diversity of bacterial communities varied greatly between obtained samples. The application of UV treatment did not demonstrate significant reduction in species richness estimates. The composition of microbial communities was significantly influenced by salinity, treatment (mainly untreated or UV treated) and the point of origin of the ballast water. Over a hundred potentially pathogenic bacterial taxa were found in relatively high abundance, including in ballast water that had received UV treatment. These shortcomings of stand-alone UV treatment of ballast water, especially when weak treatment is applied insufficiently, highlight the danger of possible harmful effects arising over time and the need for genetic tools for ballast water monitoring and management.
Collapse
Affiliation(s)
- Peeter Laas
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia; Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, Tallinn, Estonia
| | - Kai Künnis-Beres
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, Tallinn, Estonia
| | - Liisi Talas
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia
| | - Helen Tammert
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia
| | - Ivan Kuprijanov
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, Tallinn, Estonia
| | - Daniel P R Herlemann
- Estonian University of Life Sciences, Centre for Limnology, Vehendi, Elva, Tartu County, Estonia
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia.
| |
Collapse
|
35
|
Plante CJ, Hill-Spanik KM, Emerson R. Inputs don't equal outputs: bacterial microbiomes of the ingesta, gut, and feces of the keystone deposit feeder Ilyanassa obsoleta. FEMS Microbiol Ecol 2022; 99:6887277. [PMID: 36496168 DOI: 10.1093/femsec/fiac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteria drive energy fluxes and geochemical processes in estuarine sediments. Deposit-feeding invertebrates alter the structure and activity of microbial communities through sediment ingestion, gut passage, and defecation. The eastern mud snail, Ilyanassa obsoleta, is native to estuaries of the northwestern Atlantic, ranging from Nova Scotia, Canada, to Florida in the USA. Given extremely high densities, their deposit-feeding and locomotory activities exert ecological influence on other invertebrates and microbes. Our aim was to characterize the bacterial microbiome of this 'keystone species' and determine how its feeding alters the native bacterial microbiota. We gathered snails from both mudflat and sandflat habitats and collected their fresh fecal pellets in the laboratory. Dissection of these same snails allowed us to compare bacterial assemblages of ingested sediments, shell surfaces, gut sections (esophagus, stomach, intestine), and feces using DNA metabarcoding. Our findings indicate a diverse, resident gut microbiota. The stomach and intestines were dominated by bacteria of the genus Mycoplasma. Comparison of ingesta and feces revealed digestion of several bacterial taxa, introduction of gut residents during passage, in addition to unique bacterial taxa within the feces of unknown provenance. Our results demonstrate that I. obsoleta has the potential to modify microbial community structure in estuarine sediments.
Collapse
Affiliation(s)
- Craig J Plante
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| | | | - Rowan Emerson
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, United States
| |
Collapse
|
36
|
Jeilu O, Gessesse A, Simachew A, Johansson E, Alexandersson E. Prokaryotic and eukaryotic microbial diversity from three soda lakes in the East African Rift Valley determined by amplicon sequencing. Front Microbiol 2022; 13:999876. [PMID: 36569062 PMCID: PMC9772273 DOI: 10.3389/fmicb.2022.999876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Soda lakes are unique poly-extreme environments with high alkalinity and salinity that support diverse microbial communities despite their extreme nature. In this study, prokaryotic and eukaryotic microbial diversity in samples of the three soda lakes, Lake Abijata, Lake Chitu and Lake Shala in the East African Rift Valley, were determined using amplicon sequencing. Culture-independent analysis showed higher diversity of prokaryotic and eukaryotic microbial communities in all three soda lakes than previously reported. A total of 3,603 prokaryotic and 898 eukaryotic operational taxonomic units (OTUs) were found through culture-independent amplicon sequencing, whereas only 134 bacterial OTUs, which correspond to 3%, were obtained by enrichment cultures. This shows that only a fraction of the microorganisms from these habitats can be cultured under laboratory conditions. Of the three soda lakes, samples from Lake Chitu showed the highest prokaryotic diversity, while samples from Lake Shala showed the lowest diversity. Pseudomonadota (Halomonas), Bacillota (Bacillus, Clostridia), Bacteroidota (Bacteroides), Euryarchaeota (Thermoplasmata, Thermococci, Methanomicrobia, Halobacter), and Nanoarchaeota (Woesearchaeia) were the most common prokaryotic microbes in the three soda lakes. A high diversity of eukaryotic organisms were identified, primarily represented by Ascomycota and Basidiomycota. Compared to the other two lakes, a higher number of eukaryotic OTUs were found in Lake Abijata. The present study showed that these unique habitats harbour diverse microbial genetic resources with possible use in biotechnological applications, which should be further investigated by functional metagenomics.
Collapse
Affiliation(s)
- Oliyad Jeilu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden,*Correspondence: Oliyad Jeilu,
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
37
|
Scicchitano D, Lo Martire M, Palladino G, Nanetti E, Fabbrini M, Dell’Anno A, Rampelli S, Corinaldesi C, Candela M. Microbiome network in the pelagic and benthic offshore systems of the northern Adriatic Sea (Mediterranean Sea). Sci Rep 2022; 12:16670. [PMID: 36198901 PMCID: PMC9535000 DOI: 10.1038/s41598-022-21182-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractBecause of their recognized global importance, there is now the urgent need to map diversity and distribution patterns of marine microbial communities. Even if available studies provided some advances in the understanding the biogeographical patterns of marine microbiomes at the global scale, their degree of plasticity at the local scale it is still underexplored, and functional implications still need to be dissected. In this scenario here we provide a synoptical study on the microbiomes of the water column and surface sediments from 19 sites in a 130 km2 area located 13.5 km afar from the coast in the North-Western Adriatic Sea (Italy), providing the finest-scale mapping of marine microbiomes in the Mediterranean Sea. Pelagic and benthic microbiomes in the study area showed sector specific-patterns and distinct assemblage structures, corresponding to specific variations in the microbiome network structure. While maintaining a balanced structure in terms of potential ecosystem services (e.g., hydrocarbon degradation and nutrient cycling), sector-specific patterns of over-abundant modules—and taxa—were defined, with the South sector (the closest to the coast) characterized by microbial groups of terrestrial origins, both in the pelagic and the benthic realms. By the granular assessment of the marine microbiome changes at the local scale, we have been able to describe, to our knowledge at the first time, the integration of terrestrial microorganisms in the marine microbiome networks, as a possible natural process characterizing eutrophic coastal area. This raises the question about the biological threshold for terrestrial microorganisms to be admitted in the marine microbiome networks, without altering the ecological balance.
Collapse
|
38
|
Fakhri S, Abdian S, Moradi SZ, Delgadillo BE, Fimognari C, Bishayee A. Marine Compounds, Mitochondria, and Malignancy: A Therapeutic Nexus. Mar Drugs 2022; 20:md20100625. [PMID: 36286449 PMCID: PMC9604966 DOI: 10.3390/md20100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
The marine environment is important yet generally underexplored. It contains new sources of functional constituents that can affect various pathways in food processing, storage, and fortification. Bioactive secondary metabolites produced by marine microorganisms may have significant potential applications for humans. Various components isolated from disparate marine microorganisms, including fungi, microalgae, bacteria, and myxomycetes, showed considerable biological effects, such as anticancer, antioxidant, antiviral, antibacterial, and neuroprotective activities. Growing studies are revealing that potential anticancer effects of marine agents could be achieved through the modulation of several organelles. Mitochondria are known organelles that influence growth, differentiation, and death of cells via influencing the biosynthetic, bioenergetic, and various signaling pathways related to oxidative stress and cellular metabolism. Consequently, mitochondria play an essential role in tumorigenesis and cancer treatments by adapting to alterations in environmental and cellular conditions. The growing interest in marine-derived anticancer agents, combined with the development and progression of novel technology in the extraction and cultures of marine life, led to revelations of new compounds with meaningful pharmacological applications. This is the first critical review on marine-derived anticancer agents that have the potential for targeting mitochondrial function during tumorigenesis. This study aims to provide promising strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Blake E. Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: or
| |
Collapse
|
39
|
Fonseca A, Espinoza C, Nielsen LP, Marshall IPG, Gallardo VA. Bacterial community of sediments under the Eastern Boundary Current System shows high microdiversity and a latitudinal spatial pattern. Front Microbiol 2022; 13:1016418. [PMID: 36246233 PMCID: PMC9561620 DOI: 10.3389/fmicb.2022.1016418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The sediments under the Oxygen Minimum Zone of the Eastern Boundary Current System (EBCS) along Central-South Peru and North-Central Chile, known as Humboldt Sulfuretum (HS), is an organic-matter-rich benthic habitat, where bacteria process a variety of sulfur compounds under low dissolved-oxygen concentrations, and high sulfide and nitrate levels. This study addressed the structure, diversity and spatial distribution patterns of the HS bacterial community along Northern and South-Central Chile using 16S rRNA gene amplicon sequencing. The results show that during the field study period, the community was dominated by sulfur-associated bacteria. Indeed, the most abundant phylum was Desulfobacterota, while Sva0081 sedimentary group, of the family Desulfosarcinaceae (the most abundant family), which includes sulfate-reducer and H2 scavenger bacteria, was the most abundant genus. Furthermore, a spatial pattern was unveiled along the study area to which the family Desulfobulbaceae contributed the most to the spatial variance, which encompasses 42 uncharacterized amplicon sequence variants (ASVs), three assigned to Ca. Electrothrix and two to Desulfobulbus. Moreover, a very high microdiversity was found, since only 3.7% of the ASVs were shared among localities, reflecting a highly diverse and mature community.
Collapse
Affiliation(s)
- Alexis Fonseca
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
- *Correspondence: Alexis Fonseca,
| | - Carola Espinoza
- Department of Oceanography, University of Concepción, Concepción, Chile
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ian P. G. Marshall
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Victor A. Gallardo
- Department of Oceanography, University of Concepción, Concepción, Chile
- Victor A. Gallardo,
| |
Collapse
|
40
|
Mandal M, Mandal S. Cross-biome metagenomic analyses of the impact of pollutants on taxonomic and functional diversity of bacterial communities from different geographical regions. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Jing H, Xiao X, Zhang Y, Li Z, Jian H, Luo Y, Han Z. Composition and Ecological Roles of the Core Microbiome along the Abyssal-Hadal Transition Zone Sediments of the Mariana Trench. Microbiol Spectr 2022; 10:e0198821. [PMID: 35768947 PMCID: PMC9241748 DOI: 10.1128/spectrum.01988-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
The unique geological features of hadal trenches are known to influence both the structure and ecological function of microbial communities. It is also well known that heterotrophs and chemoautotrophs dominate the hadal and abyssal pelagic zones, respectively. Here, a metagenomic investigation was conducted on sediment samples obtained from the abyssal-hadal transition zone in the Mariana Trench to gain a better understanding of the general diversity and potential function of the core microbiome in this zone. A high level of cosmopolitanism existed in the core microbiome referred from a high community similarity among different stations. Niche differentiation along the fine-scale of different sediment layers was observed, especially for major archaeal groups, largely due to sediment depth and the source of organic matter. A prevalence of nitrogen biogeochemical cycles driven by various nitrifying groups with the capability of dark carbon fixation in the abyssal-hadal biosphere was also demonstrated. The predominance of heterotrophic over chemolithoautotrophic pathways in this transition zone was found, and a high abundance of genes related to respiration and carbon fixation (i.e., the intact Calvin and rTCA cycles) were detected as well, which might reflect the intensive microbial activities known to occur in this deep biosphere. The presence of those metabolic processes and associated microbes were reflected by functional and genetic markers generated from the metagenomic data in the current study. However, their roles and contributions to the nitrogen/carbon biogeochemical cycles and flux in the abyssal-hadal transition zone still need further analysis. IMPORTANCE The Mariana Trench is the deepest oceanic region on earth, its microbial ecological exploration has become feasible with the rapid progress of submersible and metagenomic sequencing. We investigated the community compositions and metabolic functions of the core microbiome along the abyssal-hadal transition zone of the Mariana Trench, although most studies by far were focused on the pelagic zone. We found a predominance of heterotrophic groups and related metabolic pathways, which were closely associated with nitrogen biogeochemical cycles driven by various nitrifying groups with the capability of dark carbon fixation.
Collapse
Affiliation(s)
- Hongmei Jing
- Chinese Academy of Sciences (CAS) Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, ZhuHai, China
- Hong Kong University of Science and Technology (HKUST)-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Xiang Xiao
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yingfeng Luo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhuang Han
- Chinese Academy of Sciences (CAS) Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
42
|
Bruce SA, Aytur SA, Andam CP, Bucci JP. Metagenomics to characterize sediment microbial biodiversity associated with fishing exposure within the Stellwagen Bank National Marine Sanctuary. Sci Rep 2022; 12:9499. [PMID: 35680904 PMCID: PMC9184631 DOI: 10.1038/s41598-022-13409-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
Microbes in marine sediments constitute a large percentage of the global marine ecosystem and function to maintain a healthy food web. In continental shelf habitats such as the Gulf of Maine (GoM), relatively little is known of the microbial community abundance, biodiversity, and natural product potential. This report is the first to provide a time-series assessment (2017–2020) of the sediment microbial structure in areas open and closed to fishing within the Stellwagen Bank National Marine Sanctuary (SBNMS). A whole metagenome sequencing (WMS) approach was used to characterize the sediment microbial community. Taxonomic abundance was calculated across seven geographic sites with 14 individual sediment samples collected during the summer and fall seasons. Bioinformatics analyses identified more than 5900 different species across multiple years. Non-metric multidimensional scaling methods and generalized linear models demonstrated that species richness was inversely associated with fishing exposure levels and varied by year. Additionally, the discovery of 12 unique biosynthetic gene clusters (BGCs) collected across sites confirmed the potential for medically relevant natural product discovery in the SBNMS. This study provides a practical assessment of how fishing exposure and temporal trends may affect microbial community structure in a coastal marine sanctuary.
Collapse
Affiliation(s)
- Spencer A Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Semra A Aytur
- Department of Health Management & Policy, University of New Hampshire, Durham, NH, 03824, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - John P Bucci
- School of Marine Science & Ocean Engineering, University of New Hampshire, Durham, NH, 03824, USA. .,Marine Microverse Institute, Kittery Point, ME, 03905, USA.
| |
Collapse
|
43
|
Møller TE, Le Moine Bauer S, Hannisdal B, Zhao R, Baumberger T, Roerdink DL, Dupuis A, Thorseth IH, Pedersen RB, Jørgensen SL. Mapping Microbial Abundance and Prevalence to Changing Oxygen Concentration in Deep-Sea Sediments Using Machine Learning and Differential Abundance. Front Microbiol 2022; 13:804575. [PMID: 35663876 PMCID: PMC9158483 DOI: 10.3389/fmicb.2022.804575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 12/28/2022] Open
Abstract
Oxygen constitutes one of the strongest factors explaining microbial taxonomic variability in deep-sea sediments. However, deep-sea microbiome studies often lack the spatial resolution to study the oxygen gradient and transition zone beyond the oxic-anoxic dichotomy, thus leaving important questions regarding the microbial response to changing conditions unanswered. Here, we use machine learning and differential abundance analysis on 184 samples from 11 sediment cores retrieved along the Arctic Mid-Ocean Ridge to study how changing oxygen concentrations (1) are predicted by the relative abundance of higher taxa and (2) influence the distribution of individual Operational Taxonomic Units. We find that some of the most abundant classes of microorganisms can be used to classify samples according to oxygen concentration. At the level of Operational Taxonomic Units, however, representatives of common classes are not differentially abundant from high-oxic to low-oxic conditions. This weakened response to changing oxygen concentration suggests that the abundance and prevalence of highly abundant OTUs may be better explained by other variables than oxygen. Our results suggest that a relatively homogeneous microbiome is recruited to the benthos, and that the microbiome then becomes more heterogeneous as oxygen drops below 25 μM. Our analytical approach takes into account the oft-ignored compositional nature of relative abundance data, and provides a framework for extracting biologically meaningful associations from datasets spanning multiple sedimentary cores.
Collapse
Affiliation(s)
- Tor Einar Møller
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Sven Le Moine Bauer
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Bjarte Hannisdal
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Rui Zhao
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tamara Baumberger
- Cooperative Institute for Marine Ecosystem and Resources Studies, Oregon State University, Newport, OR, United States
| | - Desiree L Roerdink
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | | | - Ingunn H Thorseth
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Rolf Birger Pedersen
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Steffen Leth Jørgensen
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| |
Collapse
|
44
|
Zhou Z, Meng H, Gu W, Li J, Deng M, Gu JD. High-throughput sequencing reveals the main drivers of niche-differentiation of bacterial community in the surface sediments of the northern South China sea. MARINE ENVIRONMENTAL RESEARCH 2022; 178:105641. [PMID: 35594805 DOI: 10.1016/j.marenvres.2022.105641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 05/16/2023]
Abstract
Studies on marine bacterial communities have revealed endemism in local communities, yet the underlying mechanisms remained elusive. Environmental gradient settings can benefit the straightaway study of community composition changes and the mechanisms explaining them. Here, MiSeq-based 16S rRNA gene sequencing was performed on 12 surface sediment samples from the northern South China Sea (nSCS) revealing that shallow-sea samples had a higher alpha diversity than deep-sea samples, and were differentiated from them significantly based on beta diversity. Temperature, seawater depth, and salinity were the top three influential factors. Bacterial 16S rRNA gene abundance was positively correlated with temperature, and negatively correlated with salinity. Sulfate-reducing bacteria including Desulfobacteraceae, Desulfobulbaceae, and Syntrophobacteraceae were enriched in shallow-sea sediments, co-abundant with nitrite-oxidizing Nitrospira and potential sulfur-oxidizing shallow-sea specific Woeseiaceae/JTB255 clade. Meanwhile, the co-existing and co-abundant of marine anammox and n-damo bacteria were enriched in deep-sea sediments, which was firstly evidenced in this study. The global deep-sea cosmopolitans, OM1 clade, and deep-sea specific Woeseiaceae/JTB255 clade were also found enriched in deep-sea sediments of nSCS. The discovery of novel taxa which were differentially enriched in shallow-/deep-sea sediments not only shed light on enigmatic physiological properties and the natural selection mechanism, but also provided the potential ecological-functional links which invoked further genomics-based metabolic characteristics.
Collapse
Affiliation(s)
- Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Han Meng
- School of Environment, Nanjing Normal University, 122 Ninghai Road, Nanjing, Jiangsu, 210023, China
| | - Wenjie Gu
- Insitute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, 66 Jinying Road, Guangzhou, Guangdong, 510640, China
| | - Jing Li
- Department of Food and Bioengineering, Guangdong Industry Polytechnic, Guangzhou, Guangdong, 510300, China
| | - Maocheng Deng
- Department of Food and Bioengineering, Guangdong Industry Polytechnic, Guangzhou, Guangdong, 510300, China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
| |
Collapse
|
45
|
Abstract
Lagoons are fragile marine ecosystems that are considerably affected by anthropogenic pollutants. We performed a spatiotemporal characterization of the microbiome of two Moroccan lagoons, Marchica and Oualidia, both classified as Ramsar sites, the former on the Mediterranean coast and the latter on the Atlantic coast. We investigated their microbial diversity and abundance using 16S rRNA amplicon- and shotgun-based metagenomics approaches during the summers of 2014 and 2015. The bacterial microbiome was composed primarily of Proteobacteria (25–53%, 29–29%), Cyanobacteria (34–12%, 11–0.53%), Bacteroidetes (24–16%, 23–43%), Actinobacteria (7–11%, 13–7%), and Verrucomicrobia (4–1%, 15–14%) in Marchica and Oualidia in 2014 and 2015, respectively. Interestingly, 48 strains were newly reported in lagoon ecosystems, while eight unknown viruses were detected in Mediterranean Marchica only. Statistical analysis showed higher microbial diversity in the Atlantic lagoon than in the Mediterranean lagoon and a robust relationship between alpha diversity and geographic sampling locations. This first-ever metagenomics study on Moroccan aquatic ecosystems enriched the national catalog of marine microorganisms. They will be investigated as candidates for bioindication properties, biomonitoring potential, biotechnology valorization, biodiversity protection, and lagoon health assessment.
Collapse
|
46
|
Giraud C, Callac N, Boulo V, Lam JS, Pham D, Selmaoui-Folcher N, Wabete N. The Active Microbiota of the Eggs and the Nauplii of the Pacific Blue Shrimp Litopenaeus stylirostris Partially Shaped by a Potential Vertical Transmission. Front Microbiol 2022; 13:886752. [PMID: 35633721 PMCID: PMC9133551 DOI: 10.3389/fmicb.2022.886752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
The many ecological niches present in an organism harbor distinct microorganisms called microbiota. Different factors can influence the establishment of these commensal microbial communities. In a previous article, we have concluded that some bacterial lineages associated with the early larval stages of the Pacific blue shrimp Litopenaeus stylirostris could be acquired from the breeders via a potential vertical transmission. The present study was conducted in order to investigate this hypothesis. Using HiSeq sequencing of the V4 region of 16S rRNA gene, we analyzed the active microbiota associated with the eggs and the nauplii of L. stylirsotris as well as with the reproductive organs of their breeders. Microbial communities associated with the rearing water were also considered to discriminate environmental microbial lineages. Using these analyses, we highlight a set of core bacterial families present in all samples and composed of members of Colwelliaceae, Alteromonadaceae, Pseudoalteromonadaceae, Saccharospirillaceae, Oceanospirillaceae, Vibrionaceae, Burkholderiaceae, Rhodobacteraceae, Flavobacteraceae, and Corynebacteriaceae; showing the importance of the environment in the establishment of the larval microbiota. We also present specific bacteria affiliated to the Arcobacteraceae, Rhodobacteraceae, Comamonadaceae, and Colwelliaceae families, which were only found in the breeders and their offspring strengthening the hypothesis of a potential vertical transmission shaping the active microbiota of the eggs and the nauplii of L. stylirostris.
Collapse
Affiliation(s)
- Carolane Giraud
- UMR 9220 ENTROPIE, Ifremer (LEAD-NC), Noumea, New Caledonia
- Institut des Sciences Exactes et Appliquées (ISEA), University of New Caledonia, Noumea, New Caledonia
- *Correspondence: Carolane Giraud,
| | - Nolwenn Callac
- UMR 9220 ENTROPIE, Ifremer (LEAD-NC), Noumea, New Caledonia
- Nolwenn Callac,
| | - Viviane Boulo
- UMR 9220 ENTROPIE, Ifremer (LEAD-NC), Noumea, New Caledonia
| | | | - Dominique Pham
- UMR 9220 ENTROPIE, Ifremer (LEAD-NC), Noumea, New Caledonia
| | - Nazha Selmaoui-Folcher
- Institut des Sciences Exactes et Appliquées (ISEA), University of New Caledonia, Noumea, New Caledonia
| | - Nelly Wabete
- UMR 9220 ENTROPIE, Ifremer (LEAD-NC), Noumea, New Caledonia
| |
Collapse
|
47
|
Ghosh A, Saha R, Bhadury P. Metagenomic insights into surface water microbial communities of a South Asian mangrove ecosystem. PeerJ 2022; 10:e13169. [PMID: 35573175 PMCID: PMC9097664 DOI: 10.7717/peerj.13169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/04/2022] [Indexed: 01/12/2023] Open
Abstract
Estuaries are one of the most productive ecosystems and their productivity is maintained by resident microbial communities. Recent alterations driven by climate change have further escalated these stressors leading to the propagation of traits such as antibiotic resistance and heavy metal resistance in microbial communities. Surface water samples from eleven stations along the Thakuran and Matla estuaries of the Sundarbans Biosphere Reserve (SBR) of Sundarbans mangrove located in South Asia were sampled in monsoon (June) 2019 to elucidate resident microbial communities based on Nanopore sequencing. Metagenomic analyses revealed the widespread dominance of Proteobacteria across all the stations along with a high abundance of Firmicutes. Other phyla, including Euryarchaeota, Thaumarchaeota, Actinobacteria, Bacteroidetes and Cyanobacteria showed site-specific trends in abundance. Further taxonomic affiliations showed Gammaproteobacteria and Alphaproteobacteria to be dominant classes with high abundances of Bacilli in SBR_Stn58 and SBR_Stn113. Among the eukaryotic communities, the most abundant classes included Prasinophyceae, Saccharyomycetes and Sardariomycetes. Functional annotation showed metabolic activities such as carbohydrate, amino acid, nitrogen and phosphorus metabolisms to be uniformly distributed across all the studied stations. Pathways such as stress response, sulphur metabolism and motility-associated genes appeared in low abundances in SBR. Functional traits such as antibiotic resistance showed overwhelming dominance of genes involved in multidrug resistance along with widespread resistance towards commonly used antibiotics including Tetracycline, glycopeptide and aminoglycoside. Metal resistance genes including arsenic, nickel and copper were found in comparable abundances across the studied stations. The prevalence of ARG and MRG might indicate presence of pollutants and hint toward deteriorating ecosystem health status of Sundarbans mangrove.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Ratul Saha
- Wildlife and Habitats Division, WWF-India Sundarbans Landscape, Kolkata, West Bengal, India
| | - Punyasloke Bhadury
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India,Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
48
|
Ishaq SL, Turner SM, Tudor MS, MacRae JD, Hamlin H, Kilchenmann J, Lee G, Bouchard D. Many Questions Remain Unanswered About the Role of Microbial Transmission in Epizootic Shell Disease in American Lobsters (Homarus americanus). Front Microbiol 2022; 13:824950. [PMID: 35602067 PMCID: PMC9121004 DOI: 10.3389/fmicb.2022.824950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Despite decades of research on lobster species’ biology, ecology, and microbiology, there are still unresolved questions about the microbial communities which associate in or on lobsters under healthy or diseased states, microbial acquisition, as well as microbial transmission between lobsters and between lobsters and their environment. There is an untapped opportunity for metagenomics, metatranscriptomics, and metabolomics to be added to the existing wealth of knowledge to more precisely track disease transmission, etiology, and host-microbe dynamics. Moreover, we need to gain this knowledge of wild lobster microbiomes before climate change alters environmental and host-microbial communities more than it likely already has, throwing a socioeconomically critical industry into disarray. As with so many animal species, the effects of climate change often manifest as changes in movement, and in this perspective piece, we consider the movement of the American lobster (Homarus americanus), Atlantic Ocean currents, and the microorganisms associated with either.
Collapse
Affiliation(s)
- Suzanne L. Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- Aquaculture Research Institute, Orono, ME, United States
- *Correspondence: Suzanne L. Ishaq,
| | - Sarah M. Turner
- Aquaculture Research Institute, Orono, ME, United States
- Cooperative Extension, University of Maine, Orono, ME, United States
| | - M. Scarlett Tudor
- Aquaculture Research Institute, Orono, ME, United States
- Cooperative Extension, University of Maine, Orono, ME, United States
| | - Jean D. MacRae
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME, United States
| | - Heather Hamlin
- Aquaculture Research Institute, Orono, ME, United States
- School of Marine Sciences, University of Maine, Orono, ME, United States
| | - Joelle Kilchenmann
- School of Marine Sciences, University of Maine, Orono, ME, United States
| | - Grace Lee
- Department of Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Deborah Bouchard
- Aquaculture Research Institute, Orono, ME, United States
- Cooperative Extension, University of Maine, Orono, ME, United States
| |
Collapse
|
49
|
Yeh YC, Fuhrman JA. Contrasting diversity patterns of prokaryotes and protists over time and depth at the San-Pedro Ocean Time series. ISME COMMUNICATIONS 2022; 2:36. [PMID: 37938286 PMCID: PMC9723720 DOI: 10.1038/s43705-022-00121-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/18/2023]
Abstract
Community dynamics are central in microbial ecology, yet we lack studies comparing diversity patterns among marine protists and prokaryotes over depth and multiple years. Here, we characterized microbes at the San-Pedro Ocean Time series (2005-2018), using SSU rRNA gene sequencing from two size fractions (0.2-1 and 1-80 μm), with a universal primer set that amplifies from both prokaryotes and eukaryotes, allowing direct comparisons of diversity patterns in a single set of analyses. The 16S + 18S rRNA gene composition in the small size fraction was mostly prokaryotic (>92%) as expected, but the large size fraction unexpectedly contained 46-93% prokaryotic 16S rRNA genes. Prokaryotes and protists showed opposite vertical diversity patterns; prokaryotic diversity peaked at mid-depth, protistan diversity at the surface. Temporal beta-diversity patterns indicated prokaryote communities were much more stable than protists. Although the prokaryotic communities changed monthly, the average community stayed remarkably steady over 14 years, showing high resilience. Additionally, particle-associated prokaryotes were more diverse than smaller free-living ones, especially at deeper depths, contributed unexpectedly by abundant and diverse SAR11 clade II. Eukaryotic diversity was strongly correlated with the diversity of particle-associated prokaryotes but not free-living ones, reflecting that physical associations result in the strongest interactions, including symbioses, parasitism, and decomposer relationships.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA.
| |
Collapse
|
50
|
Chen J, Wang S, Xu Y, Zhang H, Wang H. Anti-Tyrosinase Compounds from the Deep-Sea-Derived Actinomycete Georgenia sp. 40DY180. Chem Biodivers 2022; 19:e202200037. [PMID: 35294106 DOI: 10.1002/cbdv.202200037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022]
Abstract
With the aim of finding new marine-derived skincare promoters, an assay-guided approach was employed to discover tyrosinase-modulating compounds from marine actinomycete. Here we describe a new 2,5-piperazinedione, named georgenione A (1), together with two previously described compounds, 5-(4'-hydroxybenzyl)hydantoin (2) and cyclo(Trp-Gly) (3), produced by actinomycete Georgenia sp. 40DY180, isolated from deep-sea sediments collected in the Pacific Ocean. Their structures were elucidated by a combination of spectroscopic analyses including 1D and 2D NMR and high-resolution mass spectrometric data. 5-(4'-hydroxybenzyl)hydantoin (2) displayed in vitro potent anti-tyrosinase activity with IC50 value of 36 μM, comparable to the commercially used positive control kojic acid (IC50 =46 μM) and arbutin (IC50 =100 μM). Compounds 1-3 were firstly reported from marine actinomycete Georgenia sp.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Siqi Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yiming Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Marine Fishery Resources Employment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|