1
|
Lasso G, Grodus M, Valencia E, DeJesus V, Liang E, Delwel I, Bortz RH, Lupyan D, Ehrlich HY, Castellanos AA, Gazzo A, Wells HL, Wacharapluesadee S, Tremeau-Bravard A, Seetahal JFR, Hughes T, Lee J, Lee MH, Sjodin AR, Geldenhuys M, Mortlock M, Navarrete-Macias I, Gilardi K, Willig MR, Nava AFD, Loh EH, Asrat M, Smiley-Evans T, Magesa WS, Zikankuba S, Wolking D, Suzán G, Ojeda-Flores R, Carrington CVF, Islam A, Epstein JH, Markotter W, Johnson CK, Goldstein T, Han BA, Mazet JAK, Jangra RK, Chandran K, Anthony SJ. Decoding the blueprint of receptor binding by filoviruses through large-scale binding assays and machine learning. Cell Host Microbe 2025:S1931-3128(24)00483-9. [PMID: 39818205 DOI: 10.1016/j.chom.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species. We found that GP-NPC1 binding correlated poorly with phylogeny. By integrating binding assays with machine learning, we identified genetic factors influencing virus-receptor-binding and predicted GP-NPC1-binding avidity for additional filoviruses and bats. Moreover, combining receptor-binding avidities with bat geographic distribution and the locations of previous Ebola outbreaks allowed us to rank bats by their potential as Ebola virus hosts. This study represents a comprehensive investigation of filovirus-receptor binding in bats (1,484 GP-NPC1 pairs, 11 filoviruses, and 135 bats) and describes a multidisciplinary approach to predict susceptible species and guide filovirus host surveillance.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Michael Grodus
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Estefania Valencia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Veronica DeJesus
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eliza Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Isabel Delwel
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rob H Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | | - Hanna Y Ehrlich
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Andrea Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heather L Wells
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | | | - Janine F R Seetahal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Tom Hughes
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Jimmy Lee
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Mei-Ho Lee
- Conservation Medicine, 47000 Sungai Buloh, Selangor, Malaysia; EcoHealth Alliance, New York, NY 10018, USA
| | - Anna R Sjodin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kirsten Gilardi
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Michael R Willig
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA; Center for Environmental Sciences and Engineering, Institute of the Environment, University of Connecticut, Storrs, CT 06269, USA
| | - Alessandra F D Nava
- Fundação Oswaldo Cruz-Fiocruz, Instituto Leônidas & Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia - EDTA, Manaus 69.057-070, AM, Brazil
| | - Elisabeth H Loh
- Division of Natural Sciences and Mathematics, Transylvania University, Lexington, KY 40508, USA
| | - Makda Asrat
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tierra Smiley-Evans
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Walter S Magesa
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - Sijali Zikankuba
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| | - David Wolking
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Rafael Ojeda-Flores
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Republic of Trinidad and Tobago
| | - Ariful Islam
- Gulbali Research Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | | | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| | - Christine K Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tracey Goldstein
- One Health Institute, Colorado State University, Fort Collins, CO 80523, USA
| | - Barbara A Han
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Rasmussen CLM, Thomsen LB, Heegaard CW, Moos T, Burkhart A. The Npc2 Gt(LST105)BygNya mouse signifies pathological changes comparable to human Niemann-Pick type C2 disease. Mol Cell Neurosci 2023; 126:103880. [PMID: 37454976 DOI: 10.1016/j.mcn.2023.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION Niemann-Pick type C2 disease (NP-C2) is a fatal neurovisceral disorder caused by defects in the lysosomal cholesterol transporter protein NPC2. Consequently, cholesterol and other lipids accumulate within the lysosomes, causing a heterogeneous spectrum of clinical manifestations. Murine models are essential for increasing the understanding of the complex pathology of NP-C2. This study, therefore, aims to describe the neurovisceral pathology in the NPC2-deficient mouse model to evaluate its correlation to human NP-C2. METHODS Npc2-/- mice holding the LST105 mutation were used in the present study (Npc2Gt(LST105)BygNya). Body and organ weight and histopathological evaluations were carried out in six and 12-week-old Npc2-/- mice, with a special emphasis on neuropathology. The Purkinje cell (PC) marker calbindin, the astrocytic marker GFAP, and the microglia marker IBA1 were included to assess PC degeneration and neuroinflammation, respectively. In addition, the pathology of the liver, lungs, and spleen was assessed using hematoxylin and eosin staining. RESULTS Six weeks old pre-symptomatic Npc2-/- mice showed splenomegaly and obvious neuropathological changes, especially in the cerebellum, where initial PC loss and neuroinflammation were evident. The Npc2-/- mice developed neurological symptoms at eight weeks of age, severely progressing until the end-stage of the disease at 12 weeks. At the end-stage of the disease, Npc2-/- mice were characterized by growth retardation, tremor, cerebellar ataxia, splenomegaly, foam cell accumulation in the lungs, liver, and spleen, brain atrophy, pronounced PC degeneration, and severe neuroinflammation. CONCLUSION The Npc2Gt(LST105)BygNya mouse model resembles the pathology seen in NP-C2 patients and denotes a valuable model for increasing the understanding of the complex disease manifestation and is relevant for testing the efficacies of new treatment strategies.
Collapse
Affiliation(s)
| | - Louiza Bohn Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Denmark
| | | | - Torben Moos
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Denmark
| | - Annette Burkhart
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|
3
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
5
|
Rasmussen CLM, Hede E, Routhe LJ, Körbelin J, Helgudottir SS, Thomsen LB, Schwaninger M, Burkhart A, Moos T. A novel strategy for delivering Niemann-Pick type C2 proteins across the blood-brain barrier using the brain endothelial-specific AAV-BR1 virus. J Neurochem 2023; 164:6-28. [PMID: 35554935 PMCID: PMC10084444 DOI: 10.1111/jnc.15621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Treating central nervous system (CNS) diseases is complicated by the incapability of numerous therapeutics to cross the blood-brain barrier (BBB), mainly composed of brain endothelial cells (BECs). Genetically modifying BECs into protein factories that supply the CNS with recombinant proteins is a promising approach to overcome this hindrance, especially in genetic diseases, like Niemann Pick disease type C2 (NPC2), where both CNS and peripheral cells are affected. Here, we investigated the potential of the BEC-specific adeno-associated viral vector (AAV-BR1) encoding NPC2 for expression and secretion from primary BECs cultured in an in vitro BBB model with mixed glial cells, and in healthy BALB/c mice. Transduced primary BECs had significantly increased NPC2 gene expression and secreted NPC2 after viral transduction, which significantly reversed cholesterol deposition in NPC2 deficient fibroblasts. Mice receiving an intravenous injection with AAV-BR1-NCP2-eGFP were sacrificed 8 weeks later and examined for its biodistribution and transgene expression of eGFP and NPC2. AAV-BR1-NPC2-eGFP was distributed mainly to the brain and lightly to the heart and lung, but did not label other organs including the liver. eGFP expression was primarily found in BECs throughout the brain but occasionally also in neurons suggesting transport of the vector across the BBB, a phenomenon also confirmed in vitro. NPC2 gene expression was up-regulated in the brain, and recombinant NPC2 protein expression was observed in both transduced brain capillaries and neurons. Our findings show that AAV-BR1 transduction of BECs is possible and that it may denote a promising strategy for future treatment of NPC2.
Collapse
Affiliation(s)
| | - Eva Hede
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lisa Juul Routhe
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center, Hamburg, Germany
| | - Steinunn Sara Helgudottir
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Louiza Bohn Thomsen
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Annette Burkhart
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Torben Moos
- Neurobiology Research and Drug Delivery, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Furtado D, Cortez-Jugo C, Hung YH, Bush AI, Caruso F. mRNA Treatment Rescues Niemann-Pick Disease Type C1 in Patient Fibroblasts. Mol Pharm 2022; 19:3987-3999. [PMID: 36125338 DOI: 10.1021/acs.molpharmaceut.2c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Messenger RNA (mRNA) holds great potential as a disease-modifying treatment for a wide array of monogenic disorders. Niemann-Pick disease type C1 (NP-C1) is an ultrarare monogenic disease that arises due to loss-of-function mutations in the NPC1 gene, resulting in the entrapment of unesterified cholesterol in the lysosomes of affected cells and a subsequent reduction in their capacity for cholesterol esterification. This causes severe damage to various organs including the brain, liver, and spleen. In this work, we describe the use of NPC1-encoded mRNA to rescue the protein insufficiency and pathogenic phenotype caused by biallelic NPC1 mutations in cultured fibroblasts derived from an NP-C1 patient. We first evaluated engineering strategies for the generation of potent mRNAs capable of eliciting high protein expression across multiple cell types. We observed that "GC3" codon optimization, coupled with N1-methylpseudouridine base modification, yielded an mRNA that was approximately 1000-fold more potent than wild-type, unmodified mRNA in a luciferase reporter assay and consistently superior to other mRNA variants. Our data suggest that the improved expression associated with this design strategy was due in large part to the increased secondary structure of the designed mRNAs. Both codon optimization and base modification appear to contribute to increased secondary structure. Applying these principles to the engineering of NPC1-encoded mRNA, we observed a normalization in NPC1 protein levels after mRNA treatment, as well as a rescue of the mutant phenotype. Specifically, mRNA treatment restored the cholesterol esterification capacity of patient cells to wild-type levels and induced a significant reduction in both unesterified cholesterol levels (>57% reduction compared to Lipofectamine-treated control in a cholesterol esterification assay) and lysosome size (157 μm2 reduction compared to Lipofectamine-treated control). These findings show that engineered mRNA can correct the deficit caused by NPC1 mutations. More broadly, they also serve to further validate the potential of this technology to correct diseases associated with loss-of-function mutations in genes coding for large, complex, intracellular proteins.
Collapse
Affiliation(s)
- Denzil Furtado
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ya Hui Hung
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Wirchnianski AS, Wec AZ, Nyakatura EK, Herbert AS, Slough MM, Kuehne AI, Mittler E, Jangra RK, Teruya J, Dye JM, Lai JR, Chandran K. Two Distinct Lysosomal Targeting Strategies Afford Trojan Horse Antibodies With Pan-Filovirus Activity. Front Immunol 2021; 12:729851. [PMID: 34721393 PMCID: PMC8551868 DOI: 10.3389/fimmu.2021.729851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple agents in the family Filoviridae (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry. Despite this variability in the antigenic surface of GP, all filoviruses share a site of vulnerability-the binding site for the universal filovirus entry receptor, Niemann-Pick C1 (NPC1). Unfortunately, this site is shielded in extracellular GP and only uncovered by proteolytic cleavage by host proteases in late endosomes and lysosomes, which are generally inaccessible to antibodies. To overcome this obstacle, we previously developed a 'Trojan horse' therapeutic approach in which engineered bispecific antibodies (bsAbs) coopt viral particles to deliver GP:NPC1 interaction-blocking antibodies to their endo/lysosomal sites of action. This approach afforded broad protection against members of the genus Ebolavirus but could not neutralize more divergent filoviruses. Here, we describe next-generation Trojan horse bsAbs that target the endo/lysosomal GP:NPC1 interface with pan-filovirus breadth by exploiting the conserved and widely expressed host cation-independent mannose-6-phosphate receptor for intracellular delivery. Our work highlights a new avenue for the development of single therapeutics protecting against all known and newly emerging filoviruses.
Collapse
Affiliation(s)
- Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anna Z. Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elisabeth K. Nyakatura
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Andrew S. Herbert
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ana I. Kuehne
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jonathan Teruya
- Antibody Discovery and Research group, Mapp Biopharmaceutical, San Diego, CA, United States
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
8
|
Bai Y, Yin S, Gbordzor V, Guo Y, Bai Q, Wang S, Wei X, Chen N, Zhang Y, Li W. Increase in plasma Niemann-Pick disease type C2 protein is associated with poor prognosis of sepsis. Sci Rep 2021; 11:5907. [PMID: 33723331 PMCID: PMC7961030 DOI: 10.1038/s41598-021-85478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
The functional significance of extracellular Niemann-Pick disease type C2 protein (NPC2) is poorly defined. It is not known whether there is an association between plasma NPC2 and sepsis. Our exploratory, quantitative proteomic analysis showed a significant increase in the level of plasma NPC2 in moribund sepsis patients. Thus, we subsequently determined NPC2 concentration in plasma from healthy subjects, pneumonia patients and sepsis patients with comorbid pneumonia; and analyzed the association of plasma NPC2 with organ dysfunction and prognosis of sepsis patients. Our data shows that plasma NPC2 concentration was significantly higher in pneumonia and sepsis patients than healthy subjects, and was further increased in sepsis patients when the SOFA score reached 14. In addition, NPC2 concentration was significantly higher in patients that subsequently developed septic shock or died within 30 days. Moreover, NPC2 level showed the strongest association with the degree of renal dysfunction in sepsis patients. In moribund sepsis patients, however, NPC2 had highest correlation coefficient with indicators of coagulation anomaly. Based on these results, we conclude that the increase in plasma NPC2 in sepsis patients is associated with multiple organ failure, possibly results from a deficiency in renal clearance, and may serve as a prognostic marker for sepsis.
Collapse
Affiliation(s)
- Yu Bai
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Shuangyi Yin
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Vivian Gbordzor
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Yu Guo
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.,Department of Pulmonary and Critical Care Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Qing Bai
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.,Department of Pulmonary and Critical Care Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Shuaiwei Wang
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Xiangyan Wei
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Na Chen
- Department of Pulmonary and Critical Care Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China
| | - Yijie Zhang
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.
| | - Wei Li
- Sepsis Laboratory, Center for Translational Medicine, Huaihe Hospital, Henan University, 115 Xi Men Blvd, Kaifeng, Henan, China.
| |
Collapse
|
9
|
Juhl AD, Lund FW, Jensen MLV, Szomek M, Heegaard CW, Guttmann P, Werner S, McNally J, Schneider G, Kapishnikov S, Wüstner D. Niemann Pick C2 protein enables cholesterol transfer from endo-lysosomes to the plasma membrane for efflux by shedding of extracellular vesicles. Chem Phys Lipids 2021; 235:105047. [PMID: 33422548 DOI: 10.1016/j.chemphyslip.2020.105047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
The Niemann-Pick C2 protein (NPC2) is a sterol transfer protein in the lumen of late endosomes and lysosomes (LE/LYSs). Absence of functional NPC2 leads to endo-lysosomal buildup of cholesterol and other lipids. How NPC2's known capacity to transport cholesterol between model membranes is linked to its function in living cells is not known. Using quantitative live-cell imaging combined with modeling of the efflux kinetics, we show that NPC2-deficient human fibroblasts can export the cholesterol analog dehydroergosterol (DHE) from LE/LYSs. Internalized NPC2 accelerated sterol efflux extensively, accompanied by reallocation of LE/LYSs containing fluorescent NPC2 and DHE to the cell periphery. Using quantitative fluorescence loss in photobleaching of TopFluor-cholesterol (TF-Chol), we estimate a residence time for a rapidly exchanging sterol pool in LE/LYSs localized in close proximity to the plasma membrane (PM), of less than one min and observed non-vesicular sterol exchange between LE/LYSs and the PM. Excess sterol was released from the PM by shedding of cholesterol-rich vesicles. The ultrastructure of such vesicles was analyzed by combined fluorescence and cryo soft X-ray tomography (SXT), revealing that they can contain lysosomal cargo and intraluminal vesicles. Treating cells with apoprotein A1 and with nuclear receptor liver X-receptor (LXR) agonists to upregulate expression of ABC transporters enhanced cholesterol efflux from the PM, at least partly by accelerating vesicle release. We conclude that NPC2 inside LE/LYSs facilitates non-vesicular sterol exchange with the PM for subsequent sterol efflux to acceptor proteins and for shedding of sterol-rich vesicles from the cell surface.
Collapse
Affiliation(s)
- Alice Dupont Juhl
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Frederik W Lund
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Maria Louise V Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics, University of Aarhus, DK-8000, Aarhus C, Denmark
| | - Peter Guttmann
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Stephan Werner
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - James McNally
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Gerd Schneider
- Department X-Ray Microscopy, Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Sergey Kapishnikov
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230, Odense M, Denmark.
| |
Collapse
|
10
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
11
|
Hede E, Christiansen CB, Heegaard CW, Moos T, Burkhart A. Gene therapy to the blood-brain barrier with resulting protein secretion as a strategy for treatment of Niemann Picks type C2 disease. J Neurochem 2020; 156:290-308. [PMID: 32072649 DOI: 10.1111/jnc.14982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
Treatment of many diseases affecting the central nervous system (CNS) is complicated by the inability of several therapeutics to cross the blood-brain barrier (BBB). Genetically modifying brain capillary endothelial cells (BCECs) denotes an approach to overcome the limitations of the BBB by turning BCECs into recombinant protein factories. This will result in protein secretion toward both the brain and peripheral circulation, which is particularly relevant in genetic diseases, like lysosomal storage diseases (LSD), where cells are ubiquitously affected both in the CNS and the periphery. Here we investigated transfection of primary rat brain capillary endothelial cells (rBCECs) for synthesis and secretion of recombinant NPC2, the protein deficient in the lysosomal cholesterol storage disease Niemann Pick type C2. We demonstrate prominent NPC2 gene induction and protein secretion in 21% of BCECs in non-mitotic monocultures with a biological effect on NPC2-deficient fibroblasts as verified from changes in filipin III staining of cholesterol deposits. By comparison the transfection efficiency was 75% in HeLa-cells, known to persist in a mitotic state. When co-cultured with primary rat astrocytes in conditions with maintained BBB properties 7% BCECs were transfected, clearly suggesting that induction of BBB properties with polarized conditions of the non-mitotic BCECs influences the transfection efficacy and secretion directionality. In conclusion, non-viral gene therapy to rBCECs leads to protein secretion and signifies a method for NPC2 to target cells inside the CNS otherwise inaccessible because of the presence of the BBB. However, obtaining high transfection efficiencies is crucial in order to achieve sufficient therapeutic effects. Cover Image for this issue: https://doi.org/10.1111/jnc.15050.
Collapse
Affiliation(s)
- Eva Hede
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christine B Christiansen
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics - Molecular Nutrition, Aarhus University, Aarhus, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Annette Burkhart
- Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
12
|
Petersen D, Reinholdt P, Szomek M, Hansen SK, Poongavanam V, Dupont A, Heegaard CW, Krishnan K, Fujiwara H, Covey DF, Ory DS, Kongsted J, Wüstner D. Binding and intracellular transport of 25-hydroxycholesterol by Niemann-Pick C2 protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183063. [PMID: 31521631 DOI: 10.1016/j.bbamem.2019.183063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/26/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022]
Abstract
Side-chain oxidized cholesterol derivatives, like 25-hydroxycholesterol (25-OH-Chol) are important regulators of cellular cholesterol homeostasis. How transport of oxysterols through the endo-lysosomal pathway contributes to their biological function is not clear. The Niemann-Pick C2 protein (NPC2) is a small lysosomal sterol transfer protein required for export of cholesterol from late endosomes and lysosomes (LE/LYSs). Here, we show that 25-hydroxy-cholestatrienol, (25-OH-CTL), an intrinsically fluorescent analogue of 25-OH-Chol, becomes trapped in LE/LYSs of NPC2-deficient fibroblasts, but can efflux from the cells even in the absence of NPC2 upon removal of the sterol source. Fluorescence recovery after photobleaching (FRAP) of 25-OH-CTL in endo-lysosomes was rapid and extensive and only partially dependent on NPC2 function. Using quenching of NPC2's intrinsic fluorescence, we show that 25-OH-Chol and 25-OH-CTL can bind to NPC2 though with lower affinity compared to cholesterol and its fluorescent analogues, cholestatrienol (CTL) and dehydroergosterol (DHE). This is confirmed by calculations of binding energies which additionally show that 25-OH-CTL can bind in two orientations to NPC2, in stark contrast to cholesterol and its analogues. We conclude that NPC2's affinity for all sterols is energetically favored over their self-aggregation in the lysosomal lumen. Lysosomal export of 25-OH-Chol is not strictly dependent on the NPC2 protein.
Collapse
Affiliation(s)
- Daniel Petersen
- Department of Biochemistry and Molecular Biology, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, DK-5230 Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, DK-5230 Odense M, Denmark
| | | | | | - Alice Dupont
- Department of Biochemistry and Molecular Biology, DK-5230 Odense M, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics, University of Aarhus, DK-8000 Aarhus, C, Denmark
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University, St. Louis, MO 63110, USA
| | - Hideji Fujiwara
- Department of Developmental Biology, Washington University, St. Louis, MO 63110, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University, St. Louis, MO 63110, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, DK-5230 Odense M, Denmark.
| |
Collapse
|
13
|
Lopez AM, Jones RD, Repa JJ, Turley SD. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function. Am J Physiol Gastrointest Liver Physiol 2018; 315:G454-G463. [PMID: 29878847 PMCID: PMC6230690 DOI: 10.1152/ajpgi.00124.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/31/2023]
Abstract
Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase (SOAT) 1 or SOAT2 in various cell types and lecithin cholesterol acyltransferase in plasma. Esterified cholesterol and triacylglycerol contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C (NPC) 2 and NPC 1, unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease, which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7-wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared with their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma alanine aminotransferase and aspartate aminotransferase activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency. NEW & NOTEWORTHY In Niemann-Pick type C1 (NPC1) disease, the entrapment of unesterified cholesterol (UC) in the endosomal/lysosomal compartment of all cells causes multiorgan disease, including neurodegeneration, pulmonary dysfunction, and liver failure. Some of this sequestered UC entered cells initially in the esterified form. When sterol O-acyltransferase 2, a cholesterol esterifying enzyme present in enterocytes and hepatocytes, is eliminated in NPC1-deficient mice, there is a reduction in their hepatomegaly, hepatic UC content, and cellular injury.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
14
|
Attenuation of the Niemann-Pick type C2 disease phenotype by intracisternal administration of an AAVrh.10 vector expressing Npc2. Exp Neurol 2018; 306:22-33. [DOI: 10.1016/j.expneurol.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/28/2018] [Accepted: 04/01/2018] [Indexed: 11/18/2022]
|
15
|
Abstract
BACKGROUND AND AIMS Hepatic cholesterol deposition drives inflammation and fibrosis in non-alcoholic steatohepatitis (NASH). The Niemann-Pick type C2 (NPC2) protein plays an important role in regulating intracellular cholesterol trafficking and homeostasis. We hypothesized that intravenous NPC2 supplementation reduces cholesterol accumulation, hepatic inflammation and fibrogenesis in a nutritional NASH rat model. METHODS Rats were fed a high-fat, high-cholesterol (HFHC) diet for four weeks resulting in moderately severe NASH. Animals were treated with intravenous NPC2 or placebo twice weekly for either the last two weeks or the entire four weeks. End-points were liver/body- and spleen/body weight ratios, histopathological NASH scores, fibrosis, serum liver enzymes, cholesterol, lipoproteins, cytokines, and quantitative polymerase chain reaction derived hepatic gene expression related to cholesterol metabolism, inflammation, and fibrosis. RESULTS HFHC rats developed hepatomegaly, non-fibrotic NASH histopathology, elevated liver enzymes, serum cholesterol, and pro-inflammatory cytokines. Their sterol regulatory element binding factor 2 (SREBF2) and low-density lipoprotein receptor (LDL-R) mRNAs were down-regulated compared with rats on standard chow. NPC2 did not improve liver weight, histopathology, levels of serum liver enzymes or pro-inflammatory tumor necrosis factor-α (TNFα), Interleukin (IL)-6, or IL-1β in HFHC rats. Two weeks of NPC2 treatment lowered hepatic TNFα and COL1A1 mRNA expression. However, this effect was ultimately reversed following additional two weeks of treatment. Four weeks NPC2 treatment of rats raised ATP-binding cassette A1 (ABCA1) and low-density lipoprotein receptor (LDLR) mRNAs in the liver, concurrent with a strong tendency towards higher serum high-density lipoprotein (HDL). Furthermore, the peroxisome proliferator activated receptor-ɣ (PPARG) gene expression was reduced. CONCLUSIONS NPC2 proved inefficient at modifying robust hepatic NASH end-points in a HFHC NASH model. Nonetheless, our data suggest that hepatic ABCA1 expression and reverse cholesterol transport were upregulated by NPC2 treatment, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism.
Collapse
|
16
|
Ebrahimi-Fakhari D, Wahlster L, Bartz F, Werenbeck-Ueding J, Praggastis M, Zhang J, Joggerst-Thomalla B, Theiss S, Grimm D, Ory DS, Runz H. Reduction of TMEM97 increases NPC1 protein levels and restores cholesterol trafficking in Niemann-pick type C1 disease cells. Hum Mol Genet 2016; 25:3588-3599. [PMID: 27378690 PMCID: PMC5179952 DOI: 10.1093/hmg/ddw204] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
Niemann-Pick type C disease (NP-C) is a progressive lysosomal lipid storage disease caused by mutations in the NPC1 and NPC2 genes. NPC1 is essential for transporting cholesterol and other lipids out of lysosomes, but little is known about the mechanisms that control its cellular abundance and localization. Here we show that a reduction of TMEM97, a cholesterol-responsive NPC1-binding protein, increases NPC1 levels in cells through a post-transcriptional mechanism. Reducing TMEM97 through RNA-interference reduces lysosomal lipid storage and restores cholesterol trafficking to the endoplasmic reticulum in cell models of NP-C. In TMEM97 knockdown cells, NPC1 levels can be reinstated with wild type TMEM97, but not TMEM97 missing an ER-retention signal suggesting that TMEM97 contributes to controlling the availability of NPC1 to the cell. Importantly, knockdown of TMEM97 also increases levels of residual NPC1 in NPC1-mutant patient fibroblasts and reduces cholesterol storage in an NPC1-dependent manner. Our findings propose TMEM97 inhibition as a novel strategy to increase residual NPC1 levels in cells and a potential therapeutic target for NP-C.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Lara Wahlster
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Fabian Bartz
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
| | | | - Maria Praggastis
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessie Zhang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Susanne Theiss
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
| | - Dirk Grimm
- Center for Infectious Diseases/Virology, BioQuant BQ0030, Heidelberg, Germany
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Heiko Runz
- Institute of Human Genetics, Ruprecht-Karls-University Heidelberg
- Molecular Medicine Partnership Unit (MMPU), Ruprecht-Karls-University Heidelberg/European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
17
|
Lopez AM, Terpack SJ, Posey KS, Liu B, Ramirez CM, Turley SD. Systemic administration of 2-hydroxypropyl-β-cyclodextrin to symptomatic Npc1-deficient mice slows cholesterol sequestration in the major organs and improves liver function. Clin Exp Pharmacol Physiol 2015; 41:780-7. [PMID: 25115571 DOI: 10.1111/1440-1681.12285] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 06/10/2014] [Accepted: 07/04/2014] [Indexed: 11/27/2022]
Abstract
In Niemann-Pick type C (NPC) disease, loss-of-function mutations in either NPC1 or NPC2 result in progressive accumulation of unesterified cholesterol (UC) and glycosphingolipids in all organs, leading to neurodegeneration, pulmonary dysfunction and sometimes liver failure. There is no cure for this disorder. Studies using primarily NPC mouse models have shown that systemic administration of 2-hydroxypropyl-β-cyclodextrin (2HPβCD), starting in early neonatal life, diminishes UC accumulation in most organs, slows disease progression and extends lifespan. The key question now is whether delaying the start of 2HPβCD treatment until early adulthood, when the amount of entrapped UC throughout the body is markedly elevated, has any of the benefits found when treatment begins at 7 days of age. In the present study, Npc1(-/-) and Npc1(+/+) mice were given saline or 2HPβCD subcutaneously at 49, 56, 63 and 70 days of age, with measurements of organ weights, liver function tests and tissue cholesterol levels performed at 77 days. In Npc1(-/-) mice, treatment with 2HPβCD from 49 days reduced whole-liver cholesterol content at 77 days from 33.0 ± 1.0 to 9.1 ± 0.5 mg/organ. Comparable improvements were seen in other organs, such as the spleen, and in the animal as a whole. There was a transient increase in biliary cholesterol concentration in Npc1(-/-) mice after 2HPβCD. Plasma alanine aminotransferase and aspartate aminotransferase activities in 77-day-old 2HPβCD-treated Npc1(-/-) mice were reduced compared with saline-treated controls. The lifespan of Npc1(-/-) mice given 2HPβCD marginally exceeded that of the saline-treated controls (99 ± 1.1 vs 94 ± 1.4 days, respectively; P < 0.05). Thus, 2HPβCD is effective in mobilizing entrapped cholesterol in late-stage NPC disease leading to improved liver function.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Recent work demonstrated that the Niemann-Pick C1 (NPC1) protein is an essential entry receptor for filoviruses. While previous studies focused on filovirus entry requirements of NPC1 in vitro, its roles in filovirus replication and pathogenesis in vivo remain unclear. Here, we evaluated the importance of NPC1, and its partner in cholesterol transport, NPC2, by using a mouse model of Ebolavirus (EBOV) disease. We found that, whereas wild-type mice had high viral loads and succumbed to EBOV infection, Npc1−/− mice were entirely free of viral replication and completely protected from EBOV disease. Interestingly, Npc1+/− mice transiently developed high levels of viremia, but were nevertheless substantially protected from EBOV challenge. We also found Npc2−/− mice to be fully susceptible to EBOV infection, while Npc1−/− mice treated to deplete stored lysosomal cholesterol remained completely resistant to EBOV infection. These results provide mechanistic evidence that NPC1 is directly required for EBOV infection in vivo, with little or no role for NPC1/NPC2-dependent cholesterol transport. Finally, we assessed the in vivo antiviral efficacies of three compounds known to inhibit NPC1 function or NPC1-glycoprotein binding in vitro. Two compounds reduced viral titers in vivo and provided a modest, albeit not statistically significant, degree of protection. Taken together, our results show that NPC1 is critical for replication and pathogenesis in animals and is a bona fide target for development of antifilovirus therapeutics. Additionally, our findings with Npc1+/− mice raise the possibility that individuals heterozygous for NPC1 may have a survival advantage in the face of EBOV infection. Researchers have been searching for an essential filovirus receptor for decades, and numerous candidate receptors have been proposed. However, none of the proposed candidate receptors has proven essential in all in vitro scenarios, nor have they proven essential when evaluated using animal models. In this report, we provide the first example of a knockout mouse that is completely refractory to EBOV infection, replication, and disease. The findings detailed here provide the first critical in vivo data illustrating the absolute requirement of NPC1 for filovirus infection in mice. Our work establishes NPC1 as a legitimate target for the development of anti-EBOV therapeutics. However, the limited success of available NPC1 inhibitors to protect mice from EBOV challenge highlights the need for new molecules or approaches to target NPC1 in vivo.
Collapse
|
19
|
Liao YJ, Fang CC, Yen CH, Hsu SM, Wang CK, Huang SF, Liang YC, Lin YY, Chu YT, Arthur Chen YM. Niemann-Pick type C2 protein regulates liver cancer progression via modulating ERK1/2 pathway: Clinicopathological correlations and therapeutical implications. Int J Cancer 2015; 137:1341-51. [PMID: 25754535 DOI: 10.1002/ijc.29507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/23/2015] [Indexed: 01/06/2023]
Abstract
Primary hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third leading cause of cancer-related death. It is important to identify new targets for early diagnosis and treatment of HCC. Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular cholesterol homeostasis via direct binding with free cholesterol. However, little is known about the significance of NPC2 in HCC tumorigenesis. In this study, we showed that NPC2 is abundantly expressed in normal liver, but is downregulated in human HCC tissues. The patients with NPC2 downregulation expressed much higher α-fetoprotein, multiple tumor type, vascular invasion, later pathological stage and shorter survival rate. Knockdown NPC2 in liver cancer cell lines promote cell proliferation, migration and xenograft tumorigenesis. In contrast, NPC2 overexpression inhibits HuH7 promoted tumor growth. Furthermore, administration of hepatotropic adeno-associated virus 8 (AAV8) delivered NPC2 decreased the inflammatory infiltration, the expression of two early HCC markers-glypican 3 and survivin and suppressed the spontaneous HCC development in mice. To identify the NPC2-dependent mechanism, we emphasized on the status of MAPK/ERK signaling. MEK1/2 inhibitor treatment demonstrated that the expression of NPC2 affected the activation of ERK1/2 but not MEK1/2. In addition, cholesterol trafficking inhibitor treatment did not alter the cell proliferation and the activation of MEK/ERK. In conclusion, our study demonstrates that NPC2 may play an important role in negatively regulate cell proliferation and ERK1/2 activation that were independent of cholesterol accumulation. AAV-NPC2 may thus represent a new treatment strategy for liver cancer.
Collapse
Affiliation(s)
- Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chieh Fang
- Department and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of National Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Ming Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Kwe Wang
- Department of International Medicine, Taipei City Hospital Ranai Branch, Taipei, Taiwan
| | - Shiu-Feng Huang
- Division of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ying-Yu Lin
- Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tseng Chu
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Center for Lipid and Glycomedicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Zheng H, Yde CC, Clausen MR, Kristensen M, Lorenzen J, Astrup A, Bertram HC. Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2830-2839. [PMID: 25727903 DOI: 10.1021/jf505878a] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An NMR-based metabolomics approach was used to investigate the differentiation between subjects consuming cheese or milk and to elucidate the potential link to an effect on blood cholesterol level. Fifteen healthy young men participated in a full crossover study during which they consumed three isocaloric diets with similar fat contents that were either (i) high in milk, (ii) high in cheese with equal amounts of dairy calcium, or (iii) a control diet for 14 days. Urine and feces samples were collected and analyzed by NMR-based metabolomics. Cheese and milk consumption decreased urinary choline and TMAO levels and increased fecal excretion of acetate, propionate, and lipid. Compared with milk intake, cheese consumption significantly reduced urinary citrate, creatine, and creatinine levels and significantly increased the microbiota-related metabolites butyrate, hippurate, and malonate. Correlation analyses indicated that microbial and lipid metabolism could be involved in the dairy-induced effects on blood cholesterol level.
Collapse
Affiliation(s)
- Hong Zheng
- †Department of Food Science, Aarhus University, Kirstinebjergvej 10, DK-5792 Aarslev, Denmark
| | - Christian C Yde
- †Department of Food Science, Aarhus University, Kirstinebjergvej 10, DK-5792 Aarslev, Denmark
| | - Morten R Clausen
- †Department of Food Science, Aarhus University, Kirstinebjergvej 10, DK-5792 Aarslev, Denmark
| | - Mette Kristensen
- §Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-1958 Frederiksberg C, Denmark
| | - Janne Lorenzen
- §Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-1958 Frederiksberg C, Denmark
| | - Arne Astrup
- §Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-1958 Frederiksberg C, Denmark
| | - Hanne C Bertram
- †Department of Food Science, Aarhus University, Kirstinebjergvej 10, DK-5792 Aarslev, Denmark
| |
Collapse
|
21
|
Lund FW, Jensen MLV, Christensen T, Nielsen GK, Heegaard CW, Wüstner D. SpatTrack: An Imaging Toolbox for Analysis of Vesicle Motility and Distribution in Living Cells. Traffic 2014; 15:1406-29. [DOI: 10.1111/tra.12228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Frederik W. Lund
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
- Department of Biochemistry; Weill Medical College of Cornell University; York Ave. 1300 10065 NY USA
| | - Maria Louise V. Jensen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| | - Tanja Christensen
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| | - Gitte K. Nielsen
- Department of Biomedicine; University of Aarhus; DK-8000 Aarhus C. Denmark
| | - Christian W. Heegaard
- Department of Molecular Biology and Genetics; University of Aarhus; DK-8000 Aarhus C. Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology; University of Southern Denmark; DK-5230 Odense M Denmark
| |
Collapse
|
22
|
Aqul A, Lopez AM, Posey KS, Taylor AM, Repa JJ, Burns DK, Turley SD. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice. Am J Physiol Gastrointest Liver Physiol 2014; 307:G836-47. [PMID: 25147230 PMCID: PMC4200320 DOI: 10.1152/ajpgi.00243.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.
Collapse
Affiliation(s)
- Amal Aqul
- 2Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Adam M. Lopez
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Kenneth S. Posey
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Anna M. Taylor
- 3Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Joyce J. Repa
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; ,3Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Dennis K. Burns
- 4Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen D. Turley
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
23
|
Vance JE, Karten B. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res 2014; 55:1609-21. [PMID: 24664998 DOI: 10.1194/jlr.r047837] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease in which endocytosed cholesterol becomes sequestered in late endosomes/lysosomes (LEs/Ls) because of mutations in either the NPC1 or NPC2 gene. Mutations in either of these genes can lead to impaired functions of the NPC1 or NPC2 proteins and progressive neurodegeneration as well as liver and lung disease. NPC1 is a polytopic protein of the LE/L limiting membrane, whereas NPC2 is a soluble protein in the LE/L lumen. These two proteins act in tandem and promote the export of cholesterol from LEs/Ls. Consequently, a defect in either NPC1 or NPC2 causes cholesterol accumulation in LEs/Ls. In this review, we summarize the molecular mechanisms leading to NPC disease, particularly in the CNS. Recent exciting data on the mechanism by which the cholesterol-sequestering agent cyclodextrin can bypass the functions of NPC1 and NPC2 in the LEs/Ls, and mobilize cholesterol from LEs/Ls, will be highlighted. Moreover, the possible use of cyclodextrin as a valuable therapeutic agent for treatment of NPC patients will be considered.
Collapse
Affiliation(s)
- Jean E Vance
- The Group on Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
24
|
Characterization of Niemann-Pick Type C2 protein expression in multiple cancers using a novel NPC2 monoclonal antibody. PLoS One 2013; 8:e77586. [PMID: 24147030 PMCID: PMC3798307 DOI: 10.1371/journal.pone.0077586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/04/2013] [Indexed: 01/02/2023] Open
Abstract
Niemann-Pick Type C2 (NPC2) plays an important role in the regulation of intracellular cholesterol homeostasis via direct binding with free cholesterol. However, little is known about the significance of NPC2 in cancer. In this study, we have pinpointed the impact of various different cancers on NPC2 expression. A series of anti-NPC2 monoclonal antibodies (mAbs) with the IgG2a isotype were generated and peptide screening demonstrated that the reactive epitope were amino acid residues 31-40 of the human NPC2 protein. The specificity of these mAbs was confirmed by Western blotting using shRNA mediated knock-down of NPC2 in human SK-Hep1 cells. By immunohistochemical staining, NPC2 is expressed in normal kidney, liver, breast, colon, lung, esophageal, uterine cervical, pancreatic and stomach tissue. Strong expression of NPC2 was found in the distal and proximal convoluted tubule of kidney and the hepatocytes of liver. Normal esophageal, uterine cervical, pancreatic, stomach, breast, colon and lung tissue stained moderately to weakly. When compared to their normal tissue equivalents, NPC2 overexpression was observed in cancers of the breast, colon and lung. Regarding to breast cancer, NPC2 up-regulation is associated with estrogen receptor (-), progesterone receptor (-) and human epidermal growth factor receptor (+). On the other hand, NPC2 was found to be down-regulated in renal cell carcinoma, liver cirrhosis and hepatoma tissues. By antigen-capture enzyme immunoassay ELISA, the serum NPC2 is increased in patients with cirrhosis and liver cancer. According to western blot data, the change of glycosylated pattern of NPC2 in serum is associated with cirrhosis and liver cancer. To the best of our knowledge, this is the first comprehensive immunohistochemical and serological study investigating the expression of NPC2 in a variety of different human cancers. These novel monoclonal antibodies should help with elucidating the roles of NPC2 in tumor development, especially in liver and breast cancers.
Collapse
|
25
|
Ontogenic changes in lung cholesterol metabolism, lipid content, and histology in mice with Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:54-61. [PMID: 24076310 DOI: 10.1016/j.bbalip.2013.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 11/21/2022]
Abstract
Niemann-Pick Type C (NPC) disease is caused by a deficiency of either NPC1 or NPC2. Loss of function of either protein results in the progressive accumulation of unesterified cholesterol in every tissue leading to cell death and organ damage. Most literature on NPC disease focuses on neurological and liver manifestations. Pulmonary dysfunction is less well described. The present studies investigated how Npc1 deficiency impacts the absolute weight, lipid composition and histology of the lungs of Npc1(-/-) mice (Npc1(nih)) at different stages of the disease, and also quantitated changes in the rates of cholesterol and fatty acid synthesis in the lung over this same time span (8 to 70days of age). Similar measurements were made in Npc2(-/-) mice at 70days. All mice were of the BALB/c strain and were fed a basal rodent chow diet. Well before weaning, the lung weight, cholesterol and phospholipid (PL) content, and cholesterol synthesis rate were all elevated in the Npc1(-/-) mice and remained so at 70days of age. In contrast, lung triacylglycerol content was reduced while there was no change in lung fatty acid synthesis. Despite the elevated PL content, the composition of PL in the lungs of the Npc1(-/-) mice was unchanged. H&E staining revealed an age-related increase in the presence of lipid-laden macrophages in the alveoli of the lungs of the Npc1(-/-) mice starting as early as 28days. Similar metabolic and histologic changes were evident in the lungs of the Npc2(-/-) mice. Together these findings demonstrate an intrinsic lung pathology in NPC disease that is of early onset and worsens over time.
Collapse
|
26
|
Erickson RP. Current controversies in Niemann-Pick C1 disease: steroids or gangliosides; neurons or neurons and glia. J Appl Genet 2013; 54:215-24. [PMID: 23292954 DOI: 10.1007/s13353-012-0130-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 11/28/2022]
Abstract
There has been a recent explosion in research on Niemann-Pick type C disease. Much of the work has used mouse models or cells in culture to elucidate the pathophysiological mechanisms resulting in the phenotype of the disease. This work has generated several contrasting views on the mechanism, which are labeled 'controversies' here. In this review, two of these controversies are explored. The first concerns which stored materials are causative in the disease: cholesterol, gangliosides and sphingolipids, or something else? The second concerns which cells in the body require Npc1 in order to function properly: somatic cells, neurons only, or neurons and glia? For the first controversy, a clear answer has emerged. More research will be needed in order to definitively solve the second controversy.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073, USA.
| |
Collapse
|