1
|
Novikova SE, Tolstova TV, Soloveva NA, Farafonova TE, Tikhonova OV, Kurbatov LK, Rusanov AL, Zgoda VG. Proteomic Approach to Investigating Expression, Localization, and Functions of the SOWAHD Gene Protein Product during Granulocytic Differentiation. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1668-1682. [PMID: 38105032 DOI: 10.1134/s000629792310019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 12/19/2023]
Abstract
Cataloging human proteins and evaluation of their expression, cellular localization, functions, and potential medical significance are important tasks for the global proteomic community. At present, localization and functions of protein products for almost half of protein-coding genes remain unknown or poorly understood. Investigation of organelle proteomes is a promising approach to uncovering localization and functions of human proteins. Nuclear proteome is of particular interest because many nuclear proteins, e.g., transcription factors, regulate functions that determine cell fate. Meta-analysis of the nuclear proteome, or nucleome, of HL-60 cells treated with all-trans-retinoic acid (ATRA) has shown that the functions and localization of a protein product of the SOWAHD gene are poorly understood. Also, there is no comprehensive information on the SOWAHD gene expression at the protein level. In HL-60 cells, the number of mRNA transcripts of the SOWAHD gene was determined as 6.4 ± 0.7 transcripts per million molecules. Using targeted mass spectrometry, the content of the SOWAHD protein was measured as 0.27 to 1.25 fmol/μg total protein. The half-life for the protein product of the SOWAHD gene determined using stable isotope pulse-chase labeling was ~19 h. Proteomic profiling of the nuclear fraction of HL-60 cells showed that the content of the SOWAHD protein increased during the ATRA-induced granulocytic differentiation, reached the peak value at 9 h after ATRA addition, and then decreased. Nuclear location and involvement of the SOWAHD protein in the ATRA-induced granulocytic differentiation have been demonstrated for the first time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Victor G Zgoda
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.
| |
Collapse
|
2
|
Zhang M, Liu J, Mao A, Ning G, Cao Y, Zhang W, Wang Q. Tmem88 confines ectodermal Wnt2bb signaling in pharyngeal arch artery progenitors for balancing cell cycle progression and cell fate decision. NATURE CARDIOVASCULAR RESEARCH 2023; 2:234-250. [PMID: 39195996 DOI: 10.1038/s44161-023-00215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/06/2023] [Indexed: 08/29/2024]
Abstract
Pharyngeal arch artery (PAA) progenitors undergo proliferative expansion and angioblast differentiation to build vessels connecting the heart with the dorsal aortae. However, it remains unclear whether and how these two processes are orchestrated. Here we demonstrate that Tmem88 is required to fine-tune PAA progenitor proliferation and differentiation. Loss of zebrafish tmem88a/b leads to an excessive expansion and a failure of differentiation of PAA progenitors. Moreover, tmem88a/b deficiency enhances cyclin D1 expression in PAA progenitors via aberrant Wnt signal activation. Mechanistically, cyclin D1-CDK4/6 promotes progenitor proliferation through accelerating the G1/S transition while suppressing angioblast differentiation by phosphorylating Nkx2.5/Smad3. Ectodermal Wnt2bb signaling is confined by Tmem88 in PAA progenitors to ensure a balance between proliferation and differentiation. Therefore, the proliferation and angioblast differentiation of PAA progenitors manifest an inverse relationship and are delicately regulated by cell cycle machinery downstream of the Tmem88-Wnt pathway.
Collapse
Affiliation(s)
- Mingming Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aihua Mao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
3
|
Zong Y, Chen Y, Wang Y, Wang J, Yu Z, Ou Z, Chen J, Zhang H, Liu C. Induction of cardiotoxicity in zebrafish embryos by 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene through the JAK-STAT and NOTCH signaling pathways. Chem Biol Interact 2022; 368:110226. [DOI: 10.1016/j.cbi.2022.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
|
4
|
Alba‐González A, Folgueira M, Castro A, Anadón R, Yáñez J. Distribution of neurogranin-like immunoreactivity in the brain and sensory organs of the adult zebrafish. J Comp Neurol 2022; 530:1569-1587. [PMID: 35015905 PMCID: PMC9415131 DOI: 10.1002/cne.25297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022]
Abstract
We studied the expression of neurogranin in the brain and some sensory organs (barbel taste buds, olfactory organs, and retina) of adult zebrafish. Database analysis shows zebrafish has two paralog neurogranin genes (nrgna and nrgnb) that translate into three peptides with a conserved IQ domain, as in mammals. Western blots of zebrafish brain extracts using an anti-neurogranin antiserum revealed three separate bands, confirming the presence of three neurogranin peptides. Immunohistochemistry shows neurogranin-like expression in the brain and sensory organs (taste buds, neuromasts and olfactory epithelium), not being able to discern its three different peptides. In the retina, the most conspicuous positive cells were bipolar neurons. In the brain, immunopositive neurons were observed in all major regions (pallium, subpallium, preoptic area, hypothalamus, diencephalon, mesencephalon and rhombencephalon, including the cerebellum), a more extended distribution than in mammals. Interestingly, dendrites, cell bodies and axon terminals of some neurons were immunopositive, thus zebrafish neurogranins may play presynaptic and postsynaptic roles. Most positive neurons were found in primary sensory centers (viscerosensory column and medial octavolateral nucleus) and integrative centers (pallium, subpallium, optic tectum and cerebellum), which have complex synaptic circuitry. However, we also observed expression in areas not related to sensory or integrative functions, such as in cerebrospinal fluid-contacting cells associated with the hypothalamic recesses, which exhibited high neurogranin-like immunoreactivity. Together, these results reveal important differences with the patterns reported in mammals, suggesting divergent evolution from the common ancestor.
Collapse
Affiliation(s)
- Anabel Alba‐González
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Mónica Folgueira
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Antonio Castro
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| | - Ramón Anadón
- Department of Functional Biology, Faculty of BiologyUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| | - Julián Yáñez
- Department of Biology, Faculty of SciencesUniversity of A CoruñaA CoruñaSpain,Centro de Investigaciones Científicas Avanzadas (CICA)University of A CoruñaA CoruñaSpain
| |
Collapse
|
5
|
Development and Characterization of Multifunctional Wound Dressing with the Property of Anti-bacteria and Angiogenesis. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09914-8. [PMID: 35235199 DOI: 10.1007/s12602-022-09914-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Overcoming the bacterial infection and promoting angiogenesis are challenge and imperious demands in wound healing and skin regeneration. Hereby, we developed a multifunctional AMP/S1P@PLA/gelatin wound dressing fabricated by electrospinning poly (L-lactic acid) (PLA)/gelatin with antimicrobial polypeptides (AMPs) and sphingosine-1-phosphate (S1P) in order to inhibit the bacteria growth and induce angiogenesis. In our work, AMP/S1P@PLA/gelatin wound dressing was obtained by two-step method of electrospinning and dopamine adsorption. Our results showed that incorporating AMP into PLA/gelatin nanofibrous membranes significantly improved antibacterial properties against both Escherichia coli and Staphylococcus aureus. S1P releasing from AMP/S1P@PLA/gelatin nanofibrous membranes could significantly enhance tube formation. Simultaneously, we found that the AMP/S1P@PLA/gelatin nanofibrous membranes facilitated the adhesion, proliferation, and migration of human umbilical vein endothelial cells (HUVECs) and murine fibroblast (L929). AMP/S1P@PLA/gelatin membranes could also accelerate infected wound healing and skin regeneration by antibacterial and pro-angiogenesis effects. In summary, our developed AMP/S1P@PLA/gelatin nanofibrous membranes could be multifunctional dressing for infected wound healing and skin regeneration. Schematic figure to describe the characterizations and preparation of AMP/S1P@PLA/gelatin nanofibrous membranes.
Collapse
|
6
|
Sitapara R, Lam TT, Gandjeva A, Tuder RM, Zisman LS. Phosphoproteomic analysis of lung tissue from patients with pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211031109. [PMID: 34966541 PMCID: PMC8711668 DOI: 10.1177/20458940211031109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disorder associated with high
morbidity and mortality despite currently available treatments. We compared the
phosphoproteome of lung tissue from subjects with idiopathic PAH (iPAH) obtained
at the time of lung transplant with control lung tissue. The mass
spectrometry-based analysis found 60,428 phosphopeptide features from which 6622
proteins were identified. Within the subset of identified proteins there were
1234 phosphopeptides with q < 0.05, many of which are
involved in immune regulation, angiogenesis, and cell proliferation. Most
notably there was a marked relative increase in phosphorylated (S378) IKZF3
(Aiolos), a zinc finger transcription factor that plays a key role in lymphocyte
regulation. In vitro phosphorylation assays indicated that GSK3 alpha and/or
GSK3 beta could phosphorylate IKZF3 at S378. Western blot analysis demonstrated
increased pIKZF3 in iPAH lungs compared to controls. Immunohistochemistry
demonstrated phosphorylated IKZF3 in lymphocytes surrounding severely
hypertrophied pulmonary arterioles. In situ hybrization showed gene expression
in lymphocyte aggregates in PAH samples. A BCL2 reporter assay showed that IKZF3
increased BCL2 promoter activity and demonstrated the potential role of
phosphorylation of IKZF3 in the regulation of BCL mediated transcription. Kinase
network analysis demonstrated potentially important regulatory roles of casein
kinase 2, cyclin-dependent kinase 1 (CDK1), mitogen-associated protein kinases
(MAPKs), and protein kinases (PRKs) in iPAH. Bioinformatic analysis demonstrated
enrichment of RhoGTPase signaling and the potential importance of cGMP-dependent
protein kinase 1 (PRKG). In conclusion, this unbiased phosphoproteomic analysis
demonstrated several novel targets regulated by kinase networks in iPAH, and
reinforced the potential role of immune regulation in the pathogenesis of iPAH.
The identified up- and down-regulated phosphoproteins have potential to serve as
biomarkers for PAH and to provide new insights for therapeutic strategies.
Collapse
Affiliation(s)
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, Yale University, New Haven, CT, USA.,MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
| | - Aneta Gandjeva
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lawrence S Zisman
- Rensselaer Center for Translational Research Inc., Troy, NY, USA.,Pulmokine Inc., Troy, NY, USA
| |
Collapse
|
7
|
Karuppan SJ, Vogt A, Fischer Z, Ladutska A, Swiastyn J, McGraw HF, Bouyain S. Members of the vertebrate contactin and amyloid precursor protein families interact through a conserved interface. J Biol Chem 2021; 298:101541. [PMID: 34958801 PMCID: PMC8808184 DOI: 10.1016/j.jbc.2021.101541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023] Open
Abstract
Contactins (CNTNs) are neural cell adhesion molecules that encode axon-target specificity during the patterning of the vertebrate visual and olfactory systems. Because CNTNs are tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, they lack an intracellular region to communicate across the membrane. Instead, they form coreceptor complexes with distinct transmembrane proteins to transmit signals inside the cell. In particular, a complex of CNTN4 and amyloid precursor protein (APP) is known to guide the assembly of specific circuits in the visual system. Here, using in situ hybridization in zebrafish embryos, we show that CNTN4, CNTN5, and the APP homologs, amyloid beta precursor like protein 1 and amyloid beta precursor like protein 2, are expressed in olfactory pits, suggesting that these receptors may also function together in the organization of olfactory tissues. Furthermore, we use biochemical and structural approaches to characterize interactions between members of these two receptor families. In particular, APP and amyloid beta precursor like protein 1 interact with CNTN3–5, whereas amyloid beta precursor like protein 2 only binds to CNTN4 and CNTN5. Finally, structural analyses of five CNTN–amyloid pairs indicate that these proteins interact through a conserved interface involving the second fibronectin type III repeat of CNTNs and the copper-binding domain of amyloid proteins. Overall, this work sets the stage for analyzing CNTN–amyloid-mediated connectivity in vertebrate sensory circuits.
Collapse
Affiliation(s)
- Sebastian J Karuppan
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Alex Vogt
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Zachary Fischer
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Aliona Ladutska
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Jonathan Swiastyn
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Hillary F McGraw
- Department of Genetics, Developmental and Evolutionary Biology, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110
| | - Samuel Bouyain
- Department of Cell and Molecular Biology, and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110.
| |
Collapse
|
8
|
Svedberg A, Björn N, Sigurgeirsson B, Pradhananga S, Brandén E, Koyi H, Lewensohn R, De Petris L, Apellániz-Ruiz M, Rodríguez-Antona C, Lundeberg J, Gréen H. Genetic association of gemcitabine/carboplatin-induced leukopenia and neutropenia in non-small cell lung cancer patients using whole-exome sequencing. Lung Cancer 2020; 147:106-114. [PMID: 32683206 DOI: 10.1016/j.lungcan.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Gemcitabine/carboplatin treatment is known to cause severe adverse drug reactions which can lead to the need for reduction or cessation of chemotherapy. It would be beneficial to identify patients at risk of severe hematological toxicity in advance before treatment start. This study aims to identify genetic markers for gemcitabine/carboplatin-induced leukopenia and neutropenia in non-small cell lung cancer patients. MATERIAL AND METHODS Whole-exome sequencing was performed on 215 patients. Association analysis was performed on single-nucleotide variants (SNVs) and genes, and the validation was based on an independent genome-wide association study (GWAS). Based on the association and validation analyses the genetic variants were then selected for and used in weighted genetic risk score (wGRS) prediction models for leukopenia and neutropenia. RESULTS Association analysis identified 50 and 111 SNVs, and 12 and 20 genes, for leukopenia and neutropenia, respectively. Of these SNVS 20 and 19 were partially validated for leukopenia and neutropenia, respectively. The genes SVIL (p = 2.48E-06) and EFCAB2 (p = 4.63E-06) were significantly associated with leukopenia contain the partially validated SNVs rs3740003, rs10160013, rs1547169, rs10927386 and rs10927387. The wGRS prediction models showed significantly different risk scores for high and low toxicity patients. CONCLUSION We have identified and partially validated genetic biomarkers in SNVs and genes correlated to gemcitabine/carboplatin-induced leukopenia and neutropenia and created wGRS models for predicting the risk of chemotherapy-induced hematological toxicity. These results provide a strong foundation for further studies of chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- Anna Svedberg
- Clinical Pharmacology, Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Niclas Björn
- Clinical Pharmacology, Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Benjamín Sigurgeirsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden; School of Engineering and Natural Sciences, University of Iceland, Reykjavík, Iceland
| | - Sailendra Pradhananga
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Eva Brandén
- Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden; Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Hirsh Koyi
- Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden; Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Rolf Lewensohn
- Thoracic Oncology Unit, Tema Cancer, Karolinska University Hospital, and Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Luigi De Petris
- Thoracic Oncology Unit, Tema Cancer, Karolinska University Hospital, and Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - María Apellániz-Ruiz
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Joakim Lundeberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden
| | - Henrik Gréen
- Clinical Pharmacology, Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Solna, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.
| |
Collapse
|
9
|
Marass M, Beisaw A, Gerri C, Luzzani F, Fukuda N, Günther S, Kuenne C, Reischauer S, Stainier DYR. Genome-wide strategies reveal target genes of Npas4l associated with vascular development in zebrafish. Development 2019; 146:dev.173427. [PMID: 31097478 DOI: 10.1242/dev.173427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
The development of a vascular network is essential to nourish tissues and sustain organ function throughout life. Endothelial cells (ECs) are the building blocks of blood vessels, yet our understanding of EC specification remains incomplete. Zebrafish cloche/npas4l mutants have been used broadly as an avascular model, but little is known about the molecular mechanisms of action of the Npas4l transcription factor. Here, to identify its direct and indirect target genes, we have combined complementary genome-wide approaches, including transcriptome analyses and chromatin immunoprecipitation. The cross-analysis of these datasets indicates that Npas4l functions as a master regulator by directly inducing a group of transcription factor genes that are crucial for hematoendothelial specification, such as etv2, tal1 and lmo2 We also identified new targets of Npas4l and investigated the function of a subset of them using the CRISPR/Cas9 technology. Phenotypic characterization of tspan18b mutants reveals a novel player in developmental angiogenesis, confirming the reliability of the datasets generated. Collectively, these data represent a useful resource for future studies aimed to better understand EC fate determination and vascular development.
Collapse
Affiliation(s)
- Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Arica Beisaw
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Francesca Luzzani
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Nana Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Carsten Kuenne
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
10
|
Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM. The zebrafish: A fintastic model for hematopoietic development and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e312. [PMID: 29436122 DOI: 10.1002/wdev.312] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/19/2022]
Abstract
Hematopoiesis is a complex process with a variety of different signaling pathways influencing every step of blood cell formation from the earliest precursors to final differentiated blood cell types. Formation of blood cells is crucial for survival. Blood cells carry oxygen, promote organ development and protect organs in different pathological conditions. Hematopoietic stem and progenitor cells (HSPCs) are responsible for generating all adult differentiated blood cells. Defects in HSPCs or their downstream lineages can lead to anemia and other hematological disorders including leukemia. The zebrafish has recently emerged as a powerful vertebrate model system to study hematopoiesis. The developmental processes and molecular mechanisms involved in zebrafish hematopoiesis are conserved with higher vertebrates, and the genetic and experimental accessibility of the fish and the optical transparency of its embryos and larvae make it ideal for in vivo analysis of hematopoietic development. Defects in zebrafish hematopoiesis reliably phenocopy human blood disorders, making it a highly attractive model system to screen small molecules to design therapeutic strategies. In this review, we summarize the key developmental processes and molecular mechanisms of zebrafish hematopoiesis. We also discuss recent findings highlighting the strengths of zebrafish as a model system for drug discovery against hematopoietic disorders. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: Regional Development Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Laura M Pillay
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| |
Collapse
|
11
|
Gupta P, Martin R, Knölker HJ, Nihalani D, Kumar Sinha D. Myosin-1 inhibition by PClP affects membrane shape, cortical actin distribution and lipid droplet dynamics in early Zebrafish embryos. PLoS One 2017; 12:e0180301. [PMID: 28678859 PMCID: PMC5498032 DOI: 10.1371/journal.pone.0180301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Myosin-1 (Myo1) represents a mechanical link between the membrane and actin-cytoskeleton in animal cells. We have studied the effect of Myo1 inhibitor PClP in 1-8 cell Zebrafish embryos. Our results indicate a unique involvement of Myo1 in early development of Zebrafish embryos. Inhibition of Myo1 (by PClP) and Myo2 (by Blebbistatin) lead to arrest in cell division. While Myo1 isoforms appears to be important for both the formation and the maintenance of cleavage furrows, Myo2 is required only for the formation of furrows. We found that the blastodisc of the embryo, which contains a thick actin cortex (~13 μm), is loaded with cortical Myo1. Myo1 appears to be crucial for maintaining the blastodisc morphology and the actin cortex thickness. In addition to cell division and furrow formation, inhibition of Myo1 has a drastic effect on the dynamics and distribution of lipid droplets (LDs) in the blastodisc near the cleavage furrow. All these results above are effects of Myo1 inhibition exclusively; Myo2 inhibition by blebbistatin does not show such phenotypes. Therefore, our results demonstrate a potential role for Myo1 in the maintenance and formation of furrow, blastodisc morphology, cell-division and LD organization within the blastodisc during early embryogenesis.
Collapse
MESH Headings
- Actin Cytoskeleton/drug effects
- Actin Cytoskeleton/metabolism
- Actins/genetics
- Actins/metabolism
- Animals
- Blastomeres/cytology
- Blastomeres/metabolism
- Blastomeres/ultrastructure
- Blotting, Western
- Cell Division/drug effects
- Cell Division/genetics
- Cell Membrane/metabolism
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/ultrastructure
- Gene Expression Regulation, Developmental
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Hydrocarbons, Chlorinated/pharmacology
- Lipid Droplets/metabolism
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Myosin Heavy Chains/antagonists & inhibitors
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Pyrroles/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
| | - René Martin
- Department Chemie, TU Dresden, Dresden, Germany
| | | | - Deepak Nihalani
- Dept. Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | |
Collapse
|
12
|
Helmprobst F, Lillesaar C, Stigloher C. Expression of sept3, sept5a and sept5b in the Developing and Adult Nervous System of the Zebrafish ( Danio rerio). Front Neuroanat 2017; 11:6. [PMID: 28261064 PMCID: PMC5313478 DOI: 10.3389/fnana.2017.00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/25/2017] [Indexed: 02/04/2023] Open
Abstract
Septins are a highly conserved family of small GTPases that form cytoskeletal filaments. Their cellular functions, especially in the nervous system, still remain largely enigmatic, but there are accumulating lines of evidence that septins play important roles in neuronal physiology and pathology. In order to further dissect septin function in the nervous system a detailed temporal resolved analysis in the genetically well tractable model vertebrate zebrafish (Danio rerio) is crucially necessary. To close this knowledge gap we here provide a reference dataset describing the expression of selected septins (sept3, sept5a and sept5b) in the zebrafish central nervous system. Strikingly, proliferation zones are devoid of expression of all three septins investigated, suggesting that they have a role in post-mitotic neural cells. Our finding that three septins are mainly expressed in non-proliferative regions was further confirmed by double-stainings with a proliferative marker. Our RNA in situ hybridization (ISH) study, detecting sept3, sept5a and sept5b mRNAs, shows that all three septins are expressed in largely overlapping regions of the developing brain. However, the expression of sept5a is much more confined compared to sept3 and sept5b. In contrast, the expression of all the three analyzed septins is largely similar in the adult brain.
Collapse
Affiliation(s)
- Frederik Helmprobst
- Biocenter, Division of Electron Microscopy, University of Würzburg Würzburg, Germany
| | - Christina Lillesaar
- Biocenter, Department of Physiological Chemistry, University of Würzburg Würzburg, Germany
| | - Christian Stigloher
- Biocenter, Division of Electron Microscopy, University of Würzburg Würzburg, Germany
| |
Collapse
|
13
|
Kozol RA, Abrams AJ, James DM, Buglo E, Yan Q, Dallman JE. Function Over Form: Modeling Groups of Inherited Neurological Conditions in Zebrafish. Front Mol Neurosci 2016; 9:55. [PMID: 27458342 PMCID: PMC4935692 DOI: 10.3389/fnmol.2016.00055] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022] Open
Abstract
Zebrafish are a unique cell to behavior model for studying the basic biology of human inherited neurological conditions. Conserved vertebrate genetics and optical transparency provide in vivo access to the developing nervous system as well as high-throughput approaches for drug screens. Here we review zebrafish modeling for two broad groups of inherited conditions that each share genetic and molecular pathways and overlap phenotypically: neurodevelopmental disorders such as Autism Spectrum Disorders (ASD), Intellectual Disability (ID) and Schizophrenia (SCZ), and neurodegenerative diseases, such as Cerebellar Ataxia (CATX), Hereditary Spastic Paraplegia (HSP) and Charcot-Marie Tooth Disease (CMT). We also conduct a small meta-analysis of zebrafish orthologs of high confidence neurodevelopmental disorder and neurodegenerative disease genes by looking at duplication rates and relative protein sizes. In the past zebrafish genetic models of these neurodevelopmental disorders and neurodegenerative diseases have provided insight into cellular, circuit and behavioral level mechanisms contributing to these conditions. Moving forward, advances in genetic manipulation, live imaging of neuronal activity and automated high-throughput molecular screening promise to help delineate the mechanistic relationships between different types of neurological conditions and accelerate discovery of therapeutic strategies.
Collapse
Affiliation(s)
- Robert A. Kozol
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | - Alexander J. Abrams
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, University of MiamiMiami, FL, USA
| | - David M. James
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | - Elena Buglo
- Department of Human Genetics, John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation, University of MiamiMiami, FL, USA
| | - Qing Yan
- Department of Biology, University of MiamiCoral Gables, FL, USA
| | | |
Collapse
|
14
|
CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis. Sci Rep 2016; 6:27485. [PMID: 27270835 PMCID: PMC4895392 DOI: 10.1038/srep27485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023] Open
Abstract
Mutations in the CdGAP/ARHGAP31 gene, which encodes a GTPase-activating protein for Rac1 and Cdc42, have been reported causative in the Adams-Oliver developmental syndrome often associated with vascular defects. However, despite its abundant expression in endothelial cells, CdGAP function in the vasculature remains unknown. Here, we show that vascular development is impaired in CdGAP-deficient mouse embryos at E15.5. This is associated with superficial vessel defects and subcutaneous edema, resulting in 44% embryonic/perinatal lethality. VEGF-driven angiogenesis is defective in CdGAP(-/-) mice, showing reduced capillary sprouting from aortic ring explants. Similarly, VEGF-dependent endothelial cell migration and capillary formation are inhibited upon CdGAP knockdown. Mechanistically, CdGAP associates with VEGF receptor-2 and controls VEGF-dependent signaling. Consequently, CdGAP depletion results in impaired VEGF-mediated Rac1 activation and reduced phosphorylation of critical intracellular mediators including Gab1, Akt, PLCγ and SHP2. These findings are the first to demonstrate the importance of CdGAP in embryonic vascular development and VEGF-induced signaling, and highlight CdGAP as a potential therapeutic target to treat pathological angiogenesis and vascular dysfunction.
Collapse
|
15
|
Sumanas S, Choi K. ETS Transcription Factor ETV2/ER71/Etsrp in Hematopoietic and Vascular Development. Curr Top Dev Biol 2016; 118:77-111. [PMID: 27137655 DOI: 10.1016/bs.ctdb.2016.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective establishment of the hematopoietic and vascular systems is prerequisite for successful embryogenesis. The ETS transcription factor Etv2 has proven to be essential for hematopoietic and vascular development. Etv2 expression marks the onset of the hematopoietic and vascular development and its deficiency leads to an absolute block in hematopoietic and vascular development. Etv2 is transiently expressed during development and is mainly expressed in testis in adults. Consistent with its expression pattern, Etv2 is transiently required for the generation of the optimal levels of the hemangiogenic cell population. Deletion of this gene after the hemangiogenic progenitor formation leads to normal hematopoietic and vascular development. Mechanistically, ETV2 induces the hemangiogenic program by activating blood and endothelial cell lineage specifying genes and enhancing VEGF signaling. Moreover, ETV2 establishes an ETS hierarchy by directly activating other Ets genes, which in the face of transient Etv2 expression, presumably maintain blood and endothelial cell program initiated by ETV2 through an ETS switching mechanism. Current studies suggest that the hemangiogenic progenitor population is exclusively sensitive to ETV2-dependent FLK1 signaling. Any perturbation in the ETV2, VEGF, and FLK1 balance causing insufficient hemangiogenic progenitor cell generation would lead to defects in hematopoietic and endothelial cell development.
Collapse
Affiliation(s)
- S Sumanas
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - K Choi
- Washington University, School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
16
|
Mitchell DM, Stevens CB, Frey RA, Hunter SS, Ashino R, Kawamura S, Stenkamp DL. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish. PLoS Genet 2015; 11:e1005483. [PMID: 26296154 PMCID: PMC4546582 DOI: 10.1371/journal.pgen.1005483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array.
Collapse
Affiliation(s)
- Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig B. Stevens
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ruth A. Frey
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
| | - Ryuichi Ashino
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- Neuroscience Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
17
|
Craig MP, Grajevskaja V, Liao HK, Balciuniene J, Ekker SC, Park JS, Essner JJ, Balciunas D, Sumanas S. Etv2 and fli1b function together as key regulators of vasculogenesis and angiogenesis. Arterioscler Thromb Vasc Biol 2015; 35:865-76. [PMID: 25722433 DOI: 10.1161/atvbaha.114.304768] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The E26 transformation-specific domain transcription factor Etv2/Etsrp/ER71 is a master regulator of vascular endothelial differentiation during vasculogenesis, although its later role in sprouting angiogenesis remains unknown. Here, we investigated in the zebrafish model a role for Etv2 and related E26 transformation-specific factors, Fli1a and Fli1b in developmental angiogenesis. APPROACH AND RESULTS Zebrafish fli1a and fli1b mutants were obtained using transposon-mediated gene trap approach. Individual fli1a and fli1b homozygous mutant embryos display normal vascular patterning, yet the angiogenic recovery observed in older etv2 mutant embryos does not occur in embryos lacking both etv2 and fli1b. Etv2 and fli1b double-deficient embryos fail to form any angiogenic sprouts and show greatly increased apoptosis throughout the axial vasculature. In contrast, fli1a mutation did not affect the recovery of etv2 mutant phenotype. Overexpression analyses indicate that both etv2 and fli1b, but not fli1a, induce the expression of multiple vascular markers and of each other. Temporal inhibition of Etv2 function using photoactivatable morpholinos indicates that the function of Etv2 and Fli1b during angiogenesis is independent from the early requirement of Etv2 during vasculogenesis. RNA-Seq analysis and chromatin immunoprecipitation suggest that Etv2 and Fli1b share the same transcriptional targets and bind to the same E26 transformation-specific sites. CONCLUSIONS Our data argue that there are 2 phases of early vascular development with distinct requirements of E26 transformation-specific transcription factors. Etv2 alone is required for early vasculogenesis, whereas Etv2 and Fli1b function redundantly during late vasculogenesis and early embryonic angiogenesis.
Collapse
Affiliation(s)
- Michael P Craig
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Viktorija Grajevskaja
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Hsin-Kai Liao
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Jorune Balciuniene
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Stephen C Ekker
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Joo-Seop Park
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Jeffrey J Essner
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Darius Balciunas
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.)
| | - Saulius Sumanas
- From the Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH (M.P.C.); Division of Developmental Biology (M.P.C., J.-S.P.), Department of Pediatrics (S.S.), Department of Pediatric Urology (J.-S.P.), Cincinnati Children's Hospital Medical Center, OH; Department of Biology, Temple University, Philadelphia, PA (V.G., J.B., D.B.); Department of Genetics, Development and Cell Biology, Iowa State University, Ames (H.-K.L., J.J.E.); Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania (V.G.); and Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN (S.C.E.).
| |
Collapse
|
18
|
Song B, Zhang Q, Zhang Z, Wan Y, Jia Q, Wang X, Zhu X, Leung AYH, Cheng T, Fang X, Yuan W, Jia H. Systematic transcriptome analysis of the zebrafish model of diamond-blackfan anemia induced by RPS24 deficiency. BMC Genomics 2014; 15:759. [PMID: 25189322 PMCID: PMC4169864 DOI: 10.1186/1471-2164-15-759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diamond-Blackfan anemia (DBA) is a class of human diseases linked to defective ribosome biogenesis that results in clinical phenotypes. Genetic mutations in ribosome protein (RP) genes lead to DBA phenotypes, including hematopoietic defects and physical deformities. However, little is known about the global regulatory network as well as key miRNAs and gene pathways in the zebrafish model of DBA. RESULTS In this study, we establish the DBA model in zebrafish using an RPS24 morpholino and found that RPS24 is required for both primitive hematopoiesis and definitive hematopoiesis processes that are partially mediated by the p53 pathway. Several deregulated genes and miRNAs were found to be related to hematopoiesis, vascular development and apoptosis in RPS24-deficient zebrafish via RNA-seq and miRNA-seq data analysis, and a comprehensive regulatory network was first constructed to identify the mechanisms of key miRNAs and gene pathways in the model. Interestingly, we found that the central node genes in the network were almost all targeted by significantly deregulated miRNAs. Furthermore, the enforced expression of miR-142-3p, a uniquely expressed miRNA, causes a significant decrease in primitive erythrocyte progenitor cells and HSCs. CONCLUSIONS The present analyses demonstrate that the comprehensive regulatory network we constructed is useful for the functional prediction of new and important miRNAs in DBA and will provide insights into the pathogenesis of mutant rps24-mediated human DBA disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiangdong Fang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | | | | |
Collapse
|
19
|
Moore JC, Sheppard-Tindell S, Shestopalov IA, Yamazoe S, Chen JK, Lawson ND. Post-transcriptional mechanisms contribute to Etv2 repression during vascular development. Dev Biol 2013; 384:128-40. [PMID: 24036310 DOI: 10.1016/j.ydbio.2013.08.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/05/2013] [Accepted: 08/30/2013] [Indexed: 01/08/2023]
Abstract
etv2 is an endothelial-specific ETS transcription factor that is essential for vascular differentiation and morphogenesis in vertebrates. While recent data suggest that Etv2 is dynamically regulated during vascular development, little is known about the mechanisms involved in this process. Here, we find that etv2 transcript and protein expression are highly dynamic during zebrafish vascular development, with both apparent during early somitogenesis and subsequently down-regulated as development proceeds. Inducible knockdown of Etv2 in zebrafish embryos prior to mid-somitogenesis stages, but not later, caused severe vascular defects, suggesting a specific role in early commitment of lateral mesoderm to the endothelial linage. Accordingly, Etv2-overexpressing cells showed an enhanced ability to commit to endothelial lineages in mosaic embryos. We further find that the etv2 3' untranslated region (UTR) is capable of repressing an endothelial autonomous transgene and contains binding sites for members of the let-7 family of microRNAs. Ectopic expression of let-7a could repress the etv2 3'UTR in sensor assays and was also able to block endogenous Etv2 protein expression, leading to concomitant reduction of endothelial genes. Finally, we observed that Etv2 protein levels persisted in maternal-zygotic dicer1 mutant embryos, suggesting that microRNAs contribute to its repression during vascular development. Taken together, our results suggest that etv2 acts during early development to specify endothelial lineages and is then down-regulated, in part through post-transcriptional repression by microRNAs, to allow normal vascular development.
Collapse
Affiliation(s)
- John C Moore
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Jia Q, Zhang Q, Zhang Z, Wang Y, Zhang W, Zhou Y, Wan Y, Cheng T, Zhu X, Fang X, Yuan W, Jia H. Transcriptome analysis of the zebrafish model of Diamond-Blackfan anemia from RPS19 deficiency via p53-dependent and -independent pathways. PLoS One 2013; 8:e71782. [PMID: 23990987 PMCID: PMC3747179 DOI: 10.1371/journal.pone.0071782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/03/2013] [Indexed: 11/29/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome that is characterized by pure red-cell aplasia and associated physical deformities. It has been proven that defects of ribosomal proteins can lead to this disease and that RPS19 is the most frequently mutated gene in DBA patients. Previous studies suggest that p53-dependent genes and pathways play important roles in RPS19-deficient embryos. However, whether there are other vital factors linked to DBA has not been fully clarified. In this study, we compared the whole genome RNA-Seq data of zebrafish embryos injected with RPS19 morpholino (RPS19 MO), RPS19 and p53 morpholino simultaneously (RPS19+p53 MO) and control morpholino (control). We found that genes enriched in the functions of hematological systems, nervous system development and skeletal and muscular disorders had significant differential expression in RPS19 MO embryos compared with controls. Co-inhibition of p53 partially alleviates the abnormalities for RPS19-deficient embryos. However, the hematopoietic genes, which were down-regulated significantly in RPS19 MO embryos, were not completely recovered by the co-inhibition of p53. Furthermore, we identified the genome-wide p53-dependent and -independent genes and pathways. These results indicate that not only p53 family members but also other factors have important impacts on RPS19-deficient embryos. The detection of potential pathogenic genes and pathways provides us a new paradigm for future research on DBA, which is a systematic and complex hereditary disease.
Collapse
Affiliation(s)
- Qiong Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Zhang
- CAS Key Laboratory of Genome Sciences, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Sciences, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wanguang Zhang
- Hepatic Surgery Center Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Wan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Palpant NJ, Pabon L, Rabinowitz JS, Hadland BK, Stoick-Cooper CL, Paige SL, Bernstein ID, Moon RT, Murry CE. Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development. Development 2013; 140:3799-808. [PMID: 23924634 DOI: 10.1242/dev.094789] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genetic regulation of the cell fate transition from lateral plate mesoderm to the specification of cardiomyocytes requires suppression of Wnt/β-catenin signaling, but the mechanism for this is not well understood. By analyzing gene expression and chromatin dynamics during directed differentiation of human embryonic stem cells (hESCs), we identified a suppressor of Wnt/β-catenin signaling, transmembrane protein 88 (TMEM88), as a potential regulator of cardiovascular progenitor cell (CVP) specification. During the transition from mesoderm to the CVP, TMEM88 has a chromatin signature of genes that mediate cell fate decisions, and its expression is highly upregulated in advance of key cardiac transcription factors in vitro and in vivo. In early zebrafish embryos, tmem88a is expressed broadly in the lateral plate mesoderm, including the bilateral heart fields. Short hairpin RNA targeting of TMEM88 during hESC cardiac differentiation increases Wnt/β-catenin signaling, confirming its role as a suppressor of this pathway. TMEM88 knockdown has no effect on NKX2.5 or GATA4 expression, but 80% of genes most highly induced during CVP development have reduced expression, suggesting adoption of a new cell fate. In support of this, analysis of later stage cell differentiation showed that TMEM88 knockdown inhibits cardiomyocyte differentiation and promotes endothelial differentiation. Taken together, TMEM88 is crucial for heart development and acts downstream of GATA factors in the pre-cardiac mesoderm to specify lineage commitment of cardiomyocyte development through inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Nathan J Palpant
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Veldman MB, Zhao C, Gomez GA, Lindgren AG, Huang H, Yang H, Yao S, Martin BL, Kimelman D, Lin S. Transdifferentiation of fast skeletal muscle into functional endothelium in vivo by transcription factor Etv2. PLoS Biol 2013; 11:e1001590. [PMID: 23853546 PMCID: PMC3708712 DOI: 10.1371/journal.pbio.1001590] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 05/09/2013] [Indexed: 02/05/2023] Open
Abstract
Etv2, a master regulator of endothelial cell fate, can induce fast skeletal muscle cells to transdifferentiate into endothelial cells in the zebrafish embryo. Etsrp/Etv2 (Etv2) is an evolutionarily conserved master regulator of vascular development in vertebrates. Etv2 deficiency prevents the proper specification of the endothelial cell lineage, while its overexpression causes expansion of the endothelial cell lineage in the early embryo or in embryonic stem cells. We hypothesized that Etv2 alone is capable of transdifferentiating later somatic cells into endothelial cells. Using heat shock inducible Etv2 transgenic zebrafish, we demonstrate that Etv2 expression alone is sufficient to transdifferentiate fast skeletal muscle cells into functional blood vessels. Following heat treatment, fast skeletal muscle cells turn on vascular genes and repress muscle genes. Time-lapse imaging clearly shows that muscle cells turn on vascular gene expression, undergo dramatic morphological changes, and integrate into the existing vascular network. Lineage tracing and immunostaining confirm that fast skeletal muscle cells are the source of these newly generated vessels. Microangiography and observed blood flow demonstrated that this new vasculature is capable of supporting circulation. Using pharmacological, transgenic, and morpholino approaches, we further establish that the canonical Wnt pathway is important for induction of the transdifferentiation process, whereas the VEGF pathway provides a maturation signal for the endothelial fate. Additionally, overexpression of Etv2 in mammalian myoblast cells, but not in other cell types examined, induced expression of vascular genes. We have demonstrated in zebrafish that expression of Etv2 alone is sufficient to transdifferentiate fast skeletal muscle into functional endothelial cells in vivo. Given the evolutionarily conserved function of this transcription factor and the responsiveness of mammalian myoblasts to Etv2, it is likely that mammalian muscle cells will respond similarly. The endothelial cell is a specialized cell type that lines blood vessels. These cells are involved in normal cardiovascular function and become damaged in cardiovascular disease states such as atherosclerosis and stroke. We have discovered that developing muscle cells in the zebrafish embryo can be converted into endothelial cells by the expression of a transcription factor called Etv2. Etv2 normally functions during embryonic development to specify blood and blood vessels. When expressed in muscle cells, Etv2 induces the expression of genes that are normally expressed in endothelial cells; it also represses muscle gene expression. On expressing Etv2, muscle cells change shape and go on to form lumenized blood vessels that connect to the existing circulatory system and support blood flow. The Wnt and VEGF signaling pathways are required for this fate transformation. Our results suggest that muscle cells may be a viable source for the de novo generation of endothelial cells for use in transplantation therapies and they highlight signalling pathways that might be manipulated to improve the efficiency of this process in mammalian cells.
Collapse
Affiliation(s)
- Matthew B. Veldman
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Molecular, Cell and Developmental Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Molecular, Cell and Developmental Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Gustavo A. Gomez
- Department of Molecular, Cell and Developmental Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Anne G. Lindgren
- Department of Molecular, Cell and Developmental Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Haigen Huang
- Department of Molecular, Cell and Developmental Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Molecular, Cell and Developmental Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Molecular, Cell and Developmental Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Benjamin L. Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Shuo Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Molecular, Cell and Developmental Biology, University of California–Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Saili KS, Tilton SC, Waters KM, Tanguay RL. Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17β-estradiol in embryonic zebrafish. Reprod Toxicol 2013; 38:89-101. [PMID: 23557687 DOI: 10.1016/j.reprotox.2013.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/07/2013] [Accepted: 03/21/2013] [Indexed: 01/13/2023]
Abstract
Transient developmental exposure to 0.1μM bisphenol A (BPA) results in larval zebrafish hyperactivity and learning impairments in the adult, while exposure to 80μM BPA results in teratogenic responses, including craniofacial abnormalities and edema. The mode of action underlying these effects is unclear. We used global gene expression analysis to identify candidate genes and signaling pathways that mediate BPA's developmental toxicity in zebrafish. Exposure concentrations were selected and anchored to the positive control, 17β-estradiol (E2), based on previously determined behavioral or teratogenic phenotypes. Functional analysis of differentially expressed genes revealed distinct expression profiles at 24h post fertilization for 0.1μM versus 80μM BPA and 0.1μM versus 15μM E2 exposure, identification of prothrombin activation as a top canonical pathway impacted by both 0.1μM BPA and 0.1μM E2 exposure, and suppressed expression of several genes involved in nervous system development and function following 0.1μM BPA exposure.
Collapse
Affiliation(s)
- Katerine S Saili
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
24
|
Kather JN, Kroll J. Rho guanine exchange factors in blood vessels: fine-tuners of angiogenesis and vascular function. Exp Cell Res 2012; 319:1289-97. [PMID: 23261542 DOI: 10.1016/j.yexcr.2012.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023]
Abstract
The angiogenic cascade is a multi-step process essential for embryogenesis and other physiological and pathological processes. Rho family GTPases are binary molecular switches and serve as master regulators of various basic cellular processes. Rho GTPases are known to exert important functions in angiogenesis and vascular physiology. These functions demand a tight and context-specific control of cellular processes requiring superordinate control by a multitude of guanine nucleotide exchange factors (GEFs). GEFs display various features enabling them to fine-tune the actions of Rho GTPases in the vasculature: (1) GEFs regulate specific steps of the angiogenic cascade; (2) GEFs show a spatio-temporally specific expression pattern; (3) GEFs differentially regulate endothelial function depending on their subcellular location; (4) GEFs mediate crosstalk between complex signaling cascades and (5) GEFs themselves are regulated by another layer of interacting proteins. The aim of this review is to provide an overview about the role of GEFs in regulating angiogenesis and vascular function and to point out current limitations as well as clinical perspectives.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | |
Collapse
|
25
|
Abstract
Erythrocytes contain oxygen-carrying hemoglobin to all body cells. Impairments in the generation of erythrocytes, a process known as erythropoiesis, or in hemoglobin synthesis alter cell function because of decreased oxygen supply and lead to anemic diseases. Thus, understanding how erythropoiesis is regulated during embryogenesis and adulthood is important to develop novel therapies for anemia. The zebrafish, Danio rerio, provides a powerful model for such study. Their small size and the ability to generate a large number of embryos enable large-scale analysis, and their transparency facilitates the visualization of erythroid cell migration. Importantly, the high conservation of hematopoietic genes among vertebrates and the ability to successfully transplant hematopoietic cells into fish have enabled the establishment of models of human anemic diseases in fish. In this review, we summarize the current progress in our understanding of erythropoiesis on the basis of zebrafish studies and highlight fish models of human anemias. These analyses could enable the discovery of novel drugs as future therapies.
Collapse
|