1
|
Sessa L, Oberti H, Abreo E, Pedrini N. Beauveria bassiana transcriptomics reveal virulence-associated shifts during insect lipid assimilation. Appl Microbiol Biotechnol 2024; 108:23. [PMID: 38159119 DOI: 10.1007/s00253-023-12898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
Insect cuticular lipids, especially epicuticular hydrocarbons (CHC), have a significant role in insect ecology and interactions with other organisms, including fungi. The CHC composition of a specific insect species may influence the outcome of the interaction with a specific fungal strain. Some insects, such as Piezodorus guildinii, have low susceptibility towards fungal infections seemingly due to their CHC composition. The entomopathogenic fungus Beauveria bassiana can assimilate CHC and incorporate them as building blocks via cytochrome P450 monooxygenases (CYPs). However, little is known about other enzymes that promote the degradation/assimilation of these cuticular components. In this study, we performed a transcriptomic analysis to evaluate the in vitro response of two virulence-contrasting B. bassiana strains when grown on three different P. guildinii CHC sources. We found a different expression profile of virulence-related genes, as well as different GO and KEGG parameters enriched at 4 days post-inoculation, which could help account for the intrinsic virulence and for an alkane-priming virulence enhancement effect. The hypovirulent strain predominantly showed higher expression of cuticle penetration genes, including chitinases, proteases, and CYPs, with GO term categories of "heme binding," "monooxygenase activity," and "peroxisome" pathways enriched. The hypervirulent strain showed higher expression of cell wall remodeling and cell cycle genes, and cuticle adhesion and a distinct set of CYPs, with GO categories of "DNA-binding transcription factor activity" and KEGG pathways corresponding to "meiosis-yeast" and "cell cycle" enriched. These results suggest a delay and alternate routes in pathogenicity-related metabolism in the hypovirulent strain in comparison with the hypervirulent strain. KEY POINTS: •Transcriptomics of two B. bassiana strains grown in P. guildinii cuticular components •Virulence-related genes correlated with virulence enhancement towards P. guildinii •Differentially expressed genes, GOs and KEGGs showed different metabolic timelines associated with virulence.
Collapse
Affiliation(s)
- Lucia Sessa
- Laboratorio de Bioproducción, Plataforma de Bioinsumos. Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km, 10, Canelones, Uruguay
| | - Héctor Oberti
- Laboratorio de Bioproducción, Plataforma de Bioinsumos. Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km, 10, Canelones, Uruguay
| | - Eduardo Abreo
- Laboratorio de Bioproducción, Plataforma de Bioinsumos. Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km, 10, Canelones, Uruguay.
| | - Nicolas Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
2
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
3
|
Pákozdi K, Emri T, Antal K, Pócsi I. Global Transcriptomic Changes Elicited by sodB Deletion and Menadione Exposure in Aspergillus nidulans. J Fungi (Basel) 2023; 9:1060. [PMID: 37998866 PMCID: PMC10671992 DOI: 10.3390/jof9111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Manganese superoxide dismutases (MnSODs) play a pivotal role in the preservation of mitochondrial integrity and function in fungi under various endogenous and exogenous stresses. Deletion of Aspergillus nidulans mnSOD/SodB increased oxidative stress sensitivity and apoptotic cell death rates as well as affected antioxidant enzyme and sterigmatocystin productions, respiration, conidiation and the stress tolerance of conidiospores. The physiological consequences of the lack of sodB were more pronounced during carbon starvation than in the presence of glucose. Lack of SodB also affected the changes in the transcriptome, recorded by high-throughput RNA sequencing, in menadione sodium bisulfite (MSB)-exposed, submerged cultures supplemented with glucose. Surprisingly, the difference between the global transcriptional changes of the ΔsodB mutant and the control strain were relatively small, indicating that the SodB-dependent maintenance of mitochondrial integrity was not essential under these experimental conditions. Owing to the outstanding physiological flexibility of the Aspergilli, certain antioxidant enzymes and endogenous antioxidants together with the reduction in mitochondrial functions compensated well for the lack of SodB. The lack of sodB reduced the growth of surface cultures more than of the submerged culture, which should be considered in future development of fungal disinfection methods.
Collapse
Affiliation(s)
- Klaudia Pákozdi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary;
- HUN-REN–UD Fungal Stress Biology Research Group, H-4032 Debrecen, Hungary
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary;
- HUN-REN–UD Fungal Stress Biology Research Group, H-4032 Debrecen, Hungary
| | - Károly Antal
- Department of Zoology, Eszterházy Károly Catholic University, H-3300 Eger, Hungary;
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary;
- HUN-REN–UD Fungal Stress Biology Research Group, H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Hu SJ, Zheng H, Li XP, Li ZX, Xu C, Li J, Liu JH, Hu WX, Zhao XY, Wang JJ, Qiu L. Ada2 and Ada3 Regulate Hyphal Growth, Asexual Development, and Pathogenicity in Beauveria bassiana by Maintaining Gcn5 Acetyltransferase Activity. Microbiol Spectr 2023; 11:e0028123. [PMID: 37052485 PMCID: PMC10269768 DOI: 10.1128/spectrum.00281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
The histone acetyltransferase (HAT) Gcn5 ortholog is essential for a variety of fungi. Here, we characterize the roles of Ada2 and Ada3, which are functionally linked to Gcn5, in the insect-pathogenic fungus Beauveria bassiana. Loss of Ada2 and Ada3 led to severe hyphal growth defects on rich and minimal media and drastic decreases in blastospore yield and conidiation capacity, with abnormal conidia-producing structures. ΔAda2 and ΔAda3 exhibited a delay in conidial germination and increased sensitivity to multiple chemical stresses and heat shock. Nearly all their pathogenicity was lost, and their ability to secrete extracellular enzymes, Pr1 proteases and chitinases for cuticle degradation was reduced. A yeast two-hybrid assay demonstrated that Ada2 binds to Ada3 and directly interacts with Gcn5, confirming the existence of a yeast-like Ada3-Ada2-Gcn5 HAT complex in this fungus. Additionally, deletion of the Ada genes reduced the activity of Gcn5, especially in the ΔAda2 strain, which was consistent with the acetylation level of histone H3 determined by Western blotting. These results illustrate the dependence of Gcn5 enzyme activity on Ada2 and Ada3 in fungal hyphal growth, asexual development, multiple stress responses, and pathogenicity in B. bassiana. IMPORTANCE The histone acetyltransferase Gcn5 ortholog contributes significantly to the growth and development of various fungi. In this study, we found that Ada2 and Ada3 have critical regulatory effects on Gcn5 enzyme activity and influence the acetylation of histone H3. Deletion of Ada2 or Ada3 decreased the fungal growth rate and asexual conidial yield and increased susceptibility to multiple stresses in Beauveria bassiana. Importantly, Ada genes are vital virulence factors, and their deletion caused the most virulence loss, mainly by inhibiting the activity of a series of hydrolytic enzymes and the dimorphic transition ability. These findings provide a new perspective on the function of the Gcn5 acetyltransferase complex in pathogens.
Collapse
Affiliation(s)
- Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Hao Zheng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin-Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zhi-Xing Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chao Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jia-Hua Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Wen-Xiao Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xian-Yan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
5
|
Luo Y, Yan X, Xia Y, Cao Y. Tetracarboxylic acid transporter regulates growth, conidiation, and carbon utilization in Metarhizium acridum. Appl Microbiol Biotechnol 2023; 107:2969-2982. [PMID: 36941435 DOI: 10.1007/s00253-023-12471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Carbon sources and their utilization are vital for fungal growth and development. C4-dicarboxylic acids are important carbon and energy sources that function as intermediate products of the tricarboxylic acid cycle. Transport and regulation of C4-dicarboxylic acid uptake are mainly dependent on tetracarboxylic acid transporters (Dcts) in many microbes, although the roles of Dct genes in fungi have only been partially characterized. Here, we report on the functions of two Dct genes (Dct1 and Dct2) in the entomopathogenic fungus Metarhizium acridum. Our data showed that loss of the MaDct1 gene affected utilization of tetracarboxylic acids and other carbon sources. ΔMaDct1 mutants showed larger colony sizes with extensive mycelial growth but were delayed in conidiation with decreased conidia yield as compared to the wild-type parental strain. On the nutrient-deficient medium, SYA, the wild-type strain produced microcycle conidia, whereas the ΔMaDct1 mutant produced (normal) aerial conidia. In addition, ΔMaDct1 had decreased tolerance to cell wall perturbing agents, but increased tolerances to UV-B radiation and osmotic stress. Insect bioassays indicated that loss of MaDct1 did not affect pathogenicity. In contrast, no distinct phenotypic change was observed for the MaDct2 mutant in terms of growth and biocontrol characteristics. Transcriptomic profiling between wild type and ΔMaDct1 showed that differentially expressed genes were enriched in carbohydrate and amino acid metabolism, transport and catabolism, and signal transduction. These results demonstrate that MaDct1 regulates the conidiation pattern shift and mycelial growth by affecting utilization of carbon sources. These findings are helpful for better understanding the effect of intermediates of carbon metabolism on fungal growth and conidiation. KEY POINTS: • MaDct1 influences fungal growth and conidiation by affecting carbon source utilization. • MaDct1 regulates conidiation pattern shift under nutrient deficiency condition. • MaDct1 is involved in stress tolerance and has no effect on virulence. • MaDct2 has no effect on growth and biocontrol characteristic.
Collapse
Affiliation(s)
- Yunxiao Luo
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
| | - Xi Yan
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China.
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China.
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, 401331, People's Republic of China.
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China.
| |
Collapse
|
6
|
Mohamed RA, Guo CT, Xu SY, Ying SH, Feng MG. Characterization of BbKlf1 as a novel transcription factor vital for asexual and infection cycles of Beauveria bassiana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:719-731. [PMID: 35851566 DOI: 10.1111/1758-2229.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The large family of C2H2-type zinc finger transcription factors (TFs) comprise the Kruppel-like factors (KLFs) that evolved relatively late in eukaryotes but remain unexplored in filamentous fungi. Here, we report that an orthologue (BbKlf1) of yeast Klf1 mediating cell wall integrity (CWI) is a wide-spectrum TF evidently localized in nucleus and cytoplasm in Beauveria bassiana. BbKlf1 features conserved domains and multiple DNA-binding motifs predicted to bind multiple promoter DNA fragments of target genes across asexual developmental and stress-responsive pathways. Despite limited impact on normal colony growth, deletion of Bbklf1 resulted in impaired CWI and hypersensitivity to Congo red-induced cell wall stress. Also, the deletion mutant was severely compromised in tolerance to oxidative and osmotic stresses, hyphal septation and differentiation, conidiation capacity (reduced by 95%), conidial quality (viability and hydrocarbon epitope pattern) and virulence. Importantly, these phenotypes correlated well with sharply repressed or nearly abolished expressions of those genes required for or involved in chitin biosynthesis, antioxidant activity, cell division and differentiation, aerial conidiation and conidial maturation. These findings indicate an essentiality of BbKlf1 for the asexual and insect-pathogenic lifecycles of B. bassiana and a novel scenario much beyond the yeast orthologue-mediated CWI, suggesting important roles of its orthologues in filamentous fungi.
Collapse
Affiliation(s)
- Rehab Abdelmonem Mohamed
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong-Tao Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
FluG and FluG-like FlrA Coregulate Manifold Gene Sets Vital for Fungal Insect-Pathogenic Lifestyle but Not Involved in Asexual Development. mSystems 2022; 7:e0031822. [PMID: 35862810 PMCID: PMC9426541 DOI: 10.1128/msystems.00318-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The central developmental pathway (CDP) activator gene brlA is activated by the upstream genes fluG and flbA–flbE in Aspergillus nidulans. Increasing evidences of fungal genome divergence make it necessary to clarify whether such genetic principles fit Pezizomycotina. Previously, fluG disruption resulted in limited conidiation defect and little effect on the expression of brlA and flbA–flbE in Beauveria bassiana possessing the other FluG-like regulator FlrA. Here, single-disruption (SD) mutants of flrA and double-disruption (DD) mutants of flrA and fluG were analyzed to clarify whether FlrA and FluG are upstream regulators of key CDP genes. Despite similar subcellular localization, no protein-protein interaction was detected between FlrA and FluG, suggesting mutual independence. Three flrA SD mutants showed phenotypes similar to those previously described for ΔfluG, including limited conidiation defect, facilitated blastospore production, impaired spore quality, blocked host infection, delayed proliferation in vivo, attenuated virulence, and increased sensitivities to multiple stresses. Three DD mutants resembled the SD mutants in all phenotypes except more compromised pathogenicity and tolerance to heat shock- or calcofluor white-induced stress. No CDP gene appeared in 1,622 and 2,234 genes dysregulated in the ΔflrA and ΔfluG mutants, respectively. The majority (up/down ratio: 540:875) of those dysregulated genes were co-upregulated or co-downregulated at similar levels in the two mutants. These findings unravel novel roles for flrA and fluG in coregulating manifold gene sets vital for fungal adaptation to insect-pathogenic lifestyle and environment but not involved in CDP activation. IMPORTANCE FluG is a core regulator upstream of central developmental pathway (CDP) in Aspergillus nidulans but multiple FluG-like regulators (FLRs) remain functionally uncharacterized in ascomycetes. Our previous study revealed no role for FluG in the CDP activation and an existence of sole FLR (FlrA) in an insect-pathogenic fungus. This study reveals a similarity of FlrA to FluG in domain architecture and subcellular localization. Experimental data from analyses of targeted single- and double-gene knockout mutants demonstrate similar roles of FrlA and FluG in stress tolerance and infection cycle but no role of either in CDP activation. Transcriptomic analyses reveal that FlrA and FluG coregulate a large number of same genes at similar levels. However, the regulated genes include no key CDP gene. These findings uncover that FlrA and FluG play similar roles in the fungal adaptation to insect-pathogenic lifestyle and environment but no role in the activation of CDP.
Collapse
|
8
|
Mou YN, Ren K, Tong SM, Ying SH, Feng MG. Fungal insecticidal activity elevated by non-risky markerless overexpression of an endogenous cysteine-free protein gene in Beauveria bassiana. PEST MANAGEMENT SCIENCE 2022; 78:3164-3172. [PMID: 35470955 DOI: 10.1002/ps.6946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fungal insecticides are notorious for slow kill action, an intrinsic trait that can be improved by the genetic engineering of an exogenous or endogenous virulence factor. However, transgenic insecticides expressing exogenous toxin and herbicide-resistant marker genes may cause unexpected ecological risks and are hardly permitted for field release due to strict regulatory hurdles. It is necessary to improve biotechnology that can speed up fungal insect-killing action and exclude ecological risk source. RESULTS A markerless transformation system of Beauveria bassiana, a main source of wide-spectrum fungal insecticides, was reconstructed based on the fungal uridine auxotrophy (Δura3). The system was applied for overexpression of the small cysteine-free protein (120 amino acids) gene cfp previously characterized as a regulator of the fungal virulence and gene expression. Three cfp-overexpressed strains showed much faster kill action to Galleria mellonella larvae than the parental wild-type via normal cuticle infection but no change in vegetative growth and aerial condition. The faster kill action was achieved due to not only significant increases in conidial adherence to insect cuticle and total activity of secreted cuticle-degrading Pr1 proteases and of antioxidant enzymes crucial for collapse of insect immune defense but acceleration of hemocoel localization, proliferation in vivo and host death from mummification. CONCLUSION The markerless system is free of any foreign DNA fragment as a source of ecologic risk and provides a novel biotechnological approach to enhancing fungal insecticidal activity with non-risky endogenous genes and striding over the regulatory hurdles. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya-Ni Mou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kang Ren
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sen-Miao Tong
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Liu X, Miao Q, Zhou Z, Lu S, Li J. Identification of Three Novel Conidiogenesis-Related Genes in the Nematode-Trapping Fungus Arthrobotrys oligospora. Pathogens 2022; 11:pathogens11070717. [PMID: 35889964 PMCID: PMC9324328 DOI: 10.3390/pathogens11070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
For filamentous fungi, conidiogenesis is the most common reproductive strategy for environmental dispersal, invasion, and proliferation. Understanding the molecular mechanisms controlling conidiation and increasing conidium yield may provide promising applications in commercial development in the future for nematode-trapping fungi. However, the molecular mechanism for regulating conidium production of filamentous fungi is not fully understood. In this study, we characterized three novel conidiogenesis-related genes via gene knockout in A. oligospora. The absence of the genes AoCorA and AoRgsD caused significant increases in conidia production, while the absence of AoXlnR resulted in a decrease in conidiogenesis. Moreover, we characterized the ortholog of AbaA, a well-known conidiogenesis-related gene in Aspergillus nidulans. The deletion of AoAbaA not only completely abolished conidium production but also affected the production of nematode-trapping traps.
Collapse
|
10
|
Differential Roles of Three α-Crystallin Domain-Containing sHsps of Beauveria bassiana in Asexual Development, Multiple Stress Tolerance and Virulence. Int J Mol Sci 2022; 23:ijms23126717. [PMID: 35743166 PMCID: PMC9224193 DOI: 10.3390/ijms23126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Small heat shock proteins (sHsps) containing conserved α-crystallin domain play important roles in many cellular processes, but little is known about the functions of sHsps in filamentous entomopathogens. Here, three sHsps of Hsp20, Hsp30a, and Hsp30b were characterized in Beauveria bassiana, a filamentous fungal insect pathogen that serves as the main source of wide-spectrum fungal insecticides. The results demonstrated that these three genes are interrelated at the transcriptional level under normal and heat-shocked conditions. Meanwhile, all the deletion mutants showed significant but differential changes in cell wall integrity, antioxidant activity, hyphal tolerance to carbendazim fungicide, conidial tolerance to 45 °C wet heat and virulence. However, only Δhsp30b showed growth defects on rich and minimal media at 25 °C and Δhsp30a displayed the reduction in conidiophores and conidia. Moreover, the single deletion of hsp30a and hsp30b caused the decreases in hyphal growth at 34 °C and conidial tolerance to UV-B irradiation. Our findings provide a global insight into vital roles of hsp20, hsp30a, and hsp30b in asexual development, environmental adaptation, and fungal virulence of B. bassiana.
Collapse
|
11
|
Guan Y, Wang D, Lin X, Li X, Lv C, Wang D, Zhang L. Unveiling a Novel Role of Cdc42 in Pyruvate Metabolism Pathway to Mediate Insecticidal Activity of Beauveria bassiana. J Fungi (Basel) 2022; 8:jof8040394. [PMID: 35448625 PMCID: PMC9031566 DOI: 10.3390/jof8040394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The small GTPase Cdc42 acts as a molecular switch essential for cell cycles and polar growth in model yeast, but has not been explored in Beaurveria bassiana, an insect-pathogenic fungus serving as a main source of fungal formulations against arthropod pests. Here, we show the indispensability of Cdc42 for fungal insecticidal activity. Deletion of cdc42 in B. bassiana resulted in a great loss of virulence to Galleria mellonella, a model insect, via normal cuticle infection as well as defects in conidial germination, radial growth, aerial conidiation, and conidial tolerance to heat and UVB irradiation. The deleted mutant’s hyphae formed fewer or more septa and produced unicellular blastospores with disturbed cell cycles under submerged-culture conditions. Transcriptomic analysis revealed differential expression of 746 genes and dysregulation of pyruvate metabolism and related pathways, which were validated by marked changes in intracellular pyruvate content, ATP content, related enzyme activities, and in extracellular beauvericin content and Pr1 protease activity vital for fungal virulence. These findings uncover a novel role for Cdc42 in the pathways of pyruvate metabolism and the pyruvate-involved tricarboxylic acid cycle (TCA cycle) and a linkage of the novel role with its indispensability for the biological control potential of B. bassiana against arthropod pests.
Collapse
Affiliation(s)
- Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
- Correspondence: (Y.G.); (L.Z.)
| | - Donghuang Wang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Xiaofeng Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Xin Li
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Chao Lv
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Dingyi Wang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China;
| | - Longbin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
- Correspondence: (Y.G.); (L.Z.)
| |
Collapse
|
12
|
Song L, Xue X, Wang S, Li J, Jin K, Xia Y. MaAts, an Alkylsulfatase, Contributes to Fungal Tolerances against UV-B Irradiation and Heat-Shock in Metarhizium acridum. J Fungi (Basel) 2022; 8:jof8030270. [PMID: 35330272 PMCID: PMC8951457 DOI: 10.3390/jof8030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Sulfatases are commonly divided into three classes: type I, type II, and type III sulfatases. The type III sulfatase, alkylsulfatase, could hydrolyze the primary alkyl sulfates, such as sodium dodecyl sulfate (SDS) and sodium octyl sulfate. Thus, it has the potential application of SDS biodegradation. However, the roles of alkylsulfatase in biological control fungus remain unclear. In this study, an alkylsulfatase gene MaAts was identified from Metarhizium acridum. The deletion strain (ΔMaAts) and the complemented strain (CP) were constructed to reveal their functions in M. acridum. The activity of alkylsulfatase in ΔMaAts was dramatically reduced compared to the wild-type (WT) strain. The loss of MaAts delayed conidial germination, conidiation, and significantly declined the fungal tolerances to UV-B irradiation and heat-shock, while the fungal conidial yield and virulence were unaffected in M. acridum. The transcription levels of stress resistance-related genes were significantly changed after MaAts inactivation. Furthermore, digital gene expression profiling showed that 512 differential expression genes (DEGs), including 177 up-regulated genes and 335 down-regulated genes in ΔMaAts, were identified. Of these DEGs, some genes were involved in melanin synthesis, cell wall integrity, and tolerances to various stresses. These results indicate that MaAts and the DEGs involved in fungal stress tolerances may be candidate genes to be adopted to improve the stress tolerances of mycopesticides.
Collapse
Affiliation(s)
- Lei Song
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Xiaoning Xue
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Shuqin Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Juan Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence: (K.J.); (Y.X.); Tel.: +86-23-65120990 (Y.X.)
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence: (K.J.); (Y.X.); Tel.: +86-23-65120990 (Y.X.)
| |
Collapse
|
13
|
Sessa L, Pedrini N, Altier N, Abreo E. Alkane-priming of Beauveria bassiana strains to improve biocontrol of the redbanded stink bug Piezodorus guildinii and the bronze bug Thaumastocoris peregrinus. J Invertebr Pathol 2022; 187:107700. [PMID: 34838792 DOI: 10.1016/j.jip.2021.107700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022]
Abstract
Insect epicuticle hydrocarbons (CHC) are known to be important determinants in the susceptibility degree of insects to fungal entomopathogens. Five Beauveria bassiana (Balsamo) Vuillemin (Hypocreales; Clavicipitaceae) strains were phenotypically analyzed regarding their response to CHC nutrition and their pathogenicity and virulence towards high fungal-susceptible Thaumastocoris peregrinus (Carpintero and Dellapé) (Heteroptera: Thaumastocoridae) and low fungal-susceptible Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae), which are important hemipteran pests in eucalyptus and soybean plantations, respectively. Two of these strains, which were the most (ILB308) and the least (ILB299) virulent to P. guildinii, were also evaluated at gene expression level after growth on n-pentadecane, a P. guildinii epicuticular hydrocarbon. Beauveria bassiana hypervirulent strain ILB308 showed the lowest growth on most evaluated CHC media. However, this strain distinctively induced most of the analyzed genes involved in CHC assimilation, cuticle degradation and stress tolerance. Virulence towards low susceptibility P. guildinii was enhanced in both hypervirulent ILB308 and hypovirulent ILB299 strains after growth on n-pentadecane as the sole carbon source, whereas virulence enhancement towards high susceptibility T. peregrinus was only observed in the hypervirulent strain. Virulence enhancement towards P. guildinii could be mostly explained by a priming effect produced by CHC on the induction of some genes related to hydrocarbon assimilation in ILB299 and ILB308, such as cytochrome P450 genes (BbCyp52g11 and BbCyp52x1), together with adhesion and stress tolerance genes, such as hydrophobin (Bbhyd2) and catalase (Bbcatc) and glutathione peroxidase (Bbgpx), respectively.
Collapse
Affiliation(s)
- Lucía Sessa
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km 10, Canelones, Uruguay.
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Nora Altier
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km 10, Canelones, Uruguay
| | - Eduardo Abreo
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria, estación experimental Wilson Ferreira Aldunate, Ruta 48, km 10, Canelones, Uruguay.
| |
Collapse
|
14
|
Tong SM, Feng MG. Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation. PEST MANAGEMENT SCIENCE 2022; 78:30-42. [PMID: 34397162 DOI: 10.1002/ps.6600] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Resistance to solar ultraviolet (UV) irradiation is crucial for field-persistent control efficacies of fungal formulations against arthropod pests, because their active ingredients are formulated conidia very sensitive to solar UV wavelengths. This review seeks to summarize advances in studies aiming to quantify, understand and improve conidial UV resistance. One focus of studies has been on the many sets of genes that have been revealed in the postgenomic era to contribute to or mediate UV resistance in the insect pathogens serving as main sources of fungal insecticides. Such genetic studies have unveiled the broad basis of UV-resistant molecules including cytosolic solutes, cell wall components, various antioxidant enzymes, and numerous effectors and signaling proteins, that function in developmental, biosynthetic and stress-responsive pathways. Another focus has been on the molecular basis and regulatory mechanisms underlying photorepair of UV-induced DNA lesions and photoreactivation of UV-impaired conidia. Studies have shed light upon a photoprotective mechanism depending on not only one or two photorepair-required photolyases, but also two white collar proteins and other partners that play similar or more important roles in photorepair via interactions with photolyases. Research hotspots are suggested to explore a regulatory network of fungal photoprotection and to improve the development and application strategies of UV-resistant fungal insecticides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Ren K, Mou YN, Ying SH, Feng MG. Conserved and Noncanonical Activities of Two Histone H3K36 Methyltransferases Required for Insect-Pathogenic Lifestyle of Beauveria bassiana. J Fungi (Basel) 2021; 7:956. [PMID: 34829243 PMCID: PMC8623635 DOI: 10.3390/jof7110956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Set2 and Ash1 are histone methyltransferases (KMTs) in the KMT3 family normally used to catalyze methylation of histone H3K36 (H3K36me) but remain unexplored in fungal insect pathogens. Here, we report broader/greater roles of Set2 and Ash1 in mono-/di-/trimethylation (me1/me2/me3) of H3K4 than of H3K36 in Beauveria bassiana and function similarly to Set1/KMT2, which has been reported to catalyze H3K4me3 as an epigenetic mark of cre1 (carbon catabolite repressor) to upregulate the classes I and II hydrophobin genes hyd1 and hyd2 required for conidial hydrophobicity and adherence to insect cuticle. H3K4me3 was more attenuated than H3K36me3 in the absence of set2 (72% versus 67%) or ash1 (92% versus 12%), leading to sharply repressed or nearly abolished expression of cre1, hyd1 and hyd2, as well as reduced hydrophobicity. Consequently, the delta-set2 and delta-ash1 mutants were differentially compromised in radial growth on various media or under different stresses, aerial conidiation under normal culture conditions, virulence, and cellular events crucial for normal cuticle infection and hemocoel colonization, accompanied by transcriptional repression of subsets of genes involved in or required for asexual development and multiple stress responses. These findings unravel novel roles of Set2 and Ash1 in the co-catalysis of usually Set1-reliant H3K4me3 required for fungal insect-pathogenic lifestyle.
Collapse
Affiliation(s)
| | | | | | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Collegeof Life Sciences, Zhejiang University, Hangzhou 310058, China; (K.R.); (Y.-N.M.); (S.-H.Y.)
| |
Collapse
|
16
|
Mohamed RA, Ren K, Mou YN, Ying SH, Feng MG. Genome-Wide Insight into Profound Effect of Carbon Catabolite Repressor (Cre1) on the Insect-Pathogenic Lifecycle of Beauveriabassiana. J Fungi (Basel) 2021; 7:jof7110895. [PMID: 34829184 PMCID: PMC8622151 DOI: 10.3390/jof7110895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Carbon catabolite repression (CCR) is critical for the preferential utilization of glucose derived from environmental carbon sources and regulated by carbon catabolite repressor A (Cre1/CreA) in filamentous fungi. However, a role of Cre1-mediated CCR in insect-pathogenic fungal utilization of host nutrients during normal cuticle infection (NCI) and hemocoel colonization remains explored insufficiently. Here, we report an indispensability of Cre1 for Beauveriabassiana's utilization of nutrients in insect integument and hemocoel. Deletion of cre1 resulted in severe defects in radial growth on various media, hypersensitivity to oxidative stress, abolished pathogenicity via NCI or intrahemocoel injection (cuticle-bypassing infection) but no change in conidial hydrophobicity and adherence to insect cuticle. Markedly reduced biomass accumulation in the Δcre1 cultures was directly causative of severe defect in aerial conidiation and reduced secretion of various cuticle-degrading enzymes. The majority (1117) of 1881 dysregulated genes identified from the Δcre1 versus wild-type cultures were significantly downregulated, leading to substantial repression of many enriched function terms and pathways, particularly those involved in carbon and nitrogen metabolisms, cuticle degradation, antioxidant response, cellular transport and homeostasis, and direct/indirect gene mediation. These findings offer a novel insight into profound effect of Cre1 on the insect-pathogenic lifestyle of B. bassiana.
Collapse
|
17
|
Qiu L, Li Z, Zhang L, Zhang TS, Hu SJ, Song JZ, Liu JH, Zhang J, Wang JJ, Cheng W. The Tudor Domain-Containing Protein BbTdp1 Contributes to Fungal Cell Development, the Cell Cycle, Virulence, and Transcriptional Regulation in the Insect Pathogenic Fungus Beauveria bassiana. Microbiol Spectr 2021; 9:e0056421. [PMID: 34378960 PMCID: PMC8552692 DOI: 10.1128/spectrum.00564-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Beauveria bassiana is an insect pathogenic fungus that serves as a model system for exploring the mechanisms of fungal development and host-pathogen interactions. Clinical and experimental studies have indicated that SND1 is closely correlated with the progression and invasiveness of common cancers as a potential oncogene, but this gene has rarely been studied in fungi. Here, we characterized the contributions of an SND1 ortholog (Tdp1) by constructing a BbTdp1 deletion strain and a complemented strain of B. bassiana. Compared with the wild-type (WT) strain, the ΔBbTdp1 mutant lost conidiation capacity (∼87.7%) and blastospore (∼96.3%) yields, increased sensitivity to chemical stress (4.4 to 54.3%) and heat shock (∼44.2%), and decreased virulence following topical application (∼24.7%) and hemocoel injection (∼40.0%). Flow cytometry readings showed smaller sizes of both conidia and blastospores for ΔBbTdp1 mutants. Transcriptomic data revealed 4,094 differentially expressed genes (|log2 ratio| > 2 and a q value of <0.05) between ΔBbTdp1 mutants and the WT strain, which accounted for 41.6% of the total genes, indicating that extreme fluctuation in the global gene expression pattern had occurred. Moreover, deletion of BbTdp1 led to an abnormal cell cycle with a longer S phase and shorter G2/M and G0/G1 phases of blastospores, and enzyme-linked immunosorbent assay confirmed that the level of phosphorylated cyclin-dependent kinase 1 (Cdk1) in the ΔBbTdp1 strain was ∼31.5% lower than in the WT strain. In summary, our study is the first to report that BbTdp1 plays a vital role in regulating conidia and blastospore yields, fungal morphological changes, and pathogenicity in entomopathogenic fungi. IMPORTANCE In this study, we used Beauveria bassiana as a biological model to report the role of BbTdp1 in entomopathogenic fungi. Our findings indicated that BbTdp1 contributed significantly to cell development, the cell cycle, and virulence in B. bassiana. In addition, deletion of BbTdp1 led to drastic fluctuations in the transcriptional profile. BbTdp1 can be developed as a novel target for B. bassiana development and pathogenicity, which also provides a framework for the study of Tdp1 in other fungi.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ze Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Li Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Tong-Sheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ji-Zheng Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jia-Hua Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jing Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Wen Cheng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
18
|
Essential Role of COP9 Signalosome Subunit 5 (Csn5) in Insect Pathogenicity and Asexual Development of Beauveria bassiana. J Fungi (Basel) 2021; 7:jof7080642. [PMID: 34436181 PMCID: PMC8401740 DOI: 10.3390/jof7080642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/25/2022] Open
Abstract
Csn5 is a subunit ofthe COP9/signalosome complex in model fungi. Here, we report heavier accumulation of orthologous Csn5 in the nucleus than in the cytoplasm and its indispensability to insect pathogenicity and virulence-related cellular events of Beauveria bassiana. Deletion of csn5 led to a 68% increase in intracellular ubiquitin accumulation and the dysregulation of 18 genes encoding ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes and ubiquitin-specific proteases, suggesting the role of Csn5 in balanced ubiquitination/deubiquitination. Consequently, the deletion mutant displayed abolished insect pathogenicity, marked reductions in conidial hydrophobicity and adherence to the insect cuticle, the abolished secretion of cuticle penetration-required enzymes, blocked haemocoel colonisation, and reduced conidiation capacity despite unaffected biomass accumulation. These phenotypes correlated well with sharply repressed or abolished expressions of key hydrophobin genes required for hydrophobin biosynthesis/assembly and of developmental activator genes essential for aerial conidiation and submerged blastospore production. In the mutant, increased sensitivities to heat shock and oxidative stress also correlated with reduced expression levels of several heat-responsive genes and decreased activities of antioxidant enzymes. Altogether, Csn5-reliant ubiquitination/deubiquitination balance coordinates the expression of those crucial genes and the quality control of functionally important enzymes, which are collectively essential for fungal pathogenicity, virulence-related cellular events, and asexual development.
Collapse
|
19
|
Wang JJ, Yin YP, Song JZ, Hu SJ, Cheng W, Qiu L. A p53-like transcription factor, BbTFO1, contributes to virulence and oxidative and thermal stress tolerances in the insect pathogenic fungus, Beauveria bassiana. PLoS One 2021; 16:e0249350. [PMID: 33788872 PMCID: PMC8011754 DOI: 10.1371/journal.pone.0249350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 11/19/2022] Open
Abstract
The p53-like transcription factor (TF) NDT80 plays a vital role in the regulation of pathogenic mechanisms and meiosis in certain fungi. However, the effects of NDT80 on entomopathogenic fungi are still unknown. In this paper, the NDT80 orthologue BbTFO1 was examined in Beauveria bassiana, a filamentous entomopathogenic fungus, to explore the role of an NDT80-like protein for fungal pest control potential. Disruption of BbTFO1 resulted in impaired resistance to oxidative stress (OS) in a growth assay under OS and a 50% minimum inhibitory concentration experiment. Intriguingly, the oxidation resistance changes were accompanied by transcriptional repression of the two key antioxidant enzyme genes cat2 and cat5. ΔBbTFO1 also displayed defective conidial germination, virulence and heat resistance. The specific supplementation of BbTFO1 reversed these phenotypic changes. As revealed by this work, BbTFO1 can affect the transcription of catalase genes and play vital roles in the maintenance of phenotypes associated with the biological control ability of B. bassiana.
Collapse
Affiliation(s)
- Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
- * E-mail: (JJW); (LQ)
| | - Ya-Ping Yin
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Ji-Zheng Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Wen Cheng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- * E-mail: (JJW); (LQ)
| |
Collapse
|
20
|
Zhao X, Luo T, Huang S, Peng N, Yin Y, Luo Z, Zhang Y. A novel transcription factor negatively regulates antioxidant response, cell wall integrity and virulence in the fungal insect pathogen, Beauveria bassiana. Environ Microbiol 2021; 23:4908-4924. [PMID: 33432709 DOI: 10.1111/1462-2920.15397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/01/2023]
Abstract
Genomic data have identified a class of fungal specific transcription factors (FsTFs) that are thought to regulate unique aspects of fungal gene expression, although the functions of many of these proteins remain unknown. Here, a novel FsTF (BbStf1), which features a leucine zipper dimerization domain and a fungal transcription factor regulatory middle homology region, was characterized in Beauveria bassiana, a filamentous insect fungal pathogen. Transcriptional activation and nuclear localization were experimentally confirmed for BbStf1. Disruption of Bbstf1 resulted in increased tolerance to oxidative stress and cell wall perturbation, accompanied by increased peroxidase (POD) and superoxide dismutase (SOD) activities and ratio of reduced/oxidized glutathione (GSH/GSSG), and by thickened cell wall and altered composition. Gene expression profile analysis revealed that transcription patterns of antioxidant enzyme and cell wall integrity-involved genes were altered in the ∆Bbstf1, including some BbStf1-targeted genes clarified with evidence. The ∆Bbstf1 strain displayed greater virulence to Galleria mellonella in the bioassays through both topical infection and intrahaemocoel injection due to more rapid proliferation in the haemocoel as compared to the wild-type strain. Altogether, BbStf1 acts as a negative regulator of antioxidant response, cell wall integrity and virulence in B. bassiana.
Collapse
Affiliation(s)
- Xin Zhao
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Tingying Luo
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shuaishuai Huang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ning Peng
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ying Yin
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhibing Luo
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yongjun Zhang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
21
|
Mou YN, Gao BJ, Ren K, Tong SM, Ying SH, Feng MG. P-type Na +/K + ATPases essential and nonessential for cellular homeostasis and insect pathogenicity of Beauveria bassiana. Virulence 2020; 11:1415-1431. [PMID: 33103596 PMCID: PMC7588218 DOI: 10.1080/21505594.2020.1836903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/11/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
ENA1 and ENA2 are P-type IID/ENA Na+/K+-ATPases required for cellular homeostasis in yeasts but remain poorly understood in filamentous fungal insect pathogens. Here, we characterized seven genes encoding five ENA1/2 homologues (ENA1a-c and ENA2a/b) and two P-type IIC/NK Na+/K+-ATPases (NK1/2) in Beauveria bassiana, an insect-pathogenic fungus serving as a main source of fungal insecticides worldwide. Most of these genes were highly responsive to alkaline pH and Na+/K+ cues at transcription level. Cellular Na+, K+ and H+ homeostasis was disturbed only in the absence of ena1a or ena2b. The disturbed homeostasis featured acceleration of vacuolar acidification, elevation of cytosolic Na+/K+ level at pH 5.0 to 9.0, and stabilization of extracellular H+ level to initial pH 7.5 during a 5-day period of submerged incubation. Despite little defect in hyphal growth and asexual development, the Δena1a and Δena2b mutants were less tolerant to metal cations (Na+, K+, Li+, Zn2+, Mn2+ and Fe3+), cell wall perturbation, oxidation, non-cation hyperosmolarity and UVB irradiation, severely compromised in insect pathogenicity via normal cuticle infection, and attenuated in virulence via hemocoel injection. The deletion mutants of five other ENA and NK genes showed little change in vacuolar pH and all examined phenotypes. Therefore, only ENA1a and ENA2b evidently involved in both transmembrane and vacuolar activities are essential for cellular cation homeostasis, insect pathogenicity and multiple stress tolerance in B. bassiana. These findings provide a novel insight into ENA1a- and ENA2b-dependent vacuolar pH stability, cation-homeostatic process and fungal fitness to host insect and environment.
Collapse
Affiliation(s)
- Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ben-Jie Gao
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kang Ren
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Zheng P, Chen L, Zhong S, Wei X, Zhao Q, Pan Q, Kang Z, Liu J. A Cu-only superoxide dismutase from stripe rust fungi functions as a virulence factor deployed for counter defense against host-derived oxidative stress. Environ Microbiol 2020; 22:5309-5326. [PMID: 32985748 DOI: 10.1111/1462-2920.15236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022]
Abstract
Plants quickly accumulate reactive oxygen species (ROS) to resist against pathogen invasion, while pathogens strive to escape host immune surveillance by degrading ROS. However, the nature of the strategies that fungal pathogens adopt to counteract host-derived oxidative stress is manifold and requires deep investigation. In this study, a superoxide dismutase (SOD) from Puccinia striiformis f. sp. tritici (Pst) PsSOD2 with a signal peptide (SP) and the glycophosphatidyl inositol (GPI) anchor, strongly induced during infection, was analysed for its biological characteristics and potential role in wheat-Pst interactions. The results showed that PsSOD2 encodes a Cu-only SOD and responded to ROS treatment. Heterologous complementation assays in Saccharomyces cerevisiae suggest that the SP of PsSOD2 is functional for its secretion. Transient expression in Nicotiana benthamiana leaves revealed that PsSOD2 is localized to the plasma membrane. In addition, knockdown of PsSOD2 by host-induced gene silencing reduced Pst virulence and resulted in restricted hyphal development and increased ROS accumulation. In contrast, heterologous transient assays of PsSOD2 suppressed flg22-elicited ROS production. Taken together, our data indicate that PsSOD2, as a virulence factor, was induced and localized to the plasma membrane where it may function to scavenge host-derived ROS for promoting fungal infection.
Collapse
Affiliation(s)
- Peijing Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liyang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Suye Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaobo Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinglin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,College of Plant Scicence, Tarim University, Alaer, Xinjiang, 843300, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
23
|
Zhang LB, Tang L, Guan Y, Feng MG. Subcellular localization of Sur7 and its pleiotropic effect on cell wall integrity, multiple stress responses, and virulence of Beauveria bassiana. Appl Microbiol Biotechnol 2020; 104:6669-6678. [DOI: 10.1007/s00253-020-10736-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
|
24
|
Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides. Appl Microbiol Biotechnol 2020; 104:5711-5724. [PMID: 32405755 DOI: 10.1007/s00253-020-10659-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/25/2022]
Abstract
Formulated conidia of insect-pathogenic fungi, such as Beauveria and Metarhizium, serve as the active ingredients of fungal insecticides but are highly sensitive to persistent high temperatures (32-35 °C) that can be beyond their upper thermal limits especially in tropical areas and during summer months. Fungal heat tolerance and inter- or intra-specific variability are critical factors and limitations to field applications of fungal pesticides during seasons favoring outbreaks of pest populations. The past decades have witnessed tremendous advances in improving fungal pesticides through selection of heat-tolerant strains from natural isolates, improvements and innovations in terms of solid-state fermentation technologies for the production of more heat-tolerant conidia, and the use of genetic engineering of candidate strains for enhancing heat tolerance. More recently, with the entry into a post-genomic era, a large number of signaling and effector genes have been characterized as important sustainers of heat tolerance in both Beauveria and Metarhizium, which represent the main species used as fungal pesticides worldwide. This review focuses on recent advances and provides an overview into the broad molecular basis of fungal heat tolerance and its multiple regulatory pathways. Emphases are placed on approaches for screening of heat-tolerant strains, methods for optimizing conidial quality linked to virulence and heat tolerance particularly involving cell wall architecture and optimized trehalose/mannitol contents, and how molecular determinants can be exploited for genetic improvement of heat tolerance and pest-control potential. Examples of fungal pesticides with different host spectra and their appropriateness for use in apiculture are given. KEY POINTS: • Heat tolerance is critical for field stability and efficacy of fungal insecticides. • Inter- and intra-specific variability exists in insect-pathogenic fungi. • Optimized production technology and biotechnology can improve heat tolerance. • Fungal heat tolerance is orchestrated by multiple molecular pathways.
Collapse
|
25
|
Wang JJ, Peng YJ, Ding JL, Feng MG, Ying SH. Mitochondrial fission is necessary for mitophagy, development and virulence of the insect pathogenic fungus Beauveria bassiana. J Appl Microbiol 2020; 129:411-421. [PMID: 32086853 DOI: 10.1111/jam.14619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022]
Abstract
AIMS Mitochondrial fission is an essential dynamics that maintains mitochondrial morphology and function. This study seeks to determine the roles of mitochondrial fission in the filamentous entomopathogenic fungus Beauveria bassiana. MATERIAL AND METHODS Three fission-related genes (BbFis1, BbMdv1 and BbDnm1) were functionally characterized via protein intracellular localization and construction of gene disruption mutants. RESULTS Mitochondrial localization was only observed for BbFis1 which interacts with BbMdv1, but BbMdv1 did not have interaction with BbDnm1. Single disruption mutant of three genes generated the elongated and enlarged mitochondria which could not be eliminated via the mitophagy. Three mutant strains displayed the reduced ATP synthesis and vegetative growth compared with the wild type. Three genes were involved in the early stage of conidiation and unnecessary for the late stage. However, all three genes significantly contribute to blastospore development under submerged condition, and the loss of BbMdv1 had the greatest effects compared with the losses of BbFis1 or BbDnm1. Finally, disruption of three genes significantly attenuated fungal virulence, but their mutations had different influences. CONCLUSIONS In addition to their consistent roles in mitochondrial division and mitophagy, three fission-related genes perform divergent roles in the development and virulence of the entomopathogenic fungus B. bassiana. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that mitochondrial fission is associated with lifecycle of B. bassiana. These findings provide information for the manipulation of fungal physiology and facilitate the application of entomopathogenic fungi.
Collapse
Affiliation(s)
- J-J Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Y-J Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - J-L Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - M-G Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - S-H Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Qiu L, Wei XY, Wang SJ, Wang JJ. Characterization of trehalose-6-phosphate phosphatase in trehalose biosynthesis, asexual development, stress resistance and virulence of an insect mycopathogen. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:185-192. [PMID: 31973856 DOI: 10.1016/j.pestbp.2019.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Biological control potential of entomopathogenic fungi depending on conidiation capacity, conidial stress tolerance and virulence can be improved through genetic engineering. To explore a possible role of trehalose biosynthesis pathway in improving fungal pest-control potential, we characterized biological functions of trehalose-6-phosphate phosphatase (BbTPP) in Beauveria bassiana, an insect mycopathogen that serves as a main source of fungal insecticides. Deletion of BbTPP resulted in abolished trehalose biosynthesis, reduced conidiation capacity, decreases in conidial thermotolerance and UV-B resistance, increased hyphal sensitivities to chemical stresses, and attenuated virulence. By contrast, over-expression of BbTPP led to increased trehalose accumulation, decreased T6P accumulation, and enhanced stress tolerance and virulence despite little impact on growth and conidiation under normal conditions. These results indicate that BbTPP serves as not only a key player in control of trehalose biosynthesis required for multiple cellular functions but also a potential candidate to be exploited for genetic improvement of fungal potential against insect pests.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Xiao-Yu Wei
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shou-Juan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
27
|
Wang JA, Huang X, Niu S, Hu Z, Li H, Ji X, Yu H, Zeng W, Tao J, Chen W, Li J, Li J, Zhang KQ. Thioredoxin1 regulates conidia formation, hyphal growth, and trap formation in the nematode-trapping fungus Arthrobotrys oligospora. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01511-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Zhang G, Zheng Y, Ma Y, Yang L, Xie M, Zhou D, Niu X, Zhang KQ, Yang J. The Velvet Proteins VosA and VelB Play Different Roles in Conidiation, Trap Formation, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora. Front Microbiol 2019; 10:1917. [PMID: 31481946 PMCID: PMC6710351 DOI: 10.3389/fmicb.2019.01917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 11/30/2022] Open
Abstract
The velvet family proteins VosA and VelB are involved in growth regulation and differentiation in the model fungus Aspergillus nidulans and other filamentous fungi. In this study, the orthologs of VosA and VelB, AoVosA, and AoVelB, respectively, were characterized in the nematode-trapping fungus Arthrobotrys oligospora, which captures nematodes by producing trapping devices (traps). Deletion of the AovelB gene resulted in growth defects in different media, and the aerial hyphae from the ΔAovelB mutant lines were fewer in number and their colonies were less dense than those from the wild-type (WT) strain. The ΔAovelB mutants each displayed serious sporulation defects, and the transcripts of several sporulation-related genes (e.g., abaA, flbC, rodA, and vosA) were significantly down-regulated compared to those from the WT strain. Furthermore, the ΔAovelB mutant strains became more sensitive to chemical reagents, including sodium dodecyl sulfate and H2O2. Importantly, the ΔAovelB mutants were unable to produce nematode-capturing traps. Similarly, extracellular proteolytic activity was also lower in the ΔAovelB mutants than in the WT strain. In contrast, the ΔAovosA mutants displayed no obvious differences from the WT strain in these phenotypic traits, whereas conidial germination was lower in the ΔAovosA mutants, which became more sensitive to heat shock stress. Our results demonstrate that the velvet protein AoVelB is essential for conidiation, trap formation, and pathogenicity in A. oligospora, while AoVosA plays a role in the regulation of conidial germination and heat shock stress.
Collapse
Affiliation(s)
- Guosheng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Yaqing Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Yuxin Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Duanxu Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
29
|
The pH sensing receptor AopalH plays important roles in the nematophagous fungus Arthrobotrys oligospora. Fungal Biol 2019; 123:547-554. [PMID: 31196524 DOI: 10.1016/j.funbio.2019.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Abstract
There is well-conserved PacC/Rim101 signaling among ascomycete fungi to mediate environmental pH sensing. For pathogenic fungi, this pathway not only enables fungi to grow over a wide pH range, but it also determines whether these fungi can successfully colonize and invade the targeted host. Within the pal/PacC pathway, palH is a putative ambient pH sensor with a seven-transmembrane domain. To characterize the function of a palH homolog, AopalH, in the nematophagous fungus Arthrobotrys oligospora, we knocked out the encoding gene of AopalH through homologous recombination, and the transformants exhibited slower growth rates, greater sensitivities to cationic and hyperoxidation stresses, as well as reduced conidiation and reduced trap formation, suggesting that the pH regulatory system has critical functions in nematophagous fungi. Our results provide novel insights into the mechanisms of pH response and regulation in fungi.
Collapse
|
30
|
MaPmt4, a protein O-mannosyltransferase, contributes to cell wall integrity, stress tolerance and virulence in Metarhizium acridum. Curr Genet 2019; 65:1025-1040. [DOI: 10.1007/s00294-019-00957-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 12/23/2022]
|
31
|
Wang Z, Yang J, Xin C, Xing X, Yin Y, Chen L, Song Z. Regulation of conidiation, dimorphic transition, and microsclerotia formation by MrSwi6 transcription factor in dimorphic fungus Metarhizium rileyi. World J Microbiol Biotechnol 2019; 35:46. [PMID: 30825005 DOI: 10.1007/s11274-019-2619-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/23/2019] [Indexed: 11/25/2022]
Abstract
Microsclerotia (MS) produced in the liquid culture of the dimorphic insect pathogen Metarhizium rileyi can be used as a mycoinsecticide. Bioinformatics analysis demonstrated that the cell cycle signaling pathway was involved in regulating MS formation. To investigate the mechanisms by which the signaling pathway is regulated, a cell cycle box binding transcription factor MrSwi6 of M. rileyi was characterized. MrSwi6 was highly expressed during periods of yeast-hypha transition and conidia and MS formation. When compared with wild-type and complemented strains, disruption of MrSwi6 significantly reduced conidia (15-36%) and MS formation (96.2%), and exhibited decreased virulence levels. Digital expression profiling revealed that genes involved in antioxidation, pigment biosynthesis, and ion transport and storage were regulated by MrSwi6 during conidia and MS development. These results confirmed the significance of MrSwi6 in dimorphic transition, conidia and MS formation, and virulence in M. rileyi.
Collapse
Affiliation(s)
- Zhongkang Wang
- Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Jie Yang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Xiaorui Xing
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Youping Yin
- Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Li Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
32
|
Two Photolyases Repair Distinct DNA Lesions and Reactivate UVB-Inactivated Conidia of an Insect Mycopathogen under Visible Light. Appl Environ Microbiol 2019; 85:AEM.02459-18. [PMID: 30552186 DOI: 10.1128/aem.02459-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022] Open
Abstract
Fungal conidia serve as active ingredients of fungal insecticides but are sensitive to solar UV irradiation, which impairs double-stranded DNA (dsDNA) by inducing the production of cytotoxic cyclobutane pyrimidine dimers (CPDs) and (6-4)-pyrimidine-pyrimidine photoproducts (6-4PPs). This study aims to elucidate how CPD photolyase (Phr1) and 6-4PP photolyase (Phr2) repair DNA damage and photoreactivate UVB-inactivated cells in Beauveria bassiana, a main source of fungal insecticides. Both Phr1 and Phr2 are proven to exclusively localize in the fungal nuclei. Despite little influence on growth, conidiation, and virulence, singular deletions of phr1 and phr2 resulted in respective reductions of 38% and 19% in conidial tolerance to UVB irradiation, a sunlight component most harmful to formulated conidia. CPDs and 6-4PPs accumulated significantly more in the cells of Δphr1 and Δphr2 mutants than in those of a wild-type strain under lethal UVB irradiation and were largely or completely repaired by Phr1 in the Δphr2 mutant and Phr2 in the Δphr1 mutant after optimal 5-h exposure to visible light. Consequently, UVB-inactivated conidia of the Δphr1 and Δphr2 mutants were much less efficiently photoreactivated than were the wild-type counterparts. In contrast, overexpression of either phr1 or phr2 in the wild-type strain resulted in marked increases in both conidial UVB resistance and photoreactivation efficiency. These findings indicate essential roles of Phr1 and Phr2 in photoprotection of B. bassiana from UVB damage and unveil exploitable values of both photolyase genes for improved UVB resistance and application strategy of fungal insecticides.IMPORTANCE Protecting fungal cells from damage from solar UVB irradiation is critical for development and application of fungal insecticides but is mechanistically not understood in Beauveria bassiana, a classic insect pathogen. We unveil that two intranuclear photolyases, Phr1 and Phr2, play essential roles in repairing UVB-induced dsDNA lesions through respective decomposition of cytotoxic cyclobutane pyrimidine dimers and (6-4)-pyrimidine-pyrimidine photoproducts, hence reactivating UVB-inactivated cells effectively under visible light. Our findings shed light on the high potential of both photolyase genes for use in improving UVB resistance and application strategy of fungal insecticides.
Collapse
|
33
|
Zhen Z, Zhang G, Yang L, Ma N, Li Q, Ma Y, Niu X, Zhang KQ, Yang J. Characterization and functional analysis of calcium/calmodulin-dependent protein kinases (CaMKs) in the nematode-trapping fungus Arthrobotrys oligospora. Appl Microbiol Biotechnol 2018; 103:819-832. [PMID: 30417308 DOI: 10.1007/s00253-018-9504-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022]
Abstract
Ca2+/calmodulin-dependent protein kinases (CaMKs) are unique second-messenger molecules that impact almost all cellular processes in eukaryotes. In this study, five genes encoding different CaMKs were characterized in the nematode-trapping fungus Arthrobotrys oligospora. These CaMKs, which were retrieved from the A. oligospora genome according to their orthologs in fungi such as Aspergillus nidulans and Neurospora crassa, were expressed at a low level in vitro during mycelial growth stages. Five deletion mutants corresponding to these CaMKs led to growth defects in different media and increased sensitivity to several environmental stresses, including H2O2, menadione, SDS, and Congo red; they also reduced the ability to produce conidia and traps, thus causing a deficiency in nematicidal ability as well. In addition, the transcriptional levels of several typical sporulation-related genes, such as MedA, VelB, and VeA, were down-regulated in all ΔCaMK mutants compared with the wild-type (WT) strain. Moreover, these mutants exhibited hypersensitivity to heat shock and ultraviolet-radiation stresses compared with the WT strain. These results suggest that the five CaMKs in A. oligospora are involved in regulating multiple cellular processes, such as growth, environmental stress tolerance, conidiation, trap formation, and virulence.
Collapse
Affiliation(s)
- Zhengyi Zhen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Guosheng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ni Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Qing Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yuxin Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, People's Republic of China.
- School of Life Sciences, Yunnan University, Kunming, 650091, People's Republic of China.
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
34
|
Cai Q, Wang JJ, Shao W, Ying SH, Feng MG. Rtt109-dependent histone H3 K56 acetylation and gene activity are essential for the biological control potential of Beauveria bassiana. PEST MANAGEMENT SCIENCE 2018; 74:2626-2635. [PMID: 29704296 DOI: 10.1002/ps.5054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Rtt109 is a histone acetyltransferase that catalyzes histone H3K56 acetylation required for genomic stability, DNA damage repair and virulence-related gene activity in yeast-like human pathogens but remains functionally unknown in fungal insect pathogens. This study seeks to elucidate the catalytic activity of a Rtt109 orthologue and its possible role in sustaining the biological control potential of Beauveria bassiana, a fungal entomopathogen. RESULTS Deletion of rtt109 in B. bassiana abolished histone H3K56 acetylation and triggered histone H2A-S129 phosphorylation. Consequently, the deletion mutant showed increased sensitivity to the stresses of DNA damage, oxidation, cell wall perturbation, high osmolarity and heat shock during colony growth, severe conidiation defects under normal culture conditions, reduced conidial hydrophobicity, decreased conidial UV-B resistance, and attenuated virulence through normal cuticle infection. These phenotypic changes correlated well with reduced transcript levels of many genes that encode the families of H2A-S129 dephosphorylation-related protein phosphatases, DNA damage-repairing factors, antioxidant enzymes, heat-shock proteins, key developmental activators, hydrophobins and cuticle-degrading Pr1 proteases respectively. CONCLUSION Rtt109 can acetylate H3K56 and dephosphorylate H2A-S129 in direct and indirect ways respectively, and hence has an essential role in sustaining the genomic stability and global gene activity required for conidiation capacity, environmental fitness and pest control potential in B. bassiana. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Juan-Juan Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- School of Biological Science and Biotechnology, University of Jinan, Jinan, People's Republic of China
| | - Wei Shao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
35
|
Song Z, Yang J, Xin C, Xing X, Yuan Q, Yin Y, Wang Z. A transcription factor, MrMsn2, in the dimorphic fungus Metarhizium rileyi is essential for dimorphism transition, aggravated pigmentation, conidiation and microsclerotia formation. Microb Biotechnol 2018; 11:1157-1169. [PMID: 30160031 PMCID: PMC6196401 DOI: 10.1111/1751-7915.13302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/07/2018] [Indexed: 11/17/2022] Open
Abstract
Microsclerotia (MS) are pseudoparenchymatous aggregations of hyphae of fungi that can be induced in liquid culture for biocontrol applications. Previously, we determined that the high-osmolarity glycerol (HOG) signalling pathway was involved in regulating MS development in the dimorphic insect pathogen Metarhizium rileyi. To further investigate the mechanisms by which the signalling pathway is regulated, we characterized the transcriptional factor MrMsn2, a homologue of the yeast C2 H2 transcriptional factor Msn2, which is predicted to function downstream of the HOG pathway in M. rileyi. Compared with wild-type and complemented strains, disruption of MrMsn2 increased the yeast-to-hypha transition rate, enhanced conidiation capacity and aggravated pigmentation in M. rileyi. The ▵MrMsn2 mutants were sensitive to stress, produced morphologically abnormal clones and had significantly reduced MS formation and decreased virulence levels. Digital expression profiling revealed that genes involved in antioxidation, pigment biosynthesis and ion transport and storage were regulated by MrMsn2 during conidia and MS development. Taken together, our findings confirm that MrMsn2 controlled the yeast-to-hypha transition, conidia and MS formation, and virulence.
Collapse
Affiliation(s)
- Zhangyong Song
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Jie Yang
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Caiyan Xin
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Xiaorui Xing
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Qing Yuan
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Youping Yin
- Chongqing Engineering Research Center for Fungal InsecticideSchool of Life ScienceChongqing UniversityChongqing400030China
| | - Zhongkang Wang
- Chongqing Engineering Research Center for Fungal InsecticideSchool of Life ScienceChongqing UniversityChongqing400030China
| |
Collapse
|
36
|
Ding JL, Peng YJ, Chu XL, Feng MG, Ying SH. Autophagy-related gene BbATG11 is indispensable for pexophagy and mitophagy, and contributes to stress response, conidiation and virulence in the insect mycopathogen Beauveria bassiana. Environ Microbiol 2018; 20:3309-3324. [PMID: 30058280 DOI: 10.1111/1462-2920.14329] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022]
Abstract
Autophagy is a conserved degradation system in eukaryotic cells that includes non-selective and selective processes. Selective autophagy functions as a selective degradation mechanism for specific substrates in which autophagy-related protein 11 (ATG11) acts as an essential scaffold protein. In B. bassiana, there is a unique ATG11 family protein, which is designated as BbATG11. Disruption of BbATG11 resulted in significantly reduced conidial germination under starvation stress. The mutant ΔBbATG11 displayed enhanced sensitivity to oxidative stress and impaired asexual reproduction. The conidial yield was reduced by approximately 75%, and this defective phenotype could be repressed by increasing exogenous nutrients. The virulence of the ΔBbATG11 mutant strain was significantly impaired as indicated in topical and intra-hemocoel injection bioassays, with a greater reduction in topical infection. Notably, BbATG11 was involved in pexophagy and mitophagy, but these two autophagic processes appeared in different fungal physiological aspects. Both pexophagy and mitophagy were associated with nutrient shift, starvation stress and growth in the host hemocoel, but only pexophagy appeared in both oxidation-stressed cells and aerial mycelia. This study highlights that BbATG11 mediates pexophagy and mitophagy in B. bassiana and links selective autophagy to the fungal stress response, conidiation and virulence.
Collapse
Affiliation(s)
- Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yue-Jin Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Ling Chu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
37
|
Zhu XG, Tong SM, Ying SH, Feng MG. Antioxidant activities of four superoxide dismutases in Metarhizium robertsii and their contributions to pest control potential. Appl Microbiol Biotechnol 2018; 102:9221-9230. [DOI: 10.1007/s00253-018-9302-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 11/28/2022]
|
38
|
Peng YJ, Ding JL, Feng MG, Ying SH. Glc8, a regulator of protein phosphatase type 1, mediates oxidation tolerance, asexual development and virulence in Beauveria bassiana, a filamentous entomopathogenic fungus. Curr Genet 2018; 65:283-291. [DOI: 10.1007/s00294-018-0876-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/29/2018] [Accepted: 08/10/2018] [Indexed: 12/29/2022]
|
39
|
Zhou G, Ying SH, Hu Y, Fang X, Feng MG, Wang J. Roles of Three HSF Domain-Containing Proteins in Mediating Heat-Shock Protein Genes and Sustaining Asexual Cycle, Stress Tolerance, and Virulence in Beauveria bassiana. Front Microbiol 2018; 9:1677. [PMID: 30090094 PMCID: PMC6068467 DOI: 10.3389/fmicb.2018.01677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/04/2018] [Indexed: 12/28/2022] Open
Abstract
Heat-shock transcription factors (HSFs) with a HSF domain are regulators of fungal heat-shock protein (HSP) genes and many others vectoring heat-shock elements, to which the domain binds in response to heat shock and other stress cues. The fungal insect pathogen Beauveria bassiana harbors three HSF domain-containing orthologous to Hsf1, Sfl1, and Skn7 in many fungi. Here, we show that the three proteins are interrelated at transcription level, play overlapping or opposite roles in activating different families of 28 HSP genes and mediate differential expression of some genes required for asexual developmental and intracellular Na+ homeostasis. Expression levels of skn7 and sfl1 largely increased in Δhsf1, which is evidently lethal in some other fungi. Hsf1 was distinct from Sfl1 and Skn7 in activating most HSP genes under normal and heat-shocked conditions. Sfl1 and Skn7 played overlapping roles in activating more than half of the HSP genes under heat shock. Each protein also activated a few HSP genes not targeted by two others under certain conditions. Deletion of sfl1 resulted in most severe growth defects on rich medium and several minimal media at optimal 25°C while such growth defects were less severe in Δhsf1 and minor in Δskn7. Conidiation level was lowered by 76% in Δskn7, 62% in Δsfl1, and 39% in Δhsf1. These deletion mutants also showed differential changes in cell wall integrity, antioxidant activity, virulence and cellular tolerance to osmotic salt, heat shock, and UV-B irradiation. These results provide a global insight into vital roles of Hsf1, Sfl1, and Skn7 in B. bassiana adaptation to environment and host.
Collapse
Affiliation(s)
- Gang Zhou
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, China.,Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yue Hu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Wang ZK, Cai Q, Tong SM, Ying SH, Feng MG. C-terminal Ser/Thr residues are vital for the regulatory role of Ste7 in the asexual cycle and virulence of Beauveria bassiana. Appl Microbiol Biotechnol 2018; 102:6973-6986. [PMID: 29948113 DOI: 10.1007/s00253-018-9148-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/18/2022]
Abstract
The mitogen-activated protein kinase (MAPK) kinase Ste7 has a conserved Ser/Thr loop (S/T-X4(6)-S/T) that can activate the MAPK Fus3 or Kss1 for the regulation of pheromone response and filamentous growth in model yeast. Here, we show that not only the loop but also four C-terminal Ser/Thr residues are essential for Ste7 to function in the Fus3 cascade of Beauveria bassiana, a filamentous fungal insect pathogen. Mutagenesis of either looped S216/T220 or C-terminal S362 resulted in the same severe defects in conidial germination, hyphal growth, aerial conidiation, and submerged blastospore production as the ste7 deletion, followed by a complete loss of virulence and similarly increased cell sensitivities to osmotic salts, oxidants, heat shock and UV-B irradiation. Mutagenesis of three other Ser/Thr residues (S391, S440, and T485) also caused severe defects in most of the mentioned phenotypes. These defects correlated well with dramatically reduced transcript levels of some phenotype-related genes. These genes encode a transcription factor (CreA) essential for carbon/nitrogen assimilation, developmental activators (BrlA, AbaA, and WetA) and upstream transcription factor (FluG) required for conidiation, P-type N+/K+ ATPases (Ena1-5) required for intracellular N+/K+ homeostasis, and antioxidant enzymes involved in multiple stress responses. Our study unveils that the loop and four C-terminal Ser/Thr residues are all vital for the regulatory role of Ste7 in the growth, conidiation, virulence, and/or stress tolerance of B. bassiana and perhaps other filamentous fungi.
Collapse
Affiliation(s)
- Zhi-Kang Wang
- Institute of Coastal Ecology, Ludong University, Yantai, 264025, Shandong, China.,Institute of Microbiology, College of Life Sciences, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Sen-Miao Tong
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Zhejiang, 310058, Hangzhou, China.,School of Agricultural and Food Science, Zhejiang A&F University, Lin'an, Zhejiang, 311300, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|
41
|
Schatzman SS, Culotta VC. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infect Dis 2018. [PMID: 29517910 DOI: 10.1021/acsinfecdis.8b00026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superoxide anion radical is generated as a natural byproduct of aerobic metabolism but is also produced as part of the oxidative burst of the innate immune response design to kill pathogens. In living systems, superoxide is largely managed through superoxide dismutases (SODs), families of metalloenzymes that use Fe, Mn, Ni, or Cu cofactors to catalyze the disproportionation of superoxide to oxygen and hydrogen peroxide. Given the bursts of superoxide faced by microbial pathogens, it comes as no surprise that SOD enzymes play important roles in microbial survival and virulence. Interestingly, microbial SOD enzymes not only detoxify host superoxide but also may participate in signaling pathways that involve reactive oxygen species derived from the microbe itself, particularly in the case of eukaryotic pathogens. In this Review, we will discuss the chemistry of superoxide radicals and the role of diverse SOD metalloenzymes in bacterial, fungal, and protozoan pathogens. We will highlight the unique features of microbial SOD enzymes that have evolved to accommodate the harsh lifestyle at the host-pathogen interface. Lastly, we will discuss key non-SOD superoxide scavengers that specific pathogens employ for defense against host superoxide.
Collapse
Affiliation(s)
- Sabrina S. Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
42
|
The oxygen concentration in cultures modulates protein expression and enzymatic antioxidant responses in Metarhizium lepidiotae conidia. Fungal Biol 2018; 122:487-496. [DOI: 10.1016/j.funbio.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022]
|
43
|
Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Appl Microbiol Biotechnol 2018; 102:4995-5004. [DOI: 10.1007/s00253-018-9033-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
|
44
|
Cai Q, Wang ZK, Shao W, Ying SH, Feng MG. Essential role of Rpd3-dependent lysine modification in the growth, development and virulence of Beauveria bassiana. Environ Microbiol 2018; 20:1590-1606. [PMID: 29575704 DOI: 10.1111/1462-2920.14100] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 02/01/2023]
Abstract
Rpd3 is a class I histone deacetylase that reverses lysine acetylation thus influencing cellular processes and functions. However, its role in fungal insect pathogens has not been explored yet. Here we show that Rpd3-dependent lysine modification and gene expression orchestrate growth, conidiation and virulence in Beauveria bassiana. Deletion of Rpd3 resulted in severe growth defects on various carbon/nitrogen sources, 97% reduction in conidiation capacity and drastic attenuation in virulence. These phenotypes concurred with differential expression of 1479 proteins and hyperacetylation or hypoacetylation of 2227 lysine residues on 1134 proteins. Many of these proteins fell into carbon/nitrogen metabolism and cell rescue/defence/virulence, indicating vital roles of Rpd3-dependent protein expression and lysine modification in the fungal growth and virulence. Intriguingly, lysine residues of four core histones (H2A, H2B, H3 and H4) and many histone acetyltransferases were also hyper- or hypoacetylated in Δrpd3, suggesting direct and indirect roles for Rpd3 in genome-wide lysine modification. However, crucial development activators were transcriptionally repressed and not found in either proteome or acetylome. Single/double-site-directed H3K9/K14 mutations for hyper/hypoacetylation exerted significant impacts on conidiation and dimorphic transition crucial for fungal virulence. Altogether, Rpd3 mediates growth, asexual development and virulence through transcriptional/translational regulation and posttranslational lysine modification in B. bassiana.
Collapse
Affiliation(s)
- Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhi-Kang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Wei Shao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
45
|
Cai Q, Tong SM, Shao W, Ying SH, Feng MG. Pleiotropic effects of the histone deacetylase Hos2 linked to H4-K16 deacetylation, H3-K56 acetylation, and H2A-S129 phosphorylation in Beauveria bassiana. Cell Microbiol 2018. [PMID: 29543404 DOI: 10.1111/cmi.12839] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Histone acetyltransferases and deacetylases maintain dynamics of lysine acetylation/deacetylation on histones and nonhistone substrates involved in gene regulation and cellular events. Hos2 is a Class I histone deacetylases that deacetylates unique histone H4-K16 site in yeasts. Here, we report that orthologous Hos2 deacetylates H4-K16 and is also involved in the acetylation of histone H3-K56 and the phosphorylation of histone H2A-S129 and cyclin-dependent kinase 1 CDK1-Y15 in Beauveria bassiana, a filamentous fungal insect pathogen. These site-specific modifications are evidenced with hyperacetylated H4-K16, hypoacetylated H3-K56, and both hypophosphorylated H2A-S129 and CDK1-Y15 in absence of hos2. Consequently, the Δhos2 mutant suffered increased sensitivities to DNA-damaging and oxidative stresses, disturbed cell cycle, impeded cytokinesis, increased cell size or length, reduced conidiation capacity, altered conidial properties, and attenuated virulence. These phenotypic changes correlated well with dramatic repression of many genes that are essential for DNA damage repair, G1 /S transition and DNA synthesis, hyphal septation, and asexual development. The uncovered ability for Hos2 to directly deacetylate H4-K16 and to indirectly modify H3-K56, H2A-S129, and CDK1-Y15 provides novel insight into more subtle regulatory role for Hos2 in genomic stability and diverse cellular events in the fungal insect pathogen than those revealed previously in nonentomophathogenic fungi.
Collapse
Affiliation(s)
- Qing Cai
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sen-Miao Tong
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Shao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
46
|
The histone acetyltransferase Mst2 sustains the biological control potential of a fungal insect pathogen through transcriptional regulation. Appl Microbiol Biotechnol 2017; 102:1343-1355. [PMID: 29275430 DOI: 10.1007/s00253-017-8703-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022]
Abstract
Histone lysine acetylation orchestrates transcriptional activity essential for diverse cellular events across organisms, but it remains poorly understood how an acetylated lysine affects cellular functions in filamentous fungal pathogens. Here, we show the functions of a histone acetyltransferase that is phylogenetically close to Mst2 in fission yeast and specifically acetylates histone H3K14 in Beauveria bassiana, a fungal insect pathogen widely applied in arthropod pest management. Deletion of mst2 in B. bassiana resulted in moderate growth defects on rich and minimal media, delayed conidiation, and drastic reduction (75%) in conidiation capacity under normal culture conditions. The Δmst2 conidia suffered slower germination, decreased hydrophobicity, attenuated virulence, and reduced thermotolerance and UV-B resistance. The Δmst2 mutant also displayed increased sensitivities to DNA damaging, oxidative, cell wall perturbing, and osmotic stresses during conidial germination and colony growth at optimal 25 °C. Intriguingly, the phenotypic changes were accompanied with transcriptional repression of related gene sets, which are required for asexual development and conidial hydrophobicity or cascaded for CWI and HOG pathways, and encode the families of superoxide dismutases (SOD), catalases, heat-shock proteins, and trehalose or mannitol-metabolizing enzymes. Consequently, total SOD and catalase activities, trehalose and mannitol contents, and hydrophobicity were remarkably lowered in the hyphal cells or conidia of Δmst2. All of these changes were well restored by targeted mst2 complementation. Our results indicate that Mst2 enables to mediate global gene transcription and/or post-translation through H3K14 acetylation and plays an essential role in sustaining the biological control potential of B. bassiana against arthropod pests.
Collapse
|
47
|
Huarte-Bonnet C, Paixão FRS, Ponce JC, Santana M, Prieto ED, Pedrini N. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations. Fungal Biol 2017; 122:457-464. [PMID: 29801789 DOI: 10.1016/j.funbio.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 11/19/2022]
Abstract
The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana.
Collapse
Affiliation(s)
- Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900 La Plata, Argentina
| | - Flávia R S Paixão
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900 La Plata, Argentina
| | - Juan C Ponce
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900 La Plata, Argentina
| | - Marianela Santana
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900 La Plata, Argentina
| | - Eduardo D Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Sucursal 4 Casilla de Correo 16, 1900 La Plata, Argentina
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calles 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
48
|
Interactome analysis of transcriptional coactivator multiprotein bridging factor 1 unveils a yeast AP-1-like transcription factor involved in oxidation tolerance of mycopathogen Beauveria bassiana. Curr Genet 2017; 64:275-284. [DOI: 10.1007/s00294-017-0741-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/18/2023]
|
49
|
The Hog1-like MAPK Mpk3 collaborates with Hog1 in response to heat shock and functions in sustaining the biological control potential of a fungal insect pathogen. Appl Microbiol Biotechnol 2017; 101:6941-6949. [DOI: 10.1007/s00253-017-8434-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
|
50
|
In vivo gene expression profiling of the entomopathogenic fungus Beauveria bassiana elucidates its infection stratagems in Anopheles mosquito. SCIENCE CHINA-LIFE SCIENCES 2017; 60:839-851. [PMID: 28755300 DOI: 10.1007/s11427-017-9101-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/26/2017] [Indexed: 12/29/2022]
Abstract
The use of entomopathogenic fungi to control mosquitoes is a promising tool for reducing vector-borne disease transmission. To better understand infection stratagems of insect pathogenic fungi, we analyzed the global gene expression profiling of Beauveria bassiana at 36, 60, 84 and 108 h after topical infection of Anopheles stephensi adult mosquitoes using RNA sequencing (RNA-Seq). A total of 5,354 differentially expressed genes (DEGs) are identified over the course of fungal infection. When the fungus grows on the mosquito cuticle, up-regulated DEGs include adhesion-related genes involved in cuticle attachment, Pth11-like GPCRs hypothesized to be involved in host recognition, and extracellular enzymes involved in the degradation and penetration of the mosquito cuticle. Once in the mosquito hemocoel, the fungus evades mosquito immune system probably through up-regulating expression of β-1,3-glucan degrading enzymes and chitin synthesis enzymes for remodeling of cell walls. Moreover, six previous unknown SSCP (small secreted cysteine-rich proteins) are significantly up-regulated, which may serve as "effectors" to suppress host defense responses. B. bassiana also induces large amounts of antioxidant genes to mitigate host-generated exogenous oxidative stress. At late stage of infection, B. bassiana activates a broad spectrum of genes including nutrient degrading enzymes, some transporters and metabolism pathway components, to exploit mosquito tissues and hemolymph as a nutrient source for hyphal growth. These findings establish an important framework of knowledge for further comprehensive elucidation of fungal pathogenesis and molecular mechanism of Beauveria-mosquito interactions.
Collapse
|