1
|
Janković T, Rajič Bumber J, Gržeta Krpan N, Dolenec P, Jaeger M, Kriz J, Župan G, Pilipović K. Repetitive Mild but Not Single Moderate Brain Trauma Is Associated with TAR DNA-Binding Protein 43 Mislocalization and Glial Activation in the Mouse Spinal Cord. Biomedicines 2025; 13:218. [PMID: 39857801 PMCID: PMC11760438 DOI: 10.3390/biomedicines13010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) occurs after a sudden mechanical force to the skull and represents a significant public health problem. Initial brain trauma triggers secondary pathophysiological processes that induce structural and functional impairment of the central nervous system, even in the regions distant to the lesion site. Later in life, these changes can be manifested as neurodegenerative sequalae that commonly involve proteinopathies, such as transactive DNA-binding protein 43 (TDP-43). The progression of pathophysiological changes to the spinal cord motor neurons has been detected after repetitive TBI, while such changes have been less investigated after single TBI. Methods: Single TBI was applied over the left parietal cortex of mice by using the lateral fluid percussion injury apparatus and a separate cohort of animals received repetitive mild TBI by weight drop apparatus, with two mild injuries daily, for five days in a row. Mice were sacrificed after single moderate or last mild TBI and their spinal cords were prepared for the analyses. For both types of injury, sham-injured mice were used as a control group. Results: Here, we found an early formation of toxic phosphorylated TDP-43 species on the 3rdday post-injury which, together with TDP-43 cytoplasmic translocation, remained present in the subacute period of 14 days after repetitive mild but not single moderate TBI. During the subacute period following a repetitive brain trauma, we found an increased choline acetyltransferase protein expression and significant microgliosis in the cervical part of the spinal cord, which was not detected after single TBI. Astrogliosis presented similarly after both experimental procedures. Conclusions: This study demonstrates the differences in the spinal cord TDP-43 pathology and inflammation, depending on the brain trauma type, and may contribute to the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.J.); (J.R.B.); (N.G.K.); (P.D.)
| | - Jelena Rajič Bumber
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.J.); (J.R.B.); (N.G.K.); (P.D.)
| | - Nika Gržeta Krpan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.J.); (J.R.B.); (N.G.K.); (P.D.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.J.); (J.R.B.); (N.G.K.); (P.D.)
| | - Marc Jaeger
- Department Chirurgie, Spital Oberengadin, CH-7503 Samedan, Switzerland;
| | - Jasna Kriz
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | | | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (T.J.); (J.R.B.); (N.G.K.); (P.D.)
| |
Collapse
|
2
|
Eck RJ, Stair JG, Kraemer BC, Liachko NF. Simple models to understand complex disease: 10 years of progress from Caenorhabditis elegans models of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Front Neurosci 2024; 17:1300705. [PMID: 38239833 PMCID: PMC10794587 DOI: 10.3389/fnins.2023.1300705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
The nematode Caenorhabditis elegans are a powerful model system to study human disease, with numerous experimental advantages including significant genetic and cellular homology to vertebrate animals, a short lifespan, and tractable behavioral, molecular biology and imaging assays. Beginning with the identification of SOD1 as a genetic cause of amyotrophic lateral sclerosis (ALS), C. elegans have contributed to a deeper understanding of the mechanistic underpinnings of this devastating neurodegenerative disease. More recently this work has expanded to encompass models of other types of ALS and the related disease frontotemporal lobar degeneration (FTLD-TDP), including those characterized by mutation or accumulation of the proteins TDP-43, C9orf72, FUS, HnRNPA2B1, ALS2, DCTN1, CHCHD10, ELP3, TUBA4A, CAV1, UBQLN2, ATXN3, TIA1, KIF5A, VAPB, GRN, and RAB38. In this review we summarize these models and the progress and insights from the last ten years of using C. elegans to study the neurodegenerative diseases ALS and FTLD-TDP.
Collapse
Affiliation(s)
- Randall J. Eck
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jade G. Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Brian C. Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Nicole F. Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| |
Collapse
|
3
|
Wang B, Fang W, Qin D, He Q, Lan C. Susceptibility of PCSK2 Polymorphism to Hirschsprung Disease in Southern Chinese Children. Clin Exp Gastroenterol 2023; 16:59-64. [PMID: 37215434 PMCID: PMC10198172 DOI: 10.2147/ceg.s393340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Hirschsprung's disease (HSCR) is a developmental defect of the enteric nervous system (ENS), which is caused by abnormal development of enteric neural crest cells. Its occurrence is caused by genetic factors and environmental factors. It has been reported that single nucleotide polymorphisms (SNPs) of proprotein convertase subtilisin/kexin type 2 (PCSK2) gene are associated with HSCR. However, the correlation of HSCR in southern Chinese population is still unclear. Methods We assessed the association of rs16998727 with HSCR susceptibility in southern Chinese children using TaqMan SNP genotyping analysis of 2943 samples, including 1470 HSCR patients and 1473 controls. The association test between rs16998727 and phenotypes was performed using multivariable logistic regression analysis. Results We got an unexpected result, PCSK2 SNP rs16998727 was not significantly different from HSCR and its HSCR subtypes: S-HSCR (OR = 1.08, 95% IC: 0.93~1.27, P_adj = 0.3208), L-HSCR (OR = 1.07, 95% IC: 0.84~1.36, P_adj = 0.5958) and TCA (OR = 0.94, 95% IC: 0.61~1.47, P_adj = 0.8001). Conclusion In summary, we report that rs16998727 (PCSK2 and OTOR) is not associated with the risk of HSCR in southern Chinese population.
Collapse
Affiliation(s)
- Bingtong Wang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Wenlin Fang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Dingjiang Qin
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Qiuming He
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| | - Chaoting Lan
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, People’s Republic of China
| |
Collapse
|
4
|
Teruel-Peña B, Gómez-Urquiza JL, Suleiman-Martos N, Prieto I, García-Cózar FJ, Ramírez-Sánchez M, Fernández-Martos C, Domínguez-Vías G. Systematic Review and Meta-Analyses of Aminopeptidases as Prognostic Biomarkers in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:ijms24087169. [PMID: 37108335 PMCID: PMC10138961 DOI: 10.3390/ijms24087169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord, brain stem, and cerebral cortex. Biomarkers for ALS are essential for disease detection and to provide information on potential therapeutic targets. Aminopeptidases catalyze the cleavage of amino acids from the amino terminus of protein or substrates such as neuropeptides. Since certain aminopeptidases are known to increase the risk of neurodegeneration, such mechanisms may reveal new targets to determine their association with ALS risk and their interest as a diagnostic biomarker. The authors performed a systematic review and meta-analyses of genome-wide association studies (GWASs) to identify reported aminopeptidases genetic loci associated with the risk of ALS. PubMed, Scopus, CINAHL, ISI Web of Science, ProQuest, LILACS, and Cochrane databases were searched to retrieve eligible studies in English or Spanish, published up to 27 January 2023. A total of 16 studies were included in this systematic review, where a series of aminopeptidases could be related to ALS and could be promising biomarkers (DPP1, DPP2, DPP4, LeuAP, pGluAP, and PSA/NPEPPS). The literature reported the association of single-nucleotide polymorphisms (SNPs: rs10260404 and rs17174381) with the risk of ALS. The genetic variation rs10260404 in the DPP6 gene was identified to be highly associated with ALS susceptibility, but meta-analyses of genotypes in five studies in a matched cohort of different ancestry (1873 cases and 1861 control subjects) showed no ALS risk association. Meta-analyses of eight studies for minor allele frequency (MAF) also found no ALS association for the "C" allele. The systematic review identified aminopeptidases as possible biomarkers. However, the meta-analyses for rs1060404 of DPP6 do not show a risk associated with ALS.
Collapse
Affiliation(s)
- Bárbara Teruel-Peña
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
- Department of Physiology, Faculty of Health Sciences, Ceuta University of Granada, 51001 Ceuta, Spain
| | - José Luís Gómez-Urquiza
- Nursing Department, Faculty of Health Sciences, Ceuta University of Granada, 51001 Ceuta, Spain
| | - Nora Suleiman-Martos
- Nursing Department, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
| | - Isabel Prieto
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | | | | | | | - Germán Domínguez-Vías
- Department of Physiology, Faculty of Health Sciences, Ceuta University of Granada, 51001 Ceuta, Spain
| |
Collapse
|
5
|
A novel ELP1 mutation impairs the function of the Elongator complex and causes a severe neurodevelopmental phenotype. J Hum Genet 2023. [PMID: 36864284 DOI: 10.1038/s10038-023-01135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are heterogeneous, debilitating conditions that include motor and cognitive disability and social deficits. The genetic factors underlying the complex phenotype of NDDs remain to be elucidated. Accumulating evidence suggest that the Elongator complex plays a role in NDDs, given that patient-derived mutations in its ELP2, ELP3, ELP4 and ELP6 subunits have been associated with these disorders. Pathogenic variants in its largest subunit ELP1 have been previously found in familial dysautonomia and medulloblastoma, with no link to NDDs affecting primarily the central nervous system. METHODS Clinical investigation included patient history and physical, neurological and magnetic resonance imaging (MRI) examination. A novel homozygous likely pathogenic ELP1 variant was identified by whole-genome sequencing. Functional studies included in silico analysis of the mutated ELP1 in the context of the holo-complex, production and purification of the ELP1 harbouring the identified mutation and in vitro analyses using microscale thermophoresis for tRNA binding assay and acetyl-CoA hydrolysis assay. Patient fibroblasts were harvested for tRNA modification analysis using HPLC coupled to mass spectrometry. RESULTS We report a novel missense mutation in the ELP1 identified in two siblings with intellectual disability and global developmental delay. We show that the mutation perturbs the ability of ELP123 to bind tRNAs and compromises the function of the Elongator in vitro and in human cells. CONCLUSION Our study expands the mutational spectrum of ELP1 and its association with different neurodevelopmental conditions and provides a specific target for genetic counselling.
Collapse
|
6
|
Influence of Sex on Respiratory Syncytial Virus Genotype Infection Frequency and Nasopharyngeal Microbiome. J Virol 2023; 97:e0147222. [PMID: 36815771 PMCID: PMC10062153 DOI: 10.1128/jvi.01472-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) has a significant health burden in children, older adults, and the immunocompromised. However, limited effort has been made to identify emergence of new RSV genotypes' frequency of infection and how the combination of nasopharyngeal microbiome and viral genotypes impact RSV disease outcomes. In an observational cohort designed to capture the first infant RSV infection, we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes, during which the 2012/2013 season was dominated by RSV-A, whereas 2013 and 2014 was dominated by RSV-B. We found non-G-72nt-duplicated RSV-A strains were more frequent in male infants (P = 0.02), whereas G-72nt-duplicated genotypes (which is ON1 lineage) were seen equally in both males and females. DESeq2 testing of the nasal microbiome showed Haemophilus was significantly more abundant in infants with RSV-A infection compared to infants with RSV-B infection (adjusted P = 0.002). In addition, the broad microbial clustering of the abundant genera was significantly associated with infant sex (P = 0.03). Overall, we show sex differences in infection by RSV genotype and host nasopharyngeal microbiome, suggesting an interaction between host genetics, virus genotype, and associated nasopharyngeal microbiome. IMPORTANCE Respiratory syncytial virus (RSV) is one of the leading causes of lower respiratory tract infections in young children and is responsible for high hospitalization rates and morbidity in infants and the elderly. To understand how the emergence of RSV viral genotypes and viral-respiratory microbiome interactions contribute to infection frequency and severity, we utilized an observational cohort designed to capture the first infant RSV infection we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes. We found non-G-72nt-duplicated RSV-A genotypes were more frequent in male infants, whereas G-72nt-duplicated RSV-A strains (ON1 lineage) were seen equally in both males and females. Microbiome analysis show Haemophilus was significantly more abundant in infants with RSV-A compared to infants with RSV-B infection and the microbial clustering of the abundant genera was associated with infant sex. Overall, we show sex differences in RSV genotype-nasopharyngeal microbiome, suggesting an interaction host genetics-virus-microbiome interaction.
Collapse
|
7
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
8
|
Gaik M, Kojic M, Stegeman MR, Öncü‐Öner T, Kościelniak A, Jones A, Mohamed A, Chau PYS, Sharmin S, Chramiec‐Głąbik A, Indyka P, Rawski M, Biela A, Dobosz D, Millar A, Chau V, Ünalp A, Piper M, Bellingham MC, Eichler EE, Nickerson DA, Güleryüz H, Abbassi NEH, Jazgar K, Davis MJ, Mercimek‐Andrews S, Cingöz S, Wainwright BJ, Glatt S. Functional divergence of the two Elongator subcomplexes during neurodevelopment. EMBO Mol Med 2022; 14:e15608. [PMID: 35698786 PMCID: PMC9260213 DOI: 10.15252/emmm.202115608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
The highly conserved Elongator complex is a translational regulator that plays a critical role in neurodevelopment, neurological diseases, and brain tumors. Numerous clinically relevant variants have been reported in the catalytic Elp123 subcomplex, while no missense mutations in the accessory subcomplex Elp456 have been described. Here, we identify ELP4 and ELP6 variants in patients with developmental delay, epilepsy, intellectual disability, and motor dysfunction. We determine the structures of human and murine Elp456 subcomplexes and locate the mutated residues. We show that patient-derived mutations in Elp456 affect the tRNA modification activity of Elongator in vitro as well as in human and murine cells. Modeling the pathogenic variants in mice recapitulates the clinical features of the patients and reveals neuropathology that differs from the one caused by previously characterized Elp123 mutations. Our study demonstrates a direct correlation between Elp4 and Elp6 mutations, reduced Elongator activity, and neurological defects. Foremost, our data indicate previously unrecognized differences of the Elp123 and Elp456 subcomplexes for individual tRNA species, in different cell types and in different key steps during the neurodevelopment of higher organisms.
Collapse
|
9
|
Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022; 14:866886. [PMID: 35832065 PMCID: PMC9271745 DOI: 10.3389/fnagi.2022.866886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Leibniz Association, Mainz, Germany
| | - Susanne Klingenberg
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Raoul Heese
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
10
|
Pan S, Liu X, Liu T, Zhao Z, Dai Y, Wang YY, Jia P, Liu F. Causal Inference of Genetic Variants and Genes in Amyotrophic Lateral Sclerosis. Front Genet 2022; 13:917142. [PMID: 35812739 PMCID: PMC9257137 DOI: 10.3389/fgene.2022.917142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive multisystem disorder with limited therapeutic options. Although genome-wide association studies (GWASs) have revealed multiple ALS susceptibility loci, the exact identities of causal variants, genes, cell types, tissues, and their functional roles in the development of ALS remain largely unknown. Here, we reported a comprehensive post-GWAS analysis of the recent large ALS GWAS (n = 80,610), including functional mapping and annotation (FUMA), transcriptome-wide association study (TWAS), colocalization (COLOC), and summary data-based Mendelian randomization analyses (SMR) in extensive multi-omics datasets. Gene property analysis highlighted inhibitory neuron 6, oligodendrocytes, and GABAergic neurons (Gad1/Gad2) as functional cell types of ALS and confirmed cerebellum and cerebellar hemisphere as functional tissues of ALS. Functional annotation detected the presence of multiple deleterious variants at three loci (9p21.2, 12q13.3, and 12q14.2) and highlighted a list of SNPs that are potentially functional. TWAS, COLOC, and SMR identified 43 genes at 24 loci, including 23 novel genes and 10 novel loci, showing significant evidence of causality. Integrating multiple lines of evidence, we further proposed that rs2453555 at 9p21.2 and rs229243 at 14q12 functionally contribute to the development of ALS by regulating the expression of C9orf72 in pituitary and SCFD1 in skeletal muscle, respectively. Together, these results advance our understanding of the biological etiology of ALS, feed into new therapies, and provide a guide for subsequent functional experiments.
Collapse
Affiliation(s)
- Siyu Pan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxuan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Tianzi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yin-Ying Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- *Correspondence: Fan Liu, ; Peilin Jia,
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Fan Liu, ; Peilin Jia,
| |
Collapse
|
11
|
Chen TH, Yang CC, Luo KH, Dai CY, Chuang YC, Chuang HY. The Mediation Effects of Aluminum in Plasma and Dipeptidyl Peptidase Like Protein 6 (DPP6) Polymorphism on Renal Function via Genome-Wide Typing Association. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10484. [PMID: 34639784 PMCID: PMC8507883 DOI: 10.3390/ijerph181910484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 11/30/2022]
Abstract
Aluminum (Al) toxicity is related to renal failure and the failure of other systems. Although there were some genome-wide association studies (GWAS) in Australia and England, there were no GWAS about Han Chinese to our knowledge. Thus, this research focused on using whole genomic genotypes from the Taiwan Biobank for exploring the association between Al concentrations in plasma and renal function. Participants, who underwent questionnaire interviews, biomarkers, and genotyping, were from the Taiwan Biobank database. Then, we measured their plasma Al concentrations with ICP-MS in the laboratory at Kaohsiung Medical University. We used this data to link genome-wide association (GWA) tests while looking for candidate genes and associated plasma Al concentration to renal function. Furthermore, we examined the path relationship between Single Nucleotide Polymorphisms (SNPs), Al concentrations, and estimated glomerular filtration rates (eGFR) through the mediation analysis with 3000 replication bootstraps. Following the principles of GWAS, we focused on three SNPs within the dipeptidyl peptidase-like protein 6 (DPP6) gene in chromosome 7, rs10224371, rs2316242, and rs10268004, respectively. The results of the mediation analysis showed that all of the selected SNPs have indirectly affected eGFR through a mediation of Al concentrations. Our analysis revealed the association between DPP6 SNPs, plasma Al concentrations, and eGFR. However, further longitudinal studies and research on mechanism are in need. Our analysis was still be the first study that explored the association between the DPP6, SNPs, and Al in plasma affecting eGFR.
Collapse
Affiliation(s)
- Ting-Hao Chen
- Department of Public Health and Environmental Medicine, Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-H.C.); (K.-H.L.)
| | - Chen-Cheng Yang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-C.Y.); (C.-Y.D.)
| | - Kuei-Hau Luo
- Department of Public Health and Environmental Medicine, Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-H.C.); (K.-H.L.)
| | - Chia-Yen Dai
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-C.Y.); (C.-Y.D.)
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Hung-Yi Chuang
- Department of Public Health and Environmental Medicine, Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (T.-H.C.); (K.-H.L.)
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-C.Y.); (C.-Y.D.)
| |
Collapse
|
12
|
Zhang J, Qiu W, Hu F, Zhang X, Deng Y, Nie H, Xu R. The rs2619566, rs10260404, and rs79609816 Polymorphisms Are Associated With Sporadic Amyotrophic Lateral Sclerosis in Individuals of Han Ancestry From Mainland China. Front Genet 2021; 12:679204. [PMID: 34421992 PMCID: PMC8378233 DOI: 10.3389/fgene.2021.679204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022] Open
Abstract
The pathogenesis of sporadic amyotrophic lateral sclerosis (sALS) remains unknown; however, recent research suggests that genetic factors may play an important role. This study aimed at investigating possible genetic risk factors for the pathogenesis of sALS. In our previous study, we conducted a genome-wide association study (GWAS) in 250 sALS patients and 250 control participants of Han ancestry from mainland China (HACM) and retrospectively analyzed the previously reported candidate loci related with sALS including our GWAS investigated results. In this study, twenty-seven candidate loci that were most likely associated with sALS were selected for further analysis in an independent case/control population of 239 sALS patients and 261 control subjects of HACM ethnicity using sequenom massARRAY methodology and DNA sequencing. We discovered that the polymorphism rs2619566 located within the contactin-4 (CNTN4) gene, rs10260404 in the dipeptidyl-peptidase 6 (DPP6) gene, and rs79609816 in the inositol polyphosphate-5-phosphatase B (INPP5B) gene were strongly associated with sALS in subjects of HACM ethnicity. Subjects harboring the minor C allele of rs2619566 and the minor T allele of rs79609816 exhibited an increased risk for sALS development, while carriers of the minor C allele of rs10260404 showed a decreased risk of sALS development compared to the subjects of other genotypes. The polymorphisms of rs2619566, rs10260404, and rs79609816 may change or affect the splicing, transcription, and translation of CNTN4, DPP6, and INPP5B genes and may play roles in the pathogenesis of sALS roles in the pathogenesis of sALS.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiwen Qiu
- Department of Neurology, The Affiliated People's Hospital of Nanchang University, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Fan Hu
- Department of Neurology, The Affiliated People's Hospital of Nanchang University, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Xiong Zhang
- Department of Neurology, Maoming People's Hospital, Maoming, China
| | - Youqing Deng
- Department of Neurology, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongbing Nie
- Department of Neurology, The Affiliated People's Hospital of Nanchang University, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Renshi Xu
- Department of Neurology, The Affiliated People's Hospital of Nanchang University, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| |
Collapse
|
13
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Duan B, Fu D, Zhang C, Ding P, Dong X, Xia B. Selective Nonmethylated CpG DNA Recognition Mechanism of Cysteine Clamp Domains. J Am Chem Soc 2021; 143:7688-7697. [PMID: 33983734 DOI: 10.1021/jacs.1c00599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Methylation of DNA at CpG sites is a major mark for epigenetic regulation, but how transcription factors are influenced by CpG methylation is not well understood. Here, we report the molecular mechanisms of how the TCF (T-cell factor) and GEF (glucose transporter 4 enhancer factor) families of proteins selectively target unmethylated DNA sequences with a C-clamp type zinc finger domain. The structure of the C-clamp domain from human GEF family protein HDBP1 (C-clampHDBP1) in complex with DNA was determined using NMR spectroscopy, which adopts a unique zinc finger fold and selectively binds RCCGG (R = A/G) DNA sequences with an "Arg···Trp-Lys-Lys" DNA recognition motif inserted in the major groove. The CpG base pairs are central to the binding due to multiple hydrogen bonds formed with the backbone carbonyl groups of Trp378 and Lys379, as well as the side chain ε-amino groups of Lys379 and Lys380 from C-clampHDBP1. Consequently, methylation of the CpG dinucleotide almost abolishes the binding. Homology modeling reveals that the C-clamp domain from human TCF1E (C-clampTCF1E) binds DNA through essentially the same mechanism, with a similar "Arg···Arg-Lys-Lys" DNA recognition motif. The substitution of tryptophan by arginine makes C-clampHDBP1 prefer RCCGC DNA sequences. The two signature DNA recognition motifs are invariant in the GEF and TCF families of proteins, respectively, from fly to human. The recognition of the CpG dinucleotide through two consecutive backbone carbonyl groups is the same as that of the CXXC type unmethylated CpG DNA binding domains, suggesting a common mechanism shared by unmethylated CpG binding proteins.
Collapse
Affiliation(s)
- Bo Duan
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dihong Fu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chaoqun Zhang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianzhi Dong
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Kojic M, Gawda T, Gaik M, Begg A, Salerno-Kochan A, Kurniawan ND, Jones A, Drożdżyk K, Kościelniak A, Chramiec-Głąbik A, Hediyeh-Zadeh S, Kasherman M, Shim WJ, Sinniah E, Genovesi LA, Abrahamsen RK, Fenger CD, Madsen CG, Cohen JS, Fatemi A, Stark Z, Lunke S, Lee J, Hansen JK, Boxill MF, Keren B, Marey I, Saenz MS, Brown K, Alexander SA, Mureev S, Batzilla A, Davis MJ, Piper M, Bodén M, Burne THJ, Palpant NJ, Møller RS, Glatt S, Wainwright BJ. Elp2 mutations perturb the epitranscriptome and lead to a complex neurodevelopmental phenotype. Nat Commun 2021; 12:2678. [PMID: 33976153 PMCID: PMC8113450 DOI: 10.1038/s41467-021-22888-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common neurodevelopmental disorders and are characterized by substantial impairment in intellectual and adaptive functioning, with their genetic and molecular basis remaining largely unknown. Here, we identify biallelic variants in the gene encoding one of the Elongator complex subunits, ELP2, in patients with ID and ASD. Modelling the variants in mice recapitulates the patient features, with brain imaging and tractography analysis revealing microcephaly, loss of white matter tract integrity and an aberrant functional connectome. We show that the Elp2 mutations negatively impact the activity of the complex and its function in translation via tRNA modification. Further, we elucidate that the mutations perturb protein homeostasis leading to impaired neurogenesis, myelin loss and neurodegeneration. Collectively, our data demonstrate an unexpected role for tRNA modification in the pathogenesis of monogenic ID and ASD and define Elp2 as a key regulator of brain development.
Collapse
Affiliation(s)
- Marija Kojic
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Tomasz Gawda
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gaik
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alexander Begg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anna Salerno-Kochan
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Katarzyna Drożdżyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Kościelniak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Soroor Hediyeh-Zadeh
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Maria Kasherman
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Woo Jun Shim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Laura A Genovesi
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Rannvá K Abrahamsen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Camilla G Madsen
- Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark
| | - Julie S Cohen
- Department of Neurology and Developmental Medicine, Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ali Fatemi
- Department of Neurology and Developmental Medicine, Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zornitza Stark
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics Health Alliance, Parkville, VIC, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics Health Alliance, Parkville, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Joy Lee
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Department of Metabolic Medicine, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jonas K Hansen
- Department of Paediatrics, Regional Hospital Viborg, Viborg, Denmark
| | - Martin F Boxill
- Department of Paediatrics, Regional Hospital Viborg, Viborg, Denmark
| | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Isabelle Marey
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Margarita S Saenz
- The University of Colorado Anschutz, Children's Hospital Colorado, Aurora, CO, USA
| | - Kathleen Brown
- The University of Colorado Anschutz, Children's Hospital Colorado, Aurora, CO, USA
| | - Suzanne A Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, QLD, Australia
| | - Sergey Mureev
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Bio-commodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alina Batzilla
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- The Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas H J Burne
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Brisbane, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department for Regional Health Research, The University of Southern Denmark, Odense, Denmark
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Brandon J Wainwright
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
16
|
O'Leary MC, Whitley RL, Press A, Provenzale D, Williams CD, Chesnut B, Jones R, Redding TS, Sims KJ. Development of a Multi-Study Repository to Support Research on Veteran Health: The VA Cooperative Studies Program Epidemiology Center-Durham (CSPEC-Durham) Data and Specimen Repository. Front Public Health 2021; 9:612806. [PMID: 33681131 PMCID: PMC7925406 DOI: 10.3389/fpubh.2021.612806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Federal agencies, including the Department of Veterans Affairs (VA), have prioritized improved access to scientific data and results collected through federally funded research. Our VA Cooperative Studies Program Epidemiology Center in Durham, North Carolina (CSPEC-Durham) assembled a repository of data and specimens collected through multiple studies on Veteran health issues to facilitate future research in these areas. We developed a single protocol, request process that includes scientific and ethical review of all applications, and a database architecture using metadata (common variable descriptors) to securely store and share data across diverse studies. In addition, we created a mechanism to allow data and specimens collected through older studies in which re-use was not addressed in the study protocol or consent forms to be shared if the future research is within the scope of the original consent. Our CSPEC-Durham Data and Specimen Repository currently includes research data, genomic data, and study specimens (e.g., DNA, blood) for three content areas: colorectal cancer, amyotrophic lateral sclerosis, and Gulf War research. The linking of the study specimens and research data can support additional genetic analyses and related research to improve Veterans' health.
Collapse
Affiliation(s)
- Meghan C O'Leary
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, NC, United States
| | | | - Ashlyn Press
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, NC, United States
| | - Dawn Provenzale
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, NC, United States.,Duke University Medical Center, Durham, NC, United States
| | - Christina D Williams
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, NC, United States.,Duke University Medical Center, Durham, NC, United States
| | - Blair Chesnut
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, NC, United States.,Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Rodney Jones
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, NC, United States.,Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Thomas S Redding
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, NC, United States
| | - Kellie J Sims
- Cooperative Studies Program Epidemiology Center-Durham, Durham Veterans Affairs Health Care System, Durham, NC, United States
| |
Collapse
|
17
|
Alkaslasi MR, Cho NE, Dhillon NK, Shelest O, Haro-Lopez PS, Linaval NT, Ghoulian J, Yang AR, Vit JP, Avalos P, Ley EJ, Thomsen GM. Poor Corticospinal Motor Neuron Health Is Associated with Increased Symptom Severity in the Acute Phase Following Repetitive Mild TBI and Predicts Early ALS Onset in Genetically Predisposed Rodents. Brain Sci 2021; 11:brainsci11020160. [PMID: 33530492 PMCID: PMC7911729 DOI: 10.3390/brainsci11020160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a well-established risk factor for several neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease, however, a link between TBI and amyotrophic lateral sclerosis (ALS) has not been clearly elucidated. Using the SOD1G93A rat model known to recapitulate the human ALS condition, we found that exposure to mild, repetitive TBI lead ALS rats to experience earlier disease onset and shortened survival relative to their sham counterparts. Importantly, increased severity of early injury symptoms prior to the onset of ALS disease symptoms was linked to poor health of corticospinal motor neurons and predicted worsened outcome later in life. Whereas ALS rats with only mild behavioral injury deficits exhibited no observable changes in corticospinal motor neuron health and did not present with early onset or shortened survival, those with more severe injury-related deficits exhibited alterations in corticospinal motor neuron health and presented with significantly earlier onset and shortened lifespan. While these studies do not imply that TBI causes ALS, we provide experimental evidence that head injury is a risk factor for earlier disease onset in a genetically predisposed ALS population and is associated with poor health of corticospinal motor neurons.
Collapse
Affiliation(s)
- Mor R. Alkaslasi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
| | - Noell E. Cho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
| | - Navpreet K. Dhillon
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.K.D.); (N.T.L.); (J.G.); (A.R.Y.); (E.J.L.)
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
| | - Patricia S. Haro-Lopez
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
| | - Nikhil T. Linaval
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.K.D.); (N.T.L.); (J.G.); (A.R.Y.); (E.J.L.)
| | - Josh Ghoulian
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.K.D.); (N.T.L.); (J.G.); (A.R.Y.); (E.J.L.)
| | - Audrey R. Yang
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.K.D.); (N.T.L.); (J.G.); (A.R.Y.); (E.J.L.)
| | - Jean-Philippe Vit
- Biobehavioral Research Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
| | - Eric J. Ley
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.K.D.); (N.T.L.); (J.G.); (A.R.Y.); (E.J.L.)
| | - Gretchen M. Thomsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.R.A.); (N.E.C.); (O.S.); (P.S.H.-L.); (P.A.)
- Correspondence:
| |
Collapse
|
18
|
Ruffini N, Klingenberg S, Schweiger S, Gerber S. Common Factors in Neurodegeneration: A Meta-Study Revealing Shared Patterns on a Multi-Omics Scale. Cells 2020; 9:E2642. [PMID: 33302607 PMCID: PMC7764447 DOI: 10.3390/cells9122642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are heterogeneous, progressive diseases with frequently overlapping symptoms characterized by a loss of neurons. Studies have suggested relations between neurodegenerative diseases for many years (e.g., regarding the aggregation of toxic proteins or triggering endogenous cell death pathways). We gathered publicly available genomic, transcriptomic, and proteomic data from 177 studies and more than one million patients to detect shared genetic patterns between the neurodegenerative diseases on three analyzed omics-layers. The results show a remarkably high number of shared differentially expressed genes between the transcriptomic and proteomic levels for all conditions, while showing a significant relation between genomic and proteomic data between AD and PD and AD and ALS. We identified a set of 139 genes being differentially expressed in several transcriptomic experiments of all four diseases. These 139 genes showed overrepresented gene ontology (GO) Terms involved in the development of neurodegeneration, such as response to heat and hypoxia, positive regulation of cytokines and angiogenesis, and RNA catabolic process. Furthermore, the four analyzed neurodegenerative diseases (NDDs) were clustered by their mean direction of regulation throughout all transcriptomic studies for this set of 139 genes, with the closest relation regarding this common gene set seen between AD and HD. GO-Term and pathway analysis of the proteomic overlap led to biological processes (BPs), related to protein folding and humoral immune response. Taken together, we could confirm the existence of many relations between Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis on transcriptomic and proteomic levels by analyzing the pathways and GO-Terms arising in these intersections. The significance of the connection and the striking relation of the results to processes leading to neurodegeneration between the transcriptomic and proteomic data for all four analyzed neurodegenerative diseases showed that exploring many studies simultaneously, including multiple omics-layers of different neurodegenerative diseases simultaneously, holds new relevant insights that do not emerge from analyzing these data separately. Furthermore, the results shed light on processes like the humoral immune response that have previously been described only for certain diseases. Our data therefore suggest human patients with neurodegenerative diseases should be addressed as complex biological systems by integrating multiple underlying data sources.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
- Leibniz Institute for Resilience Research, Leibniz Association, Wallstraße 7, 55122 Mainz, Germany
| | - Susanne Klingenberg
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| | - Susann Schweiger
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| |
Collapse
|
19
|
Xiao L, Yuan Z, Jin S, Wang T, Huang S, Zeng P. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Front Genet 2020; 11:587243. [PMID: 33329728 PMCID: PMC7714931 DOI: 10.3389/fgene.2020.587243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple causal genes associated with amyotrophic lateral sclerosis (ALS); however, the genetic architecture of ALS remains completely unknown and a large number of causal genes have yet been discovered. To full such gap in part, we implemented an integrative analysis of transcriptome-wide association study (TWAS) for ALS to prioritize causal genes with summary statistics from 80,610 European individuals and employed 13 GTEx brain tissues as reference transcriptome panels. The summary-level TWAS analysis with single brain tissue was first undertaken and then a flexible p-value combination strategy, called summary data-based Cauchy Aggregation TWAS (SCAT), was proposed to pool association signals from single-tissue TWAS analysis while protecting against highly positive correlation among tests. Extensive simulations demonstrated SCAT can produce well-calibrated p-value for the control of type I error and was often much more powerful to identify association signals across various scenarios compared with single-tissue TWAS analysis. Using SCAT, we replicated three ALS-associated genes (i.e., ATXN3, SCFD1, and C9orf72) identified in previous GWASs and discovered additional five genes (i.e., SLC9A8, FAM66D, TRIP11, JUP, and RP11-529H20.6) which were not reported before. Furthermore, we discovered the five associations were largely driven by genes themselves and thus might be new genes which were likely related to the risk of ALS. However, further investigations are warranted to verify these results and untangle the pathophysiological function of the genes in developing ALS.
Collapse
Affiliation(s)
- Lishun Xiao
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Siyi Jin
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Ting Wang
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China
| | - Shuiping Huang
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018. [DOI: 10.1007/s12041-018-0953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Kumar S, Yadav N, Pandey S, Thelma BK. Advances in the discovery of genetic risk factors for complex forms of neurodegenerative disorders: contemporary approaches, success, challenges and prospects. J Genet 2018; 97:625-648. [PMID: 30027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neurodegenerative diseases constitute a large proportion of disorders in elderly, majority being sporadic in occurrence with ∼5-10% familial. A strong genetic component underlies the Mendelian forms but nongenetic factors together with genetic vulnerability contributes to the complex sporadic forms. Several gene discoveries in the familial forms have provided novel insights into the pathogenesis of neurodegeneration with implications for treatment. Conversely, findings from genetic dissection of the sporadic forms, despite large genomewide association studies and more recently whole exome and whole genome sequencing, have been limited. This review provides a concise account of the genetics that we know, the pathways that they implicate, the challenges that are faced and the prospects that are envisaged for the sporadic, complex forms of neurodegenerative diseases, taking four most common conditions, namely Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington disease as examples. Poor replication across studies, inability to establish genotype-phenotype correlations and the overall failure to predict risk and/or prevent disease in this group poses a continuing challenge. Among others, clinical heterogeneity emerges as the most important impediment warranting newer approaches. Advanced computational and system biology tools to analyse the big data are being generated and the alternate strategy such as subgrouping of case-control cohorts based on deep phenotyping using the principles of Ayurveda to overcome current limitation of phenotype heterogeneity seem to hold promise. However, at this point, with advances in discovery genomics and functional analysis of putative determinants with translation potential for the complex forms being minimal, stem cell therapies are being attempted as potential interventions. In this context, the possibility to generate patient derived induced pluripotent stem cells, mutant/gene/genome correction through CRISPR/Cas9 technology and repopulating the specific brain regions with corrected neurons, which may fulfil the dream of personalized medicine have been mentioned briefly. Understanding disease pathways/biology using this technology, with implications for development of novel therapeutics are optimistic expectations in the near future.
Collapse
Affiliation(s)
- Sumeet Kumar
- Department of Genetics, University of Delhi South Campus, New Delhi 110 021, India.
| | | | | | | |
Collapse
|
22
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal degenerative disorder of motor neurons that overlaps clinically with frontotemporal dementia (FTD). Investigations of the 10% of ALS cases that are transmitted as dominant traits have revealed numerous gene mutations and variants that either cause these disorders or influence their clinical phenotype. The evolving understanding of the genetic architecture of ALS has illuminated broad themes in the molecular pathophysiology of both familial and sporadic ALS and FTD. These central themes encompass disturbances of protein homeostasis, alterations in the biology of RNA binding proteins, and defects in cytoskeletal dynamics, as well as numerous downstream pathophysiological events. Together, these findings from ALS genetics provide new insight into therapies that target genetically distinct subsets of ALS and FTD.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| |
Collapse
|
23
|
Dalwadi U, Yip CK. Structural insights into the function of Elongator. Cell Mol Life Sci 2018; 75:1613-1622. [PMID: 29332244 PMCID: PMC11105301 DOI: 10.1007/s00018-018-2747-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/09/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Conserved from yeast to humans, Elongator is a protein complex implicated in multiple processes including transcription regulation, α-tubulin acetylation, and tRNA modification, and its defects have been shown to cause human diseases such as familial dysautonomia. Elongator consists of two copies of six core subunits (Elp1, Elp2, Elp3, Elp4, Elp5, and Elp6) that are organized into two subcomplexes: Elp1/2/3 and Elp4/5/6 and form a stable assembly of ~ 850 kDa in size. Although the catalytic subunit of Elongator is Elp3, which contains a radical S-adenosyl-L-methionine (SAM) domain and a putative histone acetyltransferase domain, the Elp4/5/6 subcomplex also possesses ATP-modulated tRNA binding activity. How at the molecular level, Elongator performs its multiple functions and how the different subunits regulate Elongator's activities remains poorly understood. Here, we provide an overview of the proposed functions of Elongator and describe how recent structural studies provide new insights into the mechanism of action of this multifunctional complex.
Collapse
Affiliation(s)
- Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
24
|
Anderson EN, Gochenaur L, Singh A, Grant R, Patel K, Watkins S, Wu JY, Pandey UB. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Hum Mol Genet 2018; 27:1366-1381. [PMID: 29432563 PMCID: PMC6455923 DOI: 10.1093/hmg/ddy047] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) has been predicted to be a predisposing factor for amyotrophic lateral sclerosis (ALS) and other neurological disorders. Despite the importance of TBI in ALS progression, the underlying cellular and molecular mechanisms are still an enigma. Here, we examined the contribution of TBI as an extrinsic factor and investigated whether TBI influences the susceptibility of developing neurodegenerative symptoms. To evaluate the effects of TBI in vivo, we applied mild to severe trauma to Drosophila and found that TBI leads to the induction of stress granules (SGs) in the brain. The degree of SGs induction directly correlates with the level of trauma. Furthermore, we observed that the level of mortality is directly proportional to the number of traumatic hits. Interestingly, trauma-induced SGs are ubiquitin, p62 and TDP-43 positive, and persistently remain over time suggesting that SGs might be aggregates and exert toxicity in our fly models. Intriguingly, TBI on animals expressing ALS-linked genes increased mortality and locomotion dysfunction suggesting that mild trauma might aggravate neurodegenerative symptoms associated with ALS. Furthermore, we found elevated levels of high molecular weight ubiquitinated proteins and p62 in animals expressing ALS-causing genes with TBI, suggesting that TBI may lead to the defects in protein degradation pathways. Finally, we observed that genetic and pharmacological induction of autophagy enhanced the clearance of SGs and promoted survival of flies in vivo. Together, our study demonstrates that trauma can induce SG formation in vivo and might enhance neurodegenerative phenotypes in the fly models of ALS.
Collapse
Affiliation(s)
- Eric N Anderson
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Lauren Gochenaur
- Department of Neuroscience, Dietrich School of Arts and Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aditi Singh
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rogan Grant
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Krishani Patel
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Simon Watkins
- Center for Biological Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jane Y Wu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Udai Bhan Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Department of Neuroscience, Dietrich School of Arts and Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Yu D, Tan Y, Chakraborty M, Tomchik S, Davis RL. Elongator complex is required for long-term olfactory memory formation in Drosophila. Learn Mem 2018; 25:183-196. [PMID: 29545390 PMCID: PMC5855525 DOI: 10.1101/lm.046557.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
Abstract
The evolutionarily conserved Elongator Complex associates with RNA polymerase II for transcriptional elongation. Elp3 is the catalytic subunit, contains histone acetyltransferase activity, and is associated with neurodegeneration in humans. Elp1 is a scaffolding subunit and when mutated causes familial dysautonomia. Here, we show that elp3 and elp1 are required for aversive long-term olfactory memory in Drosophila RNAi knockdown of elp3 in adult mushroom bodies impairs long-term memory (LTM) without affecting earlier forms of memory. RNAi knockdown with coexpression of elp3 cDNA reverses the impairment. Similarly, RNAi knockdown of elp1 impairs LTM and coexpression of elp1 cDNA reverses this phenotype. The LTM deficit in elp3 and elp1 knockdown flies is accompanied by the abolishment of a LTM trace, which is registered as increased calcium influx in response to the CS+ odor in the α-branch of mushroom body neurons. Coexpression of elp1 or elp3 cDNA rescues the memory trace in parallel with LTM. These data show that the Elongator complex is required in adult mushroom body neurons for long-term behavioral memory and the associated long-term memory trace.
Collapse
Affiliation(s)
- Dinghui Yu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Ying Tan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Molee Chakraborty
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, Florida 33458, USA
| | - Seth Tomchik
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, Florida 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, Florida 33458, USA
| |
Collapse
|
26
|
Cheung JPY, Kao PYP, Sham P, Cheah KSE, Chan D, Cheung KMC, Samartzis D. Etiology of developmental spinal stenosis: A genome-wide association study. J Orthop Res 2018; 36:1262-1268. [PMID: 28983962 DOI: 10.1002/jor.23746] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/06/2017] [Indexed: 02/04/2023]
Abstract
Our study aimed to identify possible single nucleotide polymorphisms (SNPs) via a genome-wide association study (GWAS) approach and a candidate gene platform that were associated with lumbar developmental spinal stenosis (DSS). Southern Chinese population-based study volunteers were assessed (age range: 18-55 years). DSS was defined as the anteroposterior bony spinal canal diameter on T1-weighted axial MRI of L1 to S1. Genotyping was performed using the Illumina HumanOmniZhongHua-8 BeadChip. Using the canal diameter as the quantitative trait, genomic statistical analyses was performed. A total of 469 subjects were recruited. The mean axial AP measurements noted were: L1: 21.8 mm, L2: 21.9 mm, L3: 22.4 mm, L4: 20.2 mm, L5: 19.6 mm, and S1: 17.3 mm. Q-Q plots of genome-wide associations found significant differences in L4 and L5 measurements. More significant SNPs were found on chromosomes 8, 11, and 18. Low-density lipoprotein receptor-related protein 5 on chromosome 11 was found to be an important functional gene in canal bony development via candidate gene approach. We found two clusters in the findings with one including the upper levels (L1-L4) and the other the lower levels (L5 and S1). This is the first GWAS addressing DSS. The presence of multiple SNPs suggests a multi-factorial origin of DSS. Further analyses noted region-specific genetic predisposition, delineating distinct upper to lower lumbar regions of DSS. With better understanding of the DSS phenotype and genetic markers, the at-risk population can be identified early, preventative measures can be initiated, lifestyle/activity modification can be implemented, and more novel and precision-based therapeutics can be developed. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1262-1268, 2018.
Collapse
Affiliation(s)
- Jason P Y Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Patrick Y P Kao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pak Sham
- Genome Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
27
|
Dato S, Rose G, Crocco P, Monti D, Garagnani P, Franceschi C, Passarino G. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome. Mech Ageing Dev 2017; 165:147-155. [DOI: 10.1016/j.mad.2017.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/04/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
28
|
Animal and cellular models of familial dysautonomia. Clin Auton Res 2017; 27:235-243. [PMID: 28667575 DOI: 10.1007/s10286-017-0438-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Since Riley and Day first described the clinical phenotype of patients with familial dysautonomia (FD) over 60 years ago, the field has made considerable progress clinically, scientifically, and translationally in treating and understanding the etiology of FD. FD is classified as a hereditary sensory and autonomic neuropathy (HSAN type III) and is both a developmental and a progressive neurodegenerative condition that results from an autosomal recessive mutation in the gene IKBKAP, also known as ELP1. FD primarily impacts the peripheral nervous system but also manifests in central nervous system disruption, especially in the retina and optic nerve. While the disease is rare, the rapid progress being made in elucidating the molecular and cellular mechanisms mediating the demise of neurons in FD should provide insight into degenerative pathways common to many neurological disorders. Interestingly, the protein encoded by IKBKAP/ELP1, IKAP or ELP1, is a key scaffolding subunit of the six-subunit Elongator complex, and variants in other Elongator genes are associated with amyotrophic lateral sclerosis (ALS), intellectual disability, and Rolandic epilepsy. Here we review the recent model systems that are revealing the molecular and cellular pathophysiological mechanisms mediating FD. These powerful model systems can now be used to test targeted therapeutics for mitigating neuronal loss in FD and potentially other disorders.
Collapse
|
29
|
Chaverra M, George L, Mergy M, Waller H, Kujawa K, Murnion C, Sharples E, Thorne J, Podgajny N, Grindeland A, Ueki Y, Eiger S, Cusick C, Babcock AM, Carlson GA, Lefcort F. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system. Dis Model Mech 2017; 10:605-618. [PMID: 28167615 PMCID: PMC5451171 DOI: 10.1242/dmm.028258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/23/2017] [Indexed: 02/06/2023] Open
Abstract
Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. Summary:Ikbkap is essential for normal CNS development, neuronal survival and behavior, adding to our understanding of the role of the Elongator complex in the mammalian CNS.
Collapse
Affiliation(s)
- Marta Chaverra
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.,Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA
| | - Marc Mergy
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Hannah Waller
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Katharine Kujawa
- Department of Psychology, Montana State University, Bozeman, MT 59717, USA
| | - Connor Murnion
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Ezekiel Sharples
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Julian Thorne
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.,University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Nathaniel Podgajny
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | | | - Yumi Ueki
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Steven Eiger
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - Cassie Cusick
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| | - A Michael Babcock
- Department of Psychology, Montana State University, Bozeman, MT 59717, USA
| | | | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
30
|
Kolaj-Robin O, Séraphin B. Structures and Activities of the Elongator Complex and Its Cofactors. RNA MODIFICATION 2017; 41:117-149. [DOI: 10.1016/bs.enz.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
He F, Jones JM, Figueroa-Romero C, Zhang D, Feldman EL, Goutman SA, Meisler MH, Callaghan BC, Todd PK. Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated loci. NEUROLOGY-GENETICS 2016; 2:e71. [PMID: 27274540 PMCID: PMC4865132 DOI: 10.1212/nxg.0000000000000071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/01/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine whether GGGGCC (G4C2) repeat expansions at loci other than C9orf72 serve as common causes of amyotrophic lateral sclerosis (ALS). METHODS We assessed G4C2 repeat number in 28 genes near known ALS and frontotemporal dementia (FTD) loci by repeat-primed PCR coupled with fluorescent fragment analysis in 199 patients with ALS (17 familial, 182 sporadic) and 136 healthy controls. We also obtained blood from patients with ALS4 for evaluation of repeats surrounding the SETX gene locus. C9orf72 expansions were evaluated in parallel. RESULTS Expansions of G4C2 repeats in C9orf72 explained 8.8% of sporadic and 47% of familial ALS cases analyzed. Repeat variance was observed at one other locus, RGS14, but no large expansions were observed, and repeat sizes were not different between cases and controls. No G4C2 repeat expansions were identified at other ALS or FTD risk loci or in ALS4 cases. CONCLUSIONS G4C2 expansions near known ALS and FTD loci other than C9orf72 are not a common cause of ALS.
Collapse
Affiliation(s)
- Fang He
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Julie M Jones
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Claudia Figueroa-Romero
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Dapeng Zhang
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Eva L Feldman
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Stephen A Goutman
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Miriam H Meisler
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Brian C Callaghan
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| | - Peter K Todd
- Department of Neurology (F.H., C.F.-R., B.C.C., E.L.F., S.A.G., P.K.T.) and Department of Human Genetics (J.M.J., M.H.M.), University of Michigan, Ann Arbor; Veteran Association Health System (B.C.C., P.K.T.), Ann Arbor; and National Center for Biotechnology Information (D.Z.), National Institutes of Health, Bethesda, MD
| |
Collapse
|
32
|
Yokoi D, Atsuta N, Watanabe H, Nakamura R, Hirakawa A, Ito M, Watanabe H, Katsuno M, Izumi Y, Morita M, Taniguchi A, Oda M, Abe K, Mizoguchi K, Kano O, Kuwabara S, Kaji R, Sobue G. Age of onset differentially influences the progression of regional dysfunction in sporadic amyotrophic lateral sclerosis. J Neurol 2016; 263:1129-36. [PMID: 27083563 DOI: 10.1007/s00415-016-8109-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/30/2022]
Abstract
The clinical courses of sporadic amyotrophic lateral sclerosis (ALS) show extensive variability. Our objective was to elucidate how age of onset influences the progression of regional symptoms and functional losses in sporadic ALS. We included 648 patients with sporadic ALS from a multicenter prospective ALS cohort. We investigated the distribution of initial symptoms and analyzed the time from onset to events affecting activities of daily living (ADL) as well as the longitudinal changes in each regional functional rating score among four groups with different ages of onset. The frequencies of dysarthria and dysphagia as initial symptoms were higher in the older age groups, whereas weakness of upper limbs was the most common initial symptom in the youngest age group. The survival times and the times from onset to loss of speech and swallowing were significantly shorter in the older age group (p < 0.001), although the times from onset to loss of upper limb function were not significantly different among the age groups. According to joint modeling analysis, the bulbar score declined faster in the older age groups (<50 vs. 60-69 years: p = 0.029, <50 vs. ≥70 years: p < 0.001), whereas there was no significant correlation between the age of onset and decline in the upper limb score. Our results showed that age of onset had a significant influence on survival time and the progression of bulbar symptoms, but had no influence on upper limb function in sporadic ALS.
Collapse
Affiliation(s)
- Daichi Yokoi
- Department of Neurology, Nagoya University, 65, Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University, 65, Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hazuki Watanabe
- Department of Neurology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Aichi, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University, 65, Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akihiro Hirakawa
- Center for Advanced Medicine and Clinical Research, Nagoya University, Nagoya, Aichi, Japan
| | - Mizuki Ito
- Department of Neurology, Nagoya University, 65, Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University, 65, Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University, 65, Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University, Tokushima, Tokushima, Japan
| | - Mitsuya Morita
- Department of Neurology, Jichi Medical University, Shimono, Tochigi, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaya Oda
- Department of Neurology, Vihara Hananosato Hospital, Miyoshi, Hiroshima, Japan
| | - Koji Abe
- Department of Neurology, Okayama University, Okayama, Okayama, Japan
| | - Kouichi Mizoguchi
- Department of Neurology, Shizuoka Fuji Hospital, Fujinomiya, Shizuoka, Japan
| | - Osamu Kano
- Division on Neurology, Department of Internal Medicine, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | | | - Ryuji Kaji
- Department of Neurology, Tokushima University, Tokushima, Tokushima, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University, 65, Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | | |
Collapse
|
33
|
Deng L, Hou L, Zhang J, Tang X, Cheng Z, Li G, Fang X, Xu J, Zhang X, Xu R. Polymorphism of rs3737597 in DISC1 Gene on Chromosome 1q42.2 in sALS Patients: a Chinese Han Population Case-Control Study. Mol Neurobiol 2016; 54:3162-3179. [DOI: 10.1007/s12035-016-9869-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/17/2016] [Indexed: 01/10/2023]
|
34
|
Chen CJ, Chen CM, Pai TW, Chang HT, Hwang CS. A genome-wide association study on amyotrophic lateral sclerosis in the Taiwanese Han population. Biomark Med 2015; 10:597-611. [PMID: 26580837 DOI: 10.2217/bmm.15.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Identification of mutations in patients with amyotrophic lateral sclerosis (ALS) in a genome-wide association study can reveal possible biomarkers of such a rapidly progressive and fatal neurodegenerative disease. It was observed that significant single nucleotide polymorphisms vary when the tested population changes from one ethnic group to another. To identify new loci associated with ALS susceptibility in the Taiwanese Han population, we performed a genome-wide association study on 94 patients with sporadic ALS and 376 matched controls. We uncovered two new susceptibility loci at 13q14.3 (rs2785946) and 11q25 (rs11224052). In addition, we analyzed the functions of all the associated genes among 54 significant single nucleotide polymorphisms using Gene Ontology annotations, and the results showed several statistically significant neural- and muscle-related Gene Ontology terms and the associated diseases.
Collapse
Affiliation(s)
- Chi-Jim Chen
- Department of Computer Science & Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Chien-Ming Chen
- Department of Computer Science & Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science & Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Hao-Teng Chang
- Graduate Institute of Basic Medical Sciences, China Medical University, Taichung, Taiwan.,Department of Computer Science & Information Engineering, Asia University, Taichung, Taiwan
| | - Chi-Shin Hwang
- Department of Neurology, Taipei City Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
35
|
Vidal-Taboada JM, Lopez-Lopez A, Salvado M, Lorenzo L, Garcia C, Mahy N, Rodríguez MJ, Gamez J. UNC13A confers risk for sporadic ALS and influences survival in a Spanish cohort. J Neurol 2015; 262:2285-92. [PMID: 26162714 DOI: 10.1007/s00415-015-7843-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/13/2022]
Abstract
To investigate the association of functional variants of the human UNC13A gene with the risk of ALS, survival and the disease progression rate in a Spanish ALS cohort. 136 sporadic ALS (sALS) patients and 487 healthy controls were genotyped for the UNC13A rs12608932 variant. Clinical characterization of ALS patients included gender, age at first symptom, initial topography, disease progression rate, and survival. Genetic association was analyzed under five inheritance models. The sALS patients with the rs12608932(CC) genotype had an increased risk of ALS under a recessive genetic model [OR 2.16; 95 % CI (1.23, 3.8), p = 0.009; corrected p = 0.028]. Genotypes with a C allele are also associated with increased risk [OR 1.47; 95 % CI (1.11, 1.95); p = 0.008; corrected p = 0.023] under an additive model. sALS patients with a C/C genotype had a shorter survival than patients with A/A and A/C genotypes [HR 1.44; 95 % CI (1.11, 1.873); p = 0.007] under a recessive model. In an overdominant model, heterozygous patients had a longer survival than homozygous patients [HR 0.36; 95 % CI (0.22, 0.59); p = 0.001]. The rs12608932 genotypes modify the progression of symptoms measured using the ALSFRS-R. No association with age of onset, initial topography or rate of decline in FVC was found. Our results show that rs12608932 is a risk factor for ALS in the Spanish population and replicate the findings described in other populations. The rs12608932 is a modifying factor for survival and disease progression rate in our series. Our results also corroborated that it did not influence the age of onset.
Collapse
Affiliation(s)
- Jose Manuel Vidal-Taboada
- Biochemistry and Molecular Biology Unit, Department of Physiological Sciences I, Faculty of Medicine, IDIBAPS, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona, Spain.
| | - Alan Lopez-Lopez
- Biochemistry and Molecular Biology Unit, Department of Physiological Sciences I, Faculty of Medicine, IDIBAPS, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona, Spain
| | - Maria Salvado
- ALS Unit, Neurology Department, Hospital Universitari Vall d'Hebron, VHIR, Medicine Department, Autonomous University of Barcelona, FEDER, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Laura Lorenzo
- ALS Unit, Neurology Department, Hospital Universitari Vall d'Hebron, VHIR, Medicine Department, Autonomous University of Barcelona, FEDER, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Cecilia Garcia
- ALS Unit, Neurology Department, Hospital Universitari Vall d'Hebron, VHIR, Medicine Department, Autonomous University of Barcelona, FEDER, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Nicole Mahy
- Biochemistry and Molecular Biology Unit, Department of Physiological Sciences I, Faculty of Medicine, IDIBAPS, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona, Spain
| | - Manuel J Rodríguez
- Biochemistry and Molecular Biology Unit, Department of Physiological Sciences I, Faculty of Medicine, IDIBAPS, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona, Spain
| | - Josep Gamez
- ALS Unit, Neurology Department, Hospital Universitari Vall d'Hebron, VHIR, Medicine Department, Autonomous University of Barcelona, FEDER, Passeig Vall d'Hebron 119, 08035, Barcelona, Spain.
| |
Collapse
|
36
|
Marangi G, Traynor BJ. Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges. Brain Res 2015; 1607:75-93. [PMID: 25316630 PMCID: PMC5916786 DOI: 10.1016/j.brainres.2014.10.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 12/11/2022]
Abstract
The genetic architecture of amyotrophic lateral sclerosis (ALS) is being increasingly understood. In this far-reaching review, we examine what is currently known about ALS genetics and how these genes were initially identified. We also discuss the various types of mutations that might underlie this fatal neurodegenerative condition and outline some of the strategies that might be useful in untangling them. These include expansions of short repeat sequences, common and low-frequency genetic variations, de novo mutations, epigenetic changes, somatic mutations, epistasis, oligogenic and polygenic hypotheses. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Giuseppe Marangi
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Institute of Medical Genetics, Catholic University, Roma, Italy.
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Minster RL, Sanders JL, Singh J, Kammerer CM, Barmada MM, Matteini AM, Zhang Q, Wojczynski MK, Daw EW, Brody JA, Arnold AM, Lunetta KL, Murabito JM, Christensen K, Perls TT, Province MA, Newman AB. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index. J Gerontol A Biol Sci Med Sci 2015; 70:1003-8. [PMID: 25758594 DOI: 10.1093/gerona/glv006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. METHODS We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted for mortality risk in 3,140 individuals selected for familial longevity from the Long Life Family Study. The genome-wide association study used the Long Life Family Study as the discovery cohort and individuals from the Cardiovascular Health Study and the Framingham Heart Study as replication cohorts. RESULTS There were no genome-wide significant findings from the genome-wide association study; however, several single-nucleotide polymorphisms near ZNF704 on chromosome 8q21.13 were suggestively associated with the HAI in the Long Life Family Study (p < 10(-) (6)) and nominally replicated in the Cardiovascular Health Study and Framingham Heart Study. Linkage results revealed significant evidence (log-odds score = 3.36) for a quantitative trait locus for mortality-optimized HAI in women on chromosome 9p24-p23. However, results of fine-mapping studies did not implicate any specific candidate genes within this region of interest. CONCLUSIONS ZNF704 may be a potential candidate gene for studies of the genetic underpinnings of longevity.
Collapse
Affiliation(s)
| | - Jason L Sanders
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | | | | | | | - Amy M Matteini
- Division of Geriatric Medicine and Gerontology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Qunyuan Zhang
- Division of Statistical Genomics, School of Medicine, Washington University in St. Louis, Missouri
| | - Mary K Wojczynski
- Division of Statistical Genomics, School of Medicine, Washington University in St. Louis, Missouri
| | - E Warwick Daw
- Division of Statistical Genomics, School of Medicine, Washington University in St. Louis, Missouri
| | | | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | - Joanne M Murabito
- National Heart, Lung and Blood Institute Framingham Heart Study, Massachusetts. Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Massachusetts
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense
| | - Thomas T Perls
- Section of Geriatrics, Department of Medicine, Boston University, Boston School of Medicine and Boston Medical Center, Massachusetts
| | - Michael A Province
- Division of Statistical Genomics, School of Medicine, Washington University in St. Louis, Missouri
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania.
| |
Collapse
|
38
|
Yang X, Xi J, An R, Yu L, Lin Z, Zhou H, Xu Y. Lack of evidence for an association between the V393A variant of COQ2 and amyotrophic lateral sclerosis in a Han Chinese population. Neurol Sci 2015; 36:1211-5. [PMID: 25613861 DOI: 10.1007/s10072-015-2083-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/15/2015] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disorder involving the degeneration of motor neurons. ALS shares pathogenic characteristics and genetic risk factors with multiple system atrophy (MSA). Here we examine whether a variant of the COQ2 gene associated with MSA in Japanese is also associated with ALS in Han Chinese. The ligase detection reaction was used to measure the frequency of the V393A variant of COQ2 in 282 patients with ALS and 491 healthy controls. The ALS and control groups showed no significant differences in genotype frequencies (OR 1.298, 95 %CI 0.396-4.253, p = 0.666) or allele frequencies (OR 1.314, 95 %CI 0.403-4.286, p = 0.650) at the V393A locus of COQ2. We also conducted a meta-analysis and combined our data with the previous Japanese research, but still failed to detect an association between V393A and ALS. In conclusion, This case-control study shows no evidence for an association between ALS and the V393A variant of COQ2 in Han Chinese and together with the Japanese research suggests that this polymorphism may not be linked to the risk of ALS in East Asians in general.
Collapse
Affiliation(s)
- Xinglong Yang
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
39
|
Tan MS, Jiang T, Tan L, Yu JT. Genome-wide association studies in neurology. ANNALS OF TRANSLATIONAL MEDICINE 2015; 2:124. [PMID: 25568877 DOI: 10.3978/j.issn.2305-5839.2014.11.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/04/2013] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies (GWAS) are a powerful tool for understanding the genetic underpinnings of human disease. In this article, we briefly review the role and findings of GWAS in common neurological diseases, including Stroke, Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, migraine, amyotrophic lateral sclerosis, frontotemporal lobar degeneration, restless legs syndrome, intracranial aneurysm, human prion diseases and moyamoya disease. We then discuss the present and future implications of these findings with regards to disease prediction, uncovering basic biology, and the development of potential therapeutic agents.
Collapse
Affiliation(s)
- Meng-Shan Tan
- 1 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Teng Jiang
- 1 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Lan Tan
- 1 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Jin-Tai Yu
- 1 College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
40
|
He J, Mangelsdorf M, Fan D, Bartlett P, Brown MA. Amyotrophic Lateral Sclerosis Genetic Studies: From Genome-wide Association Mapping to Genome Sequencing. Neuroscientist 2014; 21:599-615. [PMID: 25378359 DOI: 10.1177/1073858414555404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of obscure etiology. Multiple genetic studies have been conducted to advance our understanding of the disease, employing a variety of techniques such as linkage mapping in families, to genome-wide association studies and sequencing based approaches such as whole exome sequencing and whole genome sequencing and a few epigenetic analyses. While major progress has been made, the majority of the genetic variation involved in ALS is yet to be undefined. The optimal study designs to investigate ALS depend on the genetic model for the disease, and it is likely that different approaches will be required to map genes involved in familial and sporadic disease. The potential approaches and their strengths and weaknesses are discussed.
Collapse
Affiliation(s)
- Ji He
- Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Australia Department of Neurology, Peking University Third Hospital, Beijing, China University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Marie Mangelsdorf
- Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Australia
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Perry Bartlett
- Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Australia
| | - Matthew A Brown
- University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| |
Collapse
|
41
|
Valproate Treatment in an ALS Patient Carrying a c.194G>A Spastin Mutation and SMN2 Homozygous Deletion. Case Rep Neurol Med 2014; 2014:216094. [PMID: 25143843 PMCID: PMC4124810 DOI: 10.1155/2014/216094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/25/2014] [Accepted: 06/29/2014] [Indexed: 01/22/2023] Open
Abstract
Here we report the case of an ALS patient found to carry both a novel heterozygous change (c.194G>A) within the spastin gene and a homozygous deletion of the SMN2 gene. The patient was started on valproic acid (VPA, 600 mg/die per os) considering the capacity of this drug of increasing survival motor neuron through an epigenetic mechanism. Patient clinical course and molecular effects of VPA on skin fibroblasts obtained from the proband are described. This c.194G>A spastin mutation might expand the previously known borders of type 4 spastic paraplegia (SPG4) and we suggest the intriguing possibility that the absence of SMN2 might have acted as a contributory risk factor for starting lower motor neuron damage. Exploring the relationship genocopy-phenocopy in selected ALS patients might represent an interesting strategy for understanding its clinical variability.
Collapse
|
42
|
Sareen D, O'Rourke JG, Meera P, Muhammad AKMG, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 2014; 5:208ra149. [PMID: 24154603 DOI: 10.1126/scitranslmed.3007529] [Citation(s) in RCA: 525] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS), as well as frontotemporal lobar degeneration and other neurological diseases. How the repeat expansion causes disease remains unclear, with both loss of function (haploinsufficiency) and gain of function (either toxic RNA or protein products) proposed. We report a cellular model of C9-ALS with motor neurons differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying the C9ORF72 repeat expansion. No significant loss of C9ORF72 expression was observed, and knockdown of the transcript was not toxic to cultured human motor neurons. Transcription of the repeat was increased, leading to accumulation of GGGGCC repeat-containing RNA foci selectively in C9-ALS iPSC-derived motor neurons. Repeat-containing RNA foci colocalized with hnRNPA1 and Pur-α, suggesting that they may be able to alter RNA metabolism. C9-ALS motor neurons showed altered expression of genes involved in membrane excitability including DPP6, and demonstrated a diminished capacity to fire continuous spikes upon depolarization compared to control motor neurons. Antisense oligonucleotides targeting the C9ORF72 transcript suppressed RNA foci formation and reversed gene expression alterations in C9-ALS motor neurons. These data show that patient-derived motor neurons can be used to delineate pathogenic events in ALS.
Collapse
Affiliation(s)
- Dhruv Sareen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Our understanding of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, is expanding rapidly as its genetic causes are uncovered. The pace of new gene discovery over the last 5 years has accelerated, providing new insights into the pathogenesis of disease and highlighting biological pathways as targets for therapeutic development. This article reviews our current understanding of the heritability of ALS and provides an overview of each of the major ALS genes, highlighting their phenotypic characteristics and frequencies as a guide for clinicians evaluating patients with ALS.
Collapse
Affiliation(s)
- Matthew B Harms
- Neuromuscular Division, Department of Neurology, Hope Center for Neurological Disorders, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
44
|
Wolf EJ, Rasmusson AM, Mitchell KS, Logue MW, Baldwin CT, Miller MW. A genome-wide association study of clinical symptoms of dissociation in a trauma-exposed sample. Depress Anxiety 2014; 31:352-60. [PMID: 24677629 PMCID: PMC3984628 DOI: 10.1002/da.22260] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/23/2014] [Accepted: 02/05/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent work suggests that a subset of individuals with posttraumatic stress disorder (PTSD) exhibit marked dissociative symptoms, as defined by derealization and depersonalization. A dissociative subtype of PTSD was added to the diagnostic criteria listed in the Diagnostic and Statistical Manual of Mental Disorders, Version 5 (DSM-5) to capture this presentation of PTSD. This study examined genetic polymorphisms for association with the symptoms that define the dissociative subtype of PTSD using a genome-wide approach. METHODS The sample comprised 484 White, non-Hispanic, trauma-exposed veterans and their partners who were assessed for lifetime PTSD and dissociation using a structured clinical interview. The prevalence of PTSD was 60.5%. Single-nucleotide polymorphisms (SNPs) from across the genome were obtained from a 2.5 million SNP array. RESULTS Ten SNPs evidenced suggestive association with dissociation (P < 10(-5)). No SNPs met genome-wide significance criteria (P < 5 × 10(-8)). The peak SNP was rs263232 (β = 1.4, P = 6.12 × 10(-7)), located in the adenylyl cyclase 8 (ADCY8) gene; a second SNP in the suggestive range was rs71534169 (β = 1.63, P = 3.79 × 10(-6)), located in the dipeptidyl-peptidase 6 (DPP6) gene. CONCLUSIONS ADCY8 is integral for long-term potentiation and synaptic plasticity and is implicated in fear-related learning and memory and long-term memory consolidation. DPP6 is critical for synaptic integration and excitation. These genes may exert effects on basic sensory integration and cognitive processes that underlie dissociative phenomena.
Collapse
Affiliation(s)
- Erika J. Wolf
- National Center for PTSD at VA Boston Healthcare System,Department of Psychiatry, Boston University School of Medicine
| | - Ann M. Rasmusson
- National Center for PTSD at VA Boston Healthcare System,Department of Psychiatry, Boston University School of Medicine
| | - Karen S. Mitchell
- National Center for PTSD at VA Boston Healthcare System,Department of Psychiatry, Boston University School of Medicine
| | - Mark W. Logue
- Biomedical Genetics, Boston University School of Medicine,Department of Biostatistics, Boston University School of Public Health
| | | | - Mark W. Miller
- National Center for PTSD at VA Boston Healthcare System,Department of Psychiatry, Boston University School of Medicine
| |
Collapse
|
45
|
Turpeinen H, Ortutay Z, Pesu M. Genetics of the first seven proprotein convertase enzymes in health and disease. Curr Genomics 2014; 14:453-67. [PMID: 24396277 PMCID: PMC3867721 DOI: 10.2174/1389202911314050010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 12/16/2022] Open
Abstract
Members of the substilisin/kexin like proprotein convertase (PCSK) protease family cleave and convert immature pro-proteins into their biologically active forms. By cleaving for example prohormones, cytokines and cell membrane proteins, PCSKs participate in maintaining the homeostasis in a healthy human body. Conversely, erratic enzymatic function is thought to contribute to the pathogenesis of a wide variety of diseases, including obesity and hypercholestrolemia. The first characterized seven PCSK enzymes (PCSK1-2, FURIN, PCSK4-7) process their substrates at a motif made up of paired basic amino acid residues. This feature results in a variable degree of biochemical redundancy in vitro, and consequently, shared substrate molecules between the different PCSK enzymes. This redundancy has confounded our understanding of the specific biological functions of PCSKs. The physiological roles of these enzymes have been best illustrated by the phenotypes of genetically engineered mice and patients that carry mutations in the PCSK genes. Recent developments in genome-wide methodology have generated a large amount of novel information on the genetics of the first seven proprotein convertases. In this review we summarize the reported genetic alterations and their associated phenotypes.
Collapse
Affiliation(s)
- Hannu Turpeinen
- Immunoregulation, Institute of Biomedical Technology, University of Tampere, and BioMediTech, Tampere, Finland
| | - Zsuzsanna Ortutay
- Immunoregulation, Institute of Biomedical Technology, University of Tampere, and BioMediTech, Tampere, Finland
| | - Marko Pesu
- Immunoregulation, Institute of Biomedical Technology, University of Tampere, and BioMediTech, Tampere, Finland; ; Fimlab laboratories, Pirkanmaa Hospital District, Finland
| |
Collapse
|
46
|
Renton AE, Chiò A, Traynor BJ. State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 2014; 17:17-23. [PMID: 24369373 PMCID: PMC4544832 DOI: 10.1038/nn.3584] [Citation(s) in RCA: 1155] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022]
Abstract
Considerable progress has been made in unraveling the genetic etiology of amyotrophic lateral sclerosis (ALS), the most common form of adult-onset motor neuron disease and the third most common neurodegenerative disease overall. Here we review genes implicated in the pathogenesis of motor neuron degeneration and how this new information is changing the way we think about this fatal disorder. Specifically, we summarize current literature of the major genes underlying ALS, SOD1, TARDBP, FUS, OPTN, VCP, UBQLN2, C9ORF72 and PFN1, and evaluate the information being gleaned from genome-wide association studies. We also outline emerging themes in ALS research, such as next-generation sequencing approaches to identify de novo mutations, the genetic convergence of familial and sporadic ALS, the proposed oligogenic basis for the disease, and how each new genetic discovery is broadening the phenotype associated with the clinical entity we know as ALS.
Collapse
Affiliation(s)
- Alan E Renton
- Neuromuscular Diseases Research Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Bryan J Traynor
- 1] Neuromuscular Diseases Research Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA. [2] Department of Neurology, Brain Sciences Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Staats KA, Van Helleputte L, Jones AR, Bento-Abreu A, Van Hoecke A, Shatunov A, Simpson CL, Lemmens R, Jaspers T, Fukami K, Nakamura Y, Brown RH, Van Damme P, Liston A, Robberecht W, Al-Chalabi A, Van Den Bosch L. Genetic ablation of phospholipase C delta 1 increases survival in SOD1G93A mice. Neurobiol Dis 2013; 60:11-7. [DOI: 10.1016/j.nbd.2013.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 12/12/2022] Open
|
48
|
Tremolizzo L, Messina P, Conti E, Sala G, Cecchi M, Airoldi L, Pastorelli R, Pupillo E, Bandettini Di Poggio M, Filosto M, Lunetta C, Agliardi C, Guerini F, Mandrioli J, Calvo A, Beghi E, Ferrarese C. Whole-blood global DNA methylation is increased in amyotrophic lateral sclerosis independently of age of onset. Amyotroph Lateral Scler Frontotemporal Degener 2013; 15:98-105. [PMID: 24224837 DOI: 10.3109/21678421.2013.851247] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ALS is a heterogeneous disease that is not well understood. Epigenetic rearrangements are important in complex disorders including motor neuron diseases. The aim of this study was to determine whether whole-blood DNA methylation (DNA MET %) is a potential modifier of age at onset in ALS. DNA MET % was measured as incorporation of [(3)H]dCTP following HpaII cut in 96 ALS patients and 87 controls, comprising: early-onset (< 55 years of age) and late-onset (> 74 years of age). Methionine (Met) and homocysteine (Hcy) plasma levels were assessed by liquid chromatography selected reaction monitoring coupled with isotope-dilution mass spectrometry. Results showed that DNA MET % was increased in ALS patients independently of age of onset. Compared to the other three groups, Hcy plasma levels were reduced in early-onset ALS patients but Met levels were similar. ROC analysis reported Met levels and DNA MET %, respectively, with a slight and moderate discriminative power. In conclusion, increased DNA MET % is a possible marker of epigenetic dysfunction in ALS independently of age of onset. Further studies dissecting biological determinants of phenotypic complexity in ALS may help in developing successful therapeutic strategies.
Collapse
Affiliation(s)
- Lucio Tremolizzo
- Department of Neurology, 'San Gerardo' Hospital and University of Milano-Bicocca , Monza
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Al-Chalabi A, Kwak S, Mehler M, Rouleau G, Siddique T, Strong M, Leigh PN. Genetic and epigenetic studies of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14 Suppl 1:44-52. [DOI: 10.3109/21678421.2013.778571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H, Nicholson G, Ravits J, Shaw PJ, Swash M, Talbot K, Traynor BJ, Van den Berg LH, Veldink JH, Vucic S, Kiernan MC. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 2013; 12:310-22. [PMID: 23415570 DOI: 10.1016/s1474-4422(13)70036-x] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two decades after the discovery that 20% of familial amyotrophic lateral sclerosis (ALS) cases were linked to mutations in the superoxide dismutase-1 (SOD1) gene, a substantial proportion of the remainder of cases of familial ALS have now been traced to an expansion of the intronic hexanucleotide repeat sequence in C9orf72. This breakthrough provides an opportunity to re-evaluate longstanding concepts regarding the cause and natural history of ALS, coming soon after the pathological unification of ALS with frontotemporal dementia through a shared pathological signature of cytoplasmic inclusions of the ubiquitinated protein TDP-43. However, with profound clinical, prognostic, neuropathological, and now genetic heterogeneity, the concept of ALS as one disease appears increasingly untenable. This background calls for the development of a more sophisticated taxonomy, and an appreciation of ALS as the breakdown of a wider network rather than a discrete vulnerable population of specialised motor neurons. Identification of C9orf72 repeat expansions in patients without a family history of ALS challenges the traditional division between familial and sporadic disease. By contrast, the 90% of apparently sporadic cases and incomplete penetrance of several genes linked to familial cases suggest that at least some forms of ALS arise from the interplay of multiple genes, poorly understood developmental, environmental, and age-related factors, as well as stochastic events.
Collapse
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|