1
|
Bardapurkar R, Binayak G, Pandit S. Trophic microRNA: Post-transcriptional regulation of target genes and larval development impairment in Plutella xylostella upon precursor and mature microRNA ingestion. INSECT MOLECULAR BIOLOGY 2025; 34:52-64. [PMID: 39049812 DOI: 10.1111/imb.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
MicroRNAs (miRNAs) are post-transcriptional gene regulators. In the miRNA pathway's cytoplasmic part, the miRNA is processed from a hairpin-structured precursor to a double-stranded (ds) mature RNA and ultimately to a single-stranded mature miRNA. In insects, ingesting these two ds forms can regulate the target gene expression; this inspired the trophic miRNA's use as a functional genomics and pest management tool. However, systematic studies enabling comparisons of pre- and mature forms, dosages, administration times and instar-wise effects on target transcripts and phenotypes, which can help develop a miRNA administration method, are unavailable due to the different focuses of the previous investigations. We investigated the impact of trophically delivered Px-let-7 miRNA on the lepidopteran pest Plutella xylostella, to compare the efficacies of its pre- and ds-mature forms. Continuous feeding on the miRNA-supplemented diet suppressed expressions of FTZ-F1 and E74, the target ecdysone pathway genes. Both the pre-let-7 and mature let-7 miRNA forms similarly downregulated the target transcripts in all four larval instars. Pre-let-7 and let-7 ingestions decreased larval mass and instar duration and increased mortality in all instars, exhibiting adverse effects on larval growth and development. miRNA processing Dicer-1 and AGO-1's upregulations upon miRNA ingestion denoted the systemic miRNA spread in larval tissues. The scrambled sequence controls did not affect the target transcripts, suggesting the sequence-specific targeting by the mature miRNA and hairpin cassette's non-involvement in the target downregulation. This work provides a framework for miRNA and target gene function analyses and potentiates the trophic miRNA's utility in pest management.
Collapse
Affiliation(s)
- Rutwik Bardapurkar
- Agricultural Biotechnology and Chemical Ecology Research Laboratory, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Gauri Binayak
- Agricultural Biotechnology and Chemical Ecology Research Laboratory, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Sagar Pandit
- Agricultural Biotechnology and Chemical Ecology Research Laboratory, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
2
|
Lem M, Rh H, Dg B, Barkhouse A, Miller DW, Raun N, Sa A. The caterpillar Manduca sexta brain shows changes in gene expression and protein abundance correlating with parasitic manipulation of behaviour. Sci Rep 2024; 14:31773. [PMID: 39738473 DOI: 10.1038/s41598-024-82506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
The parasitic wasp, Cotesia congregata, manipulates the behaviour of its host, the caterpillar Manduca sexta. The female wasp injects her eggs and a symbiotic virus (i.e. bracovirus, CcBV) into the body of its host. The host's behaviour remains unchanged until the wasps exit the caterpillar, and then the caterpillar becomes a non-feeding "bodyguard" for the wasp cocoons. Using proteomic, transcriptomic and qPCR studies, we discovered an increase in antimicrobial peptide gene expression and protein abundance in the host central nervous system at the time of wasp emergence, correlating with the change in host behaviour. These results support the hypothesis that the wasps hyperactivate an immune-neural connection to help create the change in behaviour. At the time of wasp emergence, there was also an increase in bracoviral gene expression and proteins in the host brain, suggesting that the bracovirus may also be involved in altering host behaviour. Other changes in gene expression and protein abundance suggest that synaptic transmission may be altered after wasp emergence, and a reduction in descending neural activity from the host's brain provides indirect support for this hypothesis.
Collapse
Affiliation(s)
- McMillan Lem
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Herbison Rh
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Biron Dg
- Lab Microorganismes: Génome et Environment, Université Clermont Auvergne, UMR CNRS, Paris, 6023, France
| | - A Barkhouse
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - D W Miller
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - N Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, B3H 4R2, Canada
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, 6525 GA, the Netherlands
| | - Adamo Sa
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
3
|
Julian-Chávez B, Siqueiros-Cendón TS, Torres-Castillo JA, Sinagawa-García SR, Abraham-Juárez MJ, González-Barriga CD, Rascón-Cruz Q, Siañez-Estrada LI, Arévalo-Gallegos S, Espinoza-Sánchez EA. Silencing ACE1 Gene with dsRNA of Different Lengths Impairs Larval Development in Leptinotarsa decemlineata. INSECTS 2024; 15:1000. [PMID: 39769602 PMCID: PMC11678036 DOI: 10.3390/insects15121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
In the search for effective strategies to control the Colorado Potato Beetle, RNA interference technology has emerged as a promising method due to its capacity to suppress genes selectively. Factors such as the target gene and double-stranded RNA (dsRNA) length are critical for optimizing gene silencing efficiency. In this study, we designed and synthesized in vitro dsRNAs of varying lengths targeting the ACE1 gene, which encodes the AChE1 isoform of acetylcholinesterase in the beetle. All tested dsRNA lengths (222 bp, 543 bp, 670 bp, and 870 bp) promoted transcript reduction. The 670 bp dsRNA was the most effective, reducing transcript levels by approximately 40% by day seven, followed by the 543 bp dsRNA. No significant differences were observed between the 222 bp and 870 bp dsRNAs. Furthermore, all of the dsRNA lengths resulted in reduced weight gain and increased mortality in larvae, with the 670 bp dsRNA showing the highest mortality rate, leaving only 63% larval survival, a trend that persisted through day nine. These findings emphasize that dsRNA length is a key factor in the silencing response, underscoring the importance of selecting the optimal length while considering the gene's target, stability, and delivery methods. This study contributes to establishing design criteria for dsRNA, aiding in the development of more effective and sustainable pest management strategies.
Collapse
Affiliation(s)
- Brenda Julian-Chávez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Tania S. Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Jorge Ariel Torres-Castillo
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ave. División del Golfo 356, Col. Libertad, Ciudad Victoria 87019, Tamaulipas, Mexico;
| | - Sugey Ramona Sinagawa-García
- Laboratorio de Biotecnología, Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N Col. Ex hacienda El Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - María Jazmín Abraham-Juárez
- Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norte León Km 9.6, Irapuato 36821, Guanajuato, Mexico;
| | - Carmen Daniela González-Barriga
- Laboratorio de Cultivo de Tejidos, División de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Heroico Colegio Militar 4700, Nombre de Dios, Chihuahua 31100, Chihuahua, Mexico;
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Luis Ignacio Siañez-Estrada
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Edward Alexander Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| |
Collapse
|
4
|
Ortolá B, Daròs JA. RNA Interference in Insects: From a Natural Mechanism of Gene Expression Regulation to a Biotechnological Crop Protection Promise. BIOLOGY 2024; 13:137. [PMID: 38534407 DOI: 10.3390/biology13030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Insect pests rank among the major limiting factors in agricultural production worldwide. In addition to direct effect on crops, some phytophagous insects are efficient vectors for plant disease transmission. Large amounts of conventional insecticides are required to secure food production worldwide, with a high impact on the economy and environment, particularly when beneficial insects are also affected by chemicals that frequently lack the desired specificity. RNA interference (RNAi) is a natural mechanism gene expression regulation and protection against exogenous and endogenous genetic elements present in most eukaryotes, including insects. Molecules of double-stranded RNA (dsRNA) or highly structured RNA are the substrates of cellular enzymes to produce several types of small RNAs (sRNAs), which play a crucial role in targeting sequences for transcriptional or post-transcriptional gene silencing. The relatively simple rules that underlie RNAi regulation, mainly based in Watson-Crick complementarity, have facilitated biotechnological applications based on these cellular mechanisms. This includes the promise of using engineered dsRNA molecules, either endogenously produced in crop plants or exogenously synthesized and applied onto crops, as a new generation of highly specific, sustainable, and environmentally friendly insecticides. Fueled on this expectation, this article reviews current knowledge about the RNAi pathways in insects, and some other applied questions such as production and delivery of recombinant RNA, which are critical to establish RNAi as a reliable technology for insect control in crop plants.
Collapse
Affiliation(s)
- Beltrán Ortolá
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
5
|
Ghosh R, Metze D, Sant S, Shaikh M, Deshpande A, Firake DM, Pandit S. Chemical ecology of Himalayan eggplant variety's antixenosis: identification of geraniol as an oviposition deterrent against the eggplant shoot and fruit borer. THE NEW PHYTOLOGIST 2023; 240:1259-1274. [PMID: 36918501 DOI: 10.1111/nph.18877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Eggplant (Solanum melongena) suffers severe losses due to a multi-insecticide-resistant lepidopteran pest, shoot and fruit borer (SFB, Leucinodes orbonalis). Heavy and combinatorial application of pesticides for SFB control renders eggplant risky for human consumption. We observed that gravid SFB females do not oviposit on Himalayan eggplant variety RC-RL-22 (RL22). We hypothesized that RL22 contained an antixenosis factor. Females' behavior indicated that the RL22 cue they perceived was olfactory. To identify it, leaf volatile blends of seven eggplant varieties were profiled using solid phase microextraction and gas chromatography mass spectrometry. Seven RL22-specific compounds were detected in the plant headspace. In choice assays, oviposition deterrence efficacies of these candidate compounds were independently tested by their foliar application on SFB-susceptible varieties. Complementation of geraniol, which was exclusively found in RL22, reduced oviposition (> 90%). To validate geraniol's role in RL22's SFB-deterrence, we characterized RL22's geraniol synthase and silenced its gene in planta, using virus-induced gene silencing. Geraniol biosynthesis suppression rendered RL22 SFB-susceptible; foliar geraniol application on the geraniol synthase-silenced plants restored oviposition deterrence. We infer that geraniol is RL22's SFB oviposition deterrent. The use of natural compounds like geraniol, which influence the chemical ecology of oviposition, can reduce the load of hazardous synthetic larvicides.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Agricultural Biotechnology and Chemical Ecology (ABCE) Lab, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Dennis Metze
- Agricultural Biotechnology and Chemical Ecology (ABCE) Lab, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Surhud Sant
- Agricultural Biotechnology and Chemical Ecology (ABCE) Lab, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Maroof Shaikh
- Agricultural Biotechnology and Chemical Ecology (ABCE) Lab, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Ashish Deshpande
- Agricultural Biotechnology and Chemical Ecology (ABCE) Lab, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Dnyaneshwar M Firake
- Division of Crop Protection, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
- ICAR-Directorate of Floricultural Research, Pune, Maharashtra, 411036, India
| | - Sagar Pandit
- Agricultural Biotechnology and Chemical Ecology (ABCE) Lab, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| |
Collapse
|
6
|
Gull I, Jander G. Inoculation of Maize with Sugarcane Mosaic Virus Constructs and Application for RNA Interference in Fall Armyworms. Bio Protoc 2023; 13:e4760. [PMID: 37497451 PMCID: PMC10367001 DOI: 10.21769/bioprotoc.4760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 05/29/2023] [Indexed: 07/28/2023] Open
Abstract
Virus-mediated transient gene overexpression and gene expression silencing can be used to screen gene functions in plants. Sugarcane mosaic virus (SCMV) is a positive strand RNA virus in the Potyviridae family that has been modified to be used as vector to infect monocots, including maize (Zea mays), for transient gene overexpression and gene expression silencing. Relative to stable transformation, SCMV-mediated transient expression in maize has the advantages of being faster and less expensive. Here, we describe a protocol for cloning constructs into the plasmid vector pSCMV-CS3. After maize seedlings are transformed with pSCMV-CS3 constructs by particle bombardment, the virus replicates and spreads systemically in the plants. Subsequent infections of maize seedlings can be accomplished by rub inoculation with sap from SCMV-infested plants. As an example of a practical application of the method, we also describe virus-induced gene silencing (VIGS) of fall armyworm (Spodoptera frugiperda) gene expression. Transgenic viruses are created by cloning a segment of the fall armyworm target gene into pSCMV-CS3 prior to maize transformation. Caterpillars are fed on the virus-infected maize plants, which make dsRNA to silence the expression of the fall armyworm target gene after ingestion. This use of SCMV for plant-mediated VIGS in insects allows rapid screening of gene functions when caterpillars are feeding on their host plants. Graphical overview.
Collapse
Affiliation(s)
- Iram Gull
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | | |
Collapse
|
7
|
Singewar K, Fladung M. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities. Funct Integr Genomics 2023; 23:185. [PMID: 37243792 PMCID: PMC10220346 DOI: 10.1007/s10142-023-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Climate change alters the seasonal synchronization between plants and respective pests plus pathogens. The geographical infiltration helps to shift their hosts, resulting in novel outbreaks that damage forests and ecology. Traditional management schemes are unable to control such outbreaks, therefore unconventional and competitive governance is needed to manage forest pests and pathogens. RNA interference (RNAi) mediated double-stranded RNA (dsRNA) treatment method can be implemented to protect forest trees. Exogenous dsRNA triggers the RNAi-mediated gene silencing of a vital gene, and suspends protein production, resulting in the death of targeted pathogens and pests. The dsRNA treatment method is successful for many crop insects and fungi, however, studies of dsRNA against forest pests and pathogens are depleting. Pesticides and fungicides based on dsRNA could be used to combat pathogens that caused outbreaks in different parts of the world. Although the dsRNA has proved its potential, the crucial dilemma and risks including species-specific gene selection, and dsRNA delivery methods cannot be overlooked. Here, we summarized the major fungi pathogens and insect pests that have caused outbreaks, their genomic information, and studies on dsRNA fungi-and pesticides. Current challenges and opportunities in dsRNA target decision, delivery using nanoparticles, direct applications, and a new method using mycorrhiza for forest tree protection are discussed. The importance of affordable next-generation sequencing to minimize the impact on non-target species is discussed. We suggest that collaborative research among forest genomics and pathology institutes could develop necessary dsRNA strategies to protect forest tree species.
Collapse
Affiliation(s)
- Kiran Singewar
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| |
Collapse
|
8
|
Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 2022; 23:ijms232415836. [PMID: 36555476 PMCID: PMC9785151 DOI: 10.3390/ijms232415836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Invasive insects cost the global economy around USD 70 billion per year. Moreover, increasing agricultural insect pests raise concerns about global food security constraining and infestation rising after climate changes. Current agricultural pest management largely relies on plant breeding-with or without transgenes-and chemical pesticides. Both approaches face serious technological obsolescence in the field due to plant resistance breakdown or development of insecticide resistance. The need for new modes of action (MoA) for managing crop health is growing each year, driven by market demands to reduce economic losses and by consumer demand for phytosanitary measures. The disabling of pest genes through sequence-specific expression silencing is a promising tool in the development of environmentally-friendly and safe biopesticides. The specificity conferred by long dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering, development and application of gene silencing to control Lepidoptera through non-transforming dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we reviewed works showing convincing proof-of-concept results that point to innovative solutions. Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce commercialized products for exogenous application are discussed. Academic and industry initiatives have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which provides more sustainable and reliable technologies for field management. New data on the genomics of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate how dsRNA and associated methodologies could be applied to control an important lepidopteran coffee pest.
Collapse
Affiliation(s)
| | | | - Leonardo A. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Cellular Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Caroline R. Torres
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Camila I. C. V. F. Junqueira
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Juliana Dantas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
9
|
Sun Y, Gong Y, He Q, Kuang S, Gao Q, Ding W, He H, Xue J, Li Y, Qiu L. FAR knockout significantly inhibits Chilo suppressalis survival and transgene expression of double-stranded FAR in rice exhibits strong pest resistance. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2272-2283. [PMID: 36028465 PMCID: PMC9674317 DOI: 10.1111/pbi.13906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/04/2022] [Accepted: 07/30/2022] [Indexed: 05/05/2023]
Abstract
Chilo suppressalis is one of the most prevalent and damaging rice pests, causing significant economic losses each year. Chemical control is currently the primary method of controlling C. suppressalis. However, the indiscriminate use of chemical insecticides increases pest resistance, pollutes the environment and poses a significant health threat to humans and livestock, highlighting the need to find safer, more pest-specific and more effective alternatives to pest control. Plant-mediated RNA interference (RNAi) is a promising agricultural pest control method that is highly pest-specific and has less of an impact on the environment. Using multi-sgRNAs/Cas9 technology to delete Fatty acyl-CoA reductase (FAR) of C. suppressalis in the G0 generation, we show that downregulating FAR transcription may significantly increase the mortality rate and darken the epidermis of C. suppressalis compared with the control. Subsequently, we developed dsFAR transgenic rice lines using Agrobacterium-mediated genetic transformation and then screened three strains expressing dsFAR at high levels using transcriptional level analysis. Using transgenic rice stems, a laboratory feeding bioassay indicated that at least one line (L#10) displayed a particularly high level of insect resistance, with an insect mortality rate of more than 80%. In the field trials, dsFAR transgenic rice displayed high levels of resistance to C. suppressalis damage. Collectively, these results suggest the potential of a new environment-friendly, species-specific strategy for rice pest management.
Collapse
Affiliation(s)
- Yingjuan Sun
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Youwei Gong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Qingzhen He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Suijie Kuang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional IngredientsHunan Agricultural UniversityChangshaChina
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation ProcessingChangshaChina
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
- National Research Center of Engineering & Technology for Utilization of Botanical Functional IngredientsHunan Agricultural UniversityChangshaChina
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| |
Collapse
|
10
|
He L, Huang Y, Tang X. RNAi-based pest control: Production, application and the fate of dsRNA. Front Bioeng Biotechnol 2022; 10:1080576. [PMID: 36524052 PMCID: PMC9744970 DOI: 10.3389/fbioe.2022.1080576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 10/21/2023] Open
Abstract
The limitations of conventional pesticides have raised the demand for innovative and sustainable solutions for plant protection. RNA Interference (RNAi) triggered by dsRNA has evolved as a promising strategy to control insects in a species-specific manner. In this context, we review the methods for mass production of dsRNA, the approaches of exogenous application of dsRNA in the field, and the fate of dsRNA after application. Additionally, we describe the opportunities and challenges of using nanoparticles as dsRNA carriers to control insects. Furthermore, we provide future directions to improve pest management efficiency by utilizing the synergistic effects of multiple target genes. Meanwhile, the establishment of a standardized framework for assessment and regulatory consensus is critical to the commercialization of RNA pesticides.
Collapse
Affiliation(s)
- Li He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Yanna Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| |
Collapse
|
11
|
Ribeiro TP, Vasquez DDN, Macedo LLP, Lourenço-Tessutti IT, Valença DC, Oliveira-Neto OB, Paes-de-Melo B, Rodrigues-Silva PL, Firmino AAP, Basso MF, Lins CBJ, Neves MR, Moura SM, Tripode BMD, Miranda JE, Silva MCM, Grossi-de-Sa MF. Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW ( Anthonomus grandis). Int J Mol Sci 2022; 23:13713. [PMID: 36430188 PMCID: PMC9691246 DOI: 10.3390/ijms232213713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.
Collapse
Affiliation(s)
- Thuanne P. Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Biotechnology and Molecular Biology Department, Federal University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| | - Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - David C. Valença
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Osmundo B. Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
- Biochemistry and Molecular Biology Department, Integrated Faculties of the Educational Union of Planalto Central, Brasilia 70675-760, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | - Alexandre A. P. Firmino
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Max Planck Institute Molecular Plant Physiol, 14476 Potsdam, Germany
| | - Marcos F. Basso
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Camila B. J. Lins
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Maysa R. Neves
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Stefanie M. Moura
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | | | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| |
Collapse
|
12
|
Li X, Liu X, Lu W, Yin X, An S. Application progress of plant-mediated RNAi in pest control. Front Bioeng Biotechnol 2022; 10:963026. [PMID: 36003536 PMCID: PMC9393288 DOI: 10.3389/fbioe.2022.963026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-based biopesticides are novel biologic products, developed using RNAi principles. They are engineered to target genes of agricultural diseases, insects, and weeds, interfering with their target gene expression so as to hinder their growth and alleviate their damaging effects on crops. RNAi-based biopesticides are broadly classified into resistant plant-based plant-incorporated protectants (PIPs) and non-plant-incorporated protectants. PIP RNAi-based biopesticides are novel biopesticides that combine the advantages of RNAi and resistant transgenic crops. Such RNAi-based biopesticides are developed through nuclear or plastid transformation to breed resistant plants, i.e., dsRNA-expressing transgenic plants. The dsRNA of target genes is expressed in the plant cell, with pest and disease control being achieved through plant-target organism interactions. Here, we review the action mechanism and strategies of RNAi for pest management, the development of RNAi-based transgenic plant, and the current status and advantages of deploying these products for pest control, as well as the future research directions and problems in production and commercialization. Overall, this study aims to elucidate the current development status of RNAi-based biopesticides and provide guidelines for future research.
Collapse
|
13
|
Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigera. Sci Rep 2022; 12:10405. [PMID: 35729318 PMCID: PMC9213516 DOI: 10.1038/s41598-022-14667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
RNA interference (RNAi) triggered by exogenous double-stranded RNA (dsRNA) is a powerful tool to knockdown genetic targets crucial for the growth and development of agriculturally important insect pests. Helicoverpa armigera is a pest feeding on more than 30 economically important crops worldwide and a major threat. Resistance to insecticides and Bt toxins has been gradually increasing in the field. RNAi-mediated knockdown of H. armigera genes by producing dsRNAs homologous to genetic targets in bacteria and plants has a high potential for insect management to decrease agricultural loss. The acetylcholinesterase (AChE), ecdysone receptor (EcR) and v-ATPase-A (vAA) genes were selected as genetic targets. Fragments comprising a coding sequence of < 500 bp were cloned into the L4440 vector for dsRNA production in bacteria and in a TRV-VIGS vector in antisense orientation for transient expression of dsRNA in Solanum tuberosum leaves. After ingesting bacterial-expressed dsRNA, the mRNA levels of the target genes were significantly reduced, leading to mortality and abnormal development in larva of H. armigera. Furthermore, the S. tuberosum plants transformed with TRV-VIGS expressing AChE exhibited higher mortality > 68% than the control plants 17%, recorded ten days post-feeding and significant resistance in transgenic (transient) plants was observed. Moreover, larval lethality and molting defects were observed in larva fed on potato plants expressing dsRNA specific to EcR. Analysis of transcript levels by quantitative RT–PCR revealed that larval mortality was attributable to the knockdown of genetic targets by RNAi. The results demonstrated that down-regulation of H. armigera genes involved in ATP hydrolysis, transcriptional stimulation of development genes and neural conduction has aptitude as a bioinsecticide to control H. armigera population sizes and therefore decreases crop loss.
Collapse
|
14
|
RNAi technology for plant protection and its application in wheat. ABIOTECH 2021; 2:365-374. [PMID: 36304420 PMCID: PMC9590511 DOI: 10.1007/s42994-021-00036-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
The RNAi technology takes advantage of the intrinsic RNA interference (RNAi) mechanism that exists in nearly all eukaryotes in which target mRNAs are degraded or functionally suppressed. Significant progress has been made in recent years where RNAi technology is applied to several crops and economic plants for protection against diseases like fungi, pests, and nematode. RNAi technology is also applied in controlling pathogen damages in wheat, one of the most important crops in the world. In this review, we first give a brief introduction of the RNAi technology and the underneath mechanism. We then review the recent progress of its utilization in crops, particular wheat. Finally, we discuss the existing challenges and prospect future development of this technology in crop protection.
Collapse
|
15
|
Guan R, Chu D, Han X, Miao X, Li H. Advances in the Development of Microbial Double-Stranded RNA Production Systems for Application of RNA Interference in Agricultural Pest Control. Front Bioeng Biotechnol 2021; 9:753790. [PMID: 34589476 PMCID: PMC8473835 DOI: 10.3389/fbioe.2021.753790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022] Open
Abstract
RNA interference (RNAi) is a valuable and revolutionary technology that has been widely applied in medicine and agriculture. The application of RNAi in various industries requires large amounts of low-cost double-stranded RNA (dsRNA). Chemical synthesis can only produce short dsRNAs; long dsRNAs need to be synthesized biologically. Several microbial chassis cells, such as Escherichia coli, Saccharomyces cerevisiae, and Bacillus species, have been used for dsRNA synthesis. However, the titer, rate of production, and yield of dsRNA obtained by these microorganism-based strategies is still low. In this review, we summarize advances in microbial dsRNA production, and analyze the merits and faults of different microbial dsRNA production systems. This review provides a guide for dsRNA production system selection. Future development of efficient microbial dsRNA production systems is also discussed.
Collapse
Affiliation(s)
- Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Dongdong Chu
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinyi Han
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
| | - Haichao Li
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Joga MR, Mogilicherla K, Smagghe G, Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? FRONTIERS IN PLANT SCIENCE 2021; 12:733608. [PMID: 34567044 PMCID: PMC8461336 DOI: 10.3389/fpls.2021.733608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/01/2023]
Abstract
Forest insects are emerging in large extension in response to ongoing climatic changes, penetrating geographic barriers, utilizing novel hosts, and influencing many hectares of conifer forests worldwide. Current management strategies have been unable to keep pace with forest insect population outbreaks, and therefore novel and aggressive management strategies are urgently required to manage forest insects. RNA interference (RNAi), a Noble Prize-winning discovery, is an emerging approach that can be used for forest protection. The RNAi pathway is triggered by dsRNA molecules, which, in turn, silences genes and disrupts protein function, ultimately causing the death of the targeted insect. RNAi is very effective against pest insects; however, its proficiency varies significantly among insect species, tissues, and genes. The coleopteran forest insects are susceptible to RNAi and can be the initial target, but we lack practical means of delivery, particularly in systems with long-lived, endophagous insects such as the Emerald ash borer, Asian longhorn beetles, and bark beetles. The widespread use of RNAi in forest pest management has major challenges, including its efficiency, target gene selection, dsRNA design, lack of reliable dsRNA delivery methods, non-target and off-target effects, and potential resistance development in wood-boring pest populations. This review focuses on recent innovations in RNAi delivery that can be deployed against forest pests, such as cationic liposome-assisted (lipids), nanoparticle-enabled (polymers or peptides), symbiont-mediated (fungi, bacteria, and viruses), and plant-mediated deliveries (trunk injection, root absorption). Our findings guide future risk analysis of dsRNA-based forest protection products (FPPs) and risk assessment frameworks incorporating sequence complementarity-based analysis for off-target predictions. This review also points out barriers to further developing RNAi for forest pest management and suggests future directions of research that will build the future use of RNAi against wood-boring coleopterans.
Collapse
Affiliation(s)
- Mallikarjuna Reddy Joga
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Amit Roy
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
17
|
Garbatti Factor B, de Moura Manoel Bento F, Figueira A. Methods for Delivery of dsRNAs for Agricultural Pest Control: The Case of Lepidopteran Pests. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2360:317-345. [PMID: 34495524 DOI: 10.1007/978-1-0716-1633-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
RNA interference (RNAi) is a natural mechanism of gene regulation, highly conserved in eukaryotes. Since the elucidation of the gene silencing mechanism, RNAi became an important tool used in insect reverse genetics. The demonstration of effective target-gene silencing by ingestion of double-stranded RNA (dsRNA) produced by transgenic plants indicated the RNAi potential to be used in insect pest management, particularly in agriculture. However, the efficiency of gene silencing by RNAi in insects may vary according to the target taxa, and lepidopteran species have been shown to be quite recalcitrant to RNAi. Developing transgenic plants is a time-consuming and labor-intensive process, so alternative oral delivery systems are required to develop and optimize RNAi settings, such as selecting an efficient target gene, and dsRNA design, length, and stability, among other features. We have developed delivery systems to evaluate dsRNAs to silence genes from two important lepidopteran crop pests of tomato (Solanum lycopersicum) and sugarcane (Saccharum × officinarum): Tuta absoluta (Meyrick), the South American Tomato Pinworm, and Diatraea saccharalis (Fabricius), the Sugarcane Borer, respectively. The protocol described here can be used in similar species and includes (a) direct oral delivery by droplets containing dsRNA; (b) oral delivery by tomato leaflets that absorbed dsRNA solution; (c) delivery by Escherichia coli expressing dsRNA; and (d) delivery by transgenic plants expressing dsRNA.
Collapse
Affiliation(s)
- Bruna Garbatti Factor
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
18
|
Lyons N, Softley I, Balfour A, Williamson C, O'Brien HE, Shetty AC, Bruno VM, Diezmann S. Tobacco Hornworm ( Manduca sexta) caterpillars as a novel host model for the study of fungal virulence and drug efficacy. Virulence 2021; 11:1075-1089. [PMID: 32842847 PMCID: PMC7549948 DOI: 10.1080/21505594.2020.1806665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The two leading yeast pathogens of humans, Candida albicans and Cryptococcus neoformans, cause systemic infections in >1.4 million patients worldwide with mortality rates approaching 75%. It is thus imperative to study fungal virulence mechanisms, efficacy of antifungal drugs, and host response pathways. While this is commonly done in mammalian models, which are afflicted by ethical and practical concerns, invertebrate models, such as wax moth larvae and nematodes have been introduced over the last two decades. To complement existing invertebrate host models, we developed fifth instar caterpillars of the Tobacco Hornworm moth Manduca sexta as a novel host model. These caterpillars can be maintained at 37°C, are suitable for injections with defined amounts of yeast cells, and are susceptible to the most threatening yeast pathogens, including C. albicans, C. neoformans, C. auris, and C. glabrata. Importantly, fungal burden can be assessed daily throughout the course of infection in a single caterpillar’s feces and hemolymph. Infected caterpillars can be rescued by treatment with antifungal drugs. Notably, these animals are large enough for weight to provide a reliable and reproducible measure of fungal disease and to facilitate host tissue-specific expression analyses. M. sexta caterpillars combine a suite of parameters that make them suitable for the study of fungal virulence.
Collapse
Affiliation(s)
- Naomi Lyons
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University , Tel Aviv, Israel.,Department of Biology & Biochemistry, University of Bath , Bath, UK
| | - Isabel Softley
- Department of Biology & Biochemistry, University of Bath , Bath, UK
| | - Andrew Balfour
- Department of Biology & Biochemistry, University of Bath , Bath, UK
| | | | - Heath E O'Brien
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University , Cardiff, UK
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Stephanie Diezmann
- Department of Biology & Biochemistry, University of Bath , Bath, UK.,School of Cellular and Molecular Medicine, University of Bristol , Bristol, UK
| |
Collapse
|
19
|
Ahmad S, Jamil M, Fahim M, Zhang S, Ullah F, Lyu B, Luo Y. RNAi-Mediated Knockdown of Imaginal Disc Growth Factors (IDGFs) Genes Causes Developmental Malformation and Mortality in Melon Fly, Zeugodacus cucurbitae. Front Genet 2021; 12:691382. [PMID: 34290744 PMCID: PMC8287652 DOI: 10.3389/fgene.2021.691382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
This study reports the first successful use of oral feeding dsRNA technique for functional characterization of imaginal disc growth factors (IDGFs) genes (IDGF1, IDGF3_1, IDGF4_0, IDGF4_1, and IDGF6) in melon fly Zeugodacus cucurbitae. Phylogenetic and domain analysis indicates that these genes had high similarity with other Tephritidae fruit flies homolog and contain only one conserved domain among these five genes, which is glyco-18 domain (glyco-hydro-18 domain). Gene expression analysis at different developmental stages revealed that these genes were expressed at larval, pupal, and adult stages. To understand their role in different developmental stages, larvae were fed dsRNA-corresponding to each of the five IDGFs, in an artificial diet. RNAi-mediated knockdown of IDGF1 shows no phenotypic effects but caused mortality (10.4%), while IDGF4_0 caused malformed pharate at the adult stage where insects failed to shed their old cuticle and remained attached with their body, highest mortality (49.2%) was recorded compared to dsRNA-green fluorescent protein (GFP) or DEPC. Silencing of IDGF3_1 and IDGF4_1 cause lethal phenotype in larvae, (17.2%) and (40%) mortality was indexed in Z. cucurbitae. IDGF6 was mainly expressed in pupae and adult stages, and its silencing caused a malformation in adult wings. The developmental defects such as malformation in wings, larval–larval lethality, pupal–adult malformation, and small body size show that IDGFs are key developmental genes in the melon fly. Our results provide a baseline for the melon fly management and understanding of IDGFs specific functions in Z. cucurbitae.
Collapse
Affiliation(s)
- Shakil Ahmad
- School of Plant Protection, Hainan University, Haikou, China
| | - Momana Jamil
- School of Plant Protection, Hainan University, Haikou, China
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College University, Peshawar, Pakistan
| | - Shujing Zhang
- School of Plant Protection, Hainan University, Haikou, China
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Baoqian Lyu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, China
| | - Yanping Luo
- School of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
20
|
Wang Y, Huang N, Ye N, Qiu L, Li Y, Ma H. An Efficient Virus-Induced Gene Silencing System for Functional Genomics Research in Walnut ( Juglans regia L.) Fruits. FRONTIERS IN PLANT SCIENCE 2021; 12:661633. [PMID: 34249033 PMCID: PMC8261060 DOI: 10.3389/fpls.2021.661633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The Persian walnut (Juglans regia L.) is a leading source of woody oil in warm temperate regions and has high nutritional and medicinal values. It also provides both tree nuts and woody products. Nevertheless, incomplete characterization of the walnut genetic system limits the walnut gene function analysis. This study used the tobacco rattle virus (TRV) vector to construct an infectious pTRV-JrPDS recombinant clone. A co-culture inoculation method utilizing Agrobacterium was screened out from four inoculation methods and optimized to set up an efficient virus-induced gene silencing (VIGS) system for J. regia fruit. The optimized VIGS-TRV system induced complete photobleaching phenotype on the walnut fruits of four cultivars, and the JrPDS transcript levels decreased by up to 88% at 8 days post-inoculation (dpi). While those of browning-related J. regia polyphenol oxidase (PPO) genes JrPPO1 and JrPPO2 decreased by 67 and 80% at 8 dpi, respectively, accompanied by a significant reduction in fruit browning phenotype. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis screening and Western Blot showed that the PPO protein levels were significantly reduced. Moreover, a model of TRV-mediated VIGS system for inoculating J. regia fruit with efficient silence efficiency via co-culture was developed. These results indicate that the VIGS-TRV system is an efficient tool for rapid gene function analysis in J. regia fruits.
Collapse
|
21
|
Efficient production of long double-stranded RNAs applicable to agricultural pest control by Corynebacterium glutamicum equipped with coliphage T7-expression system. Appl Microbiol Biotechnol 2021; 105:4987-5000. [PMID: 34097118 PMCID: PMC8236056 DOI: 10.1007/s00253-021-11324-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Abstract RNA-based pesticides exert their function by suppressing the expression of an essential gene in the target pest through RNA interference caused by double-stranded RNA (dsRNA). Here, we selected target genes for growth suppression of the solanaceous crop pests ladybird beetle (Henosepilachna vigintioctopunctata) and Colorado potato beetle (Leptinotarsa decemlineata)-the death-associated inhibitor of apoptosis protein 1 gene (diap1), and an orthologous gene of the COPI coatomer protein complex (copI), respectively. We constructed a cost-competitive overproduction system for dsRNA using Corynebacterium glutamicum as a host bacterium. The dsRNA expression unit was equipped with two sets of promoters and terminators derived from coliphage T7, and the convergent expression system was designed to be selectively transcribed by T7 RNA polymerase. This expression system efficiently overproduced both target dsRNAs. On culture in a jar fermentor, the yield of diap1-targeting dsRNA (approximately 360 bp) was > 1 g per liter of culture. Long-chain diap1-targeting dsRNAs (up to around 1 kbp) could be produced without a substantial loss of efficiency. dsRNA accumulated in C. glutamicum significantly suppressed larval growth of H. vigintioctopunctata. The dsRNA expression technology developed here is expected to substantially reduce dsRNA production costs. Our method can be applied for a wide range of industrial uses, including agricultural pest control. Key points • Overexpression of dsRNA was achieved in C. glutamicum using a coliphage T7 system. • The best strain produced > 1 g/L of the target dsRNA species, for use as an insecticide. • The developed system efficiently produced long dsRNA species, up to ~ 1 kbp. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11324-9.
Collapse
|
22
|
Santos D, Remans S, Van den Brande S, Vanden Broeck J. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. PLANTS (BASEL, SWITZERLAND) 2021; 10:484. [PMID: 33806650 PMCID: PMC8001424 DOI: 10.3390/plants10030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023]
Abstract
RNA-mediated pathways form an important regulatory layer of myriad biological processes. In the last decade, the potential of RNA molecules to contribute to the control of agricultural pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact, several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based cell-to-cell communication, and plant-insect transfer of RNA. In addition, we overview the molecular mechanisms implicated in this form of communication and discuss future biotechnological prospects, namely from the insect pest-control perspective.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (S.R.); (S.V.d.B.); (J.V.B.)
| | | | | | | |
Collapse
|
23
|
Abstract
As an overarching immune mechanism, RNA interference (RNAi) displays pathogen specificity and memory via different pathways. The small interfering RNA (siRNA) pathway is the primary antiviral defense mechanism against RNA viruses of insects and plays a lesser role in defense against DNA viruses. Reflecting the pivotal role of the siRNA pathway in virus selection, different virus families have independently evolved unique strategies to counter this host response, including protein-mediated, decoy RNA-based, and microRNA-based strategies. In this review, we outline the interplay between insect viruses and the different pathways of the RNAi antiviral response; describe practical application of these interactions for improved expression systems and for pest and disease management; and highlight research avenues for advancement of the field.
Collapse
Affiliation(s)
- Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA;
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Institut Pasteur, CNRS UMR 3569, 75724 Paris CEDEX 15, France;
| |
Collapse
|
24
|
Adeyinka OS, Riaz S, Toufiq N, Yousaf I, Bhatti MU, Batcho A, Olajide AA, Nasir IA, Tabassum B. Advances in exogenous RNA delivery techniques for RNAi-mediated pest control. Mol Biol Rep 2020; 47:6309-6319. [DOI: 10.1007/s11033-020-05666-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/12/2020] [Indexed: 01/09/2023]
|
25
|
Arpaia S, Christiaens O, Giddings K, Jones H, Mezzetti B, Moronta-Barrios F, Perry JN, Sweet JB, Taning CNT, Smagghe G, Dietz-Pfeilstetter A. Biosafety of GM Crop Plants Expressing dsRNA: Data Requirements and EU Regulatory Considerations. FRONTIERS IN PLANT SCIENCE 2020; 11:940. [PMID: 32670333 PMCID: PMC7327110 DOI: 10.3389/fpls.2020.00940] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/09/2020] [Indexed: 05/16/2023]
Abstract
The use of RNA interference (RNAi) enables the silencing of target genes in plants or plant-dwelling organisms, through the production of double stranded RNA (dsRNA) resulting in altered plant characteristics. Expression of properly synthesized dsRNAs in plants can lead to improved crop quality characteristics or exploit new mechanisms with activity against plant pests and pathogens. Genetically modified (GM) crops exhibiting resistance to viruses or insects via expression of dsRNA have received authorization for cultivation outside Europe. Some products derived from RNAi plants have received a favourable opinion from the European Food Safety Authority (EFSA) for import and processing in the European Union (EU). The authorization process in the EU requires applicants to produce a risk assessment considering food/feed and environmental safety aspects of living organisms or their derived food and feed products. The present paper discusses the main aspects of the safety assessment (comparative assessment, molecular characterization, toxicological assessment, nutritional assessment, gene transfer, interaction with target and non-target organisms) for GM plants expressing dsRNA, according to the guidelines of EFSA. Food/feed safety assessment of products from RNAi plants is expected to be simplified, in the light of the consideration that no novel proteins are produced. Therefore, some of the data requirements for risk assessment do not apply to these cases, and the comparative compositional analysis becomes the main source of evidence for food/feed safety of RNAi plants. During environmental risk assessment, the analysis of dsRNA expression levels of the GM trait, and the data concerning the observable effects on non-target organisms (NTO) will provide the necessary evidence for ensuring safety of species exposed to RNAi plants. Bioinformatics may provide support to risk assessment by selecting target gene sequences with low similarity to the genome of NTOs possibly exposed to dsRNA. The analysis of these topics in risk assessment indicates that the science-based regulatory process in Europe is considered to be applicable to GM RNAi plants, therefore the evaluation of their safety can be effectively conducted without further modifications. Outcomes from the present paper offer suggestions for consideration in future updates of the EFSA Guidance documents on risk assessment of GM organisms.
Collapse
Affiliation(s)
- Salvatore Arpaia
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rotondella, Italy
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kara Giddings
- Bayer, Crop Science R&D Regulatory Science, Chesterfield, MO, United States
| | - Huw Jones
- Translational Genomics for Plant Breeding, Aberystwyth University, Wales, United Kingdom
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Antje Dietz-Pfeilstetter
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
26
|
Kolliopoulou A, Kontogiannatos D, Swevers L. The Use of Engineered Plant Viruses in a Trans-Kingdom Silencing Strategy Against Their Insect Vectors. FRONTIERS IN PLANT SCIENCE 2020; 11:917. [PMID: 32733507 PMCID: PMC7360853 DOI: 10.3389/fpls.2020.00917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/04/2020] [Indexed: 05/04/2023]
Abstract
Plants, plant viruses, and their vectors are co-evolving actors that co-exist and interact in nature. Insects are the most important vectors of plant viruses, serving as both carriers and hosts for the virus. This trans-kingdom interaction can be harnessed for the production of recombinant plant viruses designed to target insect genes via the RNAi machinery. The selection of the adequate viruses is important since they must infect and preferentially replicate in both the host plant and the insect vector. The routes of transmission that determine the extent of the infection inside the insect vary among different plant viruses. In the context of the proposed strategy, plant viruses that are capable of transversing the insect gut-hemocoel barrier and replicating in insect tissues are attractive candidates. Thus, the transmission of such viruses in a persistent and propagative manner is considered as a prerequisite for this strategy to be feasible, a characteristic that is found in viruses from the families Bunyaviridae, Reoviridae, and Rhabdoviridae. In addition, several RNA viruses are known that replicate in both plant and insect tissues via a yet unclarified transmission route. In this review, advances in knowledge of trans-kingdom transmission of plant viruses and future perspectives for their engineering as silencing vectors are thoroughly discussed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
- Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
- *Correspondence: Anna Kolliopoulou,
| | - Dimitrios Kontogiannatos
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
| | - Luc Swevers
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
| |
Collapse
|
27
|
Sun R, Jiang X, Reichelt M, Gershenzon J, Pandit SS, Giddings Vassão D. Tritrophic metabolism of plant chemical defenses and its effects on herbivore and predator performance. eLife 2019; 8:e51029. [PMID: 31841109 PMCID: PMC6934381 DOI: 10.7554/elife.51029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
Insect herbivores are frequently reported to metabolize plant defense compounds, but the physiological and ecological consequences are not fully understood. It has rarely been studied whether such metabolism is genuinely beneficial to the insect, and whether there are any effects on higher trophic levels. Here, we manipulated the detoxification of plant defenses in the herbivorous pest diamondback moth (Plutella xylostella) to evaluate changes in fitness, and additionally examined the effects on a predatory lacewing (Chrysoperla carnea). Silencing glucosinolate sulfatase genes resulted in the systemic accumulation of toxic isothiocyanates in P. xylostella larvae, impairing larval development and adult reproduction. The predatory lacewing C. carnea, however, efficiently degraded ingested isothiocyanates via a general conjugation pathway, with no negative effects on survival, reproduction, or even prey preference. These results illustrate how plant defenses and their detoxification strongly influence herbivore fitness but might only subtly affect a third trophic level.
Collapse
Affiliation(s)
- Ruo Sun
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Xingcong Jiang
- Department of Evolutionary NeuroethologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Sagar Subhash Pandit
- Molecular and Chemical Ecology LabIndian Institute of Science Education and ResearchPuneIndia
| | | |
Collapse
|
28
|
Kanakala S, Kontsedalov S, Lebedev G, Ghanim M. Plant-Mediated Silencing of the Whitefly Bemisia tabaci Cyclophilin B and Heat Shock Protein 70 Impairs Insect Development and Virus Transmission. Front Physiol 2019; 10:557. [PMID: 31133883 PMCID: PMC6517521 DOI: 10.3389/fphys.2019.00557] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/24/2019] [Indexed: 01/09/2023] Open
Abstract
The whitefly B. tabaci is a global pest and transmits extremely important plant viruses especially begomoviruses, that cause substantial crop losses. B. tabaci is one of the top invasive species worldwide and have developed resistance to all major pesticide classes. One of the promising alternative ways for controlling this pest is studying its genetic makeup for identifying specific target proteins which are critical for its development and ability to transmit viruses. Tomato yellow leaf curl virus (TYLCV) is the most economically important and well-studied begomovirus transmitted by B. tabaci, in a persistent-circulative manner. Recently, we reported that B. tabaci Cyclophilin B (CypB) and heat shock protein 70 proteins (hsp70) interact and co-localize with TYLCV in the whitefly midgut, on the virus transmission pathway, and that both proteins have a significant role in virus transmission. Here, we extended the previous work and used the Tobacco rattle virus (TRV) plant-mediated RNA silencing system for knocking down both genes and testing the effect of their silencing on whitefly viability and virus transmission. Portions of these two genes were cloned into TRV constructs and tomato plants were infected and used for whitefly feeding and transmission experiments. Following whitefly feeding on TRV-plants, the expression levels of cypB and hsp70 in adult B. tabaci significantly decreased over 72 h feeding period. The knockdown in the expression of both genes was further shown in the first generation of silenced whiteflies, where phenotypic abnormalities in the adult, wing, nymph and bacteriosomes development and structure were observed. Additionally, high mortality rates that reached more than 80% among nymphs and adults were obtained. Finally, silenced whitefly adults with both genes showed decreased ability to transmit TYLCV under lab conditions. Our results suggest that plant-mediated silencing of both cypB and hsp70 have profound effects on whitefly development and its ability to transmit TYLCV.
Collapse
Affiliation(s)
- Surapathrudu Kanakala
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Svetlana Kontsedalov
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Galina Lebedev
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
29
|
Liu Q, Khakimov B, Cárdenas PD, Cozzi F, Olsen CE, Jensen KR, Hauser TP, Bak S. The cytochrome P450 CYP72A552 is key to production of hederagenin-based saponins that mediate plant defense against herbivores. THE NEW PHYTOLOGIST 2019; 222:1599-1609. [PMID: 30661245 DOI: 10.1111/nph.15689] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/02/2019] [Indexed: 05/22/2023]
Abstract
Plants continuously evolve new defense compounds. One class of such compounds is triterpenoid saponins. A few species in the Barbarea genus produce saponins as the only ones in the large crucifer family. However, the molecular mechanism behind saponin biosynthesis and their role in plant defense remains unclear. We used pathway reconstitution in planta, enzymatic production of saponins in vitro, insect feeding assays, and bioinformatics to identify a missing gene involved in saponin biosynthesis and saponin-based herbivore defense. A tandem repeat of eight CYP72A cytochromes P450 colocalise with a quantitative trait locus (QTL) for saponin accumulation and flea beetle resistance in Barbarea vulgaris. We found that CYP72A552 oxidises oleanolic acid at position C-23 to hederagenin. In vitro-produced hederagenin monoglucosides reduced larval feeding by up to 90% and caused 75% larval mortality of the major crucifer pest diamondback moth and the tobacco hornworm. Sequence analysis indicated that CYP72A552 evolved through gene duplication and has been under strong selection pressure. In conclusion, CYP72A552 has evolved to catalyse the formation of hederagenin-based saponins that mediate plant defense against herbivores. Our study highlights the evolution of chemical novelties by gene duplication and selection for enzyme innovations, and the importance of chemical modification in plant defense evolution.
Collapse
Affiliation(s)
- Qing Liu
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Bekzod Khakimov
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Department of Food Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Pablo D Cárdenas
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Federico Cozzi
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karen Rysbjerg Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Thure Pavlo Hauser
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| |
Collapse
|
30
|
Sun Z, Shi Q, Li Q, Wang R, Xu C, Wang H, Ran C, Song Y, Zeng R. Identification of a cytochrome P450 CYP6AB60 gene associated with tolerance to multi-plant allelochemicals from a polyphagous caterpillar tobacco cutworm (Spodoptera litura). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:60-66. [PMID: 30765057 DOI: 10.1016/j.pestbp.2018.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Generalist phytophagous insects adapt to adventurous chemical environment in a wide variety of host plants by extraordinary detoxifying metabolic abilities. However, how polyphagous insect cope with the diversity of plant defenses remains largely unknown and only a few counter-defense genes detoxifying a wide range of toxic secondary metabolites have been well characterized. Here, we identify a cytochrome P450 gene (CYP6AB60) from tobacco cutworm (Spodoptera litura) in response to three different plant's defense metabolites. After being exposed to artificial diet supplemented with coumarin (COU), xanthotoxin (XAN) or tomatine (TOM), activities of P450 and CYP6AB60 transcript levels in both midgut and fat body tissues were significantly increased. Developmental expression analysis revealed that CYP6AB60 was expressed highly during the larval stages, and tissue distribution analysis showed that CYP6AB60 was expressed extremely high in the midgut, which correspond to the physiological role of CYP6AB60 from S. litura larvae in response to plant allelochemicals. Furthermore, when larvae are injected with double-stranded RNA (dsRNA) specific to CYP6AB60, levels of this transcript in the midgut and fatbody decrease and the negative effect of plant's defense metabolites on larval growth is magnified. These data demonstrate that the generalist insect S. litura might take advantage of an individual detoxificative gene CYP6AB60 to toxic secondary metabolites from different host plants. The CYP6AB60 can be a potential gene to carry out RNAi-mediated crop protection against the major polyphagous pest S. litura in the future.
Collapse
Affiliation(s)
- Zhongxiang Sun
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| | - Qi Shi
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qilin Li
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rumeng Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuicui Xu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunxia Ran
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
31
|
Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck JV. RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Front Physiol 2019; 9:1912. [PMID: 30687124 PMCID: PMC6336832 DOI: 10.3389/fphys.2018.01912] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Insects constitute the largest and most diverse group of animals on Earth with an equally diverse virome. The main antiviral immune system of these animals is the post-transcriptional gene-silencing mechanism known as RNA(i) interference. Furthermore, this process can be artificially triggered via delivery of gene-specific double-stranded RNA molecules, leading to specific endogenous gene silencing. This is called RNAi technology and has important applications in several fields. In this paper, we review RNAi mechanisms in insects as well as the potential of RNAi technology to contribute to species-specific insecticidal strategies. Regarding this aspect, we cover the range of strategies considered and investigated so far, as well as their limitations and the most promising approaches to overcome them. Additionally, we discuss patterns of viral infection, specifically persistent and acute insect viral infections. In the latter case, we focus on infections affecting economically relevant species. Within this scope, we review the use of insect-specific viruses as bio-insecticides. Last, we discuss RNAi-based strategies to protect beneficial insects from harmful viral infections and their potential practical application. As a whole, this manuscript stresses the impact of insect viruses and RNAi technology in human life, highlighting clear lines of investigation within an exciting and promising field of research.
Collapse
|
32
|
Hussain T, Aksoy E, Çalışkan ME, Bakhsh A. Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata, Say). Transgenic Res 2019; 28:151-164. [DOI: 10.1007/s11248-018-0109-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/11/2018] [Indexed: 01/11/2023]
|
33
|
Cagliari D, Dias NP, Galdeano DM, dos Santos EÁ, Smagghe G, Zotti MJ. Management of Pest Insects and Plant Diseases by Non-Transformative RNAi. FRONTIERS IN PLANT SCIENCE 2019; 10:1319. [PMID: 31708946 PMCID: PMC6823229 DOI: 10.3389/fpls.2019.01319] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/23/2019] [Indexed: 05/17/2023]
Abstract
Since the discovery of RNA interference (RNAi), scientists have made significant progress towards the development of this unique technology for crop protection. The RNAi mechanism works at the mRNA level by exploiting a sequence-dependent mode of action with high target specificity due to the design of complementary dsRNA molecules, allowing growers to target pests more precisely compared to conventional agrochemicals. The delivery of RNAi through transgenic plants is now a reality with some products currently in the market. Conversely, it is also expected that more RNA-based products reach the market as non-transformative alternatives. For instance, topically applied dsRNA/siRNA (SIGS - Spray Induced Gene Silencing) has attracted attention due to its feasibility and low cost compared to transgenic plants. Once on the leaf surface, dsRNAs can move directly to target pest cells (e.g., insects or pathogens) or can be taken up indirectly by plant cells to then be transferred into the pest cells. Water-soluble formulations containing pesticidal dsRNA provide alternatives, especially in some cases where plant transformation is not possible or takes years and cost millions to be developed (e.g., perennial crops). The ever-growing understanding of the RNAi mechanism and its limitations has allowed scientists to develop non-transgenic approaches such as trunk injection, soaking, and irrigation. While the technology has been considered promising for pest management, some issues such as RNAi efficiency, dsRNA degradation, environmental risk assessments, and resistance evolution still need to be addressed. Here, our main goal is to review some possible strategies for non-transgenic delivery systems, addressing important issues related to the use of this technology.
Collapse
Affiliation(s)
- Deise Cagliari
- Laboratory of Molecular Entomology, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
- *Correspondence: Deise Cagliari, ; Guy Smagghe, ; Moisés João Zotti,
| | - Naymã P. Dias
- Laboratory of Molecular Entomology, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| | | | - Ericmar Ávila dos Santos
- Laboratory of Molecular Entomology, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, Ghent, Belgium
- *Correspondence: Deise Cagliari, ; Guy Smagghe, ; Moisés João Zotti,
| | - Moisés João Zotti
- Laboratory of Molecular Entomology, Department of Crop Protection, Federal University of Pelotas, Pelotas, Brazil
- *Correspondence: Deise Cagliari, ; Guy Smagghe, ; Moisés João Zotti,
| |
Collapse
|
34
|
He C, Liang J, Liu S, Wang S, Wu Q, Xie W, Zhang Y. Changes in the expression of four ABC transporter genes in response to imidacloprid in Bemisia tabaci Q (Hemiptera: Aleyrodidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:136-143. [PMID: 30744887 DOI: 10.1016/j.pestbp.2018.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), a globally invasive species complex that causes serious damage to field crops, has developed resistance to imidacloprid and many other pesticides. Insect detoxify to pesticides may partially depend on ABC transporters, which contribute to the detoxification of xenobiotics. To determine whether genes in the ABCG subfamily are involved in imidacloprid detoxification in B. tabaci Q, we cloned four ABCG subfamily genes based on the published MED/Q genome and on our previous study of the transcriptional response of ABC transporters in B. tabaci Q adults to imidacloprid. As indicated by the quantification of mRNA levels after a 6-h exposure, the expression level of ABCG3 was 3.3-fold higher in B. tabaci Q adults exposed to 100 μg/mL imidacloprid rather than to the buffer control. The expression level of ABCG3 was higher in females than in males but did not significantly differ among eggs or nymphal stages and did not significantly differ among head, thorax, and abdomen tissues of adults. Knockdown of ABCG3 via RNA interference significantly increased the mortality of imidacloprid-treated laboratory and field-collected adults of B. tabaci Q. These results indicate that the ABCG3 gene may be involved in imidacloprid detoxification by B. tabaci Q.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jinjin Liang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, PR China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
35
|
Guo W, Bai C, Wang Z, Wang P, Fan Q, Mi X, Wang L, He J, Pang J, Luo X, Fu W, Tian Y, Si H, Zhang G, Wu J. Double-Stranded RNAs High-Efficiently Protect Transgenic Potato from Leptinotarsa decemlineata by Disrupting Juvenile Hormone Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11990-11999. [PMID: 30398356 DOI: 10.1021/acs.jafc.8b03914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA interference (RNAi) has been developed for plant pest control. In this study, hairpin-type double-stranded RNA (dsRNA) targeting the juvenile hormone (JH) acid methyltransferase ( JHAMT) gene ( dsJHAMT) was introduced in potato plants via Agrobacterium-mediated transformation. The results indicated that the transcriptional RNA of dsJHAMT accumulated in the transgenic plants. The transcripts and proteins of the L. decemlineata JHAMT gene were significantly reduced in larvae feeding on dsJHAMT transgenic foliage. The dsJHAMT had a significant negative effect on the growth and development of L. decemlineata, especially resulting in less oviposition. Importantly, in the field trials, transgenic plants are high-efficiently protected from insect damage mainly because surviving insects laid fewer or no eggs. Even full protection from beetle damage can be acquired by continuously lowering insect population size at large scale in the field over the years. Therefore, the transgenic plants expressing dsJHAMT successfully provided an additional option for plant pest control.
Collapse
Affiliation(s)
- Wenchao Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
- Institute of Plant Protection , Xinjiang Agricultural Academy of Sciences , Xinjiang , Urumqi , China
| | - Chao Bai
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing , China
| | - Zhian Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
- Institute of Cotton Research , Shanxi Agricultural Academy of Sciences , Shanxi , Yuncheng , China
| | - Peng Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
- Institute of Cotton Research , Shanxi Agricultural Academy of Sciences , Shanxi , Yuncheng , China
| | - Qiang Fan
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
- College of Biology Science and Technology , Gansu Agricultural University , Gansu , Lanzhou , China
| | - Xiaoxiao Mi
- College of Biology Science and Technology , Gansu Agricultural University , Gansu , Lanzhou , China
| | - Le Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
| | - Jiang He
- Institute of Plant Protection , Xinjiang Agricultural Academy of Sciences , Xinjiang , Urumqi , China
| | - Jinhuan Pang
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
| | - Xiaoli Luo
- Institute of Cotton Research , Shanxi Agricultural Academy of Sciences , Shanxi , Yuncheng , China
| | - Weidong Fu
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing , China
| | - Yingchuan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
| | - Huaijun Si
- College of Biology Science and Technology , Gansu Agricultural University , Gansu , Lanzhou , China
| | - Guoliang Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing , China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology , Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
36
|
Khan AM, Ashfaq M, Khan AA, Naseem MT, Mansoor S. Evaluation of potential RNA-interference-target genes to control cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcuidae). INSECT SCIENCE 2018; 25:778-786. [PMID: 28316131 DOI: 10.1111/1744-7917.12455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 05/20/2023]
Abstract
RNA interference (RNAi) of vital insect genes is a potential tool for targeted pest control. However, selection of the right target genes is a challenge because the RNAi efficacy is known to vary among insect species. Cotton mealybug, Phenacoccus solenopsis, is a phloem-feeding economically important crop pest. We evaluated the RNAi of 2 vital genes, Bursicon (PsBur) and V-ATPase (PsV-ATPase) as potential targets in P. solenopsis for its control. PCR fragments of PsBur and PsV-ATPase were amplified using cDNA synthesized from the total RNA. The PCR amplicons were cloned into Potato virus X (PVX) to develop recombinant PVX for the inoculation of Nicotiana tabacum plants for bioassays with healthy P. solenopsis. Reverse-transcription-polymerase chain reaction (RT-PCR) was used to validate the expression of transgenes in the recombinant-PVX-inoculated plants (treated), and suppression of the target genes in the mealybugs exposed to them. The RT-PCR confirmed the expression of transgenes in the treated plants. Mealybug individuals on treated plants either died or showed physical deformities. Further, the population of mealybug was significantly reduced by feeding on N. tabacum expressing RNAi triggers against PsBur and PsV-ATPase. The results conclude that RNAi is activated in P. solenopsis by feeding on N. tabacum expressing RNAi triggering elements of PsBur and PsV-ATPase genes through recombinant PVX vector. Further, V-ATPase and Bursicon genes are potential targets for RNAi-mediated control of P. solenopsis.
Collapse
Affiliation(s)
- Arif M Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ashfaq
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada
| | - Azhar A Khan
- College of Agriculture, Bahauddin Zakariya University, Bahadur Campus, Layyah, Pakistan
| | - Muhammad T Naseem
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
37
|
Rosa C, Kuo YW, Wuriyanghan H, Falk BW. RNA Interference Mechanisms and Applications in Plant Pathology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:581-610. [PMID: 29979927 DOI: 10.1146/annurev-phyto-080417-050044] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The origin of RNA interference (RNAi), the cell sentinel system widely shared among eukaryotes that recognizes RNAs and specifically degrades or prevents their translation in cells, is suggested to predate the last eukaryote common ancestor ( 138 ). Of particular relevance to plant pathology is that in plants, but also in some fungi, insects, and lower eukaryotes, RNAi is a primary and effective antiviral defense, and recent studies have revealed that small RNAs (sRNAs) involved in RNAi play important roles in other plant diseases, including those caused by cellular plant pathogens. Because of this, and because RNAi can be manipulated to interfere with the expression of endogenous genes in an intra- or interspecific manner, RNAi has been used as a tool in studies of gene function but also for plant protection. Here, we review the discovery of RNAi, canonical mechanisms, experimental and translational applications, and new RNA-based technologies of importance to plant pathology.
Collapse
Affiliation(s)
- Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, California 95616, USA;
| | - Hada Wuriyanghan
- School of Life Sciences, University of Inner Mongolia, Hohhot, Inner Mongolia 010021, China
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, California 95616, USA;
| |
Collapse
|
38
|
Cao M, Gatehouse JA, Fitches EC. A Systematic Study of RNAi Effects and dsRNA Stability in Tribolium castaneum and Acyrthosiphon pisum, Following Injection and Ingestion of Analogous dsRNAs. Int J Mol Sci 2018; 19:E1079. [PMID: 29617308 PMCID: PMC5979293 DOI: 10.3390/ijms19041079] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/29/2023] Open
Abstract
RNA interference (RNAi) effects in insects are highly variable and may be largely dependent upon the stability of introduced double-stranded RNAs to digestion by nucleases. Here, we report a systematic comparison of RNAi effects in susceptible red flour beetle (Tribolium castaneum) and recalcitrant pea aphid (Acyrthosiphon pisum) following delivery of dsRNAs of identical length targeting expression of V-type ATPase subunit E (VTE) and inhibitor of apoptosis (IAP) genes. Injection and ingestion of VTE and IAP dsRNAs resulted in up to 100% mortality of T. castaneum larvae and sustained suppression (>80%) of transcript levels. In A. pisum, injection of VTE but not IAP dsRNA resulted in up to 65% mortality and transient suppression (ca. 40%) of VTE transcript levels. Feeding aphids on VTE dsRNA reduced growth and fecundity although no evidence for gene suppression was obtained. Rapid degradation of dsRNAs by aphid salivary, haemolymph and gut nucleases contrasted with stability in T. castaneum larvae where it appears that exo-nuclease activity is responsible for relatively slow digestion of dsRNAs. This is the first study to directly compare RNAi effects and dsRNA stability in receptive and refractory insect species and provides further evidence that dsRNA susceptibility to nucleases is a key factor in determining RNAi efficiency.
Collapse
Affiliation(s)
- Min Cao
- Department of Biosciences, Durham University, Durham DH1 3LE, UK.
| | - John A Gatehouse
- Department of Biosciences, Durham University, Durham DH1 3LE, UK.
| | - Elaine C Fitches
- Department of Biosciences, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
39
|
Berger BA, Ricigliano VA, Savriama Y, Lim A, Thompson V, Howarth DG. Geometric morphometrics reveals shifts in flower shape symmetry and size following gene knockdown of CYCLOIDEA and ANTHOCYANIDIN SYNTHASE. BMC PLANT BIOLOGY 2017; 17:205. [PMID: 29149840 PMCID: PMC5693587 DOI: 10.1186/s12870-017-1152-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/07/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND While floral symmetry has traditionally been assessed qualitatively, recent advances in geometric morphometrics have opened up new avenues to specifically quantify flower shape and size using robust multivariate statistical methods. In this study, we examine, for the first time, the ability of geometric morphometrics to detect morphological differences in floral dorsoventral asymmetry following virus-induced gene silencing (VIGS). Using Fedia graciliflora Fisch. & Meyer (Valerianaceae) as a model, corolla shape of untreated flowers was compared using canonical variate analysis to knockdown phenotypes of CYCLOIDEA2A (FgCYC2A), ANTHOCYANIDIN SYNTHASE (FgANS), and empty vector controls. RESULTS Untreated flowers and all VIGS treatments were morphologically distinct from each other, suggesting that VIGS may cause subtle shifts in floral shape. Knockdowns of FgCYC2A were the most dramatic, affecting the position of dorsal petals in relation to lateral petals, thereby resulting in more actinomorphic-like flowers. Additionally, FgANS knockdowns developed larger flowers with wider corolla tube openings. CONCLUSIONS These results provide a method to quantify the role that specific genes play in the developmental pathway affecting the dorsoventral axis of symmetry in zygomorphic flowers. Additionally, they suggest that ANS may have an unintended effect on floral size and shape.
Collapse
Affiliation(s)
- Brent A. Berger
- Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439 USA
| | | | - Yoland Savriama
- Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439 USA
- Institute of Biotechnology, University of Helsinki, PO Box 56 (Viikinkaari 5), FI-00014 Helsinki, Finland
| | - Aedric Lim
- Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439 USA
| | - Veronica Thompson
- Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439 USA
| | - Dianella G. Howarth
- Department of Biological Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439 USA
| |
Collapse
|
40
|
Poreddy S, Li J, Baldwin IT. Plant-mediated RNAi silences midgut-expressed genes in congeneric lepidopteran insects in nature. BMC PLANT BIOLOGY 2017; 17:199. [PMID: 29132300 PMCID: PMC5683459 DOI: 10.1186/s12870-017-1149-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant-mediated RNAi (PMRi) silencing of insect genes has enormous potential for crop protection, but whether it works robustly under field conditions, particularly with lepidopteran pests, remains controversial. Wild tobacco Nicotiana attenuata and cultivated tobacco (N. tabacum) (Solanaceae) is attacked by two closely related specialist herbivores Manduca sexta and M. quinquemaculata (Lepidoptera, Sphingidae). When M. sexta larvae attack transgenic N. attenuata plants expressing double-stranded RNA(dsRNA) targeting M. sexta's midgut-expressed genes, the nicotine-ingestion induced cytochrome P450 monooxygenase (invert repeat (ir)CYP6B46-plants) and the lyciumoside-IV-ingestion induced β-glucosidase1 (irBG1-plants), these larval genes which are important for the larvae's response to ingested host toxins, are strongly silenced. RESULTS Here we show that the PMRi procedure also silences the homologous genes in native M. quinquemaculata larvae feeding on irCYP6B46 and irBG1-transgenic N. attenuata plants in nature. The PMRi lines shared 98 and 96% sequence similarity with M. quinquemaculata homologous coding sequences, and CYP6B46 and BG1 transcripts were reduced by ca. 90 and 80%, without reducing the transcripts of the larvae's most similar, potential off-target genes. CONCLUSIONS We conclude that the PMRi procedure can robustly and specifically silence genes in native congeneric insects that share sufficient sequence similarity and with the careful selection of targets, might protect crops from attack by congeneric-groups of insect pests.
Collapse
Affiliation(s)
- Spoorthi Poreddy
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
- Present address: Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Jiancai Li
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745, Jena, Germany.
| |
Collapse
|
41
|
Ibrahim AB, Monteiro TR, Cabral GB, Aragão FJL. RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa). Transgenic Res 2017; 26:613-624. [PMID: 28712067 DOI: 10.1007/s11248-017-0035-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/10/2017] [Indexed: 01/09/2023]
Abstract
RNA interference (RNAi)-based transgenic technologies have evolved as potent biochemical tools for silencing specific genes of plant pathogens and pests. The approach has been demonstrated to be useful in silencing genes in insect species. Here, we report on the successful construction of RNAi-based plasmid containing an interfering cassette designed to generate dsRNAs that target a novel v-ATPase transcript in whitefly (Bemisia tabaci), an important agricultural pest in tropical and sub-tropical regions. The presence of the transgene was confirmed in T0 and T1 generations of transgenic lettuce lines, segregating in a Mendelian fashion. Seven lines were infested with whiteflies and monitored over a period of 32 days. Analysis of mortality showed that within five days of feeding, insects on transgenic plants showed a mortality rate of 83.8-98.1%. In addition, a reduced number of eggs (95 fold less) was observed in flies feeding on transgenic lettuce plants than insects on control lines. Quantitative reverse transcription PCR showed decreased expression level of endogenous v-ATPase gene in whiteflies feeding on transgenic plants. This technology is a foundation for the production of whitefly-resistant commercial crops, improving agricultural sustainability and food security, reducing the use of more environmentally aggressive methods of pest control.
Collapse
Affiliation(s)
- Abdulrazak B Ibrahim
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário, Brasília, DF, 70910-900, Brazil
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Tatiane R Monteiro
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário, Brasília, DF, 70910-900, Brazil
| | - Glaucia B Cabral
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil
| | - Francisco J L Aragão
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, Brasília, DF, 70770-900, Brazil.
| |
Collapse
|
42
|
Darrington M, Dalmay T, Morrison NI, Chapman T. Implementing the sterile insect technique with RNA interference - a review. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA 2017; 164:155-175. [PMID: 29200471 PMCID: PMC5697603 DOI: 10.1111/eea.12575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 05/22/2023]
Abstract
We review RNA interference (RNAi) of insect pests and its potential for implementing sterile insect technique (SIT)-related control. The molecular mechanisms that support RNAi in pest species are reviewed in detail, drawing on literature from a range of species including Drosophila melanogaster Meigen and Homo sapiens L. The underlying genes that enable RNAi are generally conserved across taxa, although variance exists in both their form and function. RNAi represents a plausible, non-GM system for targeting populations of insects for control purposes, if RNAi effector molecules can be delivered environmentally (eRNAi). We consider studies of eRNAi from across several insect orders and review to what extent taxonomy, genetics, and differing methods of double-stranded (ds) RNA synthesis and delivery can influence the efficiency of gene knockdown. Several factors, including the secondary structure of the target mRNA and the specific nucleotide sequence of dsRNA effector molecules, can affect the potency of eRNAi. However, taxonomic relationships between insects cannot be used to reliably forecast the efficiency of an eRNAi response. The mechanisms by which insects acquire dsRNA from their environment require further research, but the evidence to date suggests that endocytosis and transport channels both play key roles. Delivery of RNA molecules packaged in intermediary carriers such as bacteria or nanoparticles may facilitate their entry into and through the gut, and enable the evasion of host defence systems, such as toxic pH, that would otherwise attenuate the potential for RNAi.
Collapse
Affiliation(s)
- Michael Darrington
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | - Tamas Dalmay
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | | | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| |
Collapse
|
43
|
Zhang J, Khan SA, Heckel DG, Bock R. Next-Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection. Trends Biotechnol 2017; 35:871-882. [PMID: 28822479 DOI: 10.1016/j.tibtech.2017.04.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
Plant-mediated RNA interference (RNAi) shows great potential in crop protection. It relies on plants stably expressing double-stranded RNAs (dsRNAs) that target essential genes in pest insects. Practical application of this strategy is challenging because producing sufficient amounts of stable dsRNA in plants has proven to be difficult to achieve with conventional transgenesis. In addition, many insects do not respond to exogenously applied dsRNAs, either degrading them or failing to import them into the cytoplasm. We summarize recent progress in RNAi-mediated insect pest control and discuss factors determining its efficacy. Expressing dsRNA in chloroplasts overcomes many of the difficulties previously encountered. We also highlight remaining challenges and discuss the environmental and biosafety issues involved in the use of this technology in agriculture.
Collapse
Affiliation(s)
- Jiang Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Sher Afzal Khan
- Max-Planck-Institut für Chemische Ökologie, Hans-Knöll-Strasse 8, 07745 Jena, Germany; Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - David G Heckel
- Max-Planck-Institut für Chemische Ökologie, Hans-Knöll-Strasse 8, 07745 Jena, Germany.
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
44
|
Mamta B, Rajam MV. RNAi technology: a new platform for crop pest control. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:487-501. [PMID: 28878489 PMCID: PMC5567704 DOI: 10.1007/s12298-017-0443-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 05/15/2023]
Abstract
The insect pests are big threat in meeting the food demands for future generation. The present pest control strategies, including the existing transgenic approaches show certain limitations and are not completely successful in limiting the insect pests. However, the sequence-specific gene silencing via RNA interference (RNAi) holds a great promise for effective management of agricultural pests. RNAi is naturally occurring conserved process responsible for gene regulation and defense against pathogens. The efficacy of RNAi varies among different insect orders and also depends upon various factors, including the target gene selection, method of dsRNAs delivery, expression of dsRNAs and presence of off-target effects. RNAi-mediated silencing of different insect genes involved in various physiological processes was found to be detrimental to insects growth, development and survival. In this article, we have reviewed the potential of RNAi-based strategies for effective management of insect pests. We have also discussed the various parameters, which are to be considered for host-induced RNAi-mediated control of insect pests without producing any effect on non-target organisms and environment.
Collapse
Affiliation(s)
- B. Mamta
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| | - M. V. Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| |
Collapse
|
45
|
Kolliopoulou A, Taning CNT, Smagghe G, Swevers L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front Physiol 2017; 8:399. [PMID: 28659820 PMCID: PMC5469917 DOI: 10.3389/fphys.2017.00399] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| | - Clauvis N. T. Taning
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| |
Collapse
|
46
|
Ganbaatar O, Cao B, Zhang Y, Bao D, Bao W, Wuriyanghan H. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnol 2017; 17:9. [PMID: 28183289 PMCID: PMC5301351 DOI: 10.1186/s12896-017-0328-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
Background RNAi (RNA interference) is a technology for silencing of target genes via sequence-specific manner. RNAi technology has been used for development of anti-pathogenic crops. In 2007, development of transgenic plants resistant to insect herbivore using RNAi technology was first reported, leading to a burst of efforts aimed at exploitation of RNAi mechanism and control strategy against variety of insect species based on this technique. Mythimna separata belongs to noctuidae family of lepidoptera and is posing threat to crops of economic importance. Recently, outbreaks of M. separata severely threatens corn production in Northern China, calling for new control approaches. Results Chitinase genes were chosen as the target genes as they were expressed predominantly in the gut tissue and were reported to be ideal silencing targets in several insect species. Interfering sequences against the target genes were cloned into the L4440 vector to produce sequence specific dsRNAs (double-stranded RNAs). Recombinant L4440 vectors were transformed into Escherichia coli strain HT115 (DE3) which was defective in dsRNA degradation activity, so preserving the dsRNA from degradation by cellular machinery. The bacteria were mixed with artificial diet and were fed to M. separata. We showed that oral delivery of bacterially expressed dsRNA would lead to RNAi effects in the recipient insect. Quantitative real-time PCR results showed that expression level of target MseChi1 and MseChi2 genes in gut tissue of M. separata were down-regulated after oral delivery of engineered bacteria expressing the corresponding dsRNA. Sequence-specific siRNA (small interfering RNA) was detected in recipient insects, supporting the existence of siRNA-mediated silencing effects in M. separata. Furthermore, knockdown of MseChi1 and MseChi2 resulted in increased mortality and reduced body weight of the feeding larvae. Conclusion We reported a simple and low cost experimental procedure to silence M. separata endogenous gene expression. Our research provides both an experimental foundation for using RNAi technology to control M. separata and also a useful research tool for loss-of-function study of important developmental and regulatory genes in this insect species. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0328-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oyunchuluun Ganbaatar
- Inner Mongolia University, No.235 West College Road, 010021, Hohhot, Inner Mongolia, People's Republic of China
| | - Budao Cao
- Inner Mongolia University, No.235 West College Road, 010021, Hohhot, Inner Mongolia, People's Republic of China
| | - Yanan Zhang
- Inner Mongolia University, No.235 West College Road, 010021, Hohhot, Inner Mongolia, People's Republic of China
| | - Duran Bao
- Inner Mongolia University, No.235 West College Road, 010021, Hohhot, Inner Mongolia, People's Republic of China
| | - Wenhua Bao
- Inner Mongolia University, No.235 West College Road, 010021, Hohhot, Inner Mongolia, People's Republic of China
| | - Hada Wuriyanghan
- Inner Mongolia University, No.235 West College Road, 010021, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
47
|
Powell ME, Bradish HM, Gatehouse JA, Fitches EC. Systemic RNAi in the small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae), a serious pest of the European honey bee Apis mellifera. PEST MANAGEMENT SCIENCE 2017; 73:53-63. [PMID: 27447542 DOI: 10.1002/ps.4365] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/05/2016] [Accepted: 07/16/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Aethina tumida is a serious pest of the European honey bee (Apis mellifera) in North America and Australia. Here we investigate whether Laccase 2, the phenoloxidase gene essential for cuticle sclerotisation and pigmentation in many insects, and vacuolar-ATPase V-type subunit A, vital for the generation of proton gradients used to drive a range of transport processes, could be potential targets for RNAi-mediated control of A. tumida. RESULTS Injection of V-ATPase subunit A (5 ng) and Laccase 2 (12.5 ng) dsRNAs resulted in 100% larval mortality, and qPCR confirmed significant decreases and enhanced suppression of transcript levels over time. Oral delivery of V-ATPase subunit A dsRNA in solutions resulted in 50% mortality; however, gene suppression could not be verified. We suggest that the inconsistent RNAi effect was a consequence of dsRNA degradation within the gut owing to the presence of extracellular nucleases. Target specificity was confirmed by a lack of effect on survival or gene expression in honey bees injected with A. tumida dsRNAs. CONCLUSION This is the first study to show evidence for systemic RNAi in A. tumida in response to injected dsRNA, but further research is required to develop methods to induce RNAi effects via ingestion. © 2016 Crown copyright. Pest Management Science © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michelle E Powell
- Fera Science Ltd, Sand Hutton, York, UK
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | | | - John A Gatehouse
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| | - Elaine C Fitches
- Fera Science Ltd, Sand Hutton, York, UK
- School of Biological and Biomedical Sciences, University of Durham, Durham, UK
| |
Collapse
|
48
|
Dubey NK, Eizenberg H, Leibman D, Wolf D, Edelstein M, Abu-Nassar J, Marzouk S, Gal-On A, Aly R. Enhanced Host-Parasite Resistance Based on Down-Regulation of Phelipanche aegyptiaca Target Genes Is Likely by Mobile Small RNA. FRONTIERS IN PLANT SCIENCE 2017; 8:1574. [PMID: 28955363 PMCID: PMC5601039 DOI: 10.3389/fpls.2017.01574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/28/2017] [Indexed: 05/06/2023]
Abstract
RNA silencing refers to diverse mechanisms that control gene expression at transcriptional and post-transcriptional levels which can also be used in parasitic pathogens of plants that Broomrapes (Orobanche/Phelipanche spp.) are holoparasitic plants that subsist on the roots of a variety of agricultural crops and cause severe negative effects on the yield and yield quality of those crops. Effective methods for controlling parasitic weeds are scarce, with only a few known cases of genetic resistance. In the current study, we suggest an improved strategy for the control of parasitic weeds based on trans-specific gene-silencing of three parasite genes at once. We used two strategies to express dsRNA containing selected sequences of three Phelipanche aegyptiaca genes PaACS, PaM6PR, and PaPrx1 (pma): transient expression using Tobacco rattle virus (TRV:pma) as a virus-induced gene-silencing vector and stable expression in transgenic tomato Solanum lycopersicum (Mill.) plants harboring a hairpin construct (pBINPLUS35:pma). siRNA-mediated transgene-silencing (20-24 nt) was detected in the host plants. Our results demonstrate that the quantities of PaACS and PaM6PR transcripts from P. aegyptiaca tubercles grown on transgenic tomato or on TRV-infected Nicotiana benthamiana plants were significantly reduced. However, only partial reductions in the quantity of PaPrx1 transcripts were observed in the parasite tubercles grown on tomato and on N. benthamiana plants. Concomitant with the suppression of the target genes, there were significant decreases in the number and weight of the parasite tubercles that grew on the host plants, in both the transient and the stable experimental systems. The results of the work carried out using both strategies point to the movement of mobile exogenous siRNA from the host to the parasite, leading to the impaired expression of essential parasite target genes.
Collapse
Affiliation(s)
- Neeraj K. Dubey
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization, Volcani CenterRamat Yishay, Israel
| | - Hanan Eizenberg
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization, Volcani CenterRamat Yishay, Israel
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani CenterRishon LeZion, Israel
| | - Dalia Wolf
- Department of Plant Science, Agricultural Research Organization, Volcani CenterRishon LeZion, Israel
| | - Menahem Edelstein
- Department of Plant Science, Agricultural Research Organization, Volcani CenterRishon LeZion, Israel
| | - Jackline Abu-Nassar
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization, Volcani CenterRamat Yishay, Israel
| | - Sally Marzouk
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization, Volcani CenterRamat Yishay, Israel
| | - Amit Gal-On
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani CenterRishon LeZion, Israel
| | - Radi Aly
- Department of Plant Pathology and Weed Research, Newe Ya’ar Research Center, Agricultural Research Organization, Volcani CenterRamat Yishay, Israel
- *Correspondence: Radi Aly,
| |
Collapse
|
49
|
Adamo SA, Easy RH, Kovalko I, MacDonald J, McKeen A, Swanburg T, Turnbull KF, Reeve C. Predator exposure-induced immunosuppression: trade-off, immune redistribution or immune reconfiguration? ACTA ACUST UNITED AC 2016; 220:868-875. [PMID: 28011823 DOI: 10.1242/jeb.153320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
Although predator exposure increases the risk of wound infections, it typically induces immunosuppression. A number of non-mutually exclusive hypotheses have been put forward to explain this immunosuppression, including: trade-offs between the immune system and other systems required for anti-predator behaviour, redistribution of immune resources towards mechanisms needed to defend against wound infections, and reconfiguration of the immune system to optimize defence under the physiological state of fight-or-flight readiness. We tested the ability of each hypothesis to explain the effects of chronic predator stress on the immune system of the caterpillar Manduca sexta Predator exposure induced defensive behaviours, reduced mass gain, increased development time and increased the concentration of the stress neurohormone octopamine. It had no significant effect on haemocyte number, melanization rate, phenoloxidase activity, lysozyme-like activity or nodule production. Predator stress reduced haemolymph glutathione concentrations. It also increased constitutive expression of the antimicrobial peptide attacin-1 but reduced attacin-1 expression in response to an immune challenge. These results best fit the immune reconfiguration hypothesis, although the other hypotheses are also consistent with some results. Interpreting stress-related changes in immune function may require an examination at the level of the whole organism.
Collapse
Affiliation(s)
- Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Russell H Easy
- Department of Biology, Acadia University, Wolfville, NS, Canada B4P 2R6
| | - Ilya Kovalko
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Jenna MacDonald
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Ashleigh McKeen
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Taylor Swanburg
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | | | - Catherine Reeve
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
50
|
RNA Interference in Insect Vectors for Plant Viruses. Viruses 2016; 8:v8120329. [PMID: 27973446 PMCID: PMC5192390 DOI: 10.3390/v8120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
Collapse
|