1
|
Kobori M, Abe J, Saito R, Hirai Y. CAMSAP3, a microtubule orientation regulator, plays a vital role in manifesting differentiation-dependent characteristics in keratinocytes. Exp Cell Res 2024; 435:113927. [PMID: 38190868 DOI: 10.1016/j.yexcr.2024.113927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Microtubules constitute pivotal structural elements integral to cellular architecture and physiological functionality. Within the epidermis of the skin, microtubules undergo a noteworthy transition in orientation, shifting from centrosomal to non-centrosomal configurations during the processes of differentiation and stratification. This transition aligns with a discernible increase in the expression of CAMSAP3, a protein that binds to the minus end of microtubules, thereby regulating their orientation. In this study, we identified microtubule-bound CAMSAP3 within HaCaT keratinocytes, revealing an upregulation during the mitotic phase and accumulation at the intercellular bridge during cytokinesis. Building upon this observation, we scrutinized cellular responses upon a tetracycline/doxycycline-inducible CAMSAP3 expression in CAMSAP3-deficient HaCaT cells. Remarkably, CAMSAP3 deficiency induced shifts in microtubule orientation, resulting in cell cycle exit and delayed cytokinesis in a subset of the cells. Furthermore, our inquiry unveiled that CAMSAP3 deficiency adversely impacted the formation and stability of Adherens Junctions and Tight Junctions. In contrast, these perturbations were rectified upon the re-expression of CAMSAP3, underscoring the pivotal role of CAMSAP3 in manifesting differentiation-dependent characteristics in stratified keratinocytes. These observations emphasize the significance of CAMSAP3 in maintaining epidermal homeostasis.
Collapse
Affiliation(s)
- Mako Kobori
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Reika Saito
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1, Gakuen-Uegahara, Sanda, 669-1330, Japan.
| |
Collapse
|
2
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
3
|
Sun W, Tian BX, Wang SH, Liu PJ, Wang YC. The function of SEC22B and its role in human diseases. Cytoskeleton (Hoboken) 2020; 77:303-312. [PMID: 32748571 DOI: 10.1002/cm.21628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are a large protein complex that is involved in the membrane fusion in vesicle trafficking, cell growth, cytokinesis, membrane repair, and synaptic transmission. As one of the SNARE proteins, SEC22B functions in membrane fusion of vesicle trafficking between the endoplasmic reticulum and the Golgi apparatus, antigen cross-presentation, secretory autophagy, and other biological processes. However, apart from not being SNARE proteins, there is little knowledge known about its two homologs (SEC22A and SEC22C). SEC22B alterations have been reported in many human diseases, especially, many mutations of SEC22B in human cancers have been detected. In this review, we will introduce the specific functions of SEC22B, and summarize the researches about SEC22B in human cancers and other diseases. These findings have laid the foundation for further studies to clarify the exact mechanism of SEC22B in the pathological process and to seek new therapeutic targets and better treatment strategies.
Collapse
Affiliation(s)
- Wei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Bi-Xia Tian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Shu-Hong Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Yao-Chun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Schoultz I, Keita ÅV. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells 2020; 9:E1909. [PMID: 32824536 PMCID: PMC7463717 DOI: 10.3390/cells9081909] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier is essential in human health and constitutes the interface between the outside and the internal milieu of the body. A functional intestinal barrier allows absorption of nutrients and fluids but simultaneously prevents harmful substances like toxins and bacteria from crossing the intestinal epithelium and reaching the body. An altered intestinal permeability, a sign of a perturbed barrier function, has during the last decade been associated with several chronic conditions, including diseases originating in the gastrointestinal tract but also diseases such as Alzheimer and Parkinson disease. This has led to an intensified interest from researchers with diverse backgrounds to perform functional studies of the intestinal barrier in different conditions. Intestinal permeability is defined as the passage of a solute through a simple membrane and can be measured by recording the passage of permeability markers over the epithelium via the paracellular or the transcellular route. The methodological tools to investigate the gut barrier function are rapidly expanding and new methodological approaches are being developed. Here we outline and discuss, in vivo, in vitro and ex vivo techniques and how these methods can be utilized for thorough investigation of the intestinal barrier.
Collapse
Affiliation(s)
- Ida Schoultz
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, 703 62 Örebro, Sweden;
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
5
|
Newly Identified Regulators of Ovarian Folliculogenesis and Ovulation. Int J Mol Sci 2020; 21:ijms21124565. [PMID: 32604954 PMCID: PMC7349727 DOI: 10.3390/ijms21124565] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Each follicle represents the basic functional unit of the ovary. From its very initial stage of development, the follicle consists of an oocyte surrounded by somatic cells. The oocyte grows and matures to become fertilizable and the somatic cells proliferate and differentiate into the major suppliers of steroid sex hormones as well as generators of other local regulators. The process by which a follicle forms, proceeds through several growing stages, develops to eventually release the mature oocyte, and turns into a corpus luteum (CL) is known as “folliculogenesis”. The task of this review is to define the different stages of folliculogenesis culminating at ovulation and CL formation, and to summarize the most recent information regarding the newly identified factors that regulate the specific stages of this highly intricated process. This information comprises of either novel regulators involved in ovarian biology, such as Ube2i, Phoenixin/GPR73, C1QTNF, and α-SNAP, or recently identified members of signaling pathways previously reported in this context, namely PKB/Akt, HIPPO, and Notch.
Collapse
|
6
|
Nighot P, Ma T. Endocytosis of Intestinal Tight Junction Proteins: In Time and Space. Inflamm Bowel Dis 2020; 27:283-290. [PMID: 32497180 PMCID: PMC7813749 DOI: 10.1093/ibd/izaa141] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic cells take up macromolecules and particles from the surrounding milieu and also internalize membrane proteins via a precise process of endocytosis. The role of endocytosis in diverse physiological processes such as cell adhesion, cell signaling, tissue remodeling, and healing is well recognized. The epithelial tight junctions (TJs), present at the apical lateral membrane, play a key role in cell adhesion and regulation of paracellular pathway. These vital functions of the TJ are achieved through the dynamic regulation of the presence of pore and barrier-forming proteins within the TJ complex on the plasma membrane. In response to various intracellular and extracellular clues, the TJ complexes are actively regulated by intracellular trafficking. The intracellular trafficking consists of endocytosis and recycling cargos to the plasma membrane or targeting them to the lysosomes for degradation. Increased intestinal TJ permeability is a pathological factor in inflammatory bowel disease (IBD), and the TJ permeability could be increased due to the altered endocytosis or recycling of TJ proteins. This review discusses the current information on endocytosis of intestinal epithelial TJ proteins. The knowledge of the endocytic regulation of the epithelial TJ barrier will provide further understanding of pathogenesis and potential targets for IBD and a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA,Address correspondence to: Prashant Nighot, Department of Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Room C5814B, Hershey, PA, 17033, USA. E-mail:
| | - Thomas Ma
- Department of Medicine, College of Medicine, Penn State University, Hershey, PA, USA
| |
Collapse
|
7
|
Pleiotropic effects of alpha-SNAP M105I mutation on oocyte biology: ultrastructural and cellular changes that adversely affect female fertility in mice. Sci Rep 2019; 9:17374. [PMID: 31758001 PMCID: PMC6874563 DOI: 10.1038/s41598-019-53574-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
After sperm-oocyte fusion, cortical granules (CGs) located in oocyte cortex undergo exocytosis and their content is released into the perivitelline space to avoid polyspermy. Thus, cortical granule exocytosis (CGE) is a key process for fertilization success. We have demonstrated that alpha-SNAP -and its functional partner NSF- mediate fusion of CGs with the plasma membrane in mouse oocytes. Here, we examined at cellular and ultrastructural level oocytes from hyh (hydrocephalus with hop gait) mice, which present a missense mutation in the Napa gene that results in the substitution of methionine for isoleucine at position 105 (M105I) of alpha-SNAP. Mutated alpha-SNAP was mislocalized in hyh oocytes while NSF expression increased during oocyte maturation. Staining of CGs showed that 9.8% of hyh oocytes had abnormal localization of CGs and oval shape. Functional tests showed that CGE was impaired in hyh oocytes. Interestingly, in vitro fertilization assays showed a decreased fertilization rate for hyh oocytes. Furthermore, fertilized hyh oocytes presented an increased polyspermy rate compared to wild type ones. At ultrastructural level, hyh oocytes showed small mitochondria and a striking accumulation and secretion of degradative structures. Our findings demonstrate the negative effects of alpha-SNAP M105 mutation on oocyte biology and further confirm the relevance of alpha-SNAP in female fertility.
Collapse
|
8
|
Saadin A, Starz-Gaiano M. Cytokine exocytosis and JAK/STAT activation in the Drosophila ovary requires the vesicle trafficking regulator α-Snap. J Cell Sci 2018; 131:jcs217638. [PMID: 30404830 PMCID: PMC6288073 DOI: 10.1242/jcs.217638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023] Open
Abstract
How vesicle trafficking components actively contribute to regulation of paracrine signaling is unclear. We genetically uncovered a requirement for α-soluble NSF attachment protein (α-Snap) in the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway during Drosophila egg development. α-Snap, a well-conserved vesicle trafficking regulator, mediates association of N-ethylmaleimide-sensitive factor (NSF) and SNAREs to promote vesicle fusion. Depletion of α-Snap or the SNARE family member Syntaxin1A in epithelia blocks polar cells maintenance and prevents specification of motile border cells. Blocking apoptosis rescues polar cell maintenance in α-Snap-depleted egg chambers, indicating that the lack of border cells in mutants is due to impaired signaling. Genetic experiments implicate α-Snap and NSF in secretion of a STAT-activating cytokine. Live imaging suggests that changes in intracellular Ca2+ are linked to this event. Our data suggest a cell-type specific requirement for particular vesicle trafficking components in regulated exocytosis during development. Given the central role for STAT signaling in immunity, this work may shed light on regulation of cytokine release in humans.
Collapse
Affiliation(s)
- Afsoon Saadin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
9
|
Naydenov NG, Joshi S, Feygin A, Saini S, Litovchick L, Ivanov AI. A membrane fusion protein, Ykt6, regulates epithelial cell migration via microRNA-mediated suppression of Junctional Adhesion Molecule A. Cell Cycle 2018; 17:1812-1831. [PMID: 30010460 DOI: 10.1080/15384101.2018.1496755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Vesicle trafficking regulates epithelial cell migration by remodeling matrix adhesions and delivering signaling molecules to the migrating leading edge. Membrane fusion, which is driven by soluble N-ethylmaleimide-sensitive factor associated receptor (SNARE) proteins, is an essential step of vesicle trafficking. Mammalian SNAREs represent a large group of proteins, but few have been implicated in the regulation of cell migration. Ykt6 is a unique SNARE existing in equilibrium between active membrane-bound and inactive cytoplasmic pools, and mediating vesicle trafficking between different intracellular compartments. The biological functions of this protein remain poorly understood. In the present study, we found that Ykt6 acts as a negative regulator of migration and invasion of human prostate epithelial cells. Furthermore, Ykt6 regulates the integrity of epithelial adherens and tight junctions. The observed anti-migratory activity of Ykt6 is mediated by a unique mechanism involving the expressional upregulation of microRNA 145, which selectively decreases the cellular level of Junctional Adhesion Molecule (JAM) A. This decreased JAM-A expression limits the activity of Rap1 and Rac1 small GTPases, thereby attenuating cell spreading and motility. The described novel functions of Ykt6 could be essential for the regulation of epithelial barriers, epithelial repair, and metastatic dissemination of cancer cells.
Collapse
Affiliation(s)
- Nayden G Naydenov
- a Department of Inflammation and Immunity , Lerner Research Institute of Cleveland Clinic Foundation , Cleveland , OH , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Supriya Joshi
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Alex Feygin
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Siddharth Saini
- c Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Larisa Litovchick
- c Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Andrei I Ivanov
- a Department of Inflammation and Immunity , Lerner Research Institute of Cleveland Clinic Foundation , Cleveland , OH , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
10
|
Arcos A, de Paola M, Gianetti D, Acuña D, Velásquez ZD, Miró MP, Toro G, Hinrichsen B, Muñoz RI, Lin Y, Mardones GA, Ehrenfeld P, Rivera FJ, Michaut MA, Batiz LF. α-SNAP is expressed in mouse ovarian granulosa cells and plays a key role in folliculogenesis and female fertility. Sci Rep 2017; 7:11765. [PMID: 28924180 PMCID: PMC5603506 DOI: 10.1038/s41598-017-12292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/05/2017] [Indexed: 01/13/2023] Open
Abstract
The balance between ovarian folliculogenesis and follicular atresia is critical for female fertility and is strictly regulated by a complex network of neuroendocrine and intra-ovarian signals. Despite the numerous functions executed by granulosa cells (GCs) in ovarian physiology, the role of multifunctional proteins able to simultaneously coordinate/modulate several cellular pathways is unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (α-SNAP) is a multifunctional protein that participates in SNARE-mediated membrane fusion events. In addition, it regulates cell-to-cell adhesion, AMPK signaling, autophagy and apoptosis in different cell types. In this study we examined the expression pattern of α-SNAP in ovarian tissue and the consequences of α-SNAP (M105I) mutation (hyh mutation) in folliculogenesis and female fertility. Our results showed that α-SNAP protein is highly expressed in GCs and its expression is modulated by gonadotropin stimuli. On the other hand, α-SNAP-mutant mice show a reduction in α-SNAP protein levels. Moreover, increased apoptosis of GCs and follicular atresia, reduced ovulation rate, and a dramatic decline in fertility is observed in α-SNAP-mutant females. In conclusion, α-SNAP plays a critical role in the balance between follicular development and atresia. Consequently, a reduction in its expression/function (M105I mutation) causes early depletion of ovarian follicles and female subfertility.
Collapse
Affiliation(s)
- Alexis Arcos
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Matilde de Paola
- Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Diego Gianetti
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Acuña
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Zahady D Velásquez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - María Paz Miró
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriela Toro
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Bryan Hinrichsen
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rosa Iris Muñoz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Yimo Lin
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Gonzalo A Mardones
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, A-5020, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, A-5020, Austria
| | - Marcela A Michaut
- Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina. .,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Luis Federico Batiz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile. .,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile. .,Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
11
|
Lechuga S, Naydenov NG, Feygin A, Jimenez AJ, Ivanov AI. A vesicle trafficking protein αSNAP regulates Paneth cell differentiation in vivo. Biochem Biophys Res Commun 2017; 486:951-957. [PMID: 28359759 DOI: 10.1016/j.bbrc.2017.03.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022]
Abstract
A soluble N-ethylmaleimide-sensitive factor-attachment protein alpha (αSNAP) is a multifunctional scaffolding protein that regulates intracellular vesicle trafficking and signaling. In cultured intestinal epithelial cells, αSNAP has been shown to be essential for cell survival, motility, and adhesion; however, its physiologic functions in the intestinal mucosa remain unknown. In the present study, we used a mouse with a spontaneous hydrocephalus with hop gait (hyh) mutation of αSNAP to examine the roles of this trafficking protein in regulating intestinal epithelial homeostasis in vivo. Homozygous hyh mice demonstrated decreased expression of αSNAP protein in the intestinal epithelium, but did not display gross abnormalities of epithelial architecture in the colon and ileum. Such αSNAP depletion attenuated differentiation of small intestinal epithelial enteroids ex vivo. Furthermore, αSNAP-deficient mutant animals displayed reduced formation of lysozyme granules in small intestinal crypts and decreased expression of lysozyme and defensins in the intestinal mucosa, which is indicative of defects in Paneth cell differentiation. By contrast, development of Goblet cells, enteroendocrine cells, and assembly of enterocyte apical junctions was not altered in hyh mutant mice. Our data revealed a novel role of αSNAP in the intestinal Paneth cell differentiation in vivo.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Alex Feygin
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Antonio J Jimenez
- Department of Cell Biology, Genetics, and Physiology, University of Malaga, Malaga, Spain
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
12
|
Lechuga S, Ivanov AI. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1183-1194. [PMID: 28322932 DOI: 10.1016/j.bbamcr.2017.03.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
13
|
Li P, Miao Y, Dani A, Vig M. α-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels. Mol Biol Cell 2016; 27:2542-53. [PMID: 27335124 PMCID: PMC4985256 DOI: 10.1091/mbc.e16-03-0163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023] Open
Abstract
Ion channel subunits typically assemble in the endoplasmic reticulum. α-SNAP orchestrates a unique assembly and calcium selectivity of Orai1 subunits into functional multimers. Dynamic assembly of Orai1 and its dependence on α-SNAP could enable localization of calcium signals and regulation of rate and amount of calcium influx. Orai1 forms a highly calcium-selective pore of the calcium release activated channel, and α-SNAP is necessary for its function. Here we show that α-SNAP regulates on-site assembly of Orai1 dimers into calcium-selective multimers. We find that Orai1 is a dimer in resting primary mouse embryonic fibroblasts but displays variable stoichiometry in the plasma membrane of store-depleted cells. Remarkably, α-SNAP depletion induces formation of higher-order Orai1 oligomers, which permeate significant levels of sodium via Orai1 channels. Sodium permeation in α-SNAP–deficient cells cannot be corrected by tethering multiple Stim1 domains to Orai1 C-terminal tail, demonstrating that α-SNAP regulates functional assembly and calcium selectivity of Orai1 multimers independently of Stim1 levels. Fluorescence nanoscopy reveals sustained coassociation of α-SNAP with Stim1 and Orai1, and α-SNAP–depleted cells show faster and less constrained mobility of Orai1 within ER-PM junctions, suggesting Orai1 and Stim1 coentrapment without stable contacts. Furthermore, α-SNAP depletion significantly reduces fluorescence resonance energy transfer between Stim1 and Orai1 N-terminus but not C-terminus. Taken together, these data reveal a unique role of α-SNAP in the on-site functional assembly of Orai1 subunits and suggest that this process may, in part, involve enabling crucial low-affinity interactions between Orai1 N-terminus and Stim1.
Collapse
Affiliation(s)
- Peiyao Li
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Yong Miao
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Adish Dani
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110 Hope Center for Neurological Disorders, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - Monika Vig
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
14
|
Wehrendt DP, Carmona F, González Wusener AE, González Á, Martínez JML, Arregui CO. P120-Catenin Regulates Early Trafficking Stages of the N-Cadherin Precursor Complex. PLoS One 2016; 11:e0156758. [PMID: 27254316 PMCID: PMC4890775 DOI: 10.1371/journal.pone.0156758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022] Open
Abstract
It is well established that binding of p120 catenin to the cytoplasmic domain of surface cadherin prevents cadherin endocytosis and degradation, contributing to cell-cell adhesion. In the present work we show that p120 catenin bound to the N-cadherin precursor, contributes to its anterograde movement from the endoplasmic reticulum (ER) to the Golgi complex. In HeLa cells, depletion of p120 expression, or blocking its binding to N-cadherin, increased the accumulation of the precursor in the ER, while it decreased the localization of mature N-cadherin at intercellular junctions. Reconstitution experiments in p120-deficient SW48 cells with all three major isoforms of p120 (1, 3 and 4) had similar capacity to promote the processing of the N-cadherin precursor to the mature form, and its localization at cell-cell junctions. P120 catenin and protein tyrosine phosphatase PTP1B facilitated the recruitment of the N-ethylmaleimide sensitive factor (NSF), an ATPase involved in vesicular trafficking, to the N-cadherin precursor complex. Dominant negative NSF E329Q impaired N-cadherin trafficking, maturation and localization at cell-cell junctions. Our results uncover a new role for p120 catenin bound to the N-cadherin precursor ensuring its trafficking through the biosynthetic pathway towards the cell surface.
Collapse
Affiliation(s)
- Diana P. Wehrendt
- Instituto de Investigaciones Biotecnológicas, (IIB-INTECH), Universidad de San Martín, San Martín, Argentina
| | - Fernando Carmona
- Instituto de Investigaciones Biotecnológicas, (IIB-INTECH), Universidad de San Martín, San Martín, Argentina
| | - Ana E. González Wusener
- Instituto de Investigaciones Biotecnológicas, (IIB-INTECH), Universidad de San Martín, San Martín, Argentina
| | - Ángela González
- Instituto de Investigaciones Biotecnológicas, (IIB-INTECH), Universidad de San Martín, San Martín, Argentina
| | - Juan M. Lázaro Martínez
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CABA, Argentina
| | - Carlos O. Arregui
- Instituto de Investigaciones Biotecnológicas, (IIB-INTECH), Universidad de San Martín, San Martín, Argentina
- * E-mail:
| |
Collapse
|
15
|
Naydenov NG, Feygin A, Wang D, Kuemmerle JF, Harris G, Conti MA, Adelstein RS, Ivanov AI. Nonmuscle Myosin IIA Regulates Intestinal Epithelial Barrier in vivo and Plays a Protective Role During Experimental Colitis. Sci Rep 2016; 6:24161. [PMID: 27063635 PMCID: PMC4827066 DOI: 10.1038/srep24161] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/21/2016] [Indexed: 02/07/2023] Open
Abstract
The actin cytoskeleton is a critical regulator of intestinal mucosal barrier permeability, and the integrity of epithelial adherens junctions (AJ) and tight junctions (TJ). Non muscle myosin II (NM II) is a key cytoskeletal motor that controls actin filament architecture and dynamics. While NM II has been implicated in the regulation of epithelial junctions in vitro, little is known about its roles in the intestinal mucosa in vivo. In this study, we generated a mouse model with an intestinal epithelial-specific knockout of NM IIA heavy chain (NM IIA cKO) and examined the structure and function of normal gut barrier, and the development of experimental colitis in these animals. Unchallenged NM IIA cKO mice showed increased intestinal permeability and altered expression/localization of several AJ/TJ proteins. They did not develop spontaneous colitis, but demonstrated signs of a low-scale mucosal inflammation manifested by prolapses, lymphoid aggregates, increased cytokine expression, and neutrophil infiltration in the gut. NM IIA cKO animals were characterized by a more severe disruption of the gut barrier and exaggerated mucosal injury during experimentally-induced colitis. Our study provides the first evidence that NM IIA plays important roles in establishing normal intestinal barrier, and protection from mucosal inflammation in vivo.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298
| | - Alex Feygin
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298
| | - Dongdong Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298
| | - John F Kuemmerle
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Gianni Harris
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY
| | - Mary Anne Conti
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298.,Virginia Institute of Molecular Medicine, Richmond, VA 23298
| |
Collapse
|
16
|
Meng J, Wang J. Role of SNARE proteins in tumourigenesis and their potential as targets for novel anti-cancer therapeutics. Biochim Biophys Acta Rev Cancer 2015; 1856:1-12. [PMID: 25956199 DOI: 10.1016/j.bbcan.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
Abstract
The function of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in cellular trafficking, membrane fusion and vesicle release in synaptic nerve terminals is well characterised. Recent studies suggest that SNAREs are also important in the control of tumourigenesis through the regulation of multiple signalling and transportation pathways. The majority of published studies investigated the effects of knockdown/knockout or overexpression of particular SNAREs on the normal function of cells as well as their dysfunction in tumourigenesis promotion. SNAREs are involved in the regulation of cancer cell invasion, chemo-resistance, the transportation of autocrine and paracrine factors, autophagy, apoptosis and the phosphorylation of kinases essential for cancer cell biogenesis. This evidence highlights SNAREs as potential targets for novel cancer therapy. This is the first review to summarise the expression and role of SNAREs in cancer biology at the cellular level, their interaction with non-SNARE proteins and modulation of cellular signalling cascades. Finally, a strategy is proposed for developing novel anti-cancer therapeutics using targeted delivery of a SNARE-inactivating protease into malignant cells.
Collapse
Affiliation(s)
- Jianghui Meng
- Charles Institute of Dermatology, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jiafu Wang
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
17
|
Lu R, Stewart L, Wilson JM. Scaffolding protein GOPC regulates tight junction structure. Cell Tissue Res 2015; 360:321-32. [PMID: 25616555 DOI: 10.1007/s00441-014-2088-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022]
Abstract
GOPC (FIG/PIST/CAL) is a PDZ-domain scaffolding protein that regulates the trafficking of a wide array of proteins, including small GTPases, receptors and cell surface molecules such as cadherin 23 and cystic fibrosis transmembrane regulator. In Madin-Darby canine kidney (MDCK) cells, we find that GOPC localizes to the trans-Golgi network (TGN) but not to the cis- or trans-Golgi cisternae. Colocalization occurs with the early endosome Rab GTPase Rab5 and a TGN/endosome marker Rab14 but not with Rab11, a marker of recycling endosomes. No localization of GOPC was detected to the lateral membranes or tight junctions. Knockdown of GOPC in MDCK cells results in decreased transepithelial resistance and increased paracellular flux. This might be attributable to the compromised trafficking of tight junction components from the TGN, as GOPC-knockdown cells have decreased lateral labeling of the tight junction protein claudin-1 and decreased protein levels of claudin-2. GOPC might mediate the trafficking of newly synthesized tight junction proteins from the TGN to the cell surface or the recycling of these proteins from specialized endosomal compartments.
Collapse
Affiliation(s)
- Ruifeng Lu
- Department of Cellular and Molecular Medicine, University of Arizona, PO Box 245044, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
18
|
Markham NO, Doll CA, Dohn MR, Miller RK, Yu H, Coffey RJ, McCrea PD, Gamse JT, Reynolds AB. DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in hydrocephalus and heterotopia. Mol Biol Cell 2014; 25:2592-603. [PMID: 25009281 PMCID: PMC4148249 DOI: 10.1091/mbc.e13-08-0492] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Isoform-specific expression of p120 affects cell motility and migration during development and tumor progression. The DIPA coiled-coil protein is a novel binding partner to the conserved isoform 1–specific head domain of p120 family members. Zebrafish data suggest that DIPA is mechanistically linked to p120 isoform–specific function in development. p120-catenin (p120) modulates adherens junction (AJ) dynamics by controlling the stability of classical cadherins. Among all p120 isoforms, p120-3A and p120-1A are the most prevalent. Both stabilize cadherins, but p120-3A is preferred in epithelia, whereas p120-1A takes precedence in neurons, fibroblasts, and macrophages. During epithelial-to-mesenchymal transition, E- to N-cadherin switching coincides with p120-3A to -1A alternative splicing. These isoforms differ by a 101–amino acid “head domain” comprising the p120-1A N-terminus. Although its exact role is unknown, the head domain likely mediates developmental and cancer-associated events linked to p120-1A expression (e.g., motility, invasion, metastasis). Here we identified delta-interacting protein A (DIPA) as the first head domain–specific binding partner and candidate mediator of isoform 1A activity. DIPA colocalizes with AJs in a p120-1A- but not 3A-dependent manner. Moreover, all DIPA family members (Ccdc85a, Ccdc85b/DIPA, and Ccdc85c) interact reciprocally with p120 family members (p120, δ-catenin, p0071, and ARVCF), suggesting significant functional overlap. During zebrafish neural tube development, both knockdown and overexpression of DIPA phenocopy N-cadherin mutations, an effect bearing functional ties to a reported mouse hydrocephalus phenotype associated with Ccdc85c. These studies identify a novel, highly conserved interaction between two protein families that may participate either individually or collectively in N-cadherin–mediated development.
Collapse
Affiliation(s)
- Nicholas O Markham
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Caleb A Doll
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Michael R Dohn
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rachel K Miller
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Huapeng Yu
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Robert J Coffey
- Epithelial Biology Center, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Joshua T Gamse
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Albert B Reynolds
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
19
|
Moresco EMY, Brandl K. Linking membrane trafficking and intestinal homeostasis. Tissue Barriers 2014; 1:e23119. [PMID: 24665373 PMCID: PMC3875636 DOI: 10.4161/tisb.23119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/02/2012] [Accepted: 12/04/2012] [Indexed: 01/05/2023] Open
Abstract
A major challenge for the human body is to maintain symbiotic relationships with bacterial communities that colonize their intestines. Although several molecules important for intestinal homeostasis have been discovered, the vast array still needs to be identified. We approached this task using a forward genetic approach, which revealed several molecules essential for intestinal homeostasis. One recently identified molecule is Ypt1p-interacting protein 1 domain family, member 6 (Yipf6). Mice with a null mutation in Yipf6 are hypersensitive to dextran sulfate sodium (DSS) induced colitis and develop spontaneous intestinal inflammation. Members of the Yip1 family are believed to be involved in ER to Golgi membrane transport.
In this review we summarize recent advances in the understanding of genes involved in intestinal homeostasis with a specific focus on the Yip family members. We speculate on how deficiency or dysfunction of Yip molecules may dysregulate intestinal homeostasis leading to pathogenic states.
Collapse
Affiliation(s)
- Eva Marie Y Moresco
- Center for Genetics of Host Defense; UT Southwestern Medical Center; Dallas, TX USA
| | - Katharina Brandl
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA USA
| |
Collapse
|
20
|
Ivanov AI. Pharmacological inhibitors of exocytosis and endocytosis: novel bullets for old targets. Methods Mol Biol 2014; 1174:3-18. [PMID: 24947371 DOI: 10.1007/978-1-4939-0944-5_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pharmacological inhibitors of vesicle trafficking possess great promise as valuable analytical tools for the study of a variety of biological processes and as potential therapeutic agents to fight microbial infections and cancer. However, many commonly used trafficking inhibitors are characterized by poor selectivity that diminishes their use in solving basic problems of cell biology or drug development. Recent high-throughput chemical screens intensified the search for novel modulators of vesicle trafficking, and successfully identified a number of small molecules that inhibit exocytosis and endocytosis in different types of mammalian cells. This chapter provides a systematic overview of recently discovered inhibitors of vesicle trafficking. It describes cellular effects and mechanisms of action of novel inhibitors of exocytosis and endocytosis. Furthermore, it pays special attention to the selectivity and possible off-target effects of these inhibitors.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Virginia Commonwealth University, Goodwin Laboratory, 401 College Street, 980035, Richmond, VA, 23298, USA,
| |
Collapse
|
21
|
Naydenov NG, Feygin A, Wang L, Ivanov AI. N-ethylmaleimide-sensitive factor attachment protein α (αSNAP) regulates matrix adhesion and integrin processing in human epithelial cells. J Biol Chem 2013; 289:2424-39. [PMID: 24311785 DOI: 10.1074/jbc.m113.498691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Integrin-based adhesion to the extracellular matrix (ECM) plays critical roles in controlling differentiation, survival, and motility of epithelial cells. Cells attach to the ECM via dynamic structures called focal adhesions (FA). FA undergo constant remodeling mediated by vesicle trafficking and fusion. A soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is an essential mediator of membrane fusion; however, its roles in regulating ECM adhesion and cell motility remain unexplored. In this study, we found that siRNA-mediated knockdown of αSNAP induced detachment of intestinal epithelial cells, whereas overexpression of αSNAP increased ECM adhesion and inhibited cell invasion. Loss of αSNAP impaired Golgi-dependent glycosylation and trafficking of β1 integrin and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin resulting in FA disassembly. These effects of αSNAP depletion on ECM adhesion were independent of apoptosis and NSF. In agreement with our previous reports that Golgi fragmentation mediates cellular effects of αSNAP knockdown, we found that either pharmacologic or genetic disruption of the Golgi recapitulated all the effects of αSNAP depletion on ECM adhesion. Furthermore, our data implicates β1 integrin, FAK, and paxillin in mediating the observed pro-adhesive effects of αSNAP. These results reveal novel roles for αSNAP in regulating ECM adhesion and motility of epithelial cells.
Collapse
|
22
|
Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1:e26938. [PMID: 24868497 PMCID: PMC3942330 DOI: 10.4161/tisb.26938] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Alí Francisco Citalán-Madrid
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Alexander García-Ponce
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| |
Collapse
|
23
|
Ivanov AI, Naydenov NG. Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:27-99. [PMID: 23445808 DOI: 10.1016/b978-0-12-407697-6.00002-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adherens junctions (AJs) are evolutionarily conserved plasma-membrane structures that mediate cell-cell adhesions in multicellular organisms. They are organized by several types of adhesive integral membrane proteins, most notably cadherins and nectins that are clustered and stabilized by a number of cytoplasmic scaffolds. AJs are key regulators of tissue architecture and dynamics via control of cell proliferation, polarity, shape, motility, and survival. They are absolutely critical for normal tissue morphogenesis and their disruption results in pathological abnormalities in different tissues. Although the field of adherens-junction research dramatically progressed in recent years, a number of important questions remain controversial and poorly understood. This review outlines basic principles that regulate organization of AJs in mammalian epithelia and discusses recent advances and standing controversies in the field. A special attention is paid to the regulation of AJs by vesicle trafficking and the intracellular cytoskeleton as well as roles and mechanisms of adherens-junction disruption during tumor progression and tissue inflammation.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | | |
Collapse
|
24
|
Naydenov NG, Baranwal S, Khan S, Feygin A, Gupta P, Ivanov AI. Novel mechanism of cytokine-induced disruption of epithelial barriers: Janus kinase and protein kinase D-dependent downregulation of junction protein expression. Tissue Barriers 2013; 1:e25231. [PMID: 24665409 PMCID: PMC3783224 DOI: 10.4161/tisb.25231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/01/2013] [Accepted: 05/31/2013] [Indexed: 12/13/2022] Open
Abstract
The ductal epithelium plays a key role in physiological secretion of pancreatic enzymes into the digestive system. Loss of barrier properties of the pancreatic duct may contribute to the development of pancreatitis and metastatic dissemination of pancreatic tumors. Proinflammatory cytokines are essential mediators of pancreatic inflammation and tumor progression; however, their effects on the integrity and barrier properties of the ductal epithelium have not been previously addressed. In the present study, we investigate mechanisms of cytokine-induced disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium. Exposure of HPAF-II human pancreatic epithelial cell monolayers to interferon (IFN)γ disrupted integrity and function of apical junctions as manifested by increased epithelial permeability and cytosolic translocation of AJ and TJ proteins. Tumor necrosis factor (TNF)α potentiated the effects of IFNγ on pancreatic epithelial junctions. The cytokine-induced increase in epithelial permeability and AJ/TJ disassembly was attenuated by pharmacological inhibition of Janus kinase (JAK) and protein kinase D (PKD). Loss of apical junctions in IFNγ/TNFα-treated HPAF-II cells was accompanied by JAK and PKD dependent decrease in expression of AJ (E-cadherin, p120 catenin) and TJ (occludin, ZO-1) proteins. Depletion of E-cadherin or p120 catenin recapitulated the effects of cytokines on HPAF-II cell permeability and junctions. Our data suggests that proinflammatory cytokines disrupt pancreatic epithelial barrier via expressional downregulation of key structural components of AJs and TJs. This mechanism is likely to be important for pancreatic inflammatory injury and tumorigenesis.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Somesh Baranwal
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Shadab Khan
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY USA
| | - Alex Feygin
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Pooja Gupta
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA USA; ; VCU Institute of Molecular Medicine; Virginia Commonwealth University School of Medicine; Richmond, VA USA ; VCU Massey Cancer Center; Virginia Commonwealth University School of Medicine; Richmond, VA USA
| |
Collapse
|
25
|
van der Werf CS, Hsiao NH, Conroy S, Paredes J, Ribeiro AS, Sribudiani Y, Seruca R, Hofstra RMW, Westers H, van IJzendoorn SCD. CLMP is essential for intestinal development, but does not play a key role in cellular processes involved in intestinal epithelial development. PLoS One 2013; 8:e54649. [PMID: 23460781 PMCID: PMC3584079 DOI: 10.1371/journal.pone.0054649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022] Open
Abstract
Loss-of-function mutations in CLMP have been found in patients with Congenital Short Bowel Syndrome (CSBS), suggesting that its encoded protein plays a major role in intestinal development. CLMP is a membrane protein that co-localizes with tight junction proteins, but its function is largely unknown. We expressed wild-type (WT)-CLMP and a mutant-CLMP (associated with CSBS) in human intestinal epithelial T84 cells that, as we show here, do not produce endogenous CLMP. We investigated the effects of WT-CLMP and mutant-CLMP proteins on key cellular processes that are important for intestinal epithelial development, including migration, proliferation, viability and transepithelial resistance. Our data showed that expression of WT-CLMP or mutant-CLMP does not affect any of these processes. Moreover, our aggregation assays in CHO cells show that CLMP does not act as a strong adhesion molecule. Thus, our data suggest that, in the in vitro model systems we used, the key processes involved in intestinal epithelial development appear to be unaffected by WT-CLMP or mutant-CLMP. Further research is needed to determine the role of CLMP in the development of the intestine.
Collapse
Affiliation(s)
- Christine S. van der Werf
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Nai-Hua Hsiao
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Siobhan Conroy
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Joana Paredes
- The Cancer Genetics Group, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ana S. Ribeiro
- The Cancer Genetics Group, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Yunia Sribudiani
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Clinical Genetics, Erasmus University Rotterdam, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Raquel Seruca
- The Cancer Genetics Group, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Robert M. W. Hofstra
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Clinical Genetics, Erasmus University Rotterdam, Erasmus Medical Centre, Rotterdam, The Netherlands
- * E-mail:
| | - Helga Westers
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sven C. D. van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Naydenov NG, Harris G, Morales V, Ivanov AI. Loss of a membrane trafficking protein αSNAP induces non-canonical autophagy in human epithelia. Cell Cycle 2012. [PMID: 23187805 DOI: 10.4161/cc.22885] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a catabolic process that sequesters intracellular proteins and organelles within membrane vesicles called autophagosomes with their subsequent delivery to lyzosomes for degradation. This process involves multiple fusions of autophagosomal membranes with different vesicular compartments; however, the role of vesicle fusion in autophagosomal biogenesis remains poorly understood. This study addresses the role of a key vesicle fusion regulator, soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP), in autophagy. Small interfering RNA-mediated downregulation of αSNAP expression in cultured epithelial cells stimulated the autophagic flux, which was manifested by increased conjugation of microtubule-associated protein light chain 3 (LC3-II) and accumulation of LC3-positive autophagosomes. This enhanced autophagy developed via a non-canonical mechanism that did not require beclin1-p150-dependent nucleation, but involved Atg5 and Atg7-mediated elongation of autophagosomal membranes. Induction of autophagy in αSNAP-depleted cells was accompanied by decreased mTOR signaling but appeared to be independent of αSNAP-binding partners, N-ethylmaleimide-sensitive factor and BNIP1. Loss of αSNAP caused fragmentation of the Golgi and downregulation of the Golgi-specific GTP exchange factors, GBF1, BIG1 and BIG2. Pharmacological disruption of the Golgi and genetic inhibition of GBF1 recreated the effects of αSNAP depletion on the autophagic flux. Our study revealed a novel role for αSNAP as a negative regulator of autophagy that acts by enhancing mTOR signaling and regulating the integrity of the Golgi complex.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | | | | |
Collapse
|
27
|
Folliculin, the product of the Birt-Hogg-Dube tumor suppressor gene, interacts with the adherens junction protein p0071 to regulate cell-cell adhesion. PLoS One 2012; 7:e47842. [PMID: 23139756 PMCID: PMC3490959 DOI: 10.1371/journal.pone.0047842] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/21/2012] [Indexed: 01/04/2023] Open
Abstract
Birt-Hogg-Dube (BHD) is a tumor suppressor gene syndrome associated with fibrofolliculomas, cystic lung disease, and chromophobe renal cell carcinoma. In seeking to elucidate the pathogenesis of BHD, we discovered a physical interaction between folliculin (FLCN), the protein product of the BHD gene, and p0071, an armadillo repeat containing protein that localizes to the cytoplasm and to adherens junctions. Adherens junctions are one of the three cell-cell junctions that are essential to the establishment and maintenance of the cellular architecture of all epithelial tissues. Surprisingly, we found that downregulation of FLCN leads to increased cell-cell adhesion in functional cell-based assays and disruption of cell polarity in a three-dimensional lumen-forming assay, both of which are phenocopied by downregulation of p0071. These data indicate that the FLCN-p0071 protein complex is a negative regulator of cell-cell adhesion. We also found that FLCN positively regulates RhoA activity and Rho-associated kinase activity, consistent with the only known function of p0071. Finally, to examine the role of Flcn loss on cell-cell adhesion in vivo, we utilized keratin-14 cre-recombinase (K14-cre) to inactivate Flcn in the mouse epidermis. The K14-Cre-Bhd(flox/flox) mice have striking delays in eyelid opening, wavy fur, hair loss, and epidermal hyperplasia with increased levels of mammalian target of rapamycin complex 1 (mTORC1) activity. These data support a model in which dysregulation of the FLCN-p0071 interaction leads to alterations in cell adhesion, cell polarity, and RhoA signaling, with broad implications for the role of cell-cell adhesion molecules in the pathogenesis of human disease, including emphysema and renal cell carcinoma.
Collapse
|