1
|
De Nardi A, Marini G, Dorigatti I, Rosà R, Tamba M, Gelmini L, Prosperi A, Menegale F, Poletti P, Calzolari M, Pugliese A. Quantifying West Nile virus circulation in the avian host population in Northern Italy. Infect Dis Model 2025; 10:375-386. [PMID: 39816752 PMCID: PMC11729645 DOI: 10.1016/j.idm.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/31/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
West Nile virus (WNV) is one of the most threatening mosquito-borne pathogens in Italy where hundreds of human cases were recorded during the last decade. Here, we estimated the WNV incidence in the avian population in the Emilia-Romagna region through a modelling framework which enabled us to eventually assess the fraction of birds that present anti-WNV antibodies at the end of each epidemiological season. We fitted an SIR model to ornithological data, consisting of 18,989 specimens belonging to Corvidae species collected between 2013 and 2022: every year from May to November birds are captured or shot and tested for WNV genome presence. We found that the incidence peaks between mid-July and late August, infected corvids seem on average 17% more likely to be captured with respect to susceptible ones and seroprevalence was estimated to be larger than other years at the end of 2018, consistent with the anomalous number of recorded human infections. Thanks to our modelling study we quantified WNV infection dynamics in the corvid community, which is still poorly investigated despite its importance for the virus circulation. To the best of our knowledge, this is among the first studies providing quantitative information on infection and immunity in the bird population, yielding new important insights on WNV transmission dynamics.
Collapse
Affiliation(s)
- Alex De Nardi
- Department of Mathematics, University of Trento, Trento, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, TN, Italy
- Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Roberto Rosà
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, TN, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, TN, Italy
| | - Marco Tamba
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Luca Gelmini
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Alice Prosperi
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Francesco Menegale
- Department of Mathematics, University of Trento, Trento, Italy
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | - Piero Poletti
- Epilab-JRU, FEM-FBK Joint Research Unit, Trento, Italy
- Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale Della Lombardia e Dell’Emilia-Romagna “B. Ubertini”, Brescia, Italy
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| |
Collapse
|
2
|
Bosco-Lauth AM, Kooi K, Hawks SA, Duggal NK. Cross-Protection between West Nile Virus and Emerging Flaviviruses in Wild Birds. Am J Trop Med Hyg 2025; 112:657-662. [PMID: 39742522 DOI: 10.4269/ajtmh.24-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/19/2024] [Indexed: 01/03/2025] Open
Abstract
West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and Usutu virus (USUV) are zoonotic flaviviruses that cause neuroinvasive disease in humans and are maintained in overlapping avian-mosquito transmission cycles. West Nile virus and SLEV cocirculate in the United States, and WNV and USUV cocirculate in Europe. Cross-reactivity of immune responses against closely related flaviviruses is well documented. In birds, prior infection with WNV provides strong protection against SLEV genotype II and V infection, which may explain the decrease in SLEV circulation in the United States after WNV emergence in 1999. However, in 2015, a new SLEV genotype (III) emerged in the United States, suggesting that WNV immunity in birds may not provide cross-protection against this SLEV genotype. Here, we tested whether prior WNV infection protects birds against infection with SLEV genotype III, as well as USUV. First, we established a house sparrow (Passer domesticus) model of infection for SLEV genotype III. We then inoculated house sparrows with WNV and, 4 weeks later, challenged WNV-immune birds with SLEV genotype III or USUV. All birds were completely protected against secondary challenge, with no viremia detected. Low levels of cross-neutralizing antibodies against SLEV and USUV were found in the blood prior to secondary challenge. However, two naturally WNV-exposed house sparrows did develop SLEV genotype III and USUV viremia after inoculation. These results indicate that experimental WNV infection may protect birds against infection with SLEV genotype III and USUV; however, additional studies to investigate the role of avian immunity in flavivirus emergence are necessary.
Collapse
Affiliation(s)
- Angela M Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Kris Kooi
- Wildlife Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Golden, Colorado
| | - Seth A Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
3
|
Marini G, Drakulovic MB, Jovanovic V, Dagostin F, Wint W, Tagliapietra V, Vasic M, Rizzoli A. Drivers and epidemiological patterns of West Nile virus in Serbia. Front Public Health 2024; 12:1429583. [PMID: 39086811 PMCID: PMC11288825 DOI: 10.3389/fpubh.2024.1429583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background West Nile virus (WNV) is an emerging mosquito-borne pathogen in Serbia, where it has been detected as a cause of infection in humans since 2012. We analyzed and modelled WNV transmission patterns in the country between 2012 and 2023. Methods We applied a previously developed modelling approach to quantify epidemiological parameters of interest and to identify the most important environmental drivers of the force of infection (FOI) by means of statistical analysis in the human population in the country. Results During the study period, 1,387 human cases were recorded, with substantial heterogeneity across years. We found that spring temperature is of paramount importance for WNV transmission, as FOI magnitude and peak timing are positively associated with it. Furthermore, FOI is also estimated to be greater in regions with a larger fraction of older adult people, who are at higher risk to develop severe infections. Conclusion Our results highlight that temperature plays a key role in shaping WNV outbreak magnitude in Serbia, confirming the association between spring climatic conditions and WNV human transmission risk and thus pointing out the importance of this factor as a potential early warning predictor for timely application of preventive and control measures.
Collapse
Affiliation(s)
- Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Mitra B. Drakulovic
- Department for Communicable Diseases Prevention and Control, National Public Health Institute “Dr Milan Jovanovic-Batut”, Belgrade, Serbia
| | - Verica Jovanovic
- Department for Communicable Diseases Prevention and Control, National Public Health Institute “Dr Milan Jovanovic-Batut”, Belgrade, Serbia
| | - Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Willy Wint
- Environmental Research Group Oxford Ltd., c/o Dept Biology, Oxford, United Kingdom
| | | | - Milena Vasic
- Department for Communicable Diseases Prevention and Control, National Public Health Institute “Dr Milan Jovanovic-Batut”, Belgrade, Serbia
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
4
|
Foss L, Feiszli T, Kramer VL, Reisen WK, Padgett K. Epidemic versus endemic West Nile virus dead bird surveillance in California: Changes in sensitivity and focus. PLoS One 2023; 18:e0284039. [PMID: 37023091 PMCID: PMC10079120 DOI: 10.1371/journal.pone.0284039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Since 2003, the California West Nile virus (WNV) dead bird surveillance program (DBSP) has monitored publicly reported dead birds for WNV surveillance and response. In the current paper, we compared DBSP data from early epidemic years (2004-2006) with recent endemic years (2018-2020), with a focus on specimen collection criteria, county report incidence, bird species selection, WNV prevalence in dead birds, and utility of the DBSP as an early environmental indicator of WNV. Although fewer agencies collected dead birds in recent years, most vector control agencies with consistent WNV activity continued to use dead birds as a surveillance tool, with streamlined operations enhancing efficiency. The number of dead bird reports was approximately ten times greater during 2004-2006 compared to 2018-2020, with reports from the Central Valley and portions of Southern California decreasing substantially in recent years; reports from the San Francisco Bay Area decreased less dramatically. Seven of ten counties with high numbers of dead bird reports were also high human WNV case burden areas. Dead corvid, sparrow, and quail reports decreased the most compared to other bird species reports. West Nile virus positive dead birds were the most frequent first indicators of WNV activity by county in 2004-2006, followed by positive mosquitoes; in contrast, during 2018-2020 mosquitoes were the most frequent first indicators followed by dead birds, and initial environmental WNV detections occurred later in the season during 2018-2020. Evidence for WNV impacts on avian populations and susceptibility are discussed. Although patterns of dead bird reports and WNV prevalence in tested dead birds have changed, dead birds have endured as a useful element within our multi-faceted WNV surveillance program.
Collapse
Affiliation(s)
- Leslie Foss
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| | - Tina Feiszli
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| | - Vicki L. Kramer
- Vector-Borne Disease Section, California Department of Public Health, Sacramento, California, United States of America
| | - William K. Reisen
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Kerry Padgett
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| |
Collapse
|
5
|
McMillan JR, Hamer GL, Levine RS, Mead DG, Waller LA, Goldberg TL, Walker ED, Brawn JD, Ruiz MO, Kitron U, Vazquez-Prokopec G. Multi-Year Comparison of Community- and Species-Level West Nile Virus Antibody Prevalence in Birds from Atlanta, Georgia and Chicago, Illinois, 2005-2016. Am J Trop Med Hyg 2023; 108:366-376. [PMID: 36572005 PMCID: PMC9896344 DOI: 10.4269/ajtmh.21-1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/26/2022] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is prevalent in the United States but shows considerable variation in transmission intensity. The purpose of this study was to compare patterns of WNV seroprevalence in avian communities sampled in Atlanta, Georgia and Chicago, Illinois during a 12-year period (Atlanta 2010-2016; Chicago 2005-2012) to reveal regional patterns of zoonotic activity of WNV. WNV antibodies were measured in wild bird sera using ELISA and serum neutralization methods, and seroprevalence among species, year, and location of sampling within each city were compared using binomial-distributed generalized linear mixed-effects models. Seroprevalence was highest in year-round and summer-resident species compared with migrants regardless of region; species explained more variance in seroprevalence within each city. Northern cardinals were the species most likely to test positive for WNV in each city, whereas all other species, on average, tested positive for WNV in proportion to their sample size. Despite similar patterns of seroprevalence among species, overall seroprevalence was higher in Atlanta (13.7%) than in Chicago (5%). Location and year of sampling had minor effects, with location explaining more variation in Atlanta and year explaining more variation in Chicago. Our findings highlight the nature and magnitude of regional differences in WNV urban ecology.
Collapse
Affiliation(s)
- Joseph R. McMillan
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas
| | - Rebecca S. Levine
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia
| | - Daniel G. Mead
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia
| | - Lance A. Waller
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia;,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Jeffrey D. Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois Champaign–Urbana, Urbana, Illinois
| | - Marilyn O. Ruiz
- Department of Pathobiology, University of Illinois Champaign–Urbana, Urbana, Illinois
| | - Uriel Kitron
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia;,Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Gonzalo Vazquez-Prokopec
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia;,Department of Environmental Sciences, Emory University, Atlanta, Georgia,Address correspondence to Gonzalo Vazquez-Prokopec, Department of Environmental Sciences, Emory University, 400 Dowman Dr., Math and Science Center, 5th Floor, Suite E530, Atlanta, GA 30322. E-mail:
| |
Collapse
|
6
|
An epidemiological model for mosquito host selection and temperature-dependent transmission of West Nile virus. Sci Rep 2022; 12:19946. [PMID: 36402904 PMCID: PMC9675847 DOI: 10.1038/s41598-022-24527-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
We extend a previously developed epidemiological model for West Nile virus (WNV) infection in humans in Greece, employing laboratory-confirmed WNV cases and mosquito-specific characteristics of transmission, such as host selection and temperature-dependent transmission of the virus. Host selection was defined by bird host selection and human host selection, the latter accounting only for the fraction of humans that develop symptoms after the virus is acquired. To model the role of temperature on virus transmission, we considered five temperature intervals (≤ 19.25 °C; > 19.25 and < 21.75 °C; ≥ 21.75 and < 24.25 °C; ≥ 24.25 and < 26.75 °C; and > 26.75 °C). The capacity of the new model to fit human cases and the week of first case occurrence was compared with the original model and showed improved performance. The model was also used to infer further quantities of interest, such as the force of infection for different temperatures as well as mosquito and bird abundances. Our results indicate that the inclusion of mosquito-specific characteristics in epidemiological models of mosquito-borne diseases leads to improved modelling capacity.
Collapse
|
7
|
Wimberly MC, Davis JK, Hildreth MB, Clayton JL. Integrated Forecasts Based on Public Health Surveillance and Meteorological Data Predict West Nile Virus in a High-Risk Region of North America. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87006. [PMID: 35972761 PMCID: PMC9380861 DOI: 10.1289/ehp10287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND West Nile virus (WNV), a global arbovirus, is the most prevalent mosquito-transmitted infection in the United States. Forecasts of WNV risk during the upcoming transmission season could provide the basis for targeted mosquito control and disease prevention efforts. We developed the Arbovirus Mapping and Prediction (ArboMAP) WNV forecasting system and used it in South Dakota from 2016 to 2019. This study reports a post hoc forecast validation and model comparison. OBJECTIVES Our objective was to validate historical predictions of WNV cases with independent data that were not used for model calibration. We tested the hypothesis that predictive models based on mosquito surveillance data combined with meteorological variables were more accurate than models based on mosquito or meteorological data alone. METHODS The ArboMAP system incorporated models that predicted the weekly probability of observing one or more human WNV cases in each county. We compared alternative models with different predictors including a) a baseline model based only on historical WNV cases, b) mosquito models based on seasonal patterns of infection rates, c) environmental models based on lagged meteorological variables, including temperature and vapor pressure deficit, d) combined models with mosquito infection rates and lagged meteorological variables, and e) ensembles of two or more combined models. During the WNV season, models were calibrated using data from previous years and weekly predictions were made using data from the current year. Forecasts were compared with observed cases to calculate the area under the receiver operating characteristic curve (AUC) and other metrics of spatial and temporal prediction error. RESULTS Mosquito and environmental models outperformed the baseline model that included county-level averages and seasonal trends of WNV cases. Combined models were more accurate than models based only on meteorological or mosquito infection variables. The most accurate model was a simple ensemble mean of the two best combined models. Forecast accuracy increased rapidly from early June through early July and was stable thereafter, with a maximum AUC of 0.85. The model predictions captured the seasonal pattern of WNV as well as year-to-year variation in case numbers and the geographic pattern of cases. DISCUSSION The predictions reached maximum accuracy early enough in the WNV season to allow public health responses before the peak of human cases in August. This early warning is necessary because other indicators of WNV risk, including early reports of human cases and mosquito abundance, are poor predictors of case numbers later in the season. https://doi.org/10.1289/EHP10287.
Collapse
Affiliation(s)
- Michael C. Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Justin K. Davis
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael B. Hildreth
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | | |
Collapse
|
8
|
Albayrak H, Sahindokuyucu I, Muftuoglu B, Tamer C, Kadi H, Ozan E, Yilmaz O, Kilic H, Kurucay HN, Coven F, Gumusova S, Yazici Z, Elhag AE. Sentinel serosurveillance of backyard hens proved West Nile virus circulation in the western provinces of Turkey. Vet Med Sci 2021; 7:2348-2352. [PMID: 34323396 PMCID: PMC8604147 DOI: 10.1002/vms3.589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus of a re-emergence importance with a wide range of vertebrate hosts. Granted, it causes asymptomatic infection, but fatal cases and neurologic disorders were also recorded, especially in humans, horses and some exposed birds. The virus is globally spread and birds are considered an amplifying and reservoir host of WNV, helping to spread the disease due to their close contact with main hosts. In this study, we aimed to detect the presence of antibodies against WNV in backyard hens that were reared in the western Anatolian part of Turkey. A total of 480 chicken sera were randomly collected from six provinces in the west of Turkey (Mugla, Izmir, Aydin, Afyonkarahisar, Kutahya and Manisa) with 80 samples from each province (40 in spring and 40 in fall seasons). They were tested by using a competitive ELISA method to identify the specific avian antibodies of IgG that produced against the WNV envelope proteins (pr-E). Twelve of 480 (2.5%) sera were found seropositive, three of these positive sera were detected from the Izmir province (3.75%) collected in the spring session and the other nine positive sera were detected from the Mugla province (11.25%) collected in the fall session. Both of these provinces are located seaside and have suitable climate conditions for vectors of infection. The results indicated that WNV infection is in circulation in these provinces, and that may put the other susceptible vertebrates under risk of infection.
Collapse
Affiliation(s)
- Harun Albayrak
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ismail Sahindokuyucu
- Bornova Veterinary Control Institute, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Bahadir Muftuoglu
- Department of Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Cuneyt Tamer
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Hamza Kadi
- Samsun Veterinary Control Institute, Ministry of Agriculture and Forestry, Samsun, Turkey
| | - Emre Ozan
- Department of Experimental Animals, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ozge Yilmaz
- Bornova Veterinary Control Institute, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Hamza Kilic
- Bornova Veterinary Control Institute, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Hanne Nur Kurucay
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Fethiye Coven
- Bornova Veterinary Control Institute, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Semra Gumusova
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Zafer Yazici
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ahmed Eisa Elhag
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey.,Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary Sciences, University of Gadarif, Al Qadarif, Sudan
| |
Collapse
|
9
|
Young JJ, Haussig JM, Aberle SW, Pervanidou D, Riccardo F, Sekulić N, Bakonyi T, Gossner CM. Epidemiology of human West Nile virus infections in the European Union and European Union enlargement countries, 2010 to 2018. ACTA ACUST UNITED AC 2021; 26. [PMID: 33988124 PMCID: PMC8120798 DOI: 10.2807/1560-7917.es.2021.26.19.2001095] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background West Nile virus (WNV) circulates in an enzootic cycle involving mosquitoes and birds; humans are accidental hosts. Aim We analysed human WNV infections reported between 2010 and 2018 to the European Centre for Disease Prevention and Control to better understand WNV epidemiology. Methods We describe probable and confirmed autochthonous human cases of WNV infection reported by European Union (EU) and EU enlargement countries. Cases with unknown clinical manifestation or with unknown place of infection at NUTS 3 or GAUL 1 level were excluded from analysis. Results From southern, eastern and western Europe, 3,849 WNV human infections and 379 deaths were reported. Most cases occurred between June and October. Two large outbreaks occurred, in 2010 (n = 391) and in 2018 (n = 1,993). The outbreak in 2018 was larger than in all previous years and the first cases were reported unusually early. The number of newly affected areas (n = 45) was higher in 2018 than in previous years suggesting wider spread of WNV. Conclusion Real-time surveillance of WNV infections is key to ensuring that clinicians and public health authorities receive early warning about the occurrence of cases and potential unusual seasonal patterns. Human cases may appear shortly after first detection of animal cases. Therefore, public health authorities should develop preparedness plans before the occurrence of human or animal WNV infections.
Collapse
Affiliation(s)
- Johanna J Young
- These authors contributed equally to this article and share first authorship.,European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Joana M Haussig
- These authors contributed equally to this article and share first authorship.,European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | | | - Nebojša Sekulić
- Institute for Public Health of Montenegro, Podgorica, Montenegro
| | - Tamás Bakonyi
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Céline M Gossner
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| |
Collapse
|
10
|
Marini G, Manica M, Delucchi L, Pugliese A, Rosà R. Spring temperature shapes West Nile virus transmission in Europe. Acta Trop 2021; 215:105796. [PMID: 33310078 DOI: 10.1016/j.actatropica.2020.105796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
West Nile Virus (WNV) is now endemic in many European countries, causing hundreds of human cases every year, with a high spatial and temporal heterogeneity. Previous studies have suggested that spring temperature might play a key role at shaping WNV transmission. Specifically, warmer temperatures in April-May might amplify WNV circulation, thus increasing the risk for human transmission later in the year. To test this hypothesis, we collated publicly available data on the number of human infections recorded in Europe between 2011 and 2019. We then applied generalized linear models to quantify the relationship between human cases and spring temperature, considering both average conditions (over years 2003-2010) and deviations from the average for subsequent years (2011-2019). We found a significant positive association both spatial (average conditions) and temporal (deviations). The former indicates that WNV circulation is higher in usually warmer regions while the latter implies a predictive value of spring conditions over the coming season. We also found a positive association with WNV detection during the previous year, which can be interpreted as an indication of the reliability of the surveillance system but also of WNV overwintering capacity. Weather anomalies at the beginning of the mosquito breeding season might act as an early warning signal for public health authorities, enabling them to strengthen in advance ongoing surveillance and prevention strategies.
Collapse
Affiliation(s)
- Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy; Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy.
| | - Mattia Manica
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy; Epilab-JRU, FEM-FBK Joint Research Unit, Province of Trento, Italy; Center for Information and Communication Technology, Bruno Kessler Foundation, Trento, Italy
| | - Luca Delucchi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Andrea Pugliese
- Department of Mathematics, University of Trento, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy; Center Agriculture Food Environment, University of Trento, San Michele all'Adige (TN), Italy
| |
Collapse
|
11
|
Pervanidou D, Vakali A, Georgakopoulou T, Panagiotopoulos T, Patsoula E, Koliopoulos G, Politis C, Stamoulis K, Gavana E, Pappa S, Mavrouli M, Emmanouil M, Sourvinos G, Mentis A, Tsakris A, Hadjichristodoulou C, Tsiodras S, Papa A. West Nile virus in humans, Greece, 2018: the largest seasonal number of cases, 9 years after its emergence in the country. ACTA ACUST UNITED AC 2020; 25. [PMID: 32794446 PMCID: PMC7427301 DOI: 10.2807/1560-7917.es.2020.25.32.1900543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Human cases of West Nile virus (WNV) infection are recorded since 2010 in Greece, with seasonal outbreaks occurring almost annually. Enhanced surveillance has been implemented since 2010, to promptly characterise cases’ temporal and geographical distribution and inform authorities for implementation of appropriate measures (mosquito control, health education, blood safety). Aim We describe the epidemiology of WNV human infections in Greece focusing on the 2018 season. Methods The National Public Health Organization advised physicians to test all suspect WNV infection cases and refer samples to reference laboratories. Laboratories notified diagnosed cases on a daily basis. Treating physicians, patients, and infected blood donors were interviewed within 48 hours after diagnosis and the probable infection location was identified. Hospitalised cases were followed up until discharge. Results A total of 317 autochthonous WNV infection cases were diagnosed in 2018. Among them, 243 cases had neuroinvasive disease (WNND), representing a 23% increase of WNND cases compared with 2010, the previous most intense season. There were 51 deaths. Cases started occurring from week 22, earlier than usual. Both rural and urban areas were affected, with 86 (26% of the total) municipalities belonging to seven (54% of the total) regions recording cases. Two major epicentres were identified in Attica and Central Macedonia regions. Conclusions The largest number of human cases of WNV infection ever recorded in Greece occurred in 2018, with a wide geographical distribution, suggesting intense virus circulation. Enhanced surveillance is vital for the early detection of human cases and the prompt implementation of response measures.
Collapse
Affiliation(s)
- Danai Pervanidou
- Hellenic National Public Health Organization/former Hellenic Center for Disease Control & Prevention, Athens, Greece
| | - Annita Vakali
- Hellenic National Public Health Organization/former Hellenic Center for Disease Control & Prevention, Athens, Greece
| | - Theano Georgakopoulou
- Hellenic National Public Health Organization/former Hellenic Center for Disease Control & Prevention, Athens, Greece
| | - Takis Panagiotopoulos
- School of Public Health, Faculty of Public Health Policy, University of West Attica, Athens, Greece
| | - Eleni Patsoula
- School of Public Health, Faculty of Public Health Policy, University of West Attica, Athens, Greece
| | | | - Constantina Politis
- Hellenic National Public Health Organization/former Hellenic Center for Disease Control & Prevention, Athens, Greece
| | | | - Elpida Gavana
- National Reference Center for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Styliani Pappa
- National Reference Center for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Mavrouli
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Emmanouil
- Diagnostic Services Laboratory, Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Andreas Mentis
- Diagnostic Services Laboratory, Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
| | - Athanassios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Sotirios Tsiodras
- National and Kapodistrian University of Athens, Athens, Greece.,Hellenic National Public Health Organization/former Hellenic Center for Disease Control & Prevention, Athens, Greece
| | - Anna Papa
- National Reference Center for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Pallari CT, Efstathiou A, Moysi M, Papanikolas N, Christodoulou V, Mazeris A, Koliou M, Kirschel ANG. Evidence of West Nile virus seropositivity in wild birds on the island of Cyprus. Comp Immunol Microbiol Infect Dis 2020; 74:101592. [PMID: 33276289 DOI: 10.1016/j.cimid.2020.101592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
West Nile Virus (WNV)1 is an emerging pathogen in Cyprus, with the first human case of infection reported in 2016, and another documented in 2018. A cluster of cases in humans was then reported in 2019. However, little is known regarding which avian species might bring WNV to Cyprus. Here, we investigated seroprevalence of WNV antibodies in migratory and resident birds, captured across Cyprus to assess to what extent human populations might be exposed to WNV. We used Enzyme-Linked Immunosorbent Assay (ELISA)2 to test for the presence of WNV antibodies in 836 avian blood samples of 44 species captured between 2015 and 2020. A seropositivity rate of 1.3 % was found. The majority of seropositive wild birds belonged to the migratory species Sylvia atricapilla, a common and widespread migrant, implying a high risk of WNV being introduced throughout Cyprus.
Collapse
Affiliation(s)
- Chryso Th Pallari
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia 1678, Cyprus
| | - Athina Efstathiou
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia 1678, Cyprus
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia 1678, Cyprus
| | - Nikolas Papanikolas
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia 1678, Cyprus
| | | | | | - Maria Koliou
- Medical School, University of Cyprus, Siakoleio Center of Clinical Medicine, 2029 Aglantzia, PO Box 20537, 1678 Nicosia, Cyprus
| | - Alexander N G Kirschel
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia 1678, Cyprus.
| |
Collapse
|
13
|
Dellicour S, Lequime S, Vrancken B, Gill MS, Bastide P, Gangavarapu K, Matteson NL, Tan Y, du Plessis L, Fisher AA, Nelson MI, Gilbert M, Suchard MA, Andersen KG, Grubaugh ND, Pybus OG, Lemey P. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat Commun 2020; 11:5620. [PMID: 33159066 PMCID: PMC7648063 DOI: 10.1038/s41467-020-19122-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
Computational analyses of pathogen genomes are increasingly used to unravel the dispersal history and transmission dynamics of epidemics. Here, we show how to go beyond historical reconstructions and use spatially-explicit phylogeographic and phylodynamic approaches to formally test epidemiological hypotheses. We illustrate our approach by focusing on the West Nile virus (WNV) spread in North America that has substantially impacted public, veterinary, and wildlife health. We apply an analytical workflow to a comprehensive WNV genome collection to test the impact of environmental factors on the dispersal of viral lineages and on viral population genetic diversity through time. We find that WNV lineages tend to disperse faster in areas with higher temperatures and we identify temporal variation in temperature as a main predictor of viral genetic diversity through time. By contrasting inference with simulation, we find no evidence for viral lineages to preferentially circulate within the same migratory bird flyway, suggesting a substantial role for non-migratory birds or mosquito dispersal along the longitudinal gradient.
Collapse
Affiliation(s)
- Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 Avenue FD Roosevelt, 1050, Bruxelles, Belgium.
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Sebastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mandev S Gill
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Paul Bastide
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nathaniel L Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Alexander A Fisher
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50 Avenue FD Roosevelt, 1050, Bruxelles, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Scripps Research Translational Institute, La Jolla, CA, 92037, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
14
|
Snyder RE, Feiszli T, Foss L, Messenger S, Fang Y, Barker CM, Reisen WK, Vugia DJ, Padgett KA, Kramer VL. West Nile virus in California, 2003-2018: A persistent threat. PLoS Negl Trop Dis 2020; 14:e0008841. [PMID: 33206634 PMCID: PMC7710070 DOI: 10.1371/journal.pntd.0008841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/02/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The California Arbovirus Surveillance Program was initiated over 50 years ago to track endemic encephalitides and was enhanced in 2000 to include West Nile virus (WNV) infections in humans, mosquitoes, sentinel chickens, dead birds and horses. This comprehensive statewide program is a function of strong partnerships among the California Department of Public Health (CDPH), the University of California, and local vector control and public health agencies. This manuscript summarizes WNV surveillance data in California since WNV was first detected in 2003 in southern California. From 2003 through 2018, 6,909 human cases of WNV disease, inclusive of 326 deaths, were reported to CDPH, as well as 730 asymptomatic WNV infections identified during screening of blood and organ donors. Of these, 4,073 (59.0%) were reported as West Nile neuroinvasive disease. California's WNV disease burden comprised 15% of all cases that were reported to the U.S. Centers for Disease Control and Prevention during this time, more than any other state. Additionally, 1,299 equine WNV cases were identified, along with detections of WNV in 23,322 dead birds, 31,695 mosquito pools, and 7,340 sentinel chickens. Annual enzootic detection of WNV typically preceded detection in humans and prompted enhanced intervention to reduce the risk of WNV transmission. Peak WNV activity occurred from July through October in the Central Valley and southern California. Less than five percent of WNV activity occurred in other regions of the state or outside of this time. WNV continues to be a major threat to public and wild avian health in California, particularly in southern California and the Central Valley during summer and early fall months. Local and state public health partners must continue statewide human and mosquito surveillance and facilitate effective mosquito control and bite prevention measures.
Collapse
Affiliation(s)
- Robert E. Snyder
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Tina Feiszli
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Leslie Foss
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Sharon Messenger
- California Department of Public Health, Division of Communicable Disease Control, Richmond, California, United States of America
| | - Ying Fang
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - William K. Reisen
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Duc J. Vugia
- California Department of Public Health, Division of Communicable Disease Control, Richmond, California, United States of America
| | - Kerry A. Padgett
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| | - Vicki L. Kramer
- California Department of Public Health, Vector-Borne Disease Section, Richmond and Sacramento, California, United States of America
| |
Collapse
|
15
|
McMillan JR, Armstrong PM, Andreadis TG. Patterns of mosquito and arbovirus community composition and ecological indexes of arboviral risk in the northeast United States. PLoS Negl Trop Dis 2020; 14:e0008066. [PMID: 32092063 PMCID: PMC7058363 DOI: 10.1371/journal.pntd.0008066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/05/2020] [Accepted: 01/15/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In the northeast United States (U.S.), mosquitoes transmit a number of arboviruses, including eastern equine encephalitis, Jamestown Canyon, and West Nile that pose an annual threat to human and animal health. Local transmission of each arbovirus may be driven by the involvement of multiple mosquito species; however, the specificity of these vector-virus associations has not been fully quantified. METHODOLOGY We used long-term surveillance data consistently collected over 18 years to evaluate mosquito and arbovirus community composition in the State of Connecticut (CT) based on land cover classifications and mosquito species-specific natural histories using community ecology approaches available in the R package VEGAN. We then used binomial-error generalized linear mixed effects models to quantify species-specific trends in arbovirus detections. PRIMARY RESULTS The composition of mosquito communities throughout CT varied more among sites than among years, with variation in mosquito community composition among sites explained mostly by a forested-to-developed-land-cover gradient. Arboviral communities varied equally among sites and years, and only developed and forested wetland land cover classifications were associated with the composition of arbovirus detections among sites. Overall, the avian host arboviruses, mainly West Nile and eastern equine encephalitis, displayed the most specific associations among mosquito species and sites, while in contrast, the mammalian host arboviruses (including Cache Valley, Jamestown Canyon, and Potosi) associated with a more diverse mix of mosquito species and were widely distributed throughout CT. CONCLUSIONS We find that avian arboviruses act as vector specialists infecting a few key mosquito species that associate with discrete habitats, while mammalian arboviruses are largely vector generalists infecting a wide diversity of mosquito species and habitats in the region. These distinctions have important implications for the design and implementation of mosquito and arbovirus surveillance programs as well as mosquito control efforts.
Collapse
Affiliation(s)
- Joseph R. McMillan
- Environmental Sciences, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Philip M. Armstrong
- Environmental Sciences, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Theodore G. Andreadis
- Environmental Sciences, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| |
Collapse
|
16
|
Ribeiro GS, Hamer GL, Diallo M, Kitron U, Ko AI, Weaver SC. Influence of herd immunity in the cyclical nature of arboviruses. Curr Opin Virol 2020; 40:1-10. [PMID: 32193135 PMCID: PMC7434662 DOI: 10.1016/j.coviro.2020.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
We review and contrast the evidence for an effect of amplifying host herd immunity on circulation and human exposure to arboviruses. Herd immunity of short-lived West Nile virus avian amplifying hosts appears to play a limited role in levels of enzootic circulation and spillover infections of humans, which are not amplifiers. In contrast, herd immunity of nonhuman primate hosts for enzootic Zika, dengue, and chikungunya viruses is much stronger and appears to regulate to a large extent the periodicity of sylvatic amplification in Africa. Following the recent Zika and chikungunya pandemics, human herd immunity in the Americas quickly rose to ∼50% in many regions, although seroprevalence remains patchy. Modeling from decades of chikungunya circulation in Asia suggests that this level of herd immunity will suppress for many years major chikungunya and Zika epidemics in the Americas, followed by smaller outbreaks as herd immunity cycles with a periodicity of up to several decades.
Collapse
Affiliation(s)
- Guilherme S Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, 40296-710, Salvador, BA, Brazil; Universidade Federal da Bahia, Salvador, Brazil
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Uriel Kitron
- Population Biology, Ecology, and Evolution Graduate Program, Graduate Division of Biological and Biomedical Sciences, Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77555-0610 TX, USA.
| |
Collapse
|
17
|
Camp JV, Nowotny N. The knowns and unknowns of West Nile virus in Europe: what did we learn from the 2018 outbreak? Expert Rev Anti Infect Ther 2020; 18:145-154. [PMID: 31914833 DOI: 10.1080/14787210.2020.1713751] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: West Nile virus (WNV) is a mosquito-borne human and animal pathogen with nearly worldwide distribution. In Europe, the virus is endemic with seasonal regional outbreaks that have increased in frequency over the last 10 years. A massive outbreak occurred across southern and central Europe in 2018 with the number of confirmed human cases increasing up to 7.2-fold from the previous year, and expanding to include previously virus-free regions.Areas covered: This review focuses on potential causes that may explain the 2018 European WNV outbreak. We discuss the role genetic, ecological, and environmental aspects may have played in the increased activity during the 2018 transmission season, summarizing the latest epidemiological and virological publications.Expert opinion: Optimal environmental conditions, specifically increased temperature, were most likely responsible for the observed outbreak. Other factors cannot be ruled out due to limited available information, including factors that may influence host/vector abundance and contact. Europe will likely experience even larger-scale outbreaks in the coming years. Increased surveillance efforts should be implemented with a focus on early-warning detection methods, and large-scale host and vector surveys should continue to fill gaps in knowledge.
Collapse
Affiliation(s)
- Jeremy V Camp
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
18
|
Duggal NK, Langwig KE, Ebel GD, Brault AC. On the Fly: Interactions Between Birds, Mosquitoes, and Environment That Have Molded West Nile Virus Genomic Structure Over Two Decades. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1467-1474. [PMID: 31549720 PMCID: PMC7182917 DOI: 10.1093/jme/tjz112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 05/15/2023]
Abstract
West Nile virus (WNV) was first identified in North America almost 20 yr ago. In that time, WNV has crossed the continent and established enzootic transmission cycles, resulting in intermittent outbreaks of human disease that have largely been linked with climatic variables and waning avian seroprevalence. During the transcontinental dissemination of WNV, the original genotype has been displaced by two principal extant genotypes which contain an envelope mutation that has been associated with enhanced vector competence by Culex pipiens L. (Diptera: Culicidae) and Culex tarsalis Coquillett vectors. Analyses of retrospective avian host competence data generated using the founding NY99 genotype strain have demonstrated a steady reduction in viremias of house sparrows over time. Reciprocally, the current genotype strains WN02 and SW03 have demonstrated an inverse correlation between house sparrow viremia magnitude and the time since isolation. These data collectively indicate that WNV has evolved for increased avian viremia while house sparrows have evolved resistance to the virus such that the relative host competence has remained constant. Intrahost analyses of WNV evolution demonstrate that selection pressures are avian species-specific and purifying selection is greater in individual birds compared with individual mosquitoes, suggesting that the avian adaptive and/or innate immune response may impose a selection pressure on WNV. Phylogenomic, experimental evolutionary systems, and models that link viral evolution with climate, host, and vector competence studies will be needed to identify the relative effect of different selective and stochastic mechanisms on viral phenotypes and the capacity of newly evolved WNV genotypes for transmission in continuously changing landscapes.
Collapse
Affiliation(s)
- Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Kate E Langwig
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Aaron C Brault
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
- Corresponding author, e-mail:
| |
Collapse
|
19
|
Kilpatrick AM, Wheeler SS. Impact of West Nile Virus on Bird Populations: Limited Lasting Effects, Evidence for Recovery, and Gaps in Our Understanding of Impacts on Ecosystems. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1491-1497. [PMID: 31549723 PMCID: PMC6821264 DOI: 10.1093/jme/tjz149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 05/16/2023]
Abstract
The introduction of West Nile virus to North America in 1999 had profound impacts on human and wildlife health. Here, we review studies of WNV impacts on bird populations and find that overall impacts have been less than initially anticipated, with few species showing sustained changes in population size or demographic rates across multiple regions. This raises four questions: 1) What is the evidence for WNV impact on bird populations and how can we strengthen future analyses? We argue that future studies of WNV impacts should explicitly incorporate temporal variation in WNV transmission intensity, integrate field data with laboratory experimental infection studies, and correct for multiple comparisons. 2) What mechanisms might explain the relatively modest impact of WNV on most bird populations? We suggest that spatial and temporal variation in WNV transmission moderates WNV impacts on species that occur in multiple habitats, some of which provide refugia from infection. 3) Have species recovered from the initial invasion of WNV? We find evidence that many species and populations have recovered from initial WNV impact, but a few have not. 4) Did WNV cause cascading effects on other species and ecosystems? Unfortunately, few studies have examined the cascading effects of WNV population declines, but evidence suggests that some species may have been released from predation or competition. We close by discussing potentially overlooked groups of birds that may have been affected by WNV, and one highlight species, the yellow-billed magpie (Pica nutalli Audubon, 1837 [Passeriformes: Corvidae]), that appears to have suffered the largest range-wide impact from WNV.
Collapse
Affiliation(s)
- A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA
| | - Sarah S Wheeler
- Sacramento-Yolo Mosquito and Vector Control District, Elk Grove, CA
| |
Collapse
|
20
|
Hernandez E, Torres R, Joyce AL. Environmental and Sociological Factors Associated with the Incidence of West Nile Virus Cases in the Northern San Joaquin Valley of California, 2011-2015. Vector Borne Zoonotic Dis 2019; 19:851-858. [PMID: 31211639 PMCID: PMC6818473 DOI: 10.1089/vbz.2019.2437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Environmental and socioeconomic risk factors associated with the incidence of human West Nile virus (WNV) cases were investigated in the Northern San Joaquin Valley region of California, a largely rural area. The study included human WNV cases from the years 2011 to 2015 in the three-county area of San Joaquin, Stanislaus, and Merced Counties, and used census tracts as the unit of analysis. Environmental factors included temperature, precipitation, and WNV-positive mosquito pools. Socioeconomic variables included age, housing age, housing foreclosures, median income, and ethnicity. Chi-square independence tests were used to examine whether each variable was associated with the incidence of WNV cases using data from the three counties combined. In addition, negative binomial regression revealed that the environmental factors of temperature and precipitation were the strongest predictors of the incidence of human WNV cases, while the socioeconomic factor of ethnicity was a significant predictor as well, and is a factor to consider in prevention efforts. Source reduction of mosquito breeding sites and targeted prevention and education remain key in reducing the risk associated with WNV.
Collapse
Affiliation(s)
- Eunis Hernandez
- Department of Public Health, School of Social Sciences Humanities and Arts, University of California, Merced, Merced, California
| | - Ryan Torres
- Department of Public Health, School of Social Sciences Humanities and Arts, University of California, Merced, Merced, California
| | - Andrea L Joyce
- Department of Public Health, School of Social Sciences Humanities and Arts, University of California, Merced, Merced, California
| |
Collapse
|
21
|
Komar N, Panella NA, Burkhalter KL. Focal amplification and suppression of West Nile virus transmission associated with communal bird roosts in northern Colorado. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2018; 43:220-234. [PMID: 30408295 PMCID: PMC7083205 DOI: 10.1111/jvec.12306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
To explain the patchy distribution of West Nile virus (WNV), we propose that avian immunity encountered by Culex vectors regulates WNV transmission, particularly at communal bird roosts. To test this hypothesis, we selected two test sites with communally roosting American robins (Turdus migratorius) and two control sites that lacked communal roosts. The density of vector-vertebrate contacts, represented by engorged Culex pipiens, was 23-fold greater at test sites compared to control sites, and the density of blood-engorged Cx. pipiens measured in resting mosquito traps correlated positively with the presence of robins and negatively with the presence of other birds, confirming an attraction to robins for blood feeding. WNV transmission was alternately up-regulated (amplification) and down-regulated (suppression) at both test sites. At one test site, infection in resting Cx. pipiens surged from zero to 37.2 per thousand within four weeks, and robin immunity rose from 8.4% to 64% before reducing to 33%. At this site, ten potentially infectious contacts between vector and vertebrates (including nine robins and a mourning dove [Zenaida macroura]) were documented. Infectious vector-vertebrate contacts were absent from control sites. The use of infectious vector-vertebrate contacts, rather than infected mosquitoes, to evaluate a transmission focus is novel.
Collapse
Affiliation(s)
- Nicholas Komar
- Centers for Disease Control and Prevention, Division of Vector Borne Diseases, Arbovirus Diseases Branch, Fort Collins, CO 80521, U.S.A
| | - Nicholas A Panella
- Centers for Disease Control and Prevention, Division of Vector Borne Diseases, Arbovirus Diseases Branch, Fort Collins, CO 80521, U.S.A
| | - Kristen L Burkhalter
- Centers for Disease Control and Prevention, Division of Vector Borne Diseases, Arbovirus Diseases Branch, Fort Collins, CO 80521, U.S.A
| |
Collapse
|
22
|
West Nile virus transmission and human infection risk in Veneto (Italy): a modelling analysis. Sci Rep 2018; 8:14005. [PMID: 30228340 PMCID: PMC6143586 DOI: 10.1038/s41598-018-32401-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
An intensified and continuous West Nile virus (WNV) spread across northern Italy has been observed since 2008, which caused more than one hundred reported human infections until 2016. Veneto is one of the Italian regions where WNV is considered endemic, and the greatest intensity of circulation was observed during 2013 and 2016. By using entomological data collected across the region in those years, we calibrated a temperature-driven mathematical model through a Bayesian approach that simulates the WNV infection in an avian population with seasonal demography. We considered two alternative routes of life cycle re-activation of the virus at the beginning of each vector breeding season: in the first one the virus is maintained by infected birds, in the other by diapausing mosquitoes previously infected. Afterwards, we computed seasonal risk curves for human infection and quantified how they translate into reported symptomatic cases. According to our results, WNV is more likely to be re-activated each year via previously infected mosquitoes. The highest probability of human infection is expected to occur in August, consistently with observations. Our epidemiological estimates can be of particular interest for public health authorities, to support decisions in term of designing efficient surveillance plans and preventive measures.
Collapse
|
23
|
Davis JK, Vincent GP, Hildreth MB, Kightlinger L, Carlson C, Wimberly MC. Improving the prediction of arbovirus outbreaks: A comparison of climate-driven models for West Nile virus in an endemic region of the United States. Acta Trop 2018; 185:242-250. [PMID: 29727611 DOI: 10.1016/j.actatropica.2018.04.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
Models that forecast the timing and location of human arboviral disease have the potential to make mosquito control and disease prevention more effective. A common approach is to use statistical time-series models that predict disease cases as lagged functions of environmental variables. However, the simplifying assumptions required for standard modeling approaches may not capture important aspects of complex, non-linear transmission cycles. Here, we compared a set of alternative models of human West Nile virus (WNV) in 2004-2017 in South Dakota, USA. We used county-level logistic regressions to model historical human case data as functions of distributed lag summaries of air temperature and several moisture indices. We tested two variations of the standard model in which 1) the distributed lag functions were allowed to change over the transmission season, so that dependence on past meteorological conditions was time varying rather than static, and 2) an additional predictor was included that quantified the mosquito infection growth rate estimated from mosquito surveillance data. The best-fitting model included temperature and vapor pressure deficit as meteorological predictors, and also incorporated time-varying lags and the mosquito infection growth rate. The time-varying lags helped to predict the seasonal pattern of WNV cases, whereas the mosquito infection growth rate improved the prediction of year-to-year variability in WNV risk. These relatively simple and practical enhancements may be particularly helpful for developing data-driven time series models for use in arbovirus forecasting applications.
Collapse
Affiliation(s)
- Justin K Davis
- Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD, USA
| | - Geoffrey P Vincent
- Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Michael B Hildreth
- Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | | | | | - Michael C Wimberly
- Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
24
|
Skaff NK, Armstrong PM, Andreadis TG, Cheruvelil KS. Wetland characteristics linked to broad-scale patterns in Culiseta melanura abundance and eastern equine encephalitis virus infection. Parasit Vectors 2017; 10:501. [PMID: 29047412 PMCID: PMC5648514 DOI: 10.1186/s13071-017-2482-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/13/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Eastern equine encephalitis virus (EEEV) is an expanding mosquito-borne threat to humans and domestic animal populations in the northeastern United States. Outbreaks of EEEV are challenging to predict due to spatial and temporal uncertainty in the abundance and viral infection of Cs. melanura, the principal enzootic vector. EEEV activity may be closely linked to wetlands because they provide essential habitat for mosquito vectors and avian reservoir hosts. However, wetlands are not homogeneous and can vary by vegetation, connectivity, size, and inundation patterns. Wetlands may also have different effects on EEEV transmission depending on the assessed spatial scale. We investigated associations between wetland characteristics and Cs. melanura abundance and infection with EEEV at multiple spatial scales in Connecticut, USA. RESULTS Our findings indicate that wetland vegetative characteristics have strong associations with Cs. melanura abundance. Deciduous and evergreen forested wetlands were associated with higher Cs. melanura abundance, likely because these wetlands provide suitable subterranean habitat for Cs. melanura development. In contrast, Cs. melanura abundance was negatively associated with emergent and scrub/shrub wetlands, and wetland connectivity to streams. These relationships were generally strongest at broad spatial scales. Additionally, the relationships between wetland characteristics and EEEV infection in Cs. melanura were generally weak. However, Cs. melanura abundance was strongly associated with EEEV infection, suggesting that wetland-associated changes in abundance may be indirectly linked to EEEV infection in Cs. melanura. Finally, we found that wet hydrological conditions during the transmission season and during the fall/winter preceding the transmission season were associated with higher Cs. melanura abundance and EEEV infection, indicating that wet conditions are favorable for EEEV transmission. CONCLUSIONS These results expand the broad-scale understanding of the effects of wetlands on EEEV transmission and help to reduce the spatial and temporal uncertainty associated with EEEV outbreaks.
Collapse
Affiliation(s)
- Nicholas K Skaff
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA. .,Ecology, Evolutionary Biology & Behavior Program, Michigan State University, East Lansing, MI, USA.
| | - Philip M Armstrong
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Theodore G Andreadis
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Kendra S Cheruvelil
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.,Lyman Briggs College, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
25
|
Davis JK, Vincent G, Hildreth MB, Kightlinger L, Carlson C, Wimberly MC. Integrating Environmental Monitoring and Mosquito Surveillance to Predict Vector-borne Disease: Prospective Forecasts of a West Nile Virus Outbreak. PLOS CURRENTS 2017; 9:ecurrents.outbreaks.90e80717c4e67e1a830f17feeaaf85de. [PMID: 28736681 PMCID: PMC5503719 DOI: 10.1371/currents.outbreaks.90e80717c4e67e1a830f17feeaaf85de] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Predicting the timing and locations of future mosquito-borne disease outbreaks has the potential to improve the targeting of mosquito control and disease prevention efforts. Here, we present and evaluate prospective forecasts made prior to and during the 2016 West Nile virus (WNV) season in South Dakota, a hotspot for human WNV transmission in the United States. METHODS We used a county-level logistic regression model to predict the weekly probability of human WNV case occurrence as a function of temperature, precipitation, and an index of mosquito infection status. The model was specified and fitted using historical data from 2004-2015 and was applied in 2016 to make short-term forecasts of human WNV cases in the upcoming week as well as whole-year forecasts of WNV cases throughout the entire transmission season. These predictions were evaluated at the end of the 2016 WNV season by comparing them with spatial and temporal patterns of the human cases that occurred. RESULTS There was an outbreak of WNV in 2016, with a total of 167 human cases compared to only 40 in 2015. Model results were generally accurate, with an AUC of 0.856 for short-term predictions. Early-season temperature data were sufficient to predict an earlier-than-normal start to the WNV season and an above-average number of cases, but underestimated the overall case burden. Model predictions improved throughout the season as more mosquito infection data were obtained, and by the end of July the model provided a close estimate of the overall magnitude of the outbreak. CONCLUSIONS An integrated model that included meteorological variables as well as a mosquito infection index as predictor variables accurately predicted the resurgence of WNV in South Dakota in 2016. Key areas for future research include refining the model to improve predictive skill and developing strategies to link forecasts with specific mosquito control and disease prevention activities.
Collapse
|
26
|
Tambo E, Khayeka-Wandabwa C, Olalubi OA, Adedeji AA, Ngogang JY, Khater EI. Addressing knowledge gaps in molecular, sero-surveillance and monitoring approaches on Zika epidemics and other arbovirus co-infections: A structured review. Parasite Epidemiol Control 2017; 2:50-60. [PMID: 29774281 PMCID: PMC5952677 DOI: 10.1016/j.parepi.2017.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 01/29/2017] [Accepted: 01/29/2017] [Indexed: 01/02/2023] Open
Abstract
Globalization, with consequent increased travel and trade, rapid urbanization and growing weather variation events due to climate change has contributed to the recent unprecedented Zika virus (ZIKV) pandemic. This has emphasized the pressing need for local, national, regional and global community collaborative proactiveness, leadership and financial investment resilience in research and development. This paper addresses the potential knowledge gaps and impact of early detection and monitoring approaches on ZIKV epidemics and related arboviral infections steered towards effective prevention and smart response strategies. We advocate for the development and validation of robust field and point of care diagnostic tools that are more sensitive, specific and cost effective for use in ZIKV epidemics and routine pathophysiology surveillance and monitoring systems as an imperative avenue in understanding Zika-related and other arbovirus trends and apply genomic and proteomic characterisation approaches in guiding annotation efforts in order to design and implement public health burden mitigation and adaptation strategies.
Collapse
Affiliation(s)
- Ernest Tambo
- Department Biochemistry, Higher Institute of Health Sciences, Universite des Montagnes, Bangangté, Cameroon.,Africa Disease Intelligence and Surveillance, Communication and Response (Africa DISCoR) Foundation, Yaoundé, Cameroon
| | - Christopher Khayeka-Wandabwa
- African Population and Health Research Center (APHRC), Nairobi, Kenya.,Health Sciences Platform, School of Pharmaceutical Science and Technology (SPST), Tianjin University, China
| | - Oluwasogo A Olalubi
- Department of Public Health, Kwara State University (KWASU), Malete, Nigeria
| | - Ahmed A Adedeji
- Department of Pharmacology, Faculty of Health Sciences, Habib Medical School, Islamic University, Kibuuli, Kampala, Uganda
| | - Jeanne Y Ngogang
- Department Biochemistry, Higher Institute of Health Sciences, Universite des Montagnes, Bangangté, Cameroon.,Service de Biochimie, Centre Hospitalier Universitaire (CHU), Yaoundé, Cameroon
| | - Emad Im Khater
- Medical Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.,Public Health Pests Laboratory of Jeddah Governorate, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Wilkerson L, Reyna Nava M, Battle-Freeman C, Travassos da Rosa A, Guzman H, Tesh R, Debboun M. The role of birds in arboviral disease surveillance in Harris County and the City of Houston, Texas. U.S. ARMY MEDICAL DEPARTMENT JOURNAL 2017:1-12. [PMID: 28511269 PMCID: PMC6298035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Avian arboviral surveillance is an integral part of any disease-based integrated mosquito control program. The Harris County Public Health Mosquito and Vector Control Division has performed arboviral surveillance in the wild birds of Harris County and the City of Houston since 1965. Blood samples from live trapped birds were tested for arboviral antibodies to West Nile virus (WNV), St. Louis encephalitis, Eastern equine encephalitis, and Western equine encephalitis. A dead bird surveillance program was created in 2002 with the arrival of WNV in Harris County. Since implementation, the program has detected considerable variability in viral activity with annual WNV seroprevelance rates ranging from 2.9% to 17.7%, while the percentage of positive dead birds has ranged from 0.3% to 57.2%. In 2015, 1,345 live birds were sampled and 253 dead birds were tested, with WNV incidence rates of 16.5% and 5.9%, respectively.
Collapse
Affiliation(s)
- Lauren Wilkerson
- Mosquito and Vector Control Division, Harris County Public Health, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
28
|
Chaintoutis SC, Gewehr S, Mourelatos S, Dovas CI. Serological monitoring of backyard chickens in Central Macedonia-Greece can detect low transmission of West Nile virus in the absence of human neuroinvasive disease cases. Acta Trop 2016; 163:26-31. [PMID: 27469618 DOI: 10.1016/j.actatropica.2016.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/17/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022]
Abstract
During 2010-13, West Nile virus (WNV) epidemics occurred in Greece with high numbers of human cases. In parallel, WNV serological surveillance utilizing domestic birds was applied mainly in Central Macedonia, as well as in other areas of the country, and allowed efficient detection of WNV activity during this period. The objective of the study was to evaluate the sensitivity of chicken-based WNV surveillance in periods of low-level virus transmission (2014-15) in a well-studied area, i.e. the epicenter of the 2010 WNV epidemic (Central Macedonia), which is considered endemic since then. WNV activity was monitored via determination of antiviral immune responses in juvenile backyard chickens. The birds were sampled twice per transmission period. WNV-specific antibodies were detected by ELISA in 2.8% out of 255 chickens sampled early in the 2014 transmission period (95% CI: 1-6%). Continued virus transmission was detected at the end of the period, as 4.2% out of 240 sampled chickens seroconverted to WNV (95% CI: 2-8%). Although 14 human neuroinvasive cases occurred in Greece during 2014, no such cases were reported in the study area. During the 2015 early warning period, antibodies against WNV were not detected in sampled chickens (n=250, 95% CI: 0-2%). However, humoral immune responses were detected in 6 out of 240 chicken sampled at the end of the transmission period (2.5%; 95% CI: 1-6%), indicating continued WNV activity. No human cases were reported in Greece during 2015. All samples were negative with real-time RT-PCR. Serological surveillance of chickens resulted in identification of areas with low WNV activity levels during 2014-15, and provided indications of its overwintering in Central Macedonia. The findings suggest that surveillance based on serological testing of domestic birds is sensitive and able to detect low-level of WNV enzootic transmission, in the absence of human cases.
Collapse
Affiliation(s)
- Serafeim C Chaintoutis
- Diagnostic Laboratory, Department of Clinical Sciences, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627 Thessaloniki, Greece
| | - Sandra Gewehr
- Ecodevelopment S.A.-Environmental Applications, Filyro, 57010 Thessaloniki, Greece
| | - Spiros Mourelatos
- Ecodevelopment S.A.-Environmental Applications, Filyro, 57010 Thessaloniki, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, Department of Clinical Sciences, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., 54627 Thessaloniki, Greece.
| |
Collapse
|
29
|
Sule WF, Oluwayelu DO. Analysis of Culex and Aedes mosquitoes in southwestern Nigeria revealed no West Nile virus activity. Pan Afr Med J 2016; 23:116. [PMID: 27279943 PMCID: PMC4885691 DOI: 10.11604/pamj.2016.23.116.7249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction Amplification and transmission of West Nile virus (WNV) by mosquitoes are driven by presence and number of viraemic/susceptible avian hosts. Methods In order to predict risk of WNV infection to humans, we collected mosquitoes from horse stables in Lagos and Ibadan, southwestern Nigeria. The mosquitoes were sorted and tested in pools with real-time RT-PCR to detect WNV (or flavivirus) RNA using WNV-specific primers and probes, as well as, pan-flavivirus-specific primers in two-step real-time RT-PCR. Minimum infection rate (MIR) was used to estimate mosquito infection rate. Results Only two genera of mosquitoes were caught (Culex, 98.9% and Aedes, 1.0%) totalling 4,112 females. None of the 424 mosquito pools tested was positive for WNV RNA; consequently the MIR was zero. Sequencing and BLAST analysis of amplicons detected in pan-flavivirus primer-mediated RT-PCR gave a consensus sequence of 28S rRNA of Culex quinquefasciatus suggesting integration of flaviviral RNA into mosquito genome. Conclusion While the latter finding requires further investigation, we conclude there was little or no risk of human infection with WNV in the study areas during sampling. There was predominance of Culex mosquito, a competent WNV vector, around horse stables in the study areas. However, mosquito surveillance needs to continue for prompt detection of WNV activity in mosquitoes.
Collapse
Affiliation(s)
- Waidi Folorunso Sule
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, Osun State University, PMB 4494, Oke-Baale, Osogbo, 230212, Osun State, Nigeria
| | - Daniel Oladimeji Oluwayelu
- Department of Veterinary Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
30
|
Field Methods and Sample Collection Techniques for the Surveillance of West Nile Virus in Avian Hosts. Methods Mol Biol 2016. [PMID: 27188560 DOI: 10.1007/978-1-4939-3670-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Avian hosts play an important role in the spread, maintenance, and amplification of West Nile virus (WNV). Avian susceptibility to WNV varies from species to species thus surveillance efforts can focus both on birds that survive infection and those that succumb. Here we describe methods for the collection and sampling of live birds for WNV antibodies or viremia, and methods for the sampling of dead birds. Target species and study design considerations are discussed.
Collapse
|
31
|
Reisen WK, Wheeler SS. Surveys for Antibodies Against Mosquitoborne Encephalitis Viruses in California Birds, 1996-2013. Vector Borne Zoonotic Dis 2016; 16:264-82. [PMID: 26974395 PMCID: PMC4800269 DOI: 10.1089/vbz.2015.1888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
From 1996 through 2013, 54,546 individual birds comprising 152 species and 7 orders were banded, bled, and released at four study areas within California, from which 28,388 additional serum samples were collected at one or more recapture encounters. Of these, 142, 99, and 1929 birds from 41 species were positive for neutralizing antibodies against western equine encephalomyelitis virus (WEEV), St. Louis encephalitis virus (SLEV), or West Nile virus (WNV) at initial capture or recapture, respectively. Overall, 83% of the positive serum samples were collected from five species: House Finch, House Sparrow, Mourning Dove, California Quail, and Western Scrub-Jay. Temporal data supported concurrent arbovirus surveillance and documented the disappearance of birds positive for WEEV in 2008 and SLEV in 2003 and the appearance of birds positive for WNV after its invasion in 2003. Results of these serosurveys agreed well with the host selection patterns of the Culex vectors as described from bloodmeal sequencing data and indicated that transmission of WNV seemed most effective within urban areas where avian and mosquito host diversity was limited to relatively few competent species.
Collapse
Affiliation(s)
- William K Reisen
- Department of Pathology, Microbiology and Immunology, Center for Vectorborne Diseases, School of Veterinary Medicine, University of California , Davis, California
| | - Sarah S Wheeler
- Department of Pathology, Microbiology and Immunology, Center for Vectorborne Diseases, School of Veterinary Medicine, University of California , Davis, California
| |
Collapse
|
32
|
Barzon L, Pacenti M, Sinigaglia A, Berto A, Trevisan M, Palù G. West Nile virus infection in children. Expert Rev Anti Infect Ther 2015; 13:1373-86. [PMID: 26325613 DOI: 10.1586/14787210.2015.1083859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus responsible for an increasing number of outbreaks of neuroinvasive disease in North America, Europe, and neighboring countries. Almost all WNV infections in humans are transmitted through the bite of infected mosquitoes. Transmission during pregnancy and through breastfeeding has been reported, but the risk seems to be very low. West Nile disease in children is less common (1-5% of all WNV cases) and associated with milder symptoms and better outcome than in elderly individuals, even though severe neuroinvasive disease and death have been reported also among children. However, the incidence of WNV infection and disease in children is probably underestimated and the disease spectrum is not fully understood because of lack of reporting and underdiagnosis in children. Infection is diagnosed by detection of WNV-specific antibodies in serum and WNV RNA in plasma and urine. Since no effective WNV-specific drugs are available, therapy is mainly supportive.
Collapse
Affiliation(s)
- Luisa Barzon
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Monia Pacenti
- b 2 Microbiology and Virology Unit, Padova University Hospital, via Giustiniani 2, 35128 Padova, Italy
| | | | - Alessandro Berto
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Marta Trevisan
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Giorgio Palù
- a 1 Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| |
Collapse
|
33
|
Hinton MG, Reisen WK, Wheeler SS, Townsend AK. West Nile Virus Activity in a Winter Roost of American Crows (Corvus brachyrhynchos): Is Bird-To-Bird Transmission Important in Persistence and Amplification? JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:683-92. [PMID: 26335475 PMCID: PMC4592346 DOI: 10.1093/jme/tjv040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/11/2015] [Indexed: 05/19/2023]
Abstract
Since its emergence in North America, West Nile virus (WNV) has had a large impact on equines, humans, and wild bird communities, yet gaps remain in our understanding of how the virus persists at temperate latitudes when winter temperatures preclude virus replication and host-seeking activity by mosquito vectors. Bird-to-bird transmission at large communal American Crow roosts could provide one mechanism for WNV persistence. Herein, we describe seasonal patterns of crow and Culex mosquito abundance, WNV infection rates, and the prevalence of WNV-positive fecal samples at a winter crow roost to test the hypothesis that bird-to-bird transmission allows WNV to persist at winter crow roosts. Samples were collected from large winter crow roosts in the Sacramento Valley of California from January 2013 until August 2014, encompassing two overwintering roost periods. West Nile virus RNA was detected in local crow carcasses in both summer [13/18 (72% WNV positive)] and winter [18/44 (41% WNV positive)] 2013-2014. Winter infections were unlikely to have arisen by recent bites from infected mosquitoes because Culex host-seeking activity was very low in winter and all Culex mosquitoes collected during winter months tested negative for WNV. Opportunities existed for fecal-oral transfer at the overwintering roost: most carcasses that tested positive for WNV had detectable viral RNA in both kidney and cloacal swabs, suggesting that infected crows were shedding virus in their feces, and >50% of crows at the roost were stained with feces by mid-winter. Moreover, 2.3% of fecal samples collected in late summer, when mosquitoes were active, tested positive for WNV RNA. Nevertheless, none of the 1,119 feces collected from three roosts over two winters contained detectable WNV RNA. This study provided evidence of WNV infection in overwintering American crows without mosquito vector activity, but did not elucidate a mechanism of WNV transmission during winter.
Collapse
Affiliation(s)
- M G Hinton
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, 1088 Academic Surge, Davis, CA 95616.
| | - W K Reisen
- Department of Pathology, Microbiology, & Immunology, University of California, Davis, Center for Vectorborne Diseases, Old Davis Road, Davis, CA 95616
| | - S S Wheeler
- Department of Pathology, Microbiology, & Immunology, University of California, Davis, Center for Vectorborne Diseases, Old Davis Road, Davis, CA 95616
| | - A K Townsend
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, 1088 Academic Surge, Davis, CA 95616. Department of Biology, Hamilton College, Clinton, NY 13323
| |
Collapse
|
34
|
Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. ACTA ACUST UNITED AC 2015; 20. [PMID: 26027485 DOI: 10.2807/1560-7917.es2015.20.20.21135] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries.
Collapse
Affiliation(s)
- A Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, San Michele all Adige (TN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
West Nile virus (WNV) is an arbovirus transmitted enzootically by Culex mosquitoes among avian hosts. Since 2000, the California Dead Bird Surveillance Program (DBSP) has tracked avian mortality reported by the public on a telephone hotline and website and measured the prevalence of WNV infection in dead birds. We summarize herein WNV prevalence in dead birds tested and variation of WNV transmission over time and space with the use of DBSP data from 2003 to 2012. Prevalence among dead birds was highest in 2004, 2008, and 2012. This pattern was similar to peak WNV infection years for mosquitoes but not to human WNV incidence. Although American Crows (Corvus brachyrhynchos) were most frequently reported and tested, this species ranked third in infection prevalence (44%) after Yellow-billed Magpies (Pica nuttalli; 62%) and Western Scrub-Jays (Aphelocoma californica; 48%). Overall prevalence in American Robin (Turdus migratorius), House Finch (Haemorhous mexicanus), and House Sparrow (Passer domesticus) carcasses ranged from 18% to 22%. Corvid WNV prevalence was highest in South Coast, Bay/Delta, Sacramento, and San Joaquin valleys, and Klamath/North Coast bioregions, overlapping areas of elevated WNV activity in other surveillance measurements. Bioregional analysis revealed the avian species most likely to be reported and found positive in each bioregion. Our results may be useful to WNV surveillance and control efforts and provide insight into bird population trends in California.
Collapse
|
36
|
Abstract
Antibody duration, following a humoral immune response to West Nile virus (WNV) infection, is poorly understood in free-ranging avian hosts. Quantifying antibody decay rate is important for interpreting serologic results and for understanding the potential for birds to serorevert and become susceptible again. We sampled free-ranging birds in Chicago, Illinois, US, from 2005 to 2011 and Atlanta, Georgia, US, from 2010 to 2012 to examine the dynamics of antibody decay following natural WNV infection. Using serial dilutions in a blocking enzyme-linked immunosorbent assay, we quantified WNV antibody titer in repeated blood samples from individual birds over time. We quantified a rate of antibody decay for 23 Northern Cardinals (Cardinalis cardinalis) of 0.198 natural log units per month and 24 individuals of other bird species of 0.178 natural log units per month. Our results suggest that juveniles had a higher rate of antibody decay than adults, which is consistent with nonlinear antibody decay at different times postexposure. Overall, most birds had undetectable titers 2 yr postexposure. Nonuniform WNV antibody decay rates in free-ranging birds underscore the need for cautious interpretation of avian serology results in the context of arbovirus surveillance and epidemiology.
Collapse
|
37
|
Duggal NK, Bosco-Lauth A, Bowen RA, Wheeler SS, Reisen WK, Felix TA, Mann BR, Romo H, Swetnam DM, Barrett ADT, Brault AC. Evidence for co-evolution of West Nile Virus and house sparrows in North America. PLoS Negl Trop Dis 2014; 8:e3262. [PMID: 25357248 PMCID: PMC4214623 DOI: 10.1371/journal.pntd.0003262] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/09/2014] [Indexed: 01/28/2023] Open
Abstract
West Nile virus (WNV) has been maintained in North America in enzootic cycles between mosquitoes and birds since it was first described in North America in 1999. House sparrows (HOSPs; Passer domesticus) are a highly competent host for WNV that have contributed to the rapid spread of WNV across the U.S.; however, their competence has been evaluated primarily using an early WNV strain (NY99) that is no longer circulating. Herein, we report that the competence of wild HOSPs for the NY99 strain has decreased significantly over time, suggesting that HOSPs may have developed resistance to this early WNV strain. Moreover, recently isolated WNV strains generate higher peak viremias and mortality in contemporary HOSPs compared to NY99. These data indicate that opposing selective pressures in both the virus and avian host have resulted in a net increase in the level of host competence of North American HOSPs for currently circulating WNV strains.
Collapse
Affiliation(s)
- Nisha K. Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Angela Bosco-Lauth
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sarah S. Wheeler
- Center for Vectorborne Diseases, University of California, Davis, Davis, California, United States of America
| | - William K. Reisen
- Center for Vectorborne Diseases, University of California, Davis, Davis, California, United States of America
| | - Todd A. Felix
- United States Department of Agriculture, Lakewood, Colorado, United States of America
| | - Brian R. Mann
- Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hannah Romo
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Daniele M. Swetnam
- Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alan D. T. Barrett
- Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
- * E-mail: .
| |
Collapse
|
38
|
Wimberly MC, Lamsal A, Giacomo P, Chuang TW. Regional variation of climatic influences on West Nile virus outbreaks in the United States. Am J Trop Med Hyg 2014; 91:677-684. [PMID: 25092814 PMCID: PMC4183387 DOI: 10.4269/ajtmh.14-0239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The national resurgence of human West Nile virus (WNV) disease in 2012 raised questions about the factors responsible for WNV outbreaks. Interannual climatic variations may influence WNV amplification and transmission to humans through multiple pathways, including mosquito breeding habitats, gonotrophic cycles, extrinsic incubation, avian communities, and human behavior. We examined the influences of temperature and precipitation anomalies on interannual variation in human WNV cases in three regions of the United States. There were consistent positive influences of winter temperatures, weaker and more variable positive effects of spring and summer temperatures, and highly variable precipitation effects that ranged from positive to negative. The overwintering period may be a particularly important climatic constraint on the dynamics of WNV in cold-temperate regions of North America. Geographic differences in the seasonal timing and relative importance of climatic drivers of WNV risk likely reflect underlying variability in key ecological and social characteristics.
Collapse
Affiliation(s)
- Michael C. Wimberly
- *Address correspondence to Michael C. Wimberly, Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007. E-mail:
| | | | | | | |
Collapse
|
39
|
Manore CA, Davis JK, Christofferson RC, Wesson DM, Hyman JM, Mores CN. Towards an early warning system for forecasting human west nile virus incidence. PLOS CURRENTS 2014; 6:ecurrents.outbreaks.f0b3978230599a56830ce30cb9ce0500. [PMID: 25914857 PMCID: PMC4398566 DOI: 10.1371/currents.outbreaks.f0b3978230599a56830ce30cb9ce0500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have identified environmental and demographic variables, available in January, that predict the relative magnitude and spatial distribution of West Nile virus (WNV) for the following summer. The yearly magnitude and spatial distribution for WNV incidence in humans in the United States (US) have varied wildly in the past decade. Mosquito control measures are expensive and having better estimates of the expected relative size of a future WNV outbreak can help in planning for the mitigation efforts and costs. West Nile virus is spread primarily between mosquitoes and birds; humans are an incidental host. Previous efforts have demonstrated a strong correlation between environmental factors and the incidence of WNV. A predictive model for human cases must include both the environmental factors for the mosquito-bird epidemic and an anthropological model for the risk of humans being bitten by a mosquito. Using weather data and demographic data available in January for every county in the US, we use logistic regression analysis to predict the probability that the county will have at least one WNV case the following summer. We validate our approach and the spatial and temporal WNV incidence in the US from 2005 to 2013. The methodology was applied to forecast the 2014 WNV incidence in late January 2014. We find the most significant predictors for a county to have a case of WNV to be the mean minimum temperature in January, the deviation of this minimum temperature from the expected minimum temperature, the total population of the county, publicly available samples of local bird populations, and if the county had a case of WNV the previous year.
Collapse
Affiliation(s)
- Carrie A Manore
- Center for Computational Science, Tulane University, New Orleans, Louisiana, USA
| | - Justin K Davis
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | | | - Dawn M Wesson
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - James M Hyman
- Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
| | - Christopher N Mores
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
40
|
Manore CA, Davis J, Christofferson RC, Wesson D, Hyman JM, Mores CN. Towards an early warning system for forecasting human west nile virus incidence. PLOS CURRENTS 2014; 6:ecurrents.outbreaks.ed6f0f8a61d20ae5f32aaa5c2b8d3c23. [PMID: 24611126 PMCID: PMC3945055 DOI: 10.1371/currents.outbreaks.ed6f0f8a61d20ae5f32aaa5c2b8d3c23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have identified environmental and demographic variables, available in January, that predict the relative magnitude and spatial distribution of West Nile virus (WNV) for the following summer. The yearly magnitude and spatial distribution for WNV incidence in humans in the United States (US) have varied wildly in the past decade. Mosquito control measures are expensive and having better estimates of the expected relative size of a future WNV outbreak can help in planning for the mitigation efforts and costs. West Nile virus is spread primarily between mosquitoes and birds; humans are an incidental host. Previous efforts have demonstrated a strong correlation between environmental factors and the incidence of WNV. A predictive model for human cases must include both the environmental factors for the mosquito-bird epidemic and an anthropological model for the risk of humans being bitten by a mosquito. Using weather data and demographic data available in January for every county in the US, we use logistic regression analysis to predict the probability that the county will have at least one WNV case the following summer. We validate our approach and the spatial and temporal WNV incidence in the US from 2005 to 2013. The methodology was applied to forecast the 2014 WNV incidence in late January 2014. We find the most significant predictors for a county to have a case of WNV to be the mean minimum temperature in January, the deviation of this minimum temperature from the expected minimum temperature, the total population of the county, publicly available samples of local bird populations, and if the county had a case of WNV the previous year.
Collapse
Affiliation(s)
- Carrie A Manore
- Center for Computational Science, Tulane University, New Orleans, Louisiana, USA
| | - Justin Davis
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | | | - Dawn Wesson
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - James M Hyman
- Department of Mathematics, Tulane University, New Orleans, Louisiana, USA
| | - Christopher N Mores
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
41
|
Platonov AE, Tolpin VA, Gridneva KA, Titkov AV, Platonova OV, Kolyasnikova NM, Busani L, Rezza G. The incidence of West Nile disease in Russia in relation to climatic and environmental factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:1211-32. [PMID: 24464233 PMCID: PMC3945534 DOI: 10.3390/ijerph110201211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 11/16/2022]
Abstract
Since 1999, human cases of West Nile fever/neuroinvasive disease (WND) have been reported annually in Russia. The highest incidence has been recorded in three provinces of southern European Russia (Volgograd, Astrakhan and Rostov Provinces), yet in 2010-2012 the distribution of human cases expanded northwards considerably. From year to year, the number of WND cases varied widely, with major WND outbreaks in 1999, 2007, 2010, and 2012. The present study was aimed at identifying the most important climatic and environmental factors potentially affecting WND incidence in the three above-mentioned provinces and at building simple prognostic models, using those factors, by the decision trees method. The effects of 96 variables, including mean monthly temperature, relative humidity, precipitation, Normalized Difference Vegetation Index, etc. were taken into account. The findings of this analysis show that an increase of human WND incidence, compared to the previous year, was mostly driven by higher temperatures in May and/or in June, as well as (to a lesser extent) by high August-September temperatures. Declining incidence was associated with cold winters (December and/or January, depending on the region and type of model). WND incidence also tended to decrease during year following major WND outbreaks. Combining this information, the future trend of WND may be, to some extent, predicted, in accordance with the climatic conditions observed before the summer peak of WND incidence.
Collapse
Affiliation(s)
- Alexander E Platonov
- Central Research Institute of Epidemiology, Novogireevskaya Street 3A, Moscow 111123, Russia.
| | - Vladimir A Tolpin
- Space Research Institute, Profsoyuznaya Street 84/32, Moscow 117997, Russia.
| | - Kristina A Gridneva
- Central Research Institute of Epidemiology, Novogireevskaya Street 3A, Moscow 111123, Russia.
| | - Anton V Titkov
- Central Research Institute of Epidemiology, Novogireevskaya Street 3A, Moscow 111123, Russia.
| | - Olga V Platonova
- Central Research Institute of Epidemiology, Novogireevskaya Street 3A, Moscow 111123, Russia.
| | - Nadezhda M Kolyasnikova
- Central Research Institute of Epidemiology, Novogireevskaya Street 3A, Moscow 111123, Russia.
| | - Luca Busani
- Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | - Giovanni Rezza
- Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
42
|
Abstract
The introduction, dispersal and establishment of West Nile virus in North America were reviewed, focusing on factors that may have enhanced receptivity and enabled the invasion process. The overwintering persistence of this tropical virus within temperate latitudes was unexpected, but was key in the transition from invasion to endemic establishment. The cascade of temporal events allowing sporadic amplification to outbreak levels was discussed within a future perspective.
Collapse
|
43
|
Chen CC, Epp T, Jenkins E, Waldner C, Curry PS, Soos C. Modeling monthly variation of Culex tarsalis (Diptera: Culicidae) abundance and West Nile Virus infection rate in the Canadian Prairies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3033-51. [PMID: 23880728 PMCID: PMC3734475 DOI: 10.3390/ijerph10073033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/16/2022]
Abstract
The Canadian prairie provinces of Alberta, Saskatchewan, and Manitoba have generally reported the highest human incidence of West Nile virus (WNV) in Canada. In this study, environmental and biotic factors were used to predict numbers of Culex tarsalis Coquillett, which is the primary mosquito vector of WNV in this region, and prevalence of WNV infection in Cx. tarsalis in the Canadian prairies. The results showed that higher mean temperature and elevated time lagged mean temperature were associated with increased numbers of Cx. tarsalis and higher WNV infection rates. However, increasing precipitation was associated with higher abundance of Cx. tarsalis and lower WNV infection rate. In addition, this study found that increased temperature fluctuation and wetland land cover were associated with decreased infection rate in the Cx. tarsalis population. The resulting monthly models can be used to inform public health interventions by improving the predictions of population abundance of Cx. tarsalis and the transmission intensity of WNV in the Canadian prairies. Furthermore, these models can also be used to examine the potential effects of climate change on the vector population abundance and the distribution of WNV.
Collapse
Affiliation(s)
- Chen-Chih Chen
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; E-Mails: (T.E.); (C.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-306-966-7214; Fax: +1-306-966-7159
| | - Tasha Epp
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; E-Mails: (T.E.); (C.W.)
| | - Emily Jenkins
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; E-Mail:
| | - Cheryl Waldner
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; E-Mails: (T.E.); (C.W.)
| | - Philip S. Curry
- Saskatchewan Ministry of Health, 3475 Albert Street, Regina, SK S4S 6X6, Canada; E-Mail:
| | - Catherine Soos
- Environment Canada, Science & Technology Branch, 115 Perimeter Road, Saskatoon, SK S7N 0X4, Canada; E-Mail:
| |
Collapse
|
44
|
Experimental infection of Carrion crows (Corvus corone) with two European West Nile virus (WNV) strains. Vet Microbiol 2013; 165:160-6. [DOI: 10.1016/j.vetmic.2012.12.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 11/22/2022]
|
45
|
Gamino V, Höfle U. Pathology and tissue tropism of natural West Nile virus infection in birds: a review. Vet Res 2013; 44:39. [PMID: 23731695 PMCID: PMC3686667 DOI: 10.1186/1297-9716-44-39] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/24/2013] [Indexed: 01/26/2023] Open
Abstract
West Nile virus (WNV) is a globally distributed arthropod-borne flavivirus capable of infecting a wide variety of vertebrates, with birds as its natural reservoir. Although it had been considered a pathogen of little importance for birds, from the 1990's, and especially after its introduction in the North American continent in 1999, thousands of birds have succumbed to West Nile infection. This review summarizes the pathogenesis and pathology of WNV infection in birds highlighting differences in lesion and antigen distribution and severity among bird orders and families. Despite significant species differences in susceptibility to infection, WNV associated lesions and viral antigen are present in the majority of organs of infected birds. The non-progressive, acute or more prolonged course of the disease accounts for part of the differences in lesion and viral antigen distribution and lesion severity. Most likely a combination of host variables and environmental factors in addition to the intrinsic virulence and pathogenicity of the infecting WNV strain influence the pathogenesis of the infection.
Collapse
Affiliation(s)
- Virginia Gamino
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM) Ronda de Toledo s/n, Ciudad Real 13005, Spain
| | - Ursula Höfle
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC, (CSIC-UCLM-JCCM) Ronda de Toledo s/n, Ciudad Real 13005, Spain
| |
Collapse
|
46
|
Lampman RL, Krasavin NM, Ward MP, Beveroth TA, Lankau EW, Alto BW, Muturi E, Novak RJ. West Nile virus infection rates and avian serology in east-central Illinois. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2013; 29:108-122. [PMID: 23923325 DOI: 10.2987/12-6318r.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Understanding the geographic role of different species of mosquito vectors and vertebrate hosts in West Nile virus (WNV) transmission cycles can facilitate the development and implementation of targeted surveillance and control measures. This study examined the relationship between WNV-antibody rates in birds and mosquito infection rates and bloodfeeding patterns in east-central Illinois. The earliest detection of WNV-RNA by reverse transcription-polymerase chain reaction TaqMan was from Culex restuans; however, amplification typically coincided with an increase in abundance of Cx. pipiens. Trap type influenced annual estimates of infection rates in Culex species, as well as estimation of blood meal source. Bird species with the highest WNV-antibody rates (i.e., Mourning Doves [Zenaida macroura], Northern Cardinals [Cardinalis cardinalis], American Robins [Turdus migratorius], and House Sparrows [Passer domesticus]) were also the common species found in Culex blood meals. Although antibody rates were not directly proportional to estimated avian abundance, the apparent availability of mammal species did influence proportion of mammal to bird blood meals. Antibody prevalence in the American Robin was lower than expected based on the strong attraction of Culex to American Robins for blood meals. Age-related differences in serology were evident, antibody rates increased in older groups of robins and sparrows, whereas 1st-year hatch and older adults of Mourning Doves and Northern Cardinals had equally high rates of antibody-positive serum samples. The vector and host interactions observed in east-central Illinois (Champaign County), an urban area surrounded by agriculture, are compared to studies in the densely population areas of southern Cook County.
Collapse
Affiliation(s)
- Richard L Lampman
- Illinois Natural History Survey, University of Illinois, Champaign, IL 61820, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Calzolari M, Bonilauri P, Bellini R, Albieri A, Defilippo F, Tamba M, Tassinari M, Gelati A, Cordioli P, Angelini P, Dottori M. Usutu virus persistence and West Nile virus inactivity in the Emilia-Romagna region (Italy) in 2011. PLoS One 2013; 8:e63978. [PMID: 23667694 PMCID: PMC3646878 DOI: 10.1371/journal.pone.0063978] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/09/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The circulation of West Nile virus and Usutu virus was detected in the Emilia-Romagna region in 2008 and 2009. To evaluate the extent of circulation of both viruses, environmental surveillance, based on bird and mosquito testing, was conducted in 2008 and gradually improved over the years. METHODS In February-March 2009-2011, 5,993 hibernating mosquitoes were manually sampled, out of which 80.1% were Culex pipiens; none tested positive for the viruses. From 2008 to 2011, 946,213 mosquitoes, sampled between May and October, were tested; 86.5% were Cx. pipiens. West Nile virus was detected in 32 Cx. pipiens pools, and Usutu virus was detected in 229 mosquito pools (217 Cx. pipiens, 10 Aedes albopictus, one Anopheles maculipennis s.l., and one Aedes caspius). From 2009 to 2011, of 4,546 birds collected, 42 tested positive for West Nile virus and 48 for Usutu virus. West Nile virus and Usutu virus showed different patterns of activity during the 2008-2011 surveillance period. West Nile virus was detected in 2008, 2009, and 2010, but not in 2011. Usutu virus, however, was continuously active throughout 2009, 2010, and 2011. CONCLUSIONS The data strongly suggest that both viruses overwinter in the surveyed area rather than being continually reintroduced every season. The lack of hibernating mosquitoes testing positive for the viruses and the presence of positive birds sampled early in the season support the hypothesis that the viruses overwinter in birds rather than in mosquitoes. Herd immunity in key bird species could explain the decline of West Nile virus observed in 2011, while the persistence of Usutu virus may be explained by not yet identified reservoirs. Reported results are comparable with a peri-Mediterranean circulation of the West Nile virus lineage 1 related strain, which became undetectable in the environment after two to three years of obvious circulation.
Collapse
Affiliation(s)
- Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna B. Ubertini (IZSLER), Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Reisen WK, Padgett K, Fang Y, Woods L, Foss L, Anderson J, Kramer V. Chronic infections of West Nile virus detected in California dead birds. Vector Borne Zoonotic Dis 2013; 13:401-5. [PMID: 23488452 DOI: 10.1089/vbz.2012.1097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During 2010 and 2011, 933 recently deceased birds, submitted as part of the dead bird surveillance program, tested positive for West Nile virus RNA at necropsy. The relative amount of RNA measured by qRT-PCR cycles ranged from 8.2 to 37.0 cycle threshold (Ct) and formed a bimodal frequency distribution, with maxima at 20 and 36 Ct and minima at 28-30 Ct. On the basis of frequency distributions among different avian species with different responses to infection following experimental inoculation, field serological data indicating survival of infection, and the discovery of persistent RNA in experimentally infected birds, dead birds collected in nature were scored as "recent" or "chronic" infections on the basis of Ct scores. The percentage of birds scored as having chronic infections was highest during late winter/spring, when all birds were after hatching year, and lowest during late summer, when enzootic transmission was typically highest as indicated by mosquito infections. Our data indicated that intervention efforts should not be based on dead birds with chronic infections unless supported by additional surveillance metrics.
Collapse
Affiliation(s)
- William K Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA.
| | | | | | | | | | | | | |
Collapse
|