1
|
Wu H, Fujioka Y, Iwai N, Sakaguchi S, Suzuki Y, Nakano T. The relation in MreB and intrabacterial nanotransportation system for VacA in Helicobacter pylori. Med Mol Morphol 2024:10.1007/s00795-024-00416-w. [PMID: 39704844 DOI: 10.1007/s00795-024-00416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Helicobacter pylori possesses an intrabacterial nanotransportation system (ibNoTS) for transporting VacA, CagA, and urease within the bacterial cytoplasm. This system is controlled by the extrabacterial environment. The transport routes of the system for VacA have not yet been studied in detail. In this study, we demonstrated by immunoelectron microscopy that VacA localizes closely with the MreB filament in the bacterium, and the MreB polymerization inhibitor A22 obstructs the transport of VacA by ibNoTS. These findings indicate that the route of ibNoTS for VacA is closely associated with the MreB filament Additionally, it was confirmed that VacA does not closely associate with the bacterial filament FtsZ, which is involved in the transport of the virulence factor urease, as previously suggested. We propose that the route of ibNoTS for VacA is associated with the MreB filament in H. pylori.
Collapse
Affiliation(s)
- Hong Wu
- Project Team for Study of Nanotransportation System, Center for Medical Research and Development, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan.
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Yoshihiko Fujioka
- Project Team for Study of Nanotransportation System, Center for Medical Research and Development, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| | - Noritaka Iwai
- Project Team for Study of Nanotransportation System, Center for Medical Research and Development, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| | - Takashi Nakano
- Project Team for Study of Nanotransportation System, Center for Medical Research and Development, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
2
|
Sittewelle M, Royle SJ. Passive diffusion accounts for the majority of intracellular nanovesicle transport. Life Sci Alliance 2024; 7:e202302406. [PMID: 37857498 PMCID: PMC10587482 DOI: 10.26508/lsa.202302406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
During membrane trafficking, a vesicle formed at the donor compartment must travel to the acceptor membrane before fusing. For large carriers, it is established that this transport is motor-driven; however, the mode by which small vesicles, which outnumber larger carriers, are transported is poorly characterized. Here, we show that intracellular nanovesicles (INVs), a substantial class of small vesicles, are highly mobile within cells and that this mobility depends almost entirely on passive diffusion (0.1-0.3 μm2 s-1). Using single particle tracking, we describe how other small trafficking vesicles have a similar diffusive mode of transport that contrasts with the motor-dependent movement of larger endolysosomal carriers. We also demonstrate that a subset of INVs is involved in exocytosis and that delivery of cargo to the plasma membrane during exocytosis is decreased when diffusion of INVs is specifically restricted. Our results suggest that passive diffusion is sufficient to explain the majority of small vesicle transport.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
3
|
Santalla Méndez R, Rodgers Furones A, Classens R, Fedorova K, Haverdil M, Canela Capdevila M, van Duffelen A, Spruijt CG, Vermeulen M, Ter Beest M, van Spriel AB, Querol Cano L. Galectin-9 interacts with Vamp-3 to regulate cytokine secretion in dendritic cells. Cell Mol Life Sci 2023; 80:306. [PMID: 37755527 PMCID: PMC10533640 DOI: 10.1007/s00018-023-04954-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Intracellular vesicle transport is essential for cellular homeostasis and is partially mediated by SNARE proteins. Endosomal trafficking to the plasma membrane ensures cytokine secretion in dendritic cells (DCs) and the initiation of immune responses. Despite its critical importance, the specific molecular components that regulate DC cytokine secretion are poorly characterised. Galectin-9, a ß-galactoside-binding protein, has emerged as a novel cellular modulator although its exact intracellular roles in regulating (immune) cell homeostasis and vesicle transport are virtually unknown. We investigated galectin-9 function in primary human DCs and report that galectin-9 is essential for intracellular cytokine trafficking to the cell surface. Galectin-9-depleted DCs accumulate cytokine-containing vesicles in the Golgi complex that eventually undergo lysosomal degradation. We observed galectin-9 to molecularly interact with Vamp-3 using immunoprecipitation-mass-spectrometry and identified galectin-9 was required for rerouting Vamp-3-containing endosomes upon DC activation as the underlying mechanism. Overall, this study identifies galectin-9 as a necessary mechanistic component for intracellular trafficking. This may impact our general understanding of vesicle transport and sheds new light into the multiple roles galectins play in governing cell function.
Collapse
Affiliation(s)
- Rui Santalla Méndez
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Andrea Rodgers Furones
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Kristina Fedorova
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Manon Haverdil
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Marta Canela Capdevila
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Anne van Duffelen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martin Ter Beest
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Annemiek B van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Laia Querol Cano
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
A multiscale model of the regulation of aquaporin 2 recycling. NPJ Syst Biol Appl 2022; 8:16. [PMID: 35534498 PMCID: PMC9085758 DOI: 10.1038/s41540-022-00223-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
The response of cells to their environment is driven by a variety of proteins and messenger molecules. In eukaryotes, their distribution and location in the cell are regulated by the vesicular transport system. The transport of aquaporin 2 between membrane and storage region is a crucial part of the water reabsorption in renal principal cells, and its malfunction can lead to Diabetes insipidus. To understand the regulation of this system, we aggregated pathways and mechanisms from literature and derived three models in a hypothesis-driven approach. Furthermore, we combined the models to a single system to gain insight into key regulatory mechanisms of Aquaporin 2 recycling. To achieve this, we developed a multiscale computational framework for the modeling and simulation of cellular systems. The analysis of the system rationalizes that the compartmentalization of cAMP in renal principal cells is a result of the protein kinase A signalosome and can only occur if specific cellular components are observed in conjunction. Endocytotic and exocytotic processes are inherently connected and can be regulated by the same protein kinase A signal.
Collapse
|
5
|
Schenk EB, Meunier FA, Oelz DB. Spatial redistribution of neurosecretory vesicles upon stimulation accelerates their directed transport to the plasma membrane. PLoS One 2022; 17:e0264521. [PMID: 35294476 PMCID: PMC8926195 DOI: 10.1371/journal.pone.0264521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
Through the integration of results from an imaging analysis of intracellular trafficking of labelled neurosecretory vesicles in chromaffin cells, we develop a Markov state model to describe their transport and binding kinetics. Our simulation results indicate that a spatial redistribution of neurosecretory vesicles occurs upon secretagogue stimulation leading vesicles to the plasma membrane where they undergo fusion thereby releasing adrenaline and noradrenaline. Furthermore, we find that this redistribution alone can explain the observed up-regulation of vesicle transport upon stimulation and its directional bias towards the plasma membrane. Parameter fitting indicates that in the deeper compartment within the cell, vesicle transport is asymmetric and characterised by a bias towards the plasma membrane.
Collapse
Affiliation(s)
- Elaine B. Schenk
- School of Mathematics & Physics, The University of Queensland, Brisbane, Australia
| | - Frederic A. Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Australia
| | - Dietmar B. Oelz
- School of Mathematics & Physics, The University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
6
|
Oelz DB. Quasi-steady-state reduction of a model for cytoplasmic transport of secretory vesicles in stimulated chromaffin cells. J Math Biol 2021; 82:29. [PMID: 33661393 DOI: 10.1007/s00285-021-01583-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/21/2021] [Accepted: 02/14/2021] [Indexed: 11/27/2022]
Abstract
Neurosecretory cells spatially redistribute their pool of secretory vesicles upon stimulation. Recent observations suggest that in chromaffin cells vesicles move either freely or in a directed fashion by what appears to be a conveyor belt mechanism. We suggest that this observation reflects the transient active transport through molecular motors along cytoskeleton fibres and quantify this effect using a 1D mathematical model that couples a diffusion equation to advection equations. In agreement with recent observations the model predicts that random motion dominates towards the cell centre whereas directed motion prevails in the region abutting the cortical membrane. Furthermore the model explains the observed bias of directed transport towards the periphery upon stimulation. Our model suggests that even if vesicle transport is indifferent with respect to direction, stimulation creates a gradient of free vesicles at first and this triggers the bias of transport in forward direction. Using matched asymptotic expansion we derive an approximate drift-diffusion type model that is capable of quantifying this effect. Based on this model we compute the characteristic time for the system to adapt to stimulation and we identify a Michaelis-Menten-type law describing the flux of vesicles entering the pathway to exocytosis.
Collapse
Affiliation(s)
- Dietmar B Oelz
- School of Mathematics and Physics, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
7
|
Wu H, Iwai N, Suzuki Y, Nakano T. Molecular association of FtsZ with the intrabacterial nanotransportation system for urease in Helicobacter pylori. Med Mol Morphol 2019; 52:226-234. [PMID: 31134430 DOI: 10.1007/s00795-019-00225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 11/26/2022]
Abstract
Helicobacter pylori possesses intrabacterial nanotransportation system (ibNoTS) for transporting CagA, VacA, and urease within the bacterial cytoplasm, which is controlled by the extrabacterial environment. The route of ibNoTS for CagA is reported to be associated with the MreB filament, whereas the route of ibNoTS for urease is not yet known. In this study, we demonstrated by immunoelectron microscopy that urease along the route of ibNoTS localizes closely with the FtsZ filament in the bacterium. Supporting this, we found by enzyme immunoassay and co-immunoprecipitation analysis that urease interacted with FtsZ. These findings indicate that urease along the route of ibNoTS is closely associated with the FtsZ filament. Since these phenomena were not observed in ibNoTS for CagA, the route of ibNoTS for CagA is different from that of ibNoTS for urease. We propose that the route of ibNoTS for urease is associated with the FtsZ filament in H. pylori.
Collapse
Affiliation(s)
- Hong Wu
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Noritaka Iwai
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Takashi Nakano
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
8
|
Mayorga LS, Cebrian I, Verma M, Hoops S, Bassaganya-Riera J. Reconstruction of endosomal organization and function by a combination of ODE and agent-based modeling strategies. Biol Direct 2018; 13:25. [PMID: 30621747 PMCID: PMC6883406 DOI: 10.1186/s13062-018-0227-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reproducing cell processes using an in silico system is an essential tool for understanding the underlying mechanisms and emergent properties of this extraordinary complex biological machine. However, computational models are seldom applied in the field of intracellular trafficking. In a cell, numerous molecular interactions occur on the surface or in the interior of membrane-bound compartments that continually change position and undergo dynamic processes of fusion and fission. At present, the available simulation tools are not suitable to develop models that incorporate the dynamic evolution of the cell organelles. RESULTS We developed a modeling platform combining Repast (Agent-Based Modeling, ABM) and COPASI (Differential Equations, ODE) that can be used to reproduce complex networks of molecular interactions. These interactions occur in dynamic cell organelles that change position and composition over the course of time. These two modeling strategies are fundamentally different and comprise of complementary capabilities. The ODEs can easily model the networks of molecular interactions, signaling cascades, and complex metabolic reactions. On the other hand, ABM software is especially suited to simulate the movement, interaction, fusion, and fission of dynamic organelles. We used the combined ABM-ODE platform to simulate the transport of soluble and membrane-associated cargoes that move along an endocytic route composed of early, sorting, recycling and late endosomes. We showed that complex processes that strongly depend on transport can be modeled. As an example, the hydrolysis of a GM2-like glycolipid was programmed by adding a trans-Golgi network compartment, lysosomal enzyme trafficking, endosomal acidification, and cholesterol processing to the simulation model. CONCLUSIONS The model captures the highly dynamic nature of cell compartments that fuse and divide, creating different conditions for each organelle. We expect that this modeling strategy will be useful to understand the logic underlying the organization and function of the endomembrane system. REVIEWERS This article was reviewed by Drs. Rafael Fernández-Chacón, James Faeder, and Thomas Simmen.
Collapse
Affiliation(s)
- Luis S Mayorga
- Facultad de Ciencias Médicas, Facultad de Ciencias Exactas y Naturales, IHEM (Universidad Nacional de Cuyo, CONICET), Casilla de Correo 56, 5500, Mendoza, Argentina.
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Facultad de Ciencias Exactas y Naturales, IHEM (Universidad Nacional de Cuyo, CONICET), Casilla de Correo 56, 5500, Mendoza, Argentina
| | - Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA.,Biocomplexity Institute and Initiative University of Virginia, 995 Research Park Boulevard, Charlottesville, VA, 22911, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
9
|
Mayorga LS, Verma M, Hontecillas R, Hoops S, Bassaganya-Riera J. Agents and networks to model the dynamic interactions of intracellular transport. CELLULAR LOGISTICS 2017; 7:e1392401. [PMID: 29296512 DOI: 10.1080/21592799.2017.1392401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023]
Abstract
Cell biology is increasingly evolving to become a more formal and quantitative science. The field of intracellular transport is no exception. However, it is extremely challenging to formulate mathematical and computational models for processes that involve dynamic structures that continuously change their shape, position and composition, leading to information transfer and functional outcomes. The two major strategies employed to represent intracellular trafficking are based on "ordinary differential equations" and "agent-" based modeling. Both approaches have advantages and drawbacks. Combinations of both modeling strategies have promising characteristics to generate meaningful simulations for intracellular transport and allow the formulation of new hypotheses and provide new insights. In the near future, cell biologists will encounter and hopefully overcome the challenge of translating descriptive cartoon representations of biological systems into mathematical network models.
Collapse
Affiliation(s)
- Luis S Mayorga
- IHEM (Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| | - Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
10
|
Li Y, Majarian TD, Naik AW, Johnson GR, Murphy RF. Point process models for localization and interdependence of punctate cellular structures. Cytometry A 2016; 89:633-43. [PMID: 27327612 DOI: 10.1002/cyto.a.22873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 11/08/2022]
Abstract
Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, 430079, China.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Timothy D Majarian
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Armaghan W Naik
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Gregory R Johnson
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Robert F Murphy
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213.,Departments of Biomedical Engineering and Machine Learning, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213.,Freiburg Institute for Advanced Studies and Faculty of Biology, Albert Ludwig University of Freiburg, Albertstrasse 19, 79104 Freiburg Im Breisgau, Germany
| |
Collapse
|
11
|
Schöneberg J, Heck M, Hofmann KP, Noé F. Explicit spatiotemporal simulation of receptor-G protein coupling in rod cell disk membranes. Biophys J 2015; 107:1042-1053. [PMID: 25185540 DOI: 10.1016/j.bpj.2014.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022] Open
Abstract
Dim-light vision is mediated by retinal rod cells. Rhodopsin (R), a G-protein-coupled receptor, switches to its active form (R(∗)) in response to absorbing a single photon and activates multiple copies of the G-protein transducin (G) that trigger further downstream reactions of the phototransduction cascade. The classical assumption is that R and G are uniformly distributed and freely diffusing on disk membranes. Recent experimental findings have challenged this view by showing specific R architectures, including RG precomplexes, nonuniform R density, specific R arrangements, and immobile fractions of R. Here, we derive a physical model that describes the first steps of the photoactivation cascade in spatiotemporal detail and single-molecule resolution. The model was implemented in the ReaDDy software for particle-based reaction-diffusion simulations. Detailed kinetic in vitro experiments are used to parametrize the reaction rates and diffusion constants of R and G. Particle diffusion and G activation are then studied under different conditions of R-R interaction. It is found that the classical free-diffusion model is consistent with the available kinetic data. The existence of precomplexes between inactive R and G is only consistent with the data if these precomplexes are weak, with much larger dissociation rates than suggested elsewhere. Microarchitectures of R, such as dimer racks, would effectively immobilize R but have little impact on the diffusivity of G and on the overall amplification of the cascade at the level of the G protein.
Collapse
Affiliation(s)
- Johannes Schöneberg
- Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany
| | - Martin Heck
- Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Berlin, Germany.
| | - Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Noé
- Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
12
|
Matsuzaki Y, Wu H, Nakano T, Nakahari T, Sano K. ATP-association to intrabacterial nanotransportation system in Vibrio cholerae. Med Mol Morphol 2015; 48:225-34. [PMID: 25986680 DOI: 10.1007/s00795-015-0105-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/01/2015] [Indexed: 12/12/2022]
Abstract
Vibrio cholerae colonizes the lumen of the proximal small intestine, which has an alkaline environment, and secretes cholera toxin (CT) through a type II secretion machinery. V. cholerae possesses the intrabacterial nanotransportation system (ibNoTS) for transporting CT from the inner portion toward the peripheral portion of the cytoplasm, and this system is controlled by extrabacterial pH. Association of ATP with ibNoTS has not yet been examined in detail. In this study, we demonstrated by immunoelectron microscopy that ibNoTS of V. cholerae under the extrabacterial alkaline condition was inhibited by ATP inhibitors, 2,4-dinitrophenol (DNP), a protonophore, or 8-amino-adenosine which produces inactive form of ATP. The inhibition of CT transport can be reversed by neutralization of DNP. Those inhibitions were associated with decrease of CT secretion by which ibNoTS followed. We propose that ATP closely associates with V. cholerae ibNoTS for transporting CT.
Collapse
Affiliation(s)
- Yuji Matsuzaki
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
| | - Hong Wu
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
| | - Takashi Nakahari
- Department of Physiology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kouichi Sano
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan.
| |
Collapse
|
13
|
Ramakrishnan N, Ipsen JH, Rao M, Kumar PBS. Organelle morphogenesis by active membrane remodeling. SOFT MATTER 2015; 11:2387-2393. [PMID: 25672939 DOI: 10.1039/c4sm02311k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Intracellular organelles are subject to a steady flux of lipids and proteins through active, energy consuming transport processes. Active fission and fusion are promoted by GTPases, e.g., Arf-Coatamer and the Rab-Snare complexes, which both sense and generate local membrane curvature. Here we investigate, through Dynamical Triangulation Monte Carlo simulations, the role that these active processes play in determining the morphology and composition segregation in closed membranes. We find that the steady state shapes obtained as a result of such active processes, bear a striking resemblance to the ramified morphologies of organelles in vivo, pointing to the relevance of nonequilibrium fission-fusion in organelle morphogenesis.
Collapse
Affiliation(s)
- N Ramakrishnan
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | | | |
Collapse
|
14
|
Schöneberg J, Ullrich A, Noé F. Simulation tools for particle-based reaction-diffusion dynamics in continuous space. BMC BIOPHYSICS 2014; 7:11. [PMID: 25737778 PMCID: PMC4347613 DOI: 10.1186/s13628-014-0011-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022]
Abstract
Particle-based reaction-diffusion algorithms facilitate the modeling of the diffusional motion of individual molecules and the reactions between them in cellular environments. A physically realistic model, depending on the system at hand and the questions asked, would require different levels of modeling detail such as particle diffusion, geometrical confinement, particle volume exclusion or particle-particle interaction potentials. Higher levels of detail usually correspond to increased number of parameters and higher computational cost. Certain systems however, require these investments to be modeled adequately. Here we present a review on the current field of particle-based reaction-diffusion software packages operating on continuous space. Four nested levels of modeling detail are identified that capture incrementing amount of detail. Their applicability to different biological questions is discussed, arching from straight diffusion simulations to sophisticated and expensive models that bridge towards coarse grained molecular dynamics.
Collapse
Affiliation(s)
- Johannes Schöneberg
- Department of Mathematics, Computer Science and Bioinformatics, Free University Berlin, Arnimallee 6 14195, Berlin, Germany
| | - Alexander Ullrich
- Department of Mathematics, Computer Science and Bioinformatics, Free University Berlin, Arnimallee 6 14195, Berlin, Germany
| | - Frank Noé
- Department of Mathematics, Computer Science and Bioinformatics, Free University Berlin, Arnimallee 6 14195, Berlin, Germany
| |
Collapse
|
15
|
Krutetskaya ZI, Kurilova LS, Naumova AA, Antonov VG, Nozdrachev AD. Involvement of small G proteins and vesicle traffic in the glutoxim and molixan effects on the intracellular Ca(2+) concentration in macrophages. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2014; 457:252-4. [PMID: 25172594 DOI: 10.1134/s0012496614040036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Indexed: 11/22/2022]
Affiliation(s)
- Z I Krutetskaya
- St. Petersburg State University, St. Petersburg, 199034, Russia,
| | | | | | | | | |
Collapse
|
16
|
Koon YL, Koh CG, Chiam KH. Computational modeling reveals optimal strategy for kinase transport by microtubules to nerve terminals. PLoS One 2014; 9:e92437. [PMID: 24691408 PMCID: PMC3972164 DOI: 10.1371/journal.pone.0092437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/22/2014] [Indexed: 12/22/2022] Open
Abstract
Intracellular transport of proteins by motors along cytoskeletal filaments is crucial to the proper functioning of many eukaryotic cells. Since most proteins are synthesized at the cell body, mechanisms are required to deliver them to the growing periphery. In this article, we use computational modeling to study the strategies of protein transport in the context of JNK (c-JUN NH2-terminal kinase) transport along microtubules to the terminals of neuronal cells. One such strategy for protein transport is for the proteins of the JNK signaling cascade to bind to scaffolds, and to have the whole protein-scaffold cargo transported by kinesin motors along microtubules. We show how this strategy outperforms protein transport by diffusion alone, using metrics such as signaling rate and signal amplification. We find that there exists a range of scaffold concentrations for which JNK transport is optimal. Increase in scaffold concentration increases signaling rate and signal amplification but an excess of scaffolds results in the dilution of reactants. Similarly, there exists a range of kinesin motor speeds for which JNK transport is optimal. Signaling rate and signal amplification increases with kinesin motor speed until the speed of motor translocation becomes faster than kinase/scaffold-motor binding. Finally, we suggest experiments that can be performed to validate whether, in physiological conditions, neuronal cells do indeed adopt such an optimal strategy. Understanding cytoskeletal-assisted protein transport is crucial since axonal and cell body accumulation of organelles and proteins is a histological feature in many human neurodegenerative diseases. In this paper, we have shown that axonal transport performance changes with altered transport component concentrations and transport speeds wherein these aspects can be modulated to improve axonal efficiency and prevent or slowdown axonal deterioration.
Collapse
Affiliation(s)
- Yen Ling Koon
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Cheng Gee Koh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Keng-Hwee Chiam
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- A*STAR Bioinformatics Institute, Singapore, Singapore
- * E-mail:
| |
Collapse
|
17
|
Roberts E. Cellular and molecular structure as a unifying framework for whole-cell modeling. Curr Opin Struct Biol 2014; 25:86-91. [PMID: 24509245 DOI: 10.1016/j.sbi.2014.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Whole-cell modeling has the potential to play a major role in revolutionizing our understanding of cellular biology over the next few decades. A computational model of the entire cell would allow cellular biologists to integrate data from many disparate sources in a single consistent framework. Such a comprehensive model would be useful both for hypothesis testing and in the discovery of new behaviors that emerge from complex biological networks. Cellular and molecular structure can and should be a key organizing principle in a whole-cell model, connecting models across time and length scales in a multiscale approach. Here I present a summary of recent research centered around using molecular and cellular structure to model the behavior of cells.
Collapse
Affiliation(s)
- Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
18
|
Boas SEM, Merks RMH. Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation. J R Soc Interface 2014; 11:20131049. [PMID: 24430123 PMCID: PMC3899873 DOI: 10.1098/rsif.2013.1049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A key step in blood vessel development (angiogenesis) is lumen formation: the hollowing of vessels for blood perfusion. Two alternative lumen formation mechanisms are suggested to function in different types of blood vessels. The vacuolation mechanism is suggested for lumen formation in small vessels by coalescence of intracellular vacuoles, a view that was extended to extracellular lumen formation by exocytosis of vacuoles. The cell–cell repulsion mechanism is suggested to initiate extracellular lumen formation in large vessels by active repulsion of adjacent cells, and active cell shape changes extend the lumen. We used an agent-based computer model, based on the cellular Potts model, to compare and study both mechanisms separately and combined. An extensive sensitivity analysis shows that each of the mechanisms on its own can produce lumens in a narrow region of parameter space. However, combining both mechanisms makes lumen formation much more robust to the values of the parameters, suggesting that the mechanisms may work synergistically and operate in parallel, rather than in different vessel types.
Collapse
Affiliation(s)
- Sonja E M Boas
- Life Sciences Group, Centrum Wiskunde and Informatica (CWI), , Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Krutetskaya ZI, Kurilova LS, Antonov VG, Nozdrachev AD. Involvement of microtubules in the effects of glutoxim and molixan on the intracellular concentration of Ca(2+) in macrophages. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 451:196-8. [PMID: 23975455 DOI: 10.1134/s0012496613040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 11/23/2022]
|
20
|
Klann M, Koeppl H. Reaction schemes, escape times and geminate recombinations in particle-based spatial simulations of biochemical reactions. Phys Biol 2013; 10:046005. [DOI: 10.1088/1478-3975/10/4/046005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Abstract
Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion pattern called cytoplasmic streaming or cyclosis. This streaming enables the active and passive transport of molecules and organelles between cellular compartments. Furthermore, the fusion and budding of vesicles with and from the plasma membrane (exo/endocytosis) allow for transport of material between the inside and the outside of the cell. In the pollen tube, cytoplasmic streaming and exo/endocytosis are very active and fulfill several different functions. In this review, we focus on the logistics of intracellular motion and transport processes as well as their biophysical underpinnings. We discuss various modeling attempts that have been performed to understand both long-distance shuttling and short-distance targeting of organelles. We show how the combination of mechanical and mathematical modeling with cell biological approaches has contributed to our understanding of intracellular transport logistics.
Collapse
Affiliation(s)
- Youssef Chebli
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
22
|
Bian S, Navaratnam D, Santos-Sacchi J. Real time measures of prestin charge and fluorescence during plasma membrane trafficking reveal sub-tetrameric activity. PLoS One 2013; 8:e66078. [PMID: 23762468 PMCID: PMC3677934 DOI: 10.1371/journal.pone.0066078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Prestin (SLC26a5) is the outer hair cell integral membrane motor protein that drives cochlear amplification, and has been described as an obligate tetramer. We studied in real time the delivery of YFP-prestin to the plasma membrane of cells from a tetracycline-inducible cell line. Following the release of temperature block to reinstate trans Golgi network delivery of the integral membrane protein, we measured nonlinear capacitance (NLC) and membrane fluorescence during voltage clamp. Prestin was delivered exponentially to the plasma membrane with a time constant of less than 10 minutes, with both electrical and fluorescence methods showing high temporal correlation. However, based on disparity between estimates of prestin density derived from either fluorescence or NLC, we conclude that sub-tetrameric forms of prestin contribute to our electrical and fluorescence measures. Thus, in agreement with previous observations we find that functional prestin is not an obligate tetramer.
Collapse
Affiliation(s)
- Shumin Bian
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dhasakumar Navaratnam
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joseph Santos-Sacchi
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Motivation: Cellular signal transduction involves spatial–temporal dynamics and often stochastic effects due to the low particle abundance of some molecular species. Others can, however, be of high abundances. Such a system can be simulated either with the spatial Gillespie/Stochastic Simulation Algorithm (SSA) or Brownian/Smoluchowski dynamics if space and stochasticity are important. To combine the accuracy of particle-based methods with the superior performance of the SSA, we suggest a hybrid simulation. Results: The proposed simulation allows an interactive or automated switching for regions or species of interest in the cell. Especially we see an application if for instance receptor clustering at the membrane is modeled in detail and the transport through the cytoplasm is included as well. The results show the increase in performance of the overall simulation, and the limits of the approach if crowding is included. Future work will include the development of a GUI to improve control of the simulation. Availability of Implementation:www.bison.ethz.ch/research/spatial_simulations. Contact:mklann@ee.ethz.ch or koeppl@ethz.ch Supplementary/Information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michael Klann
- BISON Group, Automatic Control Lab, ETH Zurich, Switzerland
| | | | | |
Collapse
|
24
|
Bressloff PC. Two-pool model of cooperative vesicular transport. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031911. [PMID: 23030948 DOI: 10.1103/physreve.86.031911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Indexed: 06/01/2023]
Abstract
We present a model of bidirectional vesicular transport between two intracellular organelles, which takes into account intermediate stages of transport that occur between vesicular budding from one organelle and subsequent fusion with the other organelle. These are incorporated into the model by associating with each organelle a donor pool of newly budded vesicles and an acceptor pool of transported vesicles ready for fusion. By constructing a system of differential equations that keeps track of the distribution of vesicles and protein concentrations within the various pools and along cytoskeletal tracks, we show how a stable steady state can emerge that consists of organelles that maintain different protein concentrations in spite of the continuous exchange of materials. In particular, exploiting the fact that the surface area of individual vesicles is much smaller than the surface area of organelles, we use an adiabatic approximation to eliminate the vesicular variables. This results in a major simplification of the dynamics and provides a systematic procedure for deriving phenomenological models of cooperative transport.
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA
| |
Collapse
|
25
|
From microscopy data to in silico environments for in vivo-oriented simulations. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2012; 2012:7. [PMID: 22734658 PMCID: PMC3698665 DOI: 10.1186/1687-4153-2012-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 06/26/2012] [Indexed: 12/28/2022]
Abstract
ABSTRACT : In our previous study, we introduced a combination methodology of Fluorescence Correlation Spectroscopy (FCS) and Transmission Electron Microscopy (TEM), which is powerful to investigate the effect of intracellular environment to biochemical reaction processes. Now, we developed a reconstruction method of realistic simulation spaces based on our TEM images. Interactive raytracing visualization of this space allows the perception of the overall 3D structure, which is not directly accessible from 2D TEM images. Simulation results show that the diffusion in such generated structures strongly depends on image post-processing. Frayed structures corresponding to noisy images hinder the diffusion much stronger than smooth surfaces from denoised images. This means that the correct identification of noise or structure is significant to reconstruct appropriate reaction environment in silico in order to estimate realistic behaviors of reactants in vivo. Static structures lead to anomalous diffusion due to the partial confinement. In contrast, mobile crowding agents do not lead to anomalous diffusion at moderate crowding levels. By varying the mobility of these non-reactive obstacles (NRO), we estimated the relationship between NRO diffusion coefficient (Dnro) and the anomaly in the tracer diffusion (α). For Dnro=21.96 to 44.49 μm2/s, the simulation results match the anomaly obtained from FCS measurements. This range of the diffusion coefficient from simulations is compatible with the range of the diffusion coefficient of structural proteins in the cytoplasm. In addition, we investigated the relationship between the radius of NRO and anomalous diffusion coefficient of tracers by the comparison between different simulations. The radius of NRO has to be 58 nm when the polymer moves with the same diffusion speed as a reactant, which is close to the radius of functional protein complexes in a cell.
Collapse
|
26
|
Klann M, Koeppl H. Spatial simulations in systems biology: from molecules to cells. Int J Mol Sci 2012; 13:7798-7827. [PMID: 22837728 PMCID: PMC3397560 DOI: 10.3390/ijms13067798] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 12/23/2022] Open
Abstract
Cells are highly organized objects containing millions of molecules. Each biomolecule has a specific shape in order to interact with others in the complex machinery. Spatial dynamics emerge in this system on length and time scales which can not yet be modeled with full atomic detail. This review gives an overview of methods which can be used to simulate the complete cell at least with molecular detail, especially Brownian dynamics simulations. Such simulations require correct implementation of the diffusion-controlled reaction scheme occurring on this level. Implementations and applications of spatial simulations are presented, and finally it is discussed how the atomic level can be included for instance in multi-scale simulation methods.
Collapse
Affiliation(s)
- Michael Klann
- Authors to whom correspondence should be addressed; E-Mails: (M.K.); (H.K.); Tel.: +41-44-632-4274 (M.K.); +41-44-632-7288 (H.K.); Fax: +41-44-632-1211 (M.K.; H.K.)
| | - Heinz Koeppl
- Authors to whom correspondence should be addressed; E-Mails: (M.K.); (H.K.); Tel.: +41-44-632-4274 (M.K.); +41-44-632-7288 (H.K.); Fax: +41-44-632-1211 (M.K.; H.K.)
| |
Collapse
|