1
|
Yao Z, Bai R, Liu W, Liu Y, Zhou W, Xu Z, Sheng J. Activation of angiogenin expression in macrophages by lipopolysaccharide via the TLR4/NF-κB pathway in colitis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:857-865. [PMID: 38567413 PMCID: PMC11214953 DOI: 10.3724/abbs.2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a debilitating condition that can lead to life-threatening complications. Macrophages are crucial in IBD management because they secrete various cytokines and regulate tissue repair. Macrophage-derived angiogenin (ANG) has been shown to be essential for limiting colonic inflammation, but its upstream regulatory pathway and role in macrophages remain unclear. Here we show that ANG expression is up-regulated in macrophages during colitis treatment or upon lipopolysaccharides (LPS) treatment. Mechanistically, LPS activates Toll-like receptor 4 (TLR4) to initiate NF-κB translocation from the cytoplasm to the nucleus, where it binds to the ANG promoter and enhances its transcriptional activity, leading to increased ANG expression. Interestingly, our data also reveal that the deletion of ANG in macrophages has no adverse effect on key macrophage functions, such as phagocytosis, chemotaxis, and cell survival. Our findings establish a "LPS-TLR4-NF-κB-ANG" regulatory axis in inflammatory disorders and confirm that ANG controls inflammation in a paracrine manner, highlighting the importance of ANG as a key mediator in the complex network of inflammatory processes.
Collapse
Affiliation(s)
- Zhengrong Yao
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Rongpan Bai
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Wei Liu
- Department of General SurgerySir Run Run Shaw Hospital.Zhejiang University School of MedicineHangzhou310016China
| | - Yaxing Liu
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Wei Zhou
- Department of General SurgerySir Run Run Shaw Hospital.Zhejiang University School of MedicineHangzhou310016China
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
- Cancer CenterZhejiang UniversityHangzhou310012China
- Zhejiang Provincial Key Laboratory of BioelectromagneticsHangzhou310058China
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
- Cancer CenterZhejiang UniversityHangzhou310012China
- Zhejiang Provincial Key Laboratory of BioelectromagneticsHangzhou310058China
| |
Collapse
|
2
|
Jacob TV, Doshi GM. New Promising Routes in Peptic Ulcers: Toll-like Receptors and Semaphorins. Endocr Metab Immune Disord Drug Targets 2024; 24:865-878. [PMID: 37605412 DOI: 10.2174/1871530323666230821102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 08/23/2023]
Abstract
Peptic ulcers (PU) are one of the commonest yet problematic diseases found to be existing in the majority of the population. Today, drugs from a wide range of therapeutic classes are available for the management of the disease. Still, the complications of the condition are difficult to tackle and the side effect profile is quite a concern. The literature indicates that Toll-like receptors (TLRs) and Semaphorins (SEMAs) have been under study for their various pharmacological actions over the past few decades. Both these signalling pathways are found to regulate immunological and inflammatory responses. Moreover, receptors and signalling molecules from the family of TLRs and SEMAs are found to have bacterial recognition and antibacterial properties which are essential in eradicating Helicobacter pylori (H. pylori), one of the major causative agents of PU. Our understanding of SEMAs, a class of proteins involved in cell signalling, is relatively less developed compared to TLRs, another class of proteins involved in the immune response. SEMAs and TLRs play different roles in biological processes, with SEMAs primarily involved in guiding cell migration and axon guidance during development, while TLRs are responsible for recognizing pathogens and initiating an immune response. Here, in this review, we will discuss in detail the signalling cascade of TLRs and SEMAs and thereby understand its association with PU for future therapeutic targeting. The review also aims at providing an overview of the study that has been into exploring the role of these signalling pathways in the management of PU.
Collapse
Affiliation(s)
- Teresa V Jacob
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
3
|
Upscaling human mesenchymal stromal cell production in a novel vertical-wheel bioreactor enhances extracellular vesicle secretion and cargo profile. Bioact Mater 2022; 25:732-747. [PMID: 37056276 PMCID: PMC10087597 DOI: 10.1016/j.bioactmat.2022.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stromal cells (hMSCs) are mechanically sensitive undergoing phenotypic alterations when subjected to shear stress, cell aggregation, and substrate changes encountered in 3D dynamic bioreactor cultures. However, little is known about how bioreactor microenvironment affects the secretion and cargo profiles of hMSC-derived extracellular vesicles (EVs) including the subset, "exosomes", which contain therapeutic proteins, nucleic acids, and lipids from the parent cells. In this study, bone marrow-derived hMSCs were expanded on 3D Synthemax II microcarriers in the PBS mini 0.1L Vertical-Wheel bioreactor system under variable shear stress levels at 25, 40, and 64 RPM (0.1-0.3 dyn/cm2). The bioreactor system promotes EV secretion from hMSCs by 2.5-fold and upregulates the expression of EV biogenesis markers and glycolysis genes compared to the static 2D culture. The microRNA cargo was also altered in the EVs from bioreactor culture including the upregulation of miR-10, 19a, 19b, 21, 132, and 377. EV protein cargo was characterized by proteomics analysis, showing upregulation of metabolic, autophagy and ROS-related proteins comparing with 2D cultured EVs. In addition, the scalability of the Vertical-Wheel bioreactor system was demonstrated in a 0.5L bioreactor, showing similar or better hMSC-EV secretion and cargo content compared to the 0.1L bioreactor. This study advances our understanding of bio-manufacturing of stem cell-derived EVs for applications in cell-free therapy towards treating neurological disorders such as ischemic stroke, Alzheimer's disease, and multiple sclerosis.
Collapse
|
4
|
Belotti Y, Lim EH, Lim CT. The Role of the Extracellular Matrix and Tumor-Infiltrating Immune Cells in the Prognostication of High-Grade Serous Ovarian Cancer. Cancers (Basel) 2022; 14:404. [PMID: 35053566 PMCID: PMC8773831 DOI: 10.3390/cancers14020404] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the eighth global leading cause of cancer-related death among women. The most common form is the high-grade serous ovarian carcinoma (HGSOC). No further improvements in the 5-year overall survival have been seen over the last 40 years since the adoption of platinum- and taxane-based chemotherapy. Hence, a better understanding of the mechanisms governing this aggressive phenotype would help identify better therapeutic strategies. Recent research linked onset, progression, and response to treatment with dysregulated components of the tumor microenvironment (TME) in many types of cancer. In this study, using bioinformatic approaches, we identified a 19-gene TME-related HGSOC prognostic genetic panel (19 prognostic genes (PLXNB2, HMCN2, NDNF, NTN1, TGFBI, CHAD, CLEC5A, PLXNA1, CST9, LOXL4, MMP17, PI3, PRSS1, SERPINA10, TLL1, CBLN2, IL26, NRG4, and WNT9A) by assessing the RNA sequencing data of 342 tumors available in the TCGA database. Using machine learning, we found that specific patterns of infiltrating immune cells characterized each risk group. Furthermore, we demonstrated the predictive potential of our risk score across different platforms and its improved prognostic performance compared with other gene panels.
Collapse
Affiliation(s)
- Yuri Belotti
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Center Singapore, 11 Hospital Drive, Singapore 169610, Singapore;
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore;
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
5
|
Celus W, Oliveira AI, Rivis S, Van Acker HH, Landeloos E, Serneels J, Cafarello ST, Van Herck Y, Mastrantonio R, Köhler A, Garg AD, Flamand V, Tamagnone L, Marine JC, Matteo MD, Costa BM, Bechter O, Mazzone M. Plexin-A4 Mediates Cytotoxic T-cell Trafficking and Exclusion in Cancer. Cancer Immunol Res 2021; 10:126-141. [PMID: 34815265 DOI: 10.1158/2326-6066.cir-21-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/07/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
Cytotoxic T cell (CTL) infiltration of the tumor carries the potential to limit cancer progression, but their exclusion by the immunosuppressive tumor microenvironment hampers the efficiency of immunotherapy. Here, we show that expression of the axon guidance molecule Plexin-A4 (Plxna4) in CTLs, especially in effector/memory CD8+ T cells, is induced upon T-cell activation, sustained in the circulation, but reduced when entering the tumor bed. Therefore, we deleted Plxna4 and observed that Plxna4-deficient CTLs acquired improved homing capacity to the lymph nodes and to the tumor, as well as increased proliferation, both achieved through enhanced Rac1 activation. Mice with stromal or hematopoietic Plxna4 deletion exhibited enhanced CTL infiltration and impaired tumor growth. In a melanoma model, adoptive transfer of CTLs lacking Plxna4 prolonged survival and improved therapeutic outcome, which was even stronger when combined with anti-programmed cell death protein 1 (PD-1) treatment. PLXNA4 abundance in circulating CTLs was augmented in melanoma patients versus healthy volunteers but decreased after the first cycle of anti-PD-1, alone or in combination with anti-cytotoxic T-Lymphocyte Associated Protein 4 (CTLA-4), in those patients showing complete or partial response to the treatment. Altogether, our data suggest that Plxna4 acts as a "checkpoint," negatively regulating CTL migration and proliferation through cell-autonomous mechanisms independent of the interaction with host-derived Plxna4 ligands, semaphorins. These findings pave the way toward Plxna4-centric immunotherapies and propose Plxna4 detection in circulating CTLs as a potential way to monitor the response to immune checkpoint blockade in patients with metastatic melanoma.
Collapse
Affiliation(s)
- Ward Celus
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium. .,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ana I Oliveira
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Braga, Portugal
| | - Silvia Rivis
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Heleen H Van Acker
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jens Serneels
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sarah Trusso Cafarello
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yannick Van Herck
- Department of General Medical Oncology, University Hospitals Leuven, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Roberta Mastrantonio
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Arnaud Köhler
- Institute for Medical Immunology, ULB-Center for Research in Immunology, Gosselies, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, ULB-Center for Research in Immunology, Gosselies, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Braga, Portugal
| | - Oliver Bechter
- Department of General Medical Oncology, University Hospitals Leuven, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium. .,Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Tuong ZK, Lukowski SW, Nguyen QH, Chandra J, Zhou C, Gillinder K, Bashaw AA, Ferdinand JR, Stewart BJ, Teoh SM, Hanson SJ, Devitt K, Clatworthy MR, Powell JE, Frazer IH. A model of impaired Langerhans cell maturation associated with HPV induced epithelial hyperplasia. iScience 2021; 24:103326. [PMID: 34805788 PMCID: PMC8586807 DOI: 10.1016/j.isci.2021.103326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LC) are skin-resident antigen-presenting cells that regulate immune responses to epithelial microorganisms. Human papillomavirus (HPV) infection can promote malignant epithelial transformation. As LCs are considered important for controlling HPV infection, we compared the transcriptome of murine LCs from skin transformed by K14E7 oncoprotein and from healthy skin. We identified transcriptome heterogeneity at the single cell level amongst LCs in normal skin, associated with ontogeny, cell cycle, and maturation. We identified a balanced co-existence of immune-stimulatory and immune-inhibitory LC cell states in normal skin that was significantly disturbed in HPV16 E7-transformed skin. Hyperplastic skin was depleted of immune-stimulatory LCs and enriched for LCs with an immune-inhibitory gene signature, and LC-keratinocyte crosstalk was dysregulated. We identified reduced expression of interleukin (IL)-34, a critical molecule for LC homeostasis. Enrichment of an immune-inhibitory LC gene signature and reduced levels of epithelial IL-34 were also found in human HPV-associated cervical epithelial cancers. Single cell atlas of Langerhans cells in cutaneous skin Stimulatory and inhibitory Langerhans cell states are in balance Inhibitory Langerhans cell states dominate HPV-transformed hyperplastic skin Langerhans cell imbalance is associated with disrupted IL-34 signaling
Collapse
Affiliation(s)
- Zewen K Tuong
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.,Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Samuel W Lukowski
- Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Quan H Nguyen
- Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chenhao Zhou
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Kevin Gillinder
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Abate A Bashaw
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Siok Min Teoh
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sarah J Hanson
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Katharina Devitt
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
7
|
Talma N, Gerrits E, Wang B, Eggen BJ, Demaria M. Identification of distinct and age-dependent p16 High microglia subtypes. Aging Cell 2021; 20:e13450. [PMID: 34598318 PMCID: PMC8520715 DOI: 10.1111/acel.13450] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 07/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cells expressing high levels of the cyclin‐dependent kinase (CDK)4/6 inhibitor p16 (p16High) accumulate in aging tissues and promote multiple age‐related pathologies, including neurodegeneration. Here, we show that the number of p16High cells is significantly increased in the central nervous system (CNS) of 2‐year‐old mice. Bulk RNAseq indicated that genes expressed by p16High cells were associated with inflammation and phagocytosis. Single‐cell RNAseq of brain cells indicated p16High cells were primarily microglia, and their accumulation was confirmed in brains of aged humans. Interestingly, we identified two distinct subpopulations of p16High microglia in the mouse brain, with one being age‐associated and one present in young animals. Both p16High clusters significantly differed from previously described disease‐associated microglia and expressed only a partial senescence signature. Taken together, our study provides evidence for the existence of two p16‐expressing microglia populations, one accumulating with age and another already present in youth that could positively and negatively contribute to brain homeostasis, function, and disease.
Collapse
Affiliation(s)
- Nynke Talma
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
- European Research Institute for the Biology of Ageing University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Boshi Wang
- European Research Institute for the Biology of Ageing University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Bart J.L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing University of Groningen University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
8
|
Van Battum E, Heitz-Marchaland C, Zagar Y, Fouquet S, Kuner R, Chédotal A. Plexin-B2 controls the timing of differentiation and the motility of cerebellar granule neurons. eLife 2021; 10:60554. [PMID: 34100719 PMCID: PMC8211449 DOI: 10.7554/elife.60554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plexin-B2 deletion leads to aberrant lamination of cerebellar granule neurons (CGNs) and Purkinje cells. Although in the cerebellum Plexin-B2 is only expressed by proliferating CGN precursors in the outer external granule layer (oEGL), its function in CGN development is still elusive. Here, we used 3D imaging, in vivo electroporation and live-imaging techniques to study CGN development in novel cerebellum-specific Plxnb2 conditional knockout mice. We show that proliferating CGNs in Plxnb2 mutants not only escape the oEGL and mix with newborn postmitotic CGNs. Furthermore, motility of mitotic precursors and early postmitotic CGNs is altered. Together, this leads to the formation of ectopic patches of CGNs at the cerebellar surface and an intermingling of normally time-stamped parallel fibers in the molecular layer (ML), and aberrant arborization of Purkinje cell dendrites. There results suggest that Plexin-B2 restricts CGN motility and might have a function in cytokinesis.
Collapse
Affiliation(s)
- Eljo Van Battum
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Yvrick Zagar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Rohini Kuner
- Pharmacology Institute, Heidelberg University, Heidelberg, Germany
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
9
|
Vreeken D, Bruikman CS, Stam W, Cox SML, Nagy Z, Zhang H, Postma RJ, van Zonneveld AJ, Hovingh GK, van Gils JM. Downregulation of Endothelial Plexin A4 Under Inflammatory Conditions Impairs Vascular Integrity. Front Cardiovasc Med 2021; 8:633609. [PMID: 34017863 PMCID: PMC8129156 DOI: 10.3389/fcvm.2021.633609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Besides hyperlipidemia, inflammation is an important determinant in the initiation and the progression of atherosclerosis. As Neuroimmune Guidance Cues (NGCs) are emerging as regulators of atherosclerosis, we set out to investigate the expression and function of inflammation-regulated NGCs. Methods and results: NGC expression in human monocytes and endothelial cells was assessed using a publicly available RNA dataset. Next, the mRNA levels of expressed NGCs were analyzed in primary human monocytes and endothelial cells after stimulation with IL1β or TNFα. Upon stimulation a total of 14 and 19 NGCs in monocytes and endothelial cells, respectively, were differentially expressed. Since plexin A4 (PLXNA4) was strongly downregulated in endothelial cells under inflammatory conditions, the role of PLXNA4 in endothelial function was investigated. Knockdown of PLXNA4 in endothelial cells markedly impaired the integrity of the monolayer leading to more elongated cells with an inflammatory phenotype. In addition, these cells showed an increase in actin stress fibers and decreased cell-cell junctions. Functional assays revealed decreased barrier function and capillary network formation of the endothelial cells, while vascular leakage and trans-endothelial migration of monocytes was increased. Conclusion: The current study demonstrates that pro-inflammatory conditions result in differential expression of NGCs in endothelial cells and monocytes, both culprit cell types in atherosclerosis. Specifically, endothelial PLXNA4 is reduced upon inflammation, while PLXNA4 maintains endothelial barrier function thereby preventing vascular leakage of fluids as well as cells. Taken together, PLXNA4 may well have a causal role in atherogenesis that deserves further investigation.
Collapse
Affiliation(s)
- Dianne Vreeken
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Caroline Suzanne Bruikman
- Amsterdam Cardiovascular Sciences, Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Stefan Martinus Leonardus Cox
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Zsófia Nagy
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Huayu Zhang
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Rudmer Johannes Postma
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Gerard Kornelis Hovingh
- Amsterdam Cardiovascular Sciences, Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands.,Novo Nordisk A/S, Copenhagen, Denmark
| | - Janine Maria van Gils
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Kanth SM, Gairhe S, Torabi-Parizi P. The Role of Semaphorins and Their Receptors in Innate Immune Responses and Clinical Diseases of Acute Inflammation. Front Immunol 2021; 12:672441. [PMID: 34012455 PMCID: PMC8126651 DOI: 10.3389/fimmu.2021.672441] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Semaphorins are a group of proteins that have been studied extensively for their critical function in neuronal development. They have been shown to regulate airway development, tumorigenesis, autoimmune diseases, and the adaptive immune response. Notably, emerging literature describes the role of immunoregulatory semaphorins and their receptors, plexins and neuropilins, as modulators of innate immunity and diseases defined by acute injury to the kidneys, abdomen, heart and lungs. In this review we discuss the pathogenic functions of semaphorins in clinical conditions of acute inflammation, including sepsis and acute lung injury, with a focus on regulation of the innate immune response as well as potential future therapeutic targeting.
Collapse
Affiliation(s)
- Shreya M Kanth
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Salina Gairhe
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Sharma K, Bisht K, Eyo UB. A Comparative Biology of Microglia Across Species. Front Cell Dev Biol 2021; 9:652748. [PMID: 33869210 PMCID: PMC8047420 DOI: 10.3389/fcell.2021.652748] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Microglia are unique brain-resident, myeloid cells. They have received growing interest for their implication in an increasing number of neurodevelopmental, acute injury, and neurodegenerative disorders of the central nervous system (CNS). Fate-mapping studies establish microglial ontogeny from the periphery during development, while recent transcriptomic studies highlight microglial identity as distinct from other CNS cells and peripheral myeloid cells. This evidence for a unique microglial ontogeny and identity raises questions regarding their identity and functions across species. This review will examine the available evidence for microglia in invertebrate and vertebrate species to clarify similarities and differences in microglial identity, ontogeny, and physiology across species. This discussion highlights conserved and divergent microglial properties through evolution. Finally, we suggest several interesting research directions from an evolutionary perspective to adequately understand the significance of microglia emergence. A proper appreciation of microglia from this perspective could inform the development of specific therapies geared at targeting microglia in various pathologies.
Collapse
Affiliation(s)
- Kaushik Sharma
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Kanchan Bisht
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Abstract
Semaphorin 4D (Sema4D) is a classic member of the semaphorin family involved in axonal guidance processes. The key effects of Sema4D in neurons are mediated by high affinity plexin receptors and are associated with cytoskeleton rearrangement, leading to growth cone collapse or regulation of cell migration. Along with this, the semaphorin is widely represented in the immune system and has a pronounced immunoregulatory activity. The involvement of Sema4D in the control of immune cell migration was shown almost twenty years ago, in one of the first studies of semaphorin. The emergence of such work was quite predictable, since the most well-known effects of Sema4D outside the immune system were associated precisely with the control of cell motility. However, after identification of CD72 as a specific Sema4D receptor in the immune system, studies of the immunoregulatory activity of semaphorin focused on its CD72-dependent effects unrelated to cytoskeleton rearrangement, and this trend continues up to now. Nevertheless, a number of recent studies demonstrating the presence of plexin receptors for Sema4D in the immune system forces us to return to the question of whether this semaphorin can play its classic role of a guidance molecule in relation to immune cells too. The review discusses Sema4D involvement in the control of immune cell migration, as well as the mechanisms of these effects and their potential contribution to the development and function of immune system.
Collapse
Affiliation(s)
- Elena Kuklina
- Perm Federal Research Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
13
|
Atkin-Smith GK, Miles MA, Tixeira R, Lay FT, Duan M, Hawkins CJ, Phan TK, Paone S, Mathivanan S, Hulett MD, Chen W, Poon IKH. Plexin B2 Is a Regulator of Monocyte Apoptotic Cell Disassembly. Cell Rep 2020; 29:1821-1831.e3. [PMID: 31722200 DOI: 10.1016/j.celrep.2019.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/10/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
Billions of cells undergo apoptosis daily and often fragment into small, membrane-bound extracellular vesicles termed apoptotic bodies (ApoBDs). We demonstrate that apoptotic monocytes undergo a highly coordinated disassembly process and form long, beaded protrusions (coined as beaded apoptopodia), which fragment to release ApoBDs. Here, we find that the protein plexin B2 (PlexB2), a transmembrane receptor that regulates axonal guidance in neurons, is enriched in the ApoBDs of THP1 monocytes and is a caspase 3/7 substrate. To determine whether PlexB2 is involved in the disassembly of apoptotic monocytes, we generate PlexB2-deficient THP1 monocytes and demonstrate that lack of PlexB2 impairs the formation of beaded apoptopodia and ApoBDs. Consequently, the loss of PlexB2 in apoptotic THP1 monocytes impairs their uptake by both professional and non-professional phagocytes. Altogether, these data identify PlexB2 as a positive regulator of apoptotic monocyte disassembly and demonstrate the importance of this process in apoptotic cell clearance.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Fung T Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Stephanie Paone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
14
|
Xiao C, Luo Y, Zhang C, Zhu Z, Yang L, Qiao H, Fu M, Wang G, Yao X, Li W. Negative regulation of dendritic cell activation in psoriasis mediated via CD100-plexin-B2. J Pathol 2020; 250:409-419. [PMID: 31943215 DOI: 10.1002/path.5383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease in which dendritic cells (DCs) play a pivotal role by inducing Th1/Th17 immune responses; however, the regulation of DC activation in psoriasis remains largely unknown. Previously we found that the level of soluble CD100 was increased in sera of psoriasis patients, and CD100 promoted the activation of inflammasome in keratinocytes. In the present study, CD100 knockout mice were utilized for generation of imiquimod (IMQ)-induced psoriatic dermatitis, with the result that skin inflammation in the early, but not late, phase of the psoriatic dermatitis was significantly exacerbated compared to that in wild-type controls. This was attributed mainly to the deficiency of CD100 in hematopoietic cells. Bone marrow-derived DCs, but not T cells or keratinocytes, from CD100 knockout mice produced significantly increased levels of IL-1β, IL-36, and IL-23 upon stimulation with IMQ in a plexin-B2-dependent manner. Moreover, the surface level of plexin-B2 on DCs of psoriasis patients was lower than that of healthy individuals, and CD100 attenuated IMQ-induced production of IL-1β and IL-36 from monocyte-derived DCs of psoriasis patients. Our results uncovered a negative regulatory mechanism for DCs activation in psoriasis, which was mediated via CD100-plexin-B2 in a cell type- and receptor-specific manner. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yang Luo
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Luting Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Xu Yao
- Department of Allergy and Rheumatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Wei Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China.,Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
15
|
Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Kuil LE, van Ham TJ, Zagury J, Sieger D. Gene expression profiling reveals a conserved microglia signature in larval zebrafish. Glia 2020; 68:298-315. [PMID: 31508850 PMCID: PMC6916425 DOI: 10.1002/glia.23717] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022]
Abstract
Microglia are the resident macrophages of the brain. Over the past decade, our understanding of the function of these cells has significantly improved. Microglia do not only play important roles in the healthy brain but are involved in almost every brain pathology. Gene expression profiling allowed to distinguish microglia from other macrophages and revealed that the full microglia signature can only be observed in vivo. Thus, animal models are irreplaceable to understand the function of these cells. One of the popular models to study microglia is the zebrafish larva. Due to their optical transparency and genetic accessibility, zebrafish larvae have been employed to understand a variety of microglia functions in the living brain. Here, we performed RNA sequencing of larval zebrafish microglia at different developmental time points: 3, 5, and 7 days post fertilization (dpf). Our analysis reveals that larval zebrafish microglia rapidly acquire the core microglia signature and many typical microglia genes are expressed from 3 dpf onwards. The majority of changes in gene expression happened between 3 and 5 dpf, suggesting that differentiation mainly takes place during these days. Furthermore, we compared the larval microglia transcriptome to published data sets of adult zebrafish microglia, mouse microglia, and human microglia. Larval microglia shared a significant number of expressed genes with their adult counterparts in zebrafish as well as with mouse and human microglia. In conclusion, our results show that larval zebrafish microglia mature rapidly and express the core microglia gene signature that seems to be conserved across species.
Collapse
Affiliation(s)
- Julie Mazzolini
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Sigrid Le Clerc
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Gregoire Morisse
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Cédric Coulonges
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Laura E. Kuil
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jean‐François Zagury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Dirk Sieger
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
16
|
Luque MCA, Galuppo MK, Capelli-Peixoto J, Stolf BS. CD100 Effects in Macrophages and Its Roles in Atherosclerosis. Front Cardiovasc Med 2018; 5:136. [PMID: 30324109 PMCID: PMC6173139 DOI: 10.3389/fcvm.2018.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
CD100 or Sema4D is a protein from the semaphorin family with important roles in the vascular, nervous and immune systems. It may be found as a membrane bound dimer or as a soluble molecule originated by proteolytic cleavage. Produced by the majority of hematopoietic cells including B and T lymphocytes, natural killer and myeloid cells, as well as endothelial cells, CD100 exerts its actions by binding to different receptors depending on the cell type and on the organism. Cell-to-cell adhesion, angiogenesis, phagocytosis, T cell priming, and antibody production are examples of the many functions of this molecule. Of note, high CD100 serum levels has been found in inflammatory as well as in infectious diseases, but the roles of the protein in the pathogenesis of these diseases has still to be clarified. Macrophages are highly heterogeneous cells present in almost all tissues, which may change their functions in response to microenvironmental conditions. They are key players in the innate and adaptive immune responses and have decisive roles in sterile conditions but also in several diseases such as atherosclerosis, autoimmunity, tumorigenesis, and antitumor responses, among others. Although it is known that macrophages express CD100 and its receptors, few studies have focused on the role of this semaphorin in this cell type or in macrophage-associated diseases. The aim of this review is to critically revise the available data about CD100 and atherosclerosis, with special emphasis on its roles in macrophages and monocytes. We will also describe the few available data on treatments with anti-CD100 antibodies in different diseases. We hope that this review stimulates future studies on the effects of such an important molecule in a cell type with decisive roles in inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Maria C A Luque
- Heart Institute, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
17
|
Xiang G, Cheng Y. MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2. Reprod Biol 2018; 18:218-224. [DOI: 10.1016/j.repbio.2018.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 05/29/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022]
|
18
|
Amado-Azevedo J, de Menezes RX, van Nieuw Amerongen GP, van Hinsbergh VWM, Hordijk PL. A functional siRNA screen identifies RhoGTPase-associated genes involved in thrombin-induced endothelial permeability. PLoS One 2018; 13:e0201231. [PMID: 30048510 PMCID: PMC6062096 DOI: 10.1371/journal.pone.0201231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
Thrombin and other inflammatory mediators may induce vascular permeability through the disruption of adherens junctions between adjacent endothelial cells. If uncontrolled, hyperpermeability leads to an impaired barrier, fluid leakage and edema, which can contribute to multi-organ failure and death. RhoGTPases control cytoskeletal dynamics, adhesion and migration and are known regulators of endothelial integrity. Knowledge of the precise role of each RhoGTPase, and their associated regulatory and effector genes, in endothelial integrity is incomplete. Using a combination of a RNAi screen with electrical impedance measurements, we quantified the effect of individually silencing 270 Rho-associated genes on the barrier function of thrombin-activated, primary endothelial cells. Known and novel RhoGTPase-associated regulators that modulate the response to thrombin were identified (RTKN, TIAM2, MLC1, ARPC1B, SEPT2, SLC9A3R1, RACGAP1, RAPGEF2, RHOD, PREX1, ARHGEF7, PLXNB2, ARHGAP45, SRGAP2, ARHGEF5). In conclusion, with this siRNA screen, we confirmed the roles of known regulators of endothelial integrity but also identified new, potential key players in thrombin-induced endothelial signaling.
Collapse
Affiliation(s)
- Joana Amado-Azevedo
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Renee X. de Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Victor W. M. van Hinsbergh
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Lang J, Cheng Y, Rolfe A, Hammack C, Vera D, Kyle K, Wang J, Meissner TB, Ren Y, Cowan C, Tang H. An hPSC-Derived Tissue-Resident Macrophage Model Reveals Differential Responses of Macrophages to ZIKV and DENV Infection. Stem Cell Reports 2018; 11:348-362. [PMID: 29983385 PMCID: PMC6092684 DOI: 10.1016/j.stemcr.2018.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses that lead to different clinical outcomes. The mechanism for the distinct pathogenesis of ZIKV and DENV is poorly understood. Here, we investigate ZIKV and DENV infection of macrophages using a human pluripotent stem cell (hPSC)-derived macrophage model and discover key virus-specific responses. ZIKV and DENV productively infect hPSC-derived macrophages. DENV, but not ZIKV, infection of macrophages strongly activates macrophage migration inhibitory factor (MIF) secretion and decreases macrophage migration. Neutralization of MIF leads to improved migratory ability of DENV-infected macrophages. In contrast, ZIKV-infected macrophages exhibit prolonged migration and express low levels of pro-inflammatory cytokines and chemokines. Mechanistically, ZIKV disrupts the nuclear factor κB (NF-κB)-MIF positive feedback loop by inhibiting the NF-κB signaling pathway. Our results demonstrate the utility of hPSC-derived macrophages in infectious disease modeling and suggest that the distinct impact of ZIKV and DENV on macrophage immune response may underlie different pathogenesis of Zika and dengue diseases. An hPSC-derived tissue-resident macrophage model for ZIKV and DENV infection ZIKV-, but not DENV-, infected macrophages maintain migratory capacity ZIKV, but not DENV, inhibits pro-inflammatory cytokines and chemokines expression ZIKV disrupts NF-κB-MIF positive feedback loop by inhibiting NF-κB pathway
Collapse
Affiliation(s)
- Jianshe Lang
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL 32306-4295, USA
| | - Yichen Cheng
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL 32306-4295, USA
| | - Alyssa Rolfe
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA
| | - Christy Hammack
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL 32306-4295, USA
| | - Daniel Vera
- Center for Genomics and Personalized Medicine, Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Kathleen Kyle
- Center for Genomics and Personalized Medicine, Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jingying Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Yi Ren
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA
| | - Chad Cowan
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
20
|
Sagi Z, Hieronymus T. The Impact of the Epithelial-Mesenchymal Transition Regulator Hepatocyte Growth Factor Receptor/Met on Skin Immunity by Modulating Langerhans Cell Migration. Front Immunol 2018; 9:517. [PMID: 29616031 PMCID: PMC5864859 DOI: 10.3389/fimmu.2018.00517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/27/2018] [Indexed: 01/16/2023] Open
Abstract
Langerhans cells (LCs), the epidermal dendritic cell (DC) subset, express the transmembrane tyrosine kinase receptor Met also known as hepatocyte growth factor (HGF) receptor. HGF is the exclusive ligand of Met and upon binding executes mitogenic, morphogenic, and motogenic activities to various cells. HGF exerts anti-inflammatory activities via Met signaling and was found to regulate various functions of immune cells, including differentiation and maturation, cytokine production, cellular migration and adhesion, and T cell effector function. It has only recently become evident that a number of HGF-regulated functions in inflammatory processes and immune responses are imparted via DCs. However, the mechanisms by which Met signaling in DCs conveys its immunoregulatory effects have not yet been fully understood. In this review, we focus on the current knowledge of Met signaling in DCs with particular attention on the morphogenic and motogenic activities. Met signaling was shown to promote DC mobility by regulating matrix metalloproteinase activities and adhesion. This is a striking resemblance to the role of Met in regulating a cell fate program during embryonic development, wound healing, and in tumor invasion known as epithelial–mesenchymal transition (EMT). Hence, we propose the concept that an EMT program is executed by Met signaling in LCs.
Collapse
Affiliation(s)
- Zsofia Sagi
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Thomas Hieronymus
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
21
|
Mallik S, Zhao Z. Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles. QUANTITATIVE BIOLOGY 2017; 5:302-327. [PMID: 30221015 DOI: 10.1007/s40484-017-0119-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Marker detection is an important task in complex disease studies. Here we provide an association rule mining (ARM) based approach for identifying integrated markers through mutual information (MI) based statistically significant feature extraction, and apply it to acute myeloid leukemia (AML) and prostate carcinoma (PC) gene expression and methylation profiles. Methods We first collect the genes having both expression and methylation values in AML as well as PC. Next, we run Jarque-Bera normality test on the expression/methylation data to divide the whole dataset into two parts: one that ollows normal distribution and the other that does not follow normal distribution. Thus, we have now four parts of the dataset: normally distributed expression data, normally distributed methylation data, non-normally distributed expression data, and non-normally distributed methylated data. A feature-extraction technique, "mRMR" is then utilized on each part. This results in a list of top-ranked genes. Next, we apply Welch t-test (parametric test) and Shrink t-test (non-parametric test) on the expression/methylation data for the top selected normally distributed genes and non-normally distributed genes, respectively. We then use a recent weighted ARM method, "RANWAR" to combine all/specific resultant genes to generate top oncogenic rules along with respective integrated markers. Finally, we perform literature search as well as KEGG pathway and Gene-Ontology (GO) analyses using Enrichr database for in silico validation of the prioritized oncogenes as the markers and labeling the markers as existing or novel. Results The novel markers of AML are {ABCB11↑∪KRT17↓} (i.e., ABCB11 as up-regulated, & KRT17 as down-regulated), and {AP1S1-∪KRT17↓∪NEIL2-∪DYDC1↓}) (i.e., AP1S1 and NEIL2 both as hypo-methylated, & KRT17 and DYDC1 both as down-regulated). The novel marker of PC is {UBIAD1¶∪APBA2‡∪C4orf31‡} (i.e., UBIAD1 as up-regulated and hypo-methylated, & APBA2 and C4orf31 both as down-regulated and hyper-methylated). Conclusion The identified novel markers might have critical roles in AML as well as PC. The approach can be applied to other complex disease.
Collapse
Affiliation(s)
- Saurav Mallik
- Computer Science & Engineering, Aliah University, Newtown, Newtown 700156, India
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
22
|
Akbar N, Digby JE, Cahill TJ, Tavare AN, Corbin AL, Saluja S, Dawkins S, Edgar L, Rawlings N, Ziberna K, McNeill E, Johnson E, Aljabali AA, Dragovic RA, Rohling M, Belgard TG, Udalova IA, Greaves DR, Channon KM, Riley PR, Anthony DC, Choudhury RP. Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight 2017; 2:93344. [PMID: 28878126 PMCID: PMC5621885 DOI: 10.1172/jci.insight.93344] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Transcriptionally activated monocytes are recruited to the heart after acute myocardial infarction (AMI). After AMI in mice and humans, the number of extracellular vesicles (EVs) increased acutely. In humans, EV number correlated closely with the extent of myocardial injury. We hypothesized that EVs mediate splenic monocyte mobilization and program transcription following AMI. Some plasma EVs bear endothelial cell (EC) integrins, and both proinflammatory stimulation of ECs and AMI significantly increased VCAM-1-positive EV release. Injected EC-EVs localized to the spleen and interacted with, and mobilized, splenic monocytes in otherwise naive, healthy animals. Analysis of human plasma EV-associated miRNA showed 12 markedly enriched miRNAs after AMI; functional enrichment analyses identified 1,869 putative mRNA targets, which regulate relevant cellular functions (e.g., proliferation and cell movement). Furthermore, gene ontology termed positive chemotaxis as the most enriched pathway for the miRNA-mRNA targets. Among the identified EV miRNAs, EC-associated miRNA-126-3p and -5p were highly regulated after AMI. miRNA-126-3p and -5p regulate cell adhesion- and chemotaxis-associated genes, including the negative regulator of cell motility, plexin-B2. EC-EV exposure significantly downregulated plexin-B2 mRNA in monocytes and upregulated motility integrin ITGB2. These findings identify EVs as a possible novel signaling pathway by linking ischemic myocardium with monocyte mobilization and transcriptional activation following AMI.
Collapse
Affiliation(s)
- Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Janet E. Digby
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Thomas J. Cahill
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Abhijeet N. Tavare
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Alastair L. Corbin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Sushant Saluja
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Sam Dawkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Laurienne Edgar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Nadiia Rawlings
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Klemen Ziberna
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Eileen McNeill
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | | | | | - Alaa A. Aljabali
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | | | - Mala Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Irina A. Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | | - Keith M. Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
| | - Paul R. Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Robin P. Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
A CDC42-centered signaling unit is a dominant positive regulator of endothelial integrity. Sci Rep 2017; 7:10132. [PMID: 28860633 PMCID: PMC5579287 DOI: 10.1038/s41598-017-10392-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022] Open
Abstract
Endothelial barrier function is carefully controlled to protect tissues from edema and damage inflicted by extravasated leukocytes. RhoGTPases, in conjunction with myriad regulatory proteins, exert both positive and negative effects on the endothelial barrier integrity. Precise knowledge about the relevant mechanisms is currently fragmented and we therefore performed a comprehensive analysis of endothelial barrier regulation by RhoGTPases and their regulators. Combining RNAi with electrical impedance measurements we quantified the relevance of 270 Rho-associated genes for endothelial barrier function. Statistical analysis identified 10 targets of which six promoted- and four reduced endothelial barrier function upon downregulation. We analyzed in more detail two of these which were not previously identified as regulators of endothelial integrity. We found that the Rac1-GEF (Guanine nucleotide Exchange Factor) TIAM2 is a positive regulator and the Cdc42(Rac1)-GAP (GTPase-Activating Protein) SYDE1 is a negative regulator of the endothelial barrier function. Finally, we found that the GAP SYDE1 is part of a Cdc42-centered signaling unit, also comprising the Cdc42-GEF FARP1 and the Cdc42 effector PAK7 which controls the integrity of the endothelial barrier. In conclusion, using a siRNA-based screen, we identified new regulators of barrier function and found that Cdc42 is a dominant positive regulator of endothelial integrity.
Collapse
|
24
|
Luque MCA, Gutierrez PS, Debbas V, Kalil J, Stolf BS. CD100 and plexins B2 and B1 mediate monocyte-endothelial cell adhesion and might take part in atherogenesis. Mol Immunol 2015; 67:559-67. [PMID: 26275342 DOI: 10.1016/j.molimm.2015.07.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/23/2015] [Accepted: 07/22/2015] [Indexed: 02/01/2023]
Abstract
Leukocyte migration is essential for the function of the immune system. Their recruitment from the vessels to the tissues involves sequential molecular interactions between leukocytes and endothelial cells (ECs). Many adhesion molecules involved in this process have already been described. However, additional molecules may be important in this interaction, and here we explore the potential role for CD100 and plexins in monocyte-EC binding. CD100 was shown to be involved in platelet-endothelial cell interaction, an important step in atherogenesis and thrombus formation. In a recent work we have described CD100 expression in monocytes and in macrophages and foam cells of human atherosclerotic plaques. In the present work, we have identified plexin B2 as a putative CD100 receptor in these cells. We have detected CD100 expression in the endothelium as well as in in vitro cultured endothelial cells. Blocking of CD100, plexin B1 and/or B2 in adhesion experiments have shown that both CD100 and plexins act as adhesion molecules involved in monocyte-endothelial cell binding. This effect may be mediated by CD100 expressed in both cell types, probably coupled to the receptors endothelial plexin B1 and monocytic plexin B2. These results can bring new insights about a possible biological activity of CD100 in monocyte adhesion and atherosclerosis, as well as a future candidate for targeting therapeutics.
Collapse
Affiliation(s)
- Maria Carolina A Luque
- Heart Institute of São Paulo (InCor), HC-FMUSP, São Paulo, SP, Brazil; Clinical Immunology and Allergy, Department of Clinical Medicine, University of São Paulo Medical School-HC-FMUSP, São Paulo, SP, Brazil
| | - Paulo S Gutierrez
- Heart Institute of São Paulo (InCor), HC-FMUSP, São Paulo, SP, Brazil
| | - Victor Debbas
- Heart Institute of São Paulo (InCor), HC-FMUSP, São Paulo, SP, Brazil
| | - Jorge Kalil
- Heart Institute of São Paulo (InCor), HC-FMUSP, São Paulo, SP, Brazil; Clinical Immunology and Allergy, Department of Clinical Medicine, University of São Paulo Medical School-HC-FMUSP, São Paulo, SP, Brazil; Institute for Investigation in Immunology - INCT - National Institute of Science and Technology, São Paulo, SP, Brazil
| | - Beatriz S Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
25
|
Modeling transmembrane domain dimers/trimers of plexin receptors: implications for mechanisms of signal transmission across the membrane. PLoS One 2015; 10:e0121513. [PMID: 25837709 PMCID: PMC4383379 DOI: 10.1371/journal.pone.0121513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/03/2015] [Indexed: 01/01/2023] Open
Abstract
Single-pass transmembrane (TM) receptors transmit signals across lipid bilayers by helix association or by configurational changes within preformed dimers. The structure determination for such TM regions is challenging and has mostly been accomplished by NMR spectroscopy. Recently, the computational prediction of TM dimer structures is becoming recognized for providing models, including alternate conformational states, which are important for receptor regulation. Here we pursued a strategy to predict helix oligomers that is based on packing considerations (using the PREDDIMER webserver) and is followed by a refinement of structures, utilizing microsecond all-atom molecular dynamics simulations. We applied this method to plexin TM receptors, a family of 9 human proteins, involved in the regulation of cell guidance and motility. The predicted models show that, overall, the preferences identified by PREDDIMER are preserved in the unrestrained simulations and that TM structures are likely to be diverse across the plexin family. Plexin-B1 and -B3 TM helices are regular and tend to associate, whereas plexin-A1, -A2, -A3, -A4, -C1 and -D1 contain sequence elements, such as poly-Glycine or aromatic residues that distort helix conformation and association. Plexin-B2 does not form stable dimers due to the presence of TM prolines. No experimental structural information on the TM region is available for these proteins, except for plexin-C1 dimeric and plexin-B1 - trimeric structures inferred from X-ray crystal structures of the intracellular regions. Plexin-B1 TM trimers utilize Ser and Thr sidechains for interhelical contacts. We also modeled the juxta-membrane (JM) region of plexin-C1 and plexin-B1 and show that it synergizes with the TM structures. The structure and dynamics of the JM region and TM-JM junction provide determinants for the distance and distribution of the intracellular domains, and for their binding partners relative to the membrane. The structures suggest experimental tests and will be useful for the interpretation of future studies.
Collapse
|
26
|
Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, Guo L, Bai P, Sun D, Fan J, He X, Young W, Ren Y. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 2014; 63:635-51. [PMID: 25452166 DOI: 10.1002/glia.22774] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023]
Abstract
Macrophage activation and persistent inflammation contribute to the pathological process of spinal cord injury (SCI). It was reported that M2 macrophages were induced at 3-7 days after SCI but M2 markers were reduced or eliminated after 1 week. By contrast, M1 macrophage response is rapidly induced and then maintained at injured spinal cord. However, factors that modulate macrophage phenotype and function are poorly understood. We developed a model to distinguish bone-marrow derived macrophages (BMDMs) from residential microglia and explored how BMDMs change their phenotype and functions in response to the lesion-related factors in injured spinal cord. Infiltrating BMDMs expressing higher Mac-2 and lower CX3CR1 migrate to the epicenter of injury, while microglia expressing lower Mac-2 but higher CX3CR1 distribute to the edges of lesion. Myelin debris at the lesion site switches BMDMs from M2 phenotype towards M1-like phenotype. Myelin debris activates ATP-binding cassette transporter A1 (ABCA1) for cholesterol efflux in response to myelin debris loading in vitro. However, this homeostatic mechanism in injured site is overwhelmed, leading to the development of foamy macrophages and lipid plaque in the lesion site. The persistence of these cells indicates a pro-inflammatory environment, associated with enhanced neurotoxicity and impaired wound healing. These foamy macrophages have poor capacity to phagocytose apoptotic neutrophils resulting in uningested neutrophils releasing their toxic contents and further tissue damage. In conclusion, these data demonstrate for the first time that myelin debris generated in injured spinal cord modulates macrophage activation. Lipid accumulation following macrophage phenotype switch contributes to SCI pathology.
Collapse
Affiliation(s)
- Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey; Institute of Neurosciences, the Fourth Military Medical University, Xian, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Singh H, Aplin J. Endometrial apical glycoproteomic analysis reveals roles for cadherin 6, desmoglein-2 and plexin b2 in epithelial integrity. Mol Hum Reprod 2014; 21:81-94. [DOI: 10.1093/molehr/gau087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Cao X, Zhang L, Shi Y, Sun Y, Dai S, Guo C, Zhu F, Wang Q, Wang J, Wang X, Chen YH, Zhang L. Human tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 suppresses hepatocellular carcinoma metastasis through inhibiting Rac1. Mol Cancer 2013; 12:149. [PMID: 24274578 PMCID: PMC4176125 DOI: 10.1186/1476-4598-12-149] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/21/2013] [Indexed: 11/15/2022] Open
Abstract
Background Tumor invasion and metastasis are the major reasons for leading death of patients with hepatocellular carcinoma (HCC). Therefore, to identify molecules that can suppress invasion and metastasis of tumor will provide novel targets for HCC therapies. Tumor necrosis factor (TNF)-alpha-induced protein 8-like 2, TIPE2, is a novel immune negative molecule and an inhibitor of the oncogenic Ras in mice but its function in human is unclear. Our previous research has shown that TIPE2 is downregulated in human primary HCC compared with the paired adjacent non-tumor tissues. Results In present study, we provide evidence that TIPE2 inhibits effectively human hepatocellular carcinoma metastasis. The forced expression of TIPE2 in HCC-derived cell lines markedly inhibits tumor cell growth, migration and invasion in vitro and suppresses growth and metastasis of HCC in vivo. Clinical information from a cohort of 112 patients reveals that loss or reduced expression of TIPE2 in primary HCC tissues is significantly associated with tumor metastasis. Mechanically, TIPE2 inhibits the migration and invasion through targeting Rac1 and then reduces F-actin polymerization and expression of matrix metallopeptidase 9 (MMP9) and urokinase plasminogen activator (uPA). Conclusion Our results indicate that human TIPE2 is endogenous inhibitor of Rac1 in HCC by which it attenuates invasion and metastasis of HCC. The data suggest that TIPE2 will be a new target for HCC therapy.
Collapse
Affiliation(s)
- Xuelei Cao
- Department of Immunology, Shandong University School of Medicine, 44# Wenhua Xi Road, Jinan 250012, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Towner RA, Jensen RL, Vaillant B, Colman H, Saunders D, Giles CB, Wren JD. Experimental validation of 5 in-silico predicted glioma biomarkers. Neuro Oncol 2013; 15:1625-34. [PMID: 24158112 DOI: 10.1093/neuonc/not124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a high-grade glioma with poor prognosis. Identification of new biomarkers specific to GBM could help in disease diagnosis. We have developed and validated a bioinformatics method to predict proteins likely to be suitable as glioma biomarkers via a global microarray meta-analysis to identify uncharacterized genes consistently coexpressed with known glioma-associated genes. METHODS A novel bioinformatics method was implemented called global microarray meta-analysis, using approximately 16,000 microarray experiments to identify uncharacterized genes consistently coexpressed with known glioma-associated genes. These novel biomarkers were validated as proteins highly expressed in human gliomas varying in tumor grades using immunohistochemistry. Glioma gene databases were used to assess delineation of expression of these markers in varying glioma grades and subtypes of GBM. RESULTS We have identified 5 potential biomarkers-spondin1, Plexin-B2, SLIT3, fibulin-1, and LINGO1-that were validated as proteins highly expressed on the surface of human gliomas using immunohistochemistry. Expression of spondin1, Plexin-B2, and SLIT3 was significantly higher (P < .01) in high-grade gliomas than in low-grade gliomas. These biomarkers were significant discriminators in grade IV gliomas compared with either grade III or II tumors and also distinguished between GBM subclasses. CONCLUSIONS This study strongly suggests that this type of bioinformatics approach has high translational potential to rapidly discern which poorly characterized proteins may be of clinical relevance.
Collapse
Affiliation(s)
- Rheal A Towner
- Corresponding Author: Rheal A. Towner, PhD, Director, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104 USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Lin HC, Zhang FL, Geng Q, Yu T, Cui YQ, Liu XH, Li J, Yan MX, Liu L, He XH, Li JJ, Yao M. Quantitative proteomic analysis identifies CPNE3 as a novel metastasis-promoting gene in NSCLC. J Proteome Res 2013; 12:3423-33. [PMID: 23713811 DOI: 10.1021/pr400273z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To discover metastasis-associated proteins within cancer cells, we used the isobaric tags for relative and absolute quantitation (iTRAQ) approach combined with nano liquid chromatography-tandem mass spectrometry (NanoLC-MS/MS) analysis to identify proteins that were differentially expressed between lung adenocarcinoma cancer cell lines SPC-A-1sci cells with high metastatic potential and parent SPC-A-1 cells with low metastatic potential. By employing biological and technical replicates, we identified 5818 nonredundant proteins and quantified 5443 proteins, 256 of which were differentially expressed in the two cell lines. Through si-RNA-mediated functional screens, Myosin heavy chain 9 (MYH9) and Copine III (CPNE3) were indicated as positively correlating with the migration and invasion properties of SPC-A1sci cells, and the same function of CPNE3 was confirmed in another lung cancer cell line, H1299. Furthermore, overexpressing CPNE3 promoted nonsmall-cell lung cancer (NSCLC) cell line (SPC-A-1 and XL-2) migration and invasion in vitro. Moreover, the targeted knock-down of CPNE3 inhibited the in vivo metastatic abilities of H1299 cells in mouse models. Lastly, immunohistochemistry revealed that the CPNE3 expression level was positively correlated with the clinical stage and TNM classification in NSCLC patients. Taken together, our results indicate that CPNE3 could play a critical role in NSCLC metastasis.
Collapse
Affiliation(s)
- He-chun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Luo C, Qu H, Ma J, Wang J, Li C, Yang C, Hu X, Li N, Shu D. Genome-wide association study of antibody response to Newcastle disease virus in chicken. BMC Genet 2013; 14:42. [PMID: 23663563 PMCID: PMC3654938 DOI: 10.1186/1471-2156-14-42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 05/06/2013] [Indexed: 11/21/2022] Open
Abstract
Background Since the first outbreak in Indonesia in 1926, Newcastle disease has become one of the most common and contagious bird diseases throughout the world. To date, enhancing host antibody response by vaccination remains the most efficient strategy to control outbreaks of Newcastle disease. Antibody response plays an important role in host resistance to Newcastle disease, and selection for antibody response can effectively improve disease resistance in chickens. However, the molecular basis of the variation in antibody response to Newcastle disease virus (NDV) is not clear. The aim of this study was to detect genes modulating antibody response to NDV by a genome-wide association study (GWAS) in chickens. Results To identify genes or chromosomal regions associated with antibody response to NDV after immunization, a GWAS was performed using 39,833 SNP markers in a chicken F2 resource population derived from a cross between two broiler lines that differed in their resistance. Two SNP effects reached 5% Bonferroni genome-wide significance (P<1.26×10-6). These two SNPs, rs15354805 and rs15355555, were both on chicken (Gallus gallus) chromosome 1 and spanned approximately 600 Kb, from 100.4 Mb to 101.0 Mb. Rs15354805 is in intron 7 of the chicken Roundabout, axon guidance receptor, homolog 2 (ROBO2) gene, and rs15355555 is located about 243 Kb upstream of ROBO2. Rs15354805 explained 5% of the phenotypic variation in antibody response to NDV, post immunization, in chickens. Rs15355555 had a similar effect as rs15354805 because of its linkage disequilibrium with rs15354805 (r2=0.98). Conclusion The region at about 100 Mb from the proximal end of chicken chromosome 1, including the ROBO1 and ROBO2 genes, has a strong effect on the antibody response to the NDV in chickens. This study paves the way for further research on the host immune response to NDV.
Collapse
Affiliation(s)
- Chenglong Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou 510640, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Plexin-B2 regulates the proliferation and migration of neuroblasts in the postnatal and adult subventricular zone. J Neurosci 2013; 32:16892-905. [PMID: 23175841 DOI: 10.1523/jneurosci.0344-12.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the postnatal forebrain, the subventricular zone (SVZ) contains a pool of undifferentiated cells, which proliferate and migrate along the rostral migratory stream (RMS) to the olfactory bulb and differentiate into granule cells and periglomerular cells. Plexin-B2 is a semaphorin receptor previously known to act on neuronal proliferation in the embryonic brain and neuronal migration in the cerebellum. We show here that, in the postnatal and adult CNS, Plexin-B2 is expressed in the subventricular zone lining the telencephalic ventricles and in the rostral migratory stream. We analyzed Plxnb2(-/-) mice and found that there is a marked reduction in the proliferation of SVZ cells in the mutant. Plexin-B2 expression is downregulated in the olfactory bulb as interneurons initiate radial migration. BrdU labeling and GFP electroporation into postnatal SVZ, in addition to time-lapse videomicroscopy, revealed that neuroblasts deficient for Plexin-B2 migrate faster than control ones and leave the RMS more rapidly. Overall, these results show that Plexin-B2 plays a role in postnatal neurogenesis and in the migration of SVZ-derived neuroblasts.
Collapse
|
33
|
Roney K, Holl E, Ting J. Immune plexins and semaphorins: old proteins, new immune functions. Protein Cell 2013; 4:17-26. [PMID: 23307780 DOI: 10.1007/s13238-012-2108-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 12/24/2022] Open
Abstract
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.
Collapse
Affiliation(s)
- Kelly Roney
- Department of Microbiology and Immunology, 22-004 Lineberger Comprehensive Cancer Center, University of Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
34
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
35
|
Baek JH, Birchmeier C, Zenke M, Hieronymus T. The HGF Receptor/Met Tyrosine Kinase Is a Key Regulator of Dendritic Cell Migration in Skin Immunity. THE JOURNAL OF IMMUNOLOGY 2012; 189:1699-707. [DOI: 10.4049/jimmunol.1200729] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|