1
|
Zhang S, Li S, Meng L, Liu X, Zhang Y, Zhao S, Zhao H. Root exudation under maize/soybean intercropping system mediates the arbuscular mycorrhizal fungi diversity and improves the plant growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1375194. [PMID: 38947945 PMCID: PMC11211593 DOI: 10.3389/fpls.2024.1375194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Introduction Maize/soybean intercropping is a common cropping practice in Chinese agriculture, known to boost crop yield and enhance soil fertility. However, the role of below-ground interactions, particularly root exudates, in maintaining intercropping advantages in soybean/maize intercropping systems remains unclear. Methods This study aimed to investigate the differences in root exudates between intercropping and monocropping systems through two pot experiments using metabolomics methods. Multiple omics analyses were conducted to explore correlations between differential metabolites and the community of Arbuscular Mycorrhizal Fungi (AMF), shedding light on the mechanisms underlying the dominance of intercropping from the perspective of root exudates-soil microorganism interactions. Results and discussion The study revealed that intercropping significantly increased the types and contents of root exudates, lowered soil pH, increased the availability of nutrients like available nitrogen (AN) and available phosphorus (AP), and enhanced AMF colonization, resulting in improving the community composition of AMF. Besides, root exudates in intercropping systems differed significantly from those in monocropping, with 41 and 39 differential metabolites identified in the root exudates of soybean/maize, predominantly amino acids and organic acids. The total amount of amino acids in the root exudates of soybean intercropping was 3.61 times higher than in monocropping. Additionally, the addition of root exudates significantly improved the growth of soybean/maize and AMF colonization, with the mycorrhizal colonization rate in intercropping increased by 105.99% and 111.18% compared to monocropping, respectively. The identified metabolic pathways associated with root exudates were closely linked to plant growth, soil fertility improvement, and the formation of AMF. Correlation analysis revealed a significant relationship (P < 0.05) between certain metabolites such as tartaric acid, oxalic acid, malic acid, aspartic acid, alanine, and the AMF community. Notably, the photosynthetic carbon fixation pathway involving aspartic acid showed a strong association with the function of Glomus_f_Glomerace, the dominant genus of AMF. A combined analysis of metabolomics and high throughput sequencing revealed that the root exudates of soybean/maize intercropping have direct or indirect connections with AMF and soil nutrients. Conclusion This suggests that the increased root exudates of the soybean/maize intercropping system mediate an improvement in AMF community composition, thereby influencing soil fertility and maintaining the advantage of intercropping.
Collapse
Affiliation(s)
- Shu Zhang
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| | - Shumin Li
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| | - Lingbo Meng
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang, China
| | - Xiaodan Liu
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| | - Yuhang Zhang
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| | - Shuchang Zhao
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| | - Haobing Zhao
- Resource and Environmental College, Northeast Agricultural University, Heilongjiang, China
| |
Collapse
|
2
|
Pan Z, Ma T, Steele M, Guan LL. Varied microbial community assembly and specialization patterns driven by early life microbiome perturbation and modulation in young ruminants. ISME COMMUNICATIONS 2024; 4:ycae044. [PMID: 38650709 PMCID: PMC11033733 DOI: 10.1093/ismeco/ycae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Perturbations and modulations during early life are vital to affect gut microbiome assembly and establishment. In this study, we assessed how microbial communities shifted during calf diarrhea and with probiotic yeast supplementation (Saccharomyces cerevisiae var. boulardii, SCB) and determined the key bacterial taxa contributing to the microbial assembly shifts using a total of 393 fecal samples collected from 84 preweaned calves during an 8-week trial. Our results revealed that the microbial assembly patterns differed between healthy and diarrheic calves at 6- and 8-week of the trial, with healthy calves being stochastic-driven and diarrheic calves being deterministic-driven. The two-state Markov model revealed that SCB supplementation had a higher possibility to shift microbial assembly from deterministic- to stochastic-driven in diarrheic calves. Furthermore, a total of 23 and 21 genera were specific ecotypes to assembly patterns in SCB-responsive (SCB-fed calves did not exhibit diarrhea) and nonresponsive (SCB-fed calves occurred diarrhea) calves, respectively. Among these ecotypes, the area under a receiver operating characteristic curve revealed that Blautia and Ruminococcaceae UCG 014, two unidentified genera from the Ruminococcaceae family, had the highest predictiveness for microbial assembly patterns in SCB-responsive calves, while Prevotellaceae, Blautia, and Escherichia-Shigella were the most predictive bacterial taxa for microbial assembly patterns in SCB-nonresponsive calves. Our study suggests that microbiome perturbations and probiotic yeast supplementation serving as deterministic factors influenced assembly patterns during early life with critical genera being predictive for assembly patterns, which sheds light on mechanisms of microbial community establishment in the gut of neonatal calves during early life.
Collapse
Affiliation(s)
- Zhe Pan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Michael Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Khan T, Song W, Nappi J, Marzinelli EM, Egan S, Thomas T. Functional guilds and drivers of diversity in seaweed-associated bacteria. FEMS MICROBES 2023; 5:xtad023. [PMID: 38213395 PMCID: PMC10781435 DOI: 10.1093/femsmc/xtad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Comparisons of functional and taxonomic profiles from bacterial communities in different habitats have suggested the existence of functional guilds composed of taxonomically or phylogenetically distinct members. Such guild membership is, however, rarely defined and the factors that drive functional diversity in bacteria remain poorly understood. We used seaweed-associated bacteria as a model to shed light on these important aspects of community ecology. Using a large dataset of over 1300 metagenome-assembled genomes from 13 seaweed species we found substantial overlap in the functionality of bacteria coming from distinct taxa, thus supporting the existence of functional guilds. This functional equivalence between different taxa was particularly pronounced when only functions involved in carbohydrate degradation were considered. We further found that bacterial taxonomy is the dominant driver of functional differences between bacteria and that seaweed species or seaweed type (i.e. brown, red and green) had relatively stronger impacts on genome functionality for carbohydrate-degradation functions when compared to all other cellular functions. This study provides new insight into the factors underpinning the functional diversity of bacteria and contributes to our understanding how community function is generated from individual members.
Collapse
Affiliation(s)
- Tahsin Khan
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
El-Malah SS, Rasool K, Jabbar KA, Sohail MU, Baalousha HM, Mahmoud KA. Marine Bacterial Community Structures of Selected Coastal Seawater and Sediment Sites in Qatar. Microorganisms 2023; 11:2827. [PMID: 38137970 PMCID: PMC10745943 DOI: 10.3390/microorganisms11122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/24/2023] Open
Abstract
Severe environmental conditions can have a diverse impact on marine microorganisms, including bacteria. This can have an inevitable impact on the biofouling of membrane-based desalination plants. In this work, we have utilized indicator bacteria such as total coliform, fecal coliform, and Pseudomonas aeruginosa, as well as 16S rRNA sequencing, to investigate the impact of environmental conditions and spatial variations on the diversity of bacterial communities in the coastal waters and sediments from selected sites in Qatar. The concentration levels of indicator bacteria were affected by increasing temperatures and pH, and by decreasing salinity of seawater samples. Diversity indices and the molecular phylogeny demonstrated that Proteobacteria, Bacteroidetes, and Cyanobacteria were the dominant phyla in all locations. The most abundant operational taxonomic units (OTUs) at the family level were from Flavobacteriaceae (27.07%, 4.31%) and Rhodobacteraceae (22.51%, 9.86%) in seawater and sediment, respectively. Alphaproteobacteria (33.87%, 16.82%), Flavobacteria (30.68%, 5.84%), and Gammaproteobacteria (20.35%, 12.45%) were abundant at the species level in both seawater and sediment, while Clostridia (13.72%) was abundant in sediment only. The results suggest that sediment can act as a reservoir for indicator bacteria, with higher diversity and lower abundance compared to seawater.
Collapse
Affiliation(s)
- Shimaa S. El-Malah
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| | - Khadeeja Abdul Jabbar
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| | | | - Husam Musa Baalousha
- Department of Geosciences, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Khaled A. Mahmoud
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.S.E.-M.); (K.R.); (K.A.J.)
| |
Collapse
|
5
|
Zhou M, Guan X, Deng T, Hu R, Qian L, Yang X, Wu B, Li J, He Q, Shu L, Yan Q, He Z. Synthetic phylogenetically diverse communities promote denitrification and stability. ENVIRONMENTAL RESEARCH 2023; 231:116184. [PMID: 37207729 DOI: 10.1016/j.envres.2023.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Denitrification is an important process of the global nitrogen cycle as some of its intermediates are environmentally important or related to global warming. However, how the phylogenetic diversity of denitrifying communities affects their denitrification rates and temporal stability remains unclear. Here we selected denitrifiers based on their phylogenetic distance to construct two groups of synthetic denitrifying communities: one closely related (CR) group with all strains from the genus Shewanella and the other distantly related (DR) group with all constituents from different genera. All synthetic denitrifying communities (SDCs) were experimentally evolved for 200 generations. The results showed that high phylogenetic diversity followed by experimental evolution promoted the function and stability of synthetic denitrifying communities. Specifically, the productivity and denitrification rates were significantly (P < 0.05) higher with Paracocus denitrificans as the dominant species (since the 50th generation) in the DR community than those in the CR community. The DR community also showed significantly (t = 7.119, df = 10, P < 0.001) higher stability through overyielding and asynchrony of species fluctuations, and showed more complementarity than the CR group during the experimental evolution. This study has important implications for applying synthetic communities to remediate environmental problems and mitigate greenhouse gas emissions.
Collapse
Affiliation(s)
- Min Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Deng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
6
|
Liu F, Yuan ZS, Zeng ZH, Pan H. Effects of high- and low-yield moso bamboo (Phyllostachys edulis) forests on bacterial community structure. Sci Rep 2023; 13:9833. [PMID: 37330578 PMCID: PMC10276864 DOI: 10.1038/s41598-023-36979-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
To study the characteristics of bacterial community structure in high-yield and low-yield moso bamboo (Phyllostachys edulis) forests, we collected bamboo rhizome, rhizome root, stem, leaf, rhizosphere soil, and non-rhizosphere soil from high- and low-yield forests in Yong'an City and Jiangle County of Fujian Province, China. The genomic DNA of the samples was extracted, sequenced and analyzed. The results show that: the common differences between the high-yield and low-yield P. edulis forest samples in the two regions were mainly in bacterial community compositions in the bamboo rhizome, rhizome root, and soil samples. Differences in the bacterial community compositions in the stem and leaf samples were insignificant. The bacterial species and diversity in rhizome root and rhizosphere soil of high-yield P. edulis forests were less than those of low-yield forests. The relative abundance of Actinobacteria and Acidobacteria in rhizome root samples of high-yield forests was higher than that in low-yield forests. The relative abundance of Rhizobiales and Burkholderiales in bamboo rhizome samples in high-yield forests was higher than that in low-yield forests. The relative abundance of Bradyrhizobium in bamboo rhizome samples in high-yield forests was higher than that in low-yield forests in the two regions. The change of bacterial community composition in P. edulis stems and leaves showed little correlation with high- or low-yields of P. edulis forests. Notably, the bacterial community composition of the rhizome root system was correlated with the high yield of bamboo. This study provides a theoretical basis for using of microbes to enhance the yields of P. edulis forests.
Collapse
Affiliation(s)
- Fang Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zong-Sheng Yuan
- Institute of Oceanography, Minjiang University, Minhou County, Fuzhou, 350108, Fujian, China.
| | - Zhi-Hao Zeng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hui Pan
- Institute of Oceanography, Minjiang University, Minhou County, Fuzhou, 350108, Fujian, China
| |
Collapse
|
7
|
Multi-factor correlation analysis of the effect of root-promoting practices on tobacco rhizosphere microecology in growth stages. Microbiol Res 2023; 270:127349. [PMID: 36870194 DOI: 10.1016/j.micres.2023.127349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Some agronomic practices not only promote the development of crop roots and increase overall plant performance but also affect colonisation by rhizosphere microorganisms. However, the composition and temporal dynamics of the tobacco rhizosphere microbiota under different root-promoting practices are poorly understood. Here, we characterised the tobacco rhizosphere microbiota at the knee-high, vigorous growing, and maturity stages under the application of potassium fulvic acid (PFA), γ-Polyglutamic acid (PGA), soymilk root irrigation (SRI), and conventional fertilization (CK) and its correlation with root characteristics and soil nutrients. The results showed that three root-promoting practices notably improved the dry and fresh root weights. Total nitrogen and phosphorus, available phosphorus and potassium, and organic matter contents in the rhizosphere markedly increased at the vigorous growing stage. The rhizosphere microbiota was changed through root-promoting practices. However, with tobacco growth, the change of rhizosphere microbiota showed a pattern of slow first and then fast and the microbiota of different treatments gradually approached. SRI reduced plant-pathogenic fungi but increased chemoheterotrophic and phototrophic bacteria, and arbuscular mycorrhizal fungi. PFA and PGA markedly increased arbuscular mycorrhizal and ectomycorrhizal fungi at the knee-high stage, which benefitted tobacco nutrient absorption. The correlation between rhizosphere microorganisms and environmental factors varied at different growth stages. Notably, the rhizosphere microbiota was more sensitive to environmental factors at the vigorous growing stage, and the interactions were more complex than in other stages. Furthermore, a variance partitioning analysis showed that the influence of root-soil interaction on the rhizosphere microbiota increased with tobacco growth. Overall, all three root-promoting practices could improve root characteristics, rhizosphere nutrient, and rhizosphere microbiota to varying degrees and increase the tobacco biomass, among which PGA had the most obvious effect and most suitable for tobacco cultivation. Our findings revealed the role of root-promoting practices in shaping the rhizosphere microbiota during plant growth and elucidated the assembly patterns and environmental drivers of crop rhizosphere microbiota driven by the application of root-promoting practices in agricultural production.
Collapse
|
8
|
Saborimanesh N, Xin Q, Ridenour C, Farooqi H. Response of microbial communities in North Saskatchewan River to diluted bitumen and conventional crude under freeze-thaw-refreeze cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121256. [PMID: 36787815 DOI: 10.1016/j.envpol.2023.121256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms are the first responder to oil spills and their response provides insight into the ecological effects of oils on aquatic ecosystems. Limited information is available about the impact of oil spills on freshwater ecosystems under seasonal river-ice regimes. This study aimed to investigate the microbial response of North Saskatchewan River water to diluted bitumen (DB) and conventional crude (CC) during the freeze-thaw-refreeze cycle. In two separate experiments, equivalent to 2 L of fresh DB and CC were spilled on the ice-covered river water within a mesoscale spill tank. The microbial response (changes in abundance and diversity) to oils under the freeze, thaw, and refreeze cycles were assessed for 10 days using 16S rRNA gene sequencing. The results showed that microbial communities exhibited different responses to the DB and CC oils. The effect of oils was more pronounced than that of the freeze or thaw cycles. The river microbial community rapidly responded to both spills, which coincided with a steady increase in the organic content of water throughout the freeze-thaw-refreeze cycle. Microbial diversity increased after the DB spill, but remain unchanged after the CC spill, regardless of the cycles. A higher number of new taxa emerged during the ice-covered period, while more microbial enrichment (increase in abundance) was observed during the thaw cycle. Flavobacterium (37 ± 5%) and Pseudomonas (36 ± 4%) remained the most predominant genera post-DB and CC spill, respectively. The results of this study suggest that ice coverage of 5 cm did not prevent the microbial communities from the effects of oils. Thus, a quick clean-up response to an oil spill on ice-covered water is equally critical to avoid the effects of oils on the underlying freshwater ecosystems.
Collapse
Affiliation(s)
- Nayereh Saborimanesh
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Qin Xin
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Christine Ridenour
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Hena Farooqi
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| |
Collapse
|
9
|
Lei J, Wu H, Li X, Guo W, Duan A, Zhang J. Response of Rhizosphere Bacterial Communities to Near-Natural Forest Management and Tree Species within Chinese Fir Plantations. Microbiol Spectr 2023; 11:e0232822. [PMID: 36688690 PMCID: PMC9927156 DOI: 10.1128/spectrum.02328-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Near-natural forest management plays an important role in the maintenance of the long-term productivity and soil fertility of plantations. We conducted high-throughput absolute quantitative sequencing of 16S rRNA genes to compare the structures and diversity of rhizosphere soil bacterial communities among a pure Chinese fir (Cunninghamia lanceolata) plantation (S), a Cunninghamia lanceolata-Castanopsis hystrix-Michelia hedyosperma mixed plantation (SHX), and a Cunninghamia lanceolata-Castanopsis fissa mixed plantation (SD). The results revealed that near-natural forest management improved the rhizosphere soil properties of Chinese fir, especially the phosphorus content. Rhizosphere soil bacterial communities of Chinese fir in SHX and SD contained higher total absolute abundances and more unique operational taxonomic units (OTUs) than the pure plantation forest. Planctomycetes and Actinobacteria were abundant in SD, and Actinobacteria were enriched in SHX. The tree species also had an impact on the rhizosphere soil bacterial communities. For the rhizosphere soils of different tree species of SHX, the available phosphorus (AP) content of the rhizosphere of Chinese fir significantly surpassed those of Castanopsis hystrix and Michelia hedyosperma. Bacteria related to nitrogen fixing, such as Burkholderiales and Rhizobiales, were more abundant in Chinese fir in SD than in Castanopsis fissa. Acdiobacteria and Proteobacteria underpinned the differences found in the compositions of soil bacteria. The pH and soil organic matter were key variables influencing the rhizosphere soil bacterial communities. Our results demonstrated that in Chinese fir plantations, 12 years of near-natural management of introduced broad-leaved tree species can drive alterations of the physicochemical characteristics, bacterial community structure, and composition of rhizosphere soil, with tree species identity further influencing the rhizosphere soil bacterial community. IMPORTANCE Near-natural forest management is an important way to change the soil fertility decline and productivity reduction of pure Chinese fir plantations. At present, many detailed studies have been carried out on the impact of near-natural forest management on Chinese fir plantations at home and abroad. However, there are still few studies on the response of rhizosphere bacterial communities to near-natural forest management. Our study determined absolute quantities of Chinese fir rhizosphere bacterial communities in different mixed patterns. The results underscore the importance of near-natural forest management for Chinese fir plantation rhizosphere bacterial communities and provide new information on soil factors that affect rhizosphere bacterial communities in South China.
Collapse
Affiliation(s)
- Jie Lei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Hanbin Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Xiaoyan Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
| | - Wenfu Guo
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang, People's Republic of China
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, People's Republic of China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Sun S, Xue R, Liu M, Wang L, Zhang W. Research progress and hotspot analysis of rhizosphere microorganisms based on bibliometrics from 2012 to 2021. Front Microbiol 2023; 14:1085387. [PMID: 36910227 PMCID: PMC9995608 DOI: 10.3389/fmicb.2023.1085387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Rhizosphere microorganisms are important organisms for plant growth promotion and bio-control. To understand the research hot topics and frontier trends of rhizosphere microorganisms comprehensively and systematically, we collected 6,056 publications on rhizosphere microorganisms from Web of Science and performed a bibliometric analysis by CiteSpace 6.1.3 and R 5.3.1. The results showed that the total number of references issued in this field has been on the rise in the past decades. China, India, and Pakistan are the top three countries in terms of the number of articles issued, while Germany, the United States, and Spain were the countries with the highest number of co-published papers with other countries. The core research content in this field were the bio-control, bacterial community, ACC deaminase, phytoremediation, induced systematic resistance, and plant growth promotion. Seeding growth, Bacillus velezensis, plant-growth, and biological-control were currently and may be the highlights in the field of rhizosphere microorganisms research for a long time in the future. The above study results quantitatively, objectively, and scientifically described the research status and research focus of rhizosphere microorganisms from 2012 to 2021 from the perspective of referred papers, with a view to promoting in-depth research in this field and providing reference information for scholars in related fields to refine research trends and scientific issues.
Collapse
Affiliation(s)
- Shangsheng Sun
- Engineering Center for Environmental DNA Technology and Aquatic Ecological Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Ruipeng Xue
- Engineering Center for Environmental DNA Technology and Aquatic Ecological Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Mengyue Liu
- Engineering Center for Environmental DNA Technology and Aquatic Ecological Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Liqing Wang
- Engineering Center for Environmental DNA Technology and Aquatic Ecological Health Assessment, Shanghai Ocean University, Shanghai, China.,Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Wei Zhang
- Engineering Center for Environmental DNA Technology and Aquatic Ecological Health Assessment, Shanghai Ocean University, Shanghai, China.,Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
11
|
Cui Z, Li R, Li F, Jin L, Wu H, Cheng C, Ma Y, Wang Z, Wang Y. Structural characteristics and diversity of the rhizosphere bacterial communities of wild Fritillaria przewalskii Maxim. in the northeastern Tibetan Plateau. Front Microbiol 2023; 14:1070815. [PMID: 36876117 PMCID: PMC9981654 DOI: 10.3389/fmicb.2023.1070815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Fritillaria przewalskii Maxim. is a Chinese endemic species with high medicinal value distributed in the northeastern part of the Tibetan Plateau. F. przewalskii root-associated rhizosphere bacterial communities shaped by soil properties may maintain the stability of soil structure and regulate F. przewalskii growth, but the rhizosphere bacterial community structure of wild F. przewalskii from natural populations is not clear. Methods In the current study, soil samples from 12 sites within the natural range of wild F. przewalskii were collected to investigate the compositions of bacterial communities via high-throughput sequencing of 16S rRNA genes and multivariate statistical analysis combined with soil properties and plant phenotypic characteristics. Results Bacterial communities varied between rhizosphere and bulk soil, and also between sites. Co-occurrence networks were more complex in rhizosphere soil (1,169 edges) than in bulk soil (676 edges). There were differences in bacterial communities between regions, including diversity and composition. Proteobacteria (26.47-37.61%), Bacteroidetes (10.53-25.22%), and Acidobacteria (10.45-23.54%) were the dominant bacteria, and all are associated with nutrient cycling. In multivariate statistical analysis, both soil properties and plant phenotypic characteristics were significantly associated with the bacterial community (p < 0.05). Soil physicochemical properties accounted for most community differences, and pH was a key factor (p < 0.01). Interestingly, when the rhizosphere soil environment remained alkaline, the C and N contents were lowest, as was the biomass of the medicinal part bulb. This might relate to the specific distribution of genera, such as Pseudonocardia, Ohtaekwangia, Flavobacterium (relative abundance >0.01), which all have significantly correlated with the biomass of F. przewalskii (p < 0.05). Discussion F. przewalskii is evidently averse to alkaline soil with high potassium contents, but this requires future verification. The results of the present study may provide theoretical guidance and new insights for the cultivation and domestication of F. przewalskii.
Collapse
Affiliation(s)
- Zhijia Cui
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Ran Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Haixu Wu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunya Cheng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yi Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Zhenheng Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed by Gansu Province & MOE of PRC, Lanzhou, Gansu, China
| | - Yuanyuan Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Eto M, Yahara T, Kuroiwa A, Shioya K, Flores GE, Hamamura N. Dynamics of rumen microbiome in sika deer (Cervus nippon yakushimae) from unique subtropical ecosystem in Yakushima Island, Japan. Sci Rep 2022; 12:21623. [PMID: 36517661 PMCID: PMC9751099 DOI: 10.1038/s41598-022-26050-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Yaku sika deer (Cervus nippon yakushimae) are endemic to Yakushima Island, whose landscape covered with primary evergreen forest is recognized as a World Heritage Site. In this study, the rumen bacterial microbiota (RBM) of wild Yaku sika was characterized using high throughput sequencing of bacterial 16S rRNA genes combined with targeted cultivation and functional analyses. Comparative analyses of RBM datasets from other ruminant animals revealed distinct community structure among domesticated and wild ruminants. Wild Yaku sika RBM exhibited higher species richness than other sika deer (i.e. wild Ezo sika and domesticated sika deer), likely reflecting their dietary variations associated with unique ecosystem in the island. The Yaku sika RBM of high deer population density samples exhibited higher diversity and contained higher proportion of Firmicutes than those of lower density samples. Moreover, the highest abundance of tannase gene were observed in individuals from the highest population density area, consistent with the previous observation that Yaku sika in the high density areas expanded their feed to include tannin-rich unpalatable plants. This study indicated that RBM of unique wild Yaku sika contribute to the flexibility of dietary shift and thus maintaining nutritional status of Yaku sika under high density conditions.
Collapse
Affiliation(s)
- Misaki Eto
- grid.177174.30000 0001 2242 4849Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 Japan
| | - Tetsukazu Yahara
- grid.177174.30000 0001 2242 4849Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395 Japan
| | - Arika Kuroiwa
- grid.177174.30000 0001 2242 4849Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 Japan
| | - Katsunori Shioya
- Kyushu Natural Environmental Research Co. Ltd, 1159-5 Haramizu Kikuyoumachi, Kikuchi-Gun, Kumamoto, 869-1102 Japan
| | - Gilberto E. Flores
- grid.253563.40000 0001 0657 9381Department of Biology, California State University, Northridge, 18111 Nordhoff Street, Northridge, CA 91330 USA
| | - Natsuko Hamamura
- grid.177174.30000 0001 2242 4849Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 Japan ,grid.177174.30000 0001 2242 4849Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395 Japan
| |
Collapse
|
13
|
Piccardi P, Alberti G, Alexander JM, Mitri S. Microbial invasion of a toxic medium is facilitated by a resident community but inhibited as the community co-evolves. THE ISME JOURNAL 2022; 16:2644-2652. [PMID: 36104451 PMCID: PMC9666444 DOI: 10.1038/s41396-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Predicting whether microbial invaders will colonize an environment is critical for managing natural and engineered ecosystems, and controlling infectious disease. Invaders often face competition by resident microbes. But how invasions play out in communities dominated by facilitative interactions is less clear. We previously showed that growth medium toxicity can promote facilitation between four bacterial species, as species that cannot grow alone rely on others to survive. Following the same logic, here we allowed other bacterial species to invade the four-species community and found that invaders could more easily colonize a toxic medium when the community was present. In a more benign environment instead, invasive species that could survive alone colonized more successfully when the residents were absent. Next, we asked whether early colonists could exclude future ones through a priority effect, by inoculating the invaders into the resident community only after its members had co-evolved for 44 weeks. Compared to the ancestral community, the co-evolved resident community was more competitive toward invaders and less affected by them. Our experiments show how communities may assemble by facilitating one another in harsh, sterile environments, but that arriving after community members have co-evolved can limit invasion success.
Collapse
Affiliation(s)
- Philippe Piccardi
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland
| | - Géraldine Alberti
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland
| | - Jake M Alexander
- Department of Environmental Systems Science, ETH Zurich, Zürich, Switzerland
| | - Sara Mitri
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
14
|
Yu J, Cheon JH. Microbial Modulation in Inflammatory Bowel Diseases. Immune Netw 2022; 22:e44. [PMID: 36627937 PMCID: PMC9807960 DOI: 10.4110/in.2022.22.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 12/30/2022] Open
Abstract
Gut dysbiosis is one of prominent features in inflammatory bowel diseases (IBDs) which are of an unknown etiology. Although the cause-and-effect relationship between IBD and gut dysbiosis remains to be elucidated, one area of research has focused on the management of IBD by modulating and correcting gut dysbiosis. The use of antibiotics, probiotics either with or without prebiotics, and fecal microbiota transplantation from healthy donors are representative methods for modulating the intestinal microbiota ecosystem. The gut microbiota is not a simple assembly of bacteria, fungi, and viruses, but a complex organ-like community system composed of numerous kinds of microorganisms. Thus, studies on specific changes in the gut microbiota depending on which treatment option is applied are very limited. Here, we review previous studies on microbial modulation as a therapeutic option for IBD and its significance in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Jongwook Yu
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
15
|
Tang X, Fei X, Sun Y, Shao H, Zhu J, He X, Wang X, Yong B, Tao X. Abscisic acid-polyacrylamide (ABA-PAM) treatment enhances forage grass growth and soil microbial diversity under drought stress. FRONTIERS IN PLANT SCIENCE 2022; 13:973665. [PMID: 36119590 PMCID: PMC9478517 DOI: 10.3389/fpls.2022.973665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Drought restricts the growth of alpine grassland vegetation. This study aimed to explore a new technical system to improve the drought resistance of forage grass. Qinghai cold-land Poa pratensis seedlings were used in the drought stress experiment. A combination of abscisic acid (ABA) and polyacrylamide (PAM) were used to affect the growth, leaf physiology, soil enzyme activity, and rhizosphere microbial diversity of P. pratensis. The fresh leaf weight and root surface area were significantly increased after ABA-PAM combined treatment, while root length was significantly reduced. Besides, the leaf catalase (CAT) and superoxide dismutase (SOD) enzyme activity, proline and chlorophyll content, increased after the treatment, while malondialdehyde (MDA) content decreased. The treatment also increased sucrase, urease, and alkaline protease activities in rhizosphere soil, while decreasing acid phosphatase and neutral phosphatase enzyme activities. ABA-PAM combined treatment enhanced the rhizosphere microbial community and forage drought resistance by altering the abundance of various dominant microorganisms in the rhizosphere soil. The relative abundances of Actinobacteria, Chloroflexi, and Acidobacteria decreased, while Proteobacteria, Firmicutes, and Ascomycota increased. Unlike the relative abundance of Gibberella that decreased significantly, Komagataeibacter, Lactobacillus, Pichia, and Dekkera were significantly increased. Single-factor collinearity network analysis revealed a close relationship between the different rhizosphere microbial communities of forage grass, after ABA-PAM treatment. This study implies that ABA-PAM combined treatment can improve the drought resistance of forages. Therefore, it provides a theoretical and practical basis for restoring drought-induced grassland degradation.
Collapse
Affiliation(s)
- Xue Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xueting Fei
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Leshan Haitang Experimental Middle School, Leshan, China
| | - Yining Sun
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Huanhuan Shao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Jinyu Zhu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xinyi He
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaoyan Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Yong
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
16
|
Peng M, He H, Wang Z, Li G, Lv X, Pu X, Zhuang L. Responses and comprehensive evaluation of growth characteristics of ephemeral plants in the desert-oasis ecotone to soil types. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115288. [PMID: 35594824 DOI: 10.1016/j.jenvman.2022.115288] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The ecological environment of the Gurbantünggüt desert-oasis ecotone is extremely fragile. Ephemeral plants are an important part of the ecosystem and play an essential role in maintaining the ecological stability of the ecotone. However, few studies have focused on the growth, soil quality and system sustainability of ephemeral plants in different soils. This study was based on two typical soil types (grey desert soil, GS; aeolian soil, AS) in the aforementioned ecotone, considered four ephemeral plants (Tetracme recurvata, TR; Tetracme contorta, TC; Malcolmia scorpioides, MS; Isatis violascens, IV) as the research object, analysed plant characteristics and soil properties, and comprehensively evaluated the ephemeral plant system by analysing the soil quality index (SQI) and sustainability index (SI). The results showed that there were significant differences in biomass and nutrient accumulation between different ephemeral plants, which were significantly affected by soil types. In the two examined soils (GS and AS), the contents of nutrients and microbial carbon (MBC) and nitrogen (MBN) in the rhizosphere soil were higher than those in the bare soil (BS), and there were significant differences among different species. The key soil factors related to total biomass in GS and AS were also different. The SQI of ephemeral plants was significantly higher than that of the BS, and varied with soil types and plant species. The species with the highest SQI of the key factor data set in GS and AS were IV and TR, respectively. The SI analysis indicated that IV in GS and MS and IV in AS were sustainable, and the plant properties can be better used to assess the sustainability of ephemeral plant systems. In conclusion, ephemeral plants improved the soil quality and system sustainability of the study ecotone. Further, the growth of ephemeral plant and rhizosphere soil properties vary with plant species and soil types; thus, selecting suitable species for large-scale planting in different soil types is of great significance for improving the ecological stability of the ecotone.
Collapse
Affiliation(s)
- Mengwen Peng
- College of Life Sciences, Shihezi University, North 4 Rd, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Hao He
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, College of Agriculture, Shihezi University, North 4 Rd, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Zhongke Wang
- College of Life Sciences, Shihezi University, North 4 Rd, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Guifang Li
- College of Life Sciences, Shihezi University, North 4 Rd, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Xinhua Lv
- College of Life Sciences, Shihezi University, North 4 Rd, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Xiaozhen Pu
- College of Life Sciences, Shihezi University, North 4 Rd, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Li Zhuang
- College of Life Sciences, Shihezi University, North 4 Rd, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, PR China.
| |
Collapse
|
17
|
Rare and localized events stabilize microbial community composition and patterns of spatial self-organization in a fluctuating environment. THE ISME JOURNAL 2022; 16:1453-1463. [PMID: 35079136 PMCID: PMC9038690 DOI: 10.1038/s41396-022-01189-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Spatial self-organization is a hallmark of surface-associated microbial communities that is governed by local environmental conditions and further modified by interspecific interactions. Here, we hypothesize that spatial patterns of microbial cell-types can stabilize the composition of cross-feeding microbial communities under fluctuating environmental conditions. We tested this hypothesis by studying the growth and spatial self-organization of microbial co-cultures consisting of two metabolically interacting strains of the bacterium Pseudomonas stutzeri. We inoculated the co-cultures onto agar surfaces and allowed them to expand (i.e. range expansion) while fluctuating environmental conditions that alter the dependency between the two strains. We alternated between anoxic conditions that induce a mutualistic interaction and oxic conditions that induce a competitive interaction. We observed co-occurrence of both strains in rare and highly localized clusters (referred to as “spatial jackpot events”) that persist during environmental fluctuations. To resolve the underlying mechanisms for the emergence of spatial jackpot events, we used a mechanistic agent-based mathematical model that resolves growth and dispersal at the scale relevant to individual cells. While co-culture composition varied with the strength of the mutualistic interaction and across environmental fluctuations, the model provides insights into the formation of spatially resolved substrate landscapes with localized niches that support the co-occurrence of the two strains and secure co-culture function. This study highlights that in addition to spatial patterns that emerge in response to environmental fluctuations, localized spatial jackpot events ensure persistence of strains across dynamic conditions.
Collapse
|
18
|
Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Nat Chem 2022; 14:701-712. [PMID: 35469007 PMCID: PMC9177418 DOI: 10.1038/s41557-022-00923-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/24/2022] [Indexed: 12/27/2022]
Abstract
Microorganisms contribute to the biology and physiology of eukaryotic hosts and affect other organisms through natural products. Xenorhabdus and Photorhabdus (XP) living in mutualistic symbiosis with entomopathogenic nematodes generate natural products to mediate bacteria–nematode–insect interactions. However, a lack of systematic analysis of the XP biosynthetic gene clusters (BGCs) has limited the understanding of how natural products affect interactions between the organisms. Here we combine pangenome and sequence similarity networks to analyse BGCs from 45 XP strains that cover all sequenced strains in our collection and represent almost all XP taxonomy. The identified 1,000 BGCs belong to 176 families. The most conserved families are denoted by 11 BGC classes. We homologously (over)express the ubiquitous and unique BGCs and identify compounds featuring unusual architectures. The bioactivity evaluation demonstrates that the prevalent compounds are eukaryotic proteasome inhibitors, virulence factors against insects, metallophores and insect immunosuppressants. These findings explain the functional basis of bacterial natural products in this tripartite relationship. ![]()
Entomopathogenic nematodes carrying Xenorhabdus and Photorhabdus bacteria prey on insect larvae in the soil. Now, a comprehensive analysis of the bacterial genome has revealed ubiquitous and unique families of biosynthetic gene clusters. Evaluation of the bioactivity of the natural products expressed by the most prevalent cluster families explains the functional basis of bacterial natural products involved in bacteria–nematode–insect interactions.
Collapse
|
19
|
Exploring the Gut Microbiome in Myasthenia Gravis. Nutrients 2022; 14:nu14081647. [PMID: 35458209 PMCID: PMC9027283 DOI: 10.3390/nu14081647] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
The human gut microbiota is vital for maintaining human health in terms of immune system homeostasis. Perturbations in the composition and function of microbiota have been associated with several autoimmune disorders, including myasthenia gravis (MG), a neuromuscular condition associated with varying weakness and rapid fatigue of the skeletal muscles triggered by the host’s antibodies against the acetylcholine receptor (AChR) in the postsynaptic muscle membrane at the neuromuscular junction (NMJ). It is hypothesized that perturbation of the gut microbiota is associated with the pathogenesis of MG. The gut microbiota community profiles are usually generated using 16S rRNA gene sequencing. Compared to healthy individuals, MG participants had an altered gut microbiota’s relative abundance of bacterial taxa, particularly with a drop in Clostridium. The microbial diversity related to MG severity and the overall fecal short-chain fatty acids (SCFAs) were lower in MG subjects. Changes were also found in terms of serum biomarkers and fecal metabolites. A link was found between the bacterial Operational Taxonomic Unit (OTU), some metabolite biomarkers, and MG’s clinical symptoms. There were also variations in microbial and metabolic markers, which, in combination, could be used as an MG diagnostic tool, and interventions via fecal microbiota transplant (FMT) could affect MG development. Probiotics may influence MG by restoring the gut microbiome imbalance, aiding the prevention of MG, and lowering the risk of gut inflammation by normalizing serum biomarkers. Hence, this review will discuss how alterations of gut microbiome composition and function relate to MG and the benefits of gut modulation.
Collapse
|
20
|
Panthee B, Gyawali S, Panthee P, Techato K. Environmental and Human Microbiome for Health. Life (Basel) 2022; 12:life12030456. [PMID: 35330207 PMCID: PMC8949289 DOI: 10.3390/life12030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Microorganisms are an essential part of life on the earth and can exist in association with virtually any living thing. The environmental microbiome is much more diverse than the human microbiome. It is reported that most microbes existing in the environment are difficult to culture in the laboratory. Whereas both pathogenic and beneficial microbes may be prevailing in the environment, the human body can have three categories of microbes- beneficial, pathogenic, and opportunistic pathogenic. With at least 10-fold more cells than human cells, microbes as normal flora are critical for human survival. The microbes present in the human body play a crucial role in maintaining human health, and the environmental microbiome influences the human microbiome makeup. The interaction between the environmental and human microbiome highly influences human health, however it is poorly understood. In addition, as an established infection is associated with health-seeking behavior, a large number of studies have focused on the transmission and dynamics of infectious microorganisms than the noninfectious or beneficial ones. This review will summarize how the interaction between the environmental and human microbiome affects human health and identify approaches that might be beneficial for humans to improve health by being exposed to the natural environment.
Collapse
Affiliation(s)
- Bimala Panthee
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand;
- Sustainable Study and Research Institute, Kathmandu 44600, Nepal;
- Correspondence: (B.P.); (K.T.)
| | - Saroj Gyawali
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand;
- Sustainable Study and Research Institute, Kathmandu 44600, Nepal;
| | | | - Kuaanan Techato
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90112, Thailand;
- Correspondence: (B.P.); (K.T.)
| |
Collapse
|
21
|
Hughey MC, Rebollar EA, Harris RN, Ibáñez R, Loftus SC, House LL, Minbiole KPC, Bletz MC, Medina D, Shoemaker WR, Swartwout MC, Belden LK. An experimental test of disease resistance function in the skin-associated bacterial communities of three tropical amphibian species. FEMS Microbiol Ecol 2022; 98:6536914. [PMID: 35212765 DOI: 10.1093/femsec/fiac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus, Craugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially-mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.
Collapse
Affiliation(s)
- Myra C Hughey
- Biology Department; Vassar College; 124 Raymond Avenue; Poughkeepsie, NY 12604; USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, México
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama. Sistema Nacional de Investigación, SENACYT, Panamá, Republic of Panama
| | | | | | | | - Molly C Bletz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, VA Tech, Blacksburg, VA, USA
| |
Collapse
|
22
|
Sun P, Liao Y, Wang Y, Yang EJ, Jiao N, Lee Y, Jung J, Cho KH, Moon JK, Xu D. Contrasting Community Composition and Co-Occurrence Relationships of the Active Pico-Sized Haptophytes in the Surface and Subsurface Chlorophyll Maximum Layers of the Arctic Ocean in Summer. Microorganisms 2022; 10:248. [PMID: 35208705 PMCID: PMC8877492 DOI: 10.3390/microorganisms10020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Haptophytes (Hacrobia: Haptophyta), which can perform phototrophic, phagotrophic, or mixotrophic nutritional modes, are critical for element cycling in a variety of aquatic ecosystems. However, their diversity, particularly in the changing Arctic Ocean (AO), remains largely unknown. In the present study, the biodiversity, community composition, and co-occurrence networks of pico-sized haptophytes in the surface water and subsurface chlorophyll maximum (SCM) layer of the AO were explored. Our results found higher alpha diversity estimates in the surface water compared with in the SCM based on high-throughput sequencing of haptophyte specific 18S rRNA. The community composition of the surface water was significantly different from that of the SCM, and water temperature was identified as the primary factor shaping the community compositions. Prymnesiales (mostly Chrysochromulina), uncultured Prymnesiophyceae, and Phaeocystis dominated the surface water communities, whereas Phaeocystis dominated the SCM communities, followed by Chrysochromulina, uncultured Prymnesiophyceae, and the remaining taxa. The communities of the surface water and SCM layer developed relatively independent modules in the metacommunity network. Nodes in the surface water were more closely connected to one another than those in the SCM. Network stability analysis revealed that surface water networks were more stable than SCM networks. These findings suggest that SCM communities are more susceptible to environmental fluctuations than those in surface water and that future global changes (e.g., global warming) may profoundly influence the development, persistence, and service of SCM in the AO.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Yuyu Liao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Eun-Jin Yang
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Youngju Lee
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Kyoung-Ho Cho
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Jong-Kuk Moon
- Division of Polar Ocean Science, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, Korea; (E.-J.Y.); (Y.L.); (J.J.); (K.-H.C.); (J.-K.M.)
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; (P.S.); (Y.L.); (Y.W.); (N.J.)
- Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
23
|
Pan J, Xu W, Zhou Z, Shao Z, Dong C, Liu L, Luo Z, Li M. Genome-resolved evidence for functionally redundant communities and novel nitrogen fixers in the deyin-1 hydrothermal field, Mid-Atlantic Ridge. MICROBIOME 2022; 10:8. [PMID: 35045876 PMCID: PMC8767757 DOI: 10.1186/s40168-021-01202-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/24/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Deep-sea hydrothermal vents represent unique ecosystems that redefine our understanding of the limits of life. They are widely distributed in deep oceans and typically form along mid-ocean ridges. To date, the hydrothermal systems in the Mid-Atlantic Ridge south of 14°S remain barely explored, limiting our understanding of the microbial community in this distinct ecosystem. The Deyin-1 is a newly discovered hydrothermal field in this area. By applying the metagenomic analysis, we aim at gaining much knowledge of the biodiversity and functional capability of microbial community inhabiting this field. RESULTS In the current study, 219 metagenomic assembled genomes (MAGs) were reconstructed, unveiling a diverse and variable community dominated by Bacteroidetes, Nitrospirae, Alpha-, Delta-, and Gammaproteobacteria in the active and inactive chimney samples as well as hydrothermal oxide samples. Most of these major taxa were potentially capable of using reduced sulfur and hydrogen as primary energy sources. Many members within the major taxa exhibited potentials of metabolic plasticity by possessing multiple energy metabolic pathways. Among these samples, different bacteria were found to be the major players of the same metabolic pathways, further supporting the variable and functionally redundant community in situ. In addition, a high proportion of MAGs harbored the genes of carbon fixation and extracellular carbohydrate-active enzymes, suggesting that both heterotrophic and autotrophic strategies could be essential for their survival. Notably, for the first time, the genus Candidatus Magnetobacterium was shown to potentially fix nitrogen, indicating its important role in the nitrogen cycle of inactive chimneys. Moreover, the metabolic plasticity of microbes, diverse and variable community composition, and functional redundancy of microbial communities may represent the adaptation strategies to the geochemically complex and fluctuating environmental conditions in deep-sea hydrothermal fields. CONCLUSIONS This represents the first assembled-genome-based investigation into the microbial community and metabolism of a hydrothermal field in the Mid-Atlantic Ridge south of 14°S. The findings revealed that a high proportion of microbes could benefit from simultaneous use of heterotrophic and autotrophic strategies in situ. It also presented novel members of potential diazotrophs and highlighted the metabolic plasticity and functional redundancy across deep-sea hydrothermal systems. Video abstract.
Collapse
Affiliation(s)
- Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong People’s Republic of China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Xiamen, People’s Republic of China
| | - Zhichao Zhou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong People’s Republic of China
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Xiamen, People’s Republic of China
| | - Chunming Dong
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Xiamen, People’s Republic of China
| | - Lirui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong People’s Republic of China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Xiamen, People’s Republic of China
- School of Marine Sciences, Nanjing University of Information Science & Technology, 210044 Nanjing, People’s Republic of China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong People’s Republic of China
| |
Collapse
|
24
|
Jiang M, Ye F, Liu F, Brestic M, Li X. Rhizosphere melatonin application reprograms nitrogen-cycling related microorganisms to modulate low temperature response in barley. FRONTIERS IN PLANT SCIENCE 2022; 13:998861. [PMID: 36275608 PMCID: PMC9583915 DOI: 10.3389/fpls.2022.998861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/15/2022] [Indexed: 05/09/2023]
Abstract
Rhizospheric melatonin application has a positive effect on the tolerance of plants to low temperature; however, it remains unknown whether the rhizosphere microorganisms are involved in this process. The aim of this study was to investigate the effect of exogenous melatonin on the diversity and functioning of fungi and bacteria in rhizosphere of barley under low temperature. The results showed that rhizospheric melatonin application positively regulated the photosynthetic carbon assimilation and redox homeostasis in barley in response to low temperature. These effects might be associated with an altered diversity of microbial community in rhizosphere, especially the species and relative abundance of nitrogen cycling related microorganisms, as exemplified by the changes in rhizosphere metabolites in the pathways of amino acid synthesis and metabolism. Collectively, it was suggested that the altered rhizospheric microbial status upon melatonin application was associated with the response of barley to low temperature. This suggested that the melatonin induced microbial changes should be considered for its application in the crop cold-resistant cultivation.
Collapse
Affiliation(s)
- Miao Jiang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education of China, Northwest A & F University, Yangling, China
| | - Fan Ye
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fulai Liu
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Tåstrup, Denmark
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Nitra, Slovakia
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Science (CAS) Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Science, Changchun, China
- *Correspondence: Xiangnan Li,
| |
Collapse
|
25
|
Jones ML, Rivett DW, Pascual-García A, Bell T. Relationships between community composition, productivity and invasion resistance in semi-natural bacterial microcosms. eLife 2021; 10:e71811. [PMID: 34662276 PMCID: PMC8523168 DOI: 10.7554/elife.71811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023] Open
Abstract
Common garden experiments that inoculate a standardised growth medium with synthetic microbial communities (i.e. constructed from individual isolates or using dilution cultures) suggest that the ability of the community to resist invasions by additional microbial taxa can be predicted by the overall community productivity (broadly defined as cumulative cell density and/or growth rate). However, to the best of our knowledge, no common garden study has yet investigated the relationship between microbial community composition and invasion resistance in microcosms whose compositional differences reflect natural, rather than laboratory-designed, variation. We conducted experimental invasions of two bacterial strains (Pseudomonas fluorescens and Pseudomonas putida) into laboratory microcosms inoculated with 680 different mixtures of bacteria derived from naturally occurring microbial communities collected in the field. Using 16S rRNA gene amplicon sequencing to characterise microcosm starting composition, and high-throughput assays of community phenotypes including productivity and invader survival, we determined that productivity is a key predictor of invasion resistance in natural microbial communities, substantially mediating the effect of composition on invasion resistance. The results suggest that similar general principles govern invasion in artificial and natural communities, and that factors affecting resident community productivity should be a focal point for future microbial invasion experiments.
Collapse
Affiliation(s)
- Matt Lloyd Jones
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| | - Damian William Rivett
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| | - Alberto Pascual-García
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscotUnited Kingdom
| |
Collapse
|
26
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
27
|
Li F, Guo Y, Wang Z, Mu Y. Influence of different phytoremediation on soil microbial diversity and community composition in saline-alkaline land. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:507-517. [PMID: 34351809 DOI: 10.1080/15226514.2021.1955240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soil salinization is one main environmental factor restricting plant growth and agricultural productivity. However, phytoremediation is one of the important means to improve saline-alkali soil by planting halophytes or salt-tolerant plants. In order to study whether there are differences among soil microorganisms in different phytoremediation, the effects of four plants, including alfalfa (MX), oil sunflower (YK), maize (YM) and ryegrass (HMC) on soil physicochemical properties, enzyme activity and microbial community diversity and composition were investigated in this study and the relationships between microbial community structure and soil physicochemical properties, enzyme activity were analyzed. The results showed that all plants treatments significantly decreased pH, TS (total saltinity) and BD (bulk density), while increased OM (organic matter), TN (total nitrogen), AN (available nitrogen), TP (total phosphorus), AP (available phosphorus), TK (total potassium) and TPOR (total porosity), and the number of nitrite bacteria reduced by planting at the same time. Except for YM, other treatments significantly increased the number of nitrifying and denitrifying bacteria compared with CK, while only YK increased that of fungi. Additionally, all plants increased the activity of nitrite reductase and decreased that of urease. More interestingly, plants treatments shifted microbial community compositions, and only YM significantly decreased the bacterial diversity and increased the fungal diversity. Redundancy analysis suggested that TK, pH, BD, TS, AN, OM and nitrite reductase, lignin peroxidase were the key environmental factors that shaped the bacterial community structure, while that of fungi was mainly driven by OM, nitrite reductase, urease and lignin peroxidase. The results indicated that MX and YM are the best choice for remediation of saline-alkali soil. These data can provide certain theoretical basis for the further restoration of saline-alkali land.HIGHLIGHTSThe effects of different phytoremediation on microbial diversity and community structure were different.Phytoremediation can significantly decreased pH, TS and BD, while increased OM, TN, AN, TP, AP, TK and TPOR in saline-alkali soil.All plants increased the activity of nitrite reductase and decreased the activity of urease.
Collapse
Affiliation(s)
- Fengxia Li
- Institute of Agricultural Resources and Environment, Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Yongzhong Guo
- Institute of Desertification Control, Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Zhangjun Wang
- Institute of Agricultural Resources and Environment, Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Yangxiu Mu
- Institute of Agricultural Resources and Environment, Academy of Agriculture and Forestry Sciences, Ningxia, China
| |
Collapse
|
28
|
Liao M, Fang ZP, Liang YQ, Huang XH, Yang X, Chen SS, Xie XM, Xu CX, Guo JW. Effects of supplying silicon nutrient on utilization rate of nitrogen and phosphorus nutrients by rice and its soil ecological mechanism in a hybrid rice double-cropping system. J Zhejiang Univ Sci B 2021; 21:474-484. [PMID: 32478493 DOI: 10.1631/jzus.b1900516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was conducted to reveal the effects of silicon (Si) application on nutrient utilization efficiency by rice and on soil nutrient availability and soil microorganisms in a hybrid rice double-cropping planting system. A series of field experiments were conducted during 2017 and 2018. The results showed that Si nutrient supply improved grain yield and the utilization rates of nitrogen (N) and phosphorus (P) to an appropriate level for both early and late plantings, reaching a maximum at 23.4 kg/ha Si. The same trends were found for the ratios of available N (AN) to total N (TN) and available P (AP) to total P (TP), the soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP), and the ratios of MBN to TN and MBP to TP, at different levels of Si. Statistical analysis further revealed that Si application enhanced rice growth and increased the utilization rate of fertilizer due to an ecological mechanism, i.e., Si supply significantly increased the total amount of soil microorganisms in paddy soil compared to the control. This promoted the mineralization of soil nutrients and improved the availability and reserves of easily mineralized organic nutrients.
Collapse
Affiliation(s)
- Min Liao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| | - Zhi-Ping Fang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| | - Yu-Qi Liang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| | - Xiao-Hui Huang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| | - Xu Yang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Experimental Teaching Center, College of Environment and Resources, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sen Chen
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| | - Xiao-Mei Xie
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China.,Experimental Teaching Center, College of Environment and Resources, Zhejiang University, Hangzhou 310058, China
| | - Chang-Xu Xu
- Institute of Soil & Fertilizer and Resource & Environment, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jia-Wen Guo
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Hangzhou 310058, China
| |
Collapse
|
29
|
Wagg C, Hautier Y, Pellkofer S, Banerjee S, Schmid B, van der Heijden MG. Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. eLife 2021; 10:62813. [PMID: 33755017 PMCID: PMC7987343 DOI: 10.7554/elife.62813] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Theoretical and empirical advances have revealed the importance of biodiversity for stabilizing ecosystem functions through time. Despite the global degradation of soils, whether the loss of soil microbial diversity can destabilize ecosystem functioning is poorly understood. Here, we experimentally quantified the contribution of soil fungal and bacterial communities to the temporal stability of four key ecosystem functions related to biogeochemical cycling. Microbial diversity enhanced the temporal stability of all ecosystem functions and this pattern was particularly strong in plant-soil mesocosms with reduced microbial richness where over 50% of microbial taxa were lost. The stabilizing effect of soil biodiversity was linked to asynchrony among microbial taxa whereby different soil fungi and bacteria promoted different ecosystem functions at different times. Our results emphasize the need to conserve soil biodiversity for the provisioning of multiple ecosystem functions that soils provide to the society.
Collapse
Affiliation(s)
- Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland.,Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, Canada
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan, Netherlands
| | - Sarah Pellkofer
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Samiran Banerjee
- Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland.,Department of Microbiological Sciences, North Dakota State University, Fargo, United States
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Department of Geography, Remote Sensing Laboratories, University of Zürich, Zürich, Switzerland
| | - Marcel Ga van der Heijden
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Plant-Soil Interactions, Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland.,Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Albright MBN, Sevanto S, Gallegos-Graves LV, Dunbar J. Biotic Interactions Are More Important than Propagule Pressure in Microbial Community Invasions. mBio 2020; 11:e02089-20. [PMID: 33109758 PMCID: PMC7593967 DOI: 10.1128/mbio.02089-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023] Open
Abstract
Microbial probiotics are intended to improve functions in diverse ecosystems, yet probiotics often fail to establish in a preexisting microbiome. This is a species invasion problem. The relative importance of the two major factors controlling establishment in this context-propagule pressure (inoculation dose and frequency) and biotic interactions (composition of introduced and resident communities)-is unknown. We tested the effect of these factors in driving microbial composition and functioning following 12 microbial community invasions (e.g., introductions of many microbial invaders) in microcosms. Ecosystem functioning over a 30-day postinvasion period was assessed by measuring activity (respiration) and environment modification (dissolved organic carbon abundance). To test the dependence on environmental context, experiments were performed in two resource environments. In both environments, biotic interactions were more important than propagule pressure in driving microbial composition and community function, but the magnitude of effect varied by environment. Successful invaders comprised approximately 8% of the total number of operational taxonomic units (OTUs). Bacteria were better invaders than fungi, with average relative abundances of 7.4% ± 6.8% and 1.5% ± 1.4% of OTUs, respectively. Common bacterial invaders were associated with stress response traits. The most resilient bacterial and fungal families, in other words, those least impacted by invasions, were linked to antimicrobial resistance or production traits. Illuminating the principles that determine community composition and functioning following microbial invasions is key to efficient community engineering.IMPORTANCE With increasing frequency, humans are introducing new microbes into preexisting microbiomes to alter functioning. Example applications include modification of microflora in human guts for better health and those of soil for food security and/or climate management. Probiotic applications are often approached as trial-and-error endeavors and have mixed outcomes. We propose that increased success in microbiome engineering may be achieved with a better understanding of microbial invasions. We conducted a microbial community invasion experiment to test the relative importance of propagule pressure and biotic interactions in driving microbial community composition and ecosystem functioning in microcosms. We found that biotic interactions were more important than propagule pressure in determining the impact of microbial invasions. Furthermore, the principles for community engineering vary among organismal groups (bacteria versus fungi).
Collapse
Affiliation(s)
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | | | - John Dunbar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| |
Collapse
|
31
|
Kirs M, Kisand V, Nelson CE, Dudoit T, Moravcik PS. Distinct bacterial communities in tropical island aquifers. PLoS One 2020; 15:e0232265. [PMID: 32353009 PMCID: PMC7192444 DOI: 10.1371/journal.pone.0232265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/10/2020] [Indexed: 11/23/2022] Open
Abstract
The groundwater biome is a poorly characterized habitat hypothesized to harbor uniquely diverse bacterial communities; the degree to which these communities differ from associated soils is a central question in environmental microbiology. We characterized the Bacterial community composition in 37 aquifer and 32 surface soil samples across the island of O‘ahu, Hawaiʻi. Several bacterial phyla (Acetothermia, Omnitrophica, Parcubacteria, Peregrinibacteria) relatively abundant in the aquifer samples were rare to absent in the soils. Immense bacterial diversity detected in the deep aquifers indicates that these environments are not as homogenous as expected, but provide various niches and energy sources for wide variety of bacteria. A small proportion of OTUs were widespread in all the basal (0.63%) and all the dike aquifer (0.31%) samples. However, these core bacteria comprised an average of 31.8% (ranging 16.2%-62.0%) and 15.4% (0.1%-31.5%) of all sequences isolated from the basal and dike aquifers respectively. Bacterial community composition correlated significantly with the sodium, sulfate, potassium, total dissolved solids, nitrate, conductivity, and pH in the basal aquifers, while phosphate and bicarbonate levels were also highly important when dike water samples were included in the analyses. This was consistent with high relative abundance of putative chemolithoautoroph taxa in the aquifer communities relative to soils. Targeted molecular and culture-based fecal indicator microbial analyses indicated good water quality of aquifers. The dominance of unique, deeply branching lineages in tropical aquifers emphasizes a large adaptive potential in O‘ahu’s aquifers; variability among groundwater samples suggests that aquifer habitats are surprisingly variable potentially harboring a variety of chemolithotrophic energy sources. Although parallel analyses of conventional and alternative indicators indicated good groundwater quality, this study calls for groundwater monitoring programs which would consider public as well as ecosystem health.
Collapse
Affiliation(s)
- Marek Kirs
- Water Resources Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
- * E-mail:
| | - Veljo Kisand
- Institute of Technology, Tartu University, Tartu, Estonia
| | - Craig E. Nelson
- Department of Oceanography and UH Sea Grant, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Tineill Dudoit
- Water Resources Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Philip S. Moravcik
- Water Resources Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
32
|
Wu J, Yu S. Effect of root exudates of Eucalyptus urophylla and Acacia mearnsii on soil microbes under simulated warming climate conditions. BMC Microbiol 2019; 19:224. [PMID: 31615406 PMCID: PMC6794899 DOI: 10.1186/s12866-019-1604-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies demonstrated that warming and elevated carbon dioxide (CO2) indirectly affect the soil microbial community structure via plant root exudates. However, there is no direct evidence for how the root exudates affect soil microbes and how the compositions of root exudates respond to climate change. RESULTS The results showed that warming directly decreased biomass of soil-borne bacteria and fungi for Acacia mearnsii De Willd but it did not impact soil microbial community for Eucalyptus urophylla S.T. Blake. In contrast, elevated CO2 had strong direct effect on increasing soil microbial biomass for both plant species. However, plant roots could significantly increase the secretion of antibacterial chemicals (most probable organic acids), which inhibited the growth of bacteria and fungi in elevated CO2 environment. This inhibitory effect neutralized the facilitation from increasing CO2 concentration on microbial growth. CONCLUSIONS We concluded that climate change can directly affect microorganisms, and indirectly affect the soil microbial community structure by changes in composition and content of plant root exudates.
Collapse
Affiliation(s)
- Jiahui Wu
- Department of Ecology, School of Life Sciences /State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275 China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences /State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
33
|
Guermazi-Toumi S, Chouari R, Sghir A. Molecular analysis of methanogen populations and their interactions within anaerobic sludge digesters. ENVIRONMENTAL TECHNOLOGY 2019; 40:2864-2879. [PMID: 29560816 DOI: 10.1080/09593330.2018.1455747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Knowledge of archaeal population structure, function and interactions is of great interest for a deeper understanding of the anaerobic digestion step in wastewater treatment process, that represents a bottle neck in the optimization of digesters performance. Although culture-independent techniques have enabled the exploration of archaeal population in such systems, their population dynamics and interactions still require further investigation. In the present study, 2646 almost full archaeal 16S rRNA gene sequences retrieved from 22 anaerobic digesters located worldwide were analyzed and classified into 83 Operational Taxonomic Units (OTUs) for Euryarchaeotes and 2 OTUs for Crenarchaeotes. Among the Euryarchaeotes, Methanosarcinales represent the predominant archaeal population (47.5% of total sequences), followed by the ARC I (WSA2) lineage (25.3%), Methanomicrobiales (19.9%) and Methanobacteriales (1.9%). Theses lineages are predominant in nine, five, two and one digesters respectively. However, the remaining 5 digesters show no predominance of any methanogenic group. According to the predominance of theses lineages, 5 digester profiles were distinguished. This study revealed a clear interaction between the 4 methanogenic lineages. A core of 12 OTUs represented by five, four, two and one OTU for Methanosarcinales, Methanomicrobiales, ARC I and Methanobacteriales respectively were quantitatively abundant in at least 50% of the analyzed digesters. 16S rRNA targeted hybridization oligonucleotide probes targeting the predominant OTUs are being developed to follow their population dynamics under various parameters.
Collapse
Affiliation(s)
- Sonda Guermazi-Toumi
- a Faculté des Sciences de Gafsa, Université de Gafsa , Gafsa , Tunisie
- b Laboratoire de recherche Toxicologie-Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, Université de Sfax , Sfax , Tunisie
| | - Rakia Chouari
- c Faculté des Sciences de Bizerte, UR11ES32 Plant Toxicology and Molecular Biology of Microorganims, Université de Carthage , Bizerte , Tunisie
| | - Abdelghani Sghir
- d Université d'Evry Val d'Essonne , Evry , France
- e CNRS-UMR 8030 , Evry , France
- f CEA, DRF, Institut de biologie François Jacob , Genoscope, Evry , France
| |
Collapse
|
34
|
Vila JCC, Jones ML, Patel M, Bell T, Rosindell J. Uncovering the rules of microbial community invasions. Nat Ecol Evol 2019; 3:1162-1171. [PMID: 31358951 DOI: 10.1038/s41559-019-0952-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Understanding the ecological and evolutionary processes determining the outcome of biological invasions has been the subject of decades of research with most work focusing on macro-organisms. In the context of microbes, invasions remain poorly understood despite being increasingly recognized as important. To shed light on the factors affecting the success of microbial community invasions, we perform simulations using an individual-based nearly neutral model that combines ecological and evolutionary processes. Our simulations qualitatively recreate many empirical patterns and lead to a description of five general rules of invasion: (1) larger communities evolve better invaders and better defenders; (2) where invader and resident fitness difference is large, invasion success is essentially deterministic; (3) propagule pressure contributes to invasion success, if and only if, invaders and residents are competitively similar; (4) increasing the diversity of invaders has a similar effect to increasing the number of invaders; and (5) more diverse communities more successfully resist invasion.
Collapse
Affiliation(s)
- Jean C C Vila
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK. .,Microbial Sciences Institute, West Campus, Yale University, West Haven, CT, USA. .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | - Matt L Jones
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Matishalin Patel
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Tom Bell
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - James Rosindell
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
35
|
Yang T, Han G, Yang Q, Friman VP, Gu S, Wei Z, Kowalchuk GA, Xu Y, Shen Q, Jousset A. Resource stoichiometry shapes community invasion resistance via productivity-mediated species identity effects. Proc Biol Sci 2018; 285:20182035. [PMID: 30963908 PMCID: PMC6304049 DOI: 10.1098/rspb.2018.2035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/17/2018] [Indexed: 11/12/2022] Open
Abstract
Diversity-invasion resistance relationships are often variable and sensitive to environmental conditions such as resource availability. Resource stoichiometry, the relative concentration of different elements in the environment, has been shown to have strong effects on the physiology and interactions between different species. Yet, its role for diversity-invasion resistance relationships is still poorly understood. Here, we explored how the ratio of nitrogen (N) and phosphorus affects the productivity and invasion resistance of constructed microbial communities by a plant pathogenic bacterium, Ralstonia solanacearum. We found that resource stoichiometry and species identity effects affected the invasion resistance of communities. Both high N concentration and resident community diversity constrained invasions, and two resident species, in particular, had strong negative effects on the relative density of the invader and the resident community productivity. While resource stoichiometry did not affect the mean productivity of the resident community, it favoured the growth of two species that strongly constrained invasions turning the slope of productivity-invasion resistance relationship more negative. Together our findings suggest that alterations in resource stoichiometry can change the community resistance to invasions by having disproportionate effects on species growth, potentially explaining changes in microbial community composition under eutrophication.
Collapse
Affiliation(s)
- Tianjie Yang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gang Han
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Qingjun Yang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ville-Petri Friman
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK
| | - Shaohua Gu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Zhong Wei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - George A. Kowalchuk
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Yangchun Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
36
|
Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun 2018; 9:4999. [PMID: 30479325 PMCID: PMC6258724 DOI: 10.1038/s41467-018-07418-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Microbes in Guaymas Basin (Gulf of California) hydrothermal sediments thrive on hydrocarbons and sulfur and experience steep, fluctuating temperature and chemical gradients. The functional capacities of communities inhabiting this dynamic habitat are largely unknown. Here, we reconstructed 551 genomes from hydrothermally influenced, and nearby cold sediments belonging to 56 phyla (40 uncultured). These genomes comprise 22 unique lineages, including five new candidate phyla. In contrast to findings from cold hydrocarbon seeps, hydrothermal-associated communities are more diverse and archaea dominate over bacteria. Genome-based metabolic inferences provide first insights into the ecological niches of these uncultured microbes, including methane cycling in new Crenarchaeota and alkane utilization in ANME-1. These communities are shaped by a high biodiversity, partitioning among nitrogen and sulfur pathways and redundancy in core carbon-processing pathways. The dynamic sediments select for distinctive microbial communities that stand out by expansive biodiversity, and open up new physiological perspectives into hydrothermal ecosystem function. The diversity and function of microbes inhabiting hydrothermal areas is a topic of active interest in marine microbiology. Here, the authors assemble genomes from Guaymas Basin hydrothermal sediments and describe the metabolic roles of the bacterial community, which includes five new bacterial candidate phyla
Collapse
|
37
|
Bao HD, Pang MD, Olaniran A, Zhang XH, Zhang H, Zhou Y, Sun LC, Schmidt S, Wang R. Alterations in the diversity and composition of mice gut microbiota by lytic or temperate gut phage treatment. Appl Microbiol Biotechnol 2018; 102:10219-10230. [PMID: 30302521 DOI: 10.1007/s00253-018-9378-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
Abstract
Phages, the most abundant species in the mammalian gut, have numerous advantages as biocontrol agent over antibiotics. In this study, mice were orally treated with the lytic gut phage PA13076 (group B), the temperate phage BP96115 (group C), no phage (group A), or streptomycin (group D) over 31 days. At the end of the experiment, fecal microbiota diversity and composition was determined and compared using high-throughput sequencing of the V3-V4 hyper-variable region of the 16S rRNA gene and virus-like particles (VLPs) were quantified in feces. There was high diversity and richness of microbiota in the lytic and temperate gut phage-treated mice, with the lytic gut phage causing an increased alpha diversity based on the Chao1 index (p < 0.01). However, the streptomycin treatment reduced the microbiota diversity and richness (p = 0.0299). Both phage and streptomycin treatments reduced the abundance of Bacteroidetes at the phylum level (p < 0.01) and increased the abundance of the phylum Firmicutes. Interestingly, two beneficial genera, Lactobacillus and Bifidobacterium, were enhanced by treatment with the lytic and temperate gut phage. The abundance of the genus Escherichia/Shigella was higher in mice after temperate phage administration than in the control group (p < 0.01), but lower than in the streptomycin group. Moreover, streptomycin treatment increased the abundance of the genera Klebsiella and Escherichia/Shigella (p < 0.01). In terms of the gut virome, fecal VLPs did not change significantly after phage treatment. This study showed that lytic and temperate gut phage treatment modulated the composition and diversity of gut microbiota and the lytic gut phage promoted a beneficial gut ecosystem, while the temperate phage may promote conditions enabling diseases to occur.
Collapse
Affiliation(s)
- Hong-Duo Bao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Pietermaritzburg, 3201, South Africa
| | - Mao-da Pang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Ademola Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Xu-Hui Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Yan Zhou
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Li-Chang Sun
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Pietermaritzburg, 3201, South Africa.
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China.
| |
Collapse
|
38
|
Grieneisen LE, Livermore J, Alberts S, Tung J, Archie EA. Group Living and Male Dispersal Predict the Core Gut Microbiome in Wild Baboons. Integr Comp Biol 2018; 57:770-785. [PMID: 29048537 DOI: 10.1093/icb/icx046] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian gut microbiome plays a profound role in the physiology, metabolism, and overall health of its host. However, biologists have only a nascent understanding of the forces that drive inter-individual heterogeneity in gut microbial composition, especially the role of host social environment. Here we used 178 samples from 78 wild yellow baboons (Papio cynocephalus) living in two social groups to test how host social context, including group living, social interactions within groups, and transfer between social groups (e.g., dispersal) predict inter-individual variation in gut microbial alpha and beta diversity. We also tested whether social effects differed for prevalent "core" gut microbial taxa, which are thought to provide primary functions to hosts, versus rare "non-core" microbes, which may represent relatively transient environmental acquisitions. Confirming prior studies, we found that each social group harbored a distinct gut microbial community. These differences included both non-core and core gut microbial taxa, suggesting that these effects are not solely driven by recent gut microbial exposures. Within social groups, close grooming partners had more similar core microbiomes, but not non-core microbiomes, than individuals who rarely groomed each other, even controlling for kinship and diet similarity between grooming partners. Finally, in support of the idea that the gut microbiome can be altered by current social context, we found that the longer an immigrant male had lived in a given social group, the more closely his gut microbiome resembled the gut microbiomes of the group's long-term residents. Together, these results reveal the importance of a host's social context in shaping the gut microbiome and shed new light onto the microbiome-related consequences of male dispersal.
Collapse
Affiliation(s)
- Laura E Grieneisen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Josh Livermore
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Susan Alberts
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Population Research Institute, Duke University, Durham, NC 27708, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
39
|
Muraille E. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis. Front Microbiol 2018; 9:223. [PMID: 29487592 PMCID: PMC5816788 DOI: 10.3389/fmicb.2018.00223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG) mechanisms share common functional properties. They (i) contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii) favor robustness and collectivism among populations and (iii) operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size) has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and the intensity of selective pressure. The ubiquity of DGs also suggests that regulated auto-generation of diversity is a fundamental property of life.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
40
|
Antwis RE, Harrison XA. Probiotic consortia are not uniformly effective against different amphibian chytrid pathogen isolates. Mol Ecol 2018; 27:577-589. [PMID: 29218845 DOI: 10.1111/mec.14456] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
Symbiotic bacterial communities can protect their hosts from infection by pathogens. Treatment of wild individuals with protective bacteria (probiotics) isolated from hosts can combat the spread of emerging infectious diseases. However, it is unclear whether candidate probiotic bacteria can offer consistent protection across multiple isolates of globally distributed pathogens. Here, we use the lethal amphibian fungal pathogen Batrachochytrium dendrobatidis to investigate whether probiotic richness (number of bacteria) or genetic distance among consortia members influences broad-scale in vitro inhibitory capabilities of probiotics across multiple isolates of the pathogen. We show that inhibition of multiple pathogen isolates by individual bacteria is rare, with no systematic pattern among bacterial genera in ability to inhibit multiple B. dendrobatidis isolates. Bacterial consortia can offer stronger protection against B. dendrobatidis compared to single strains, and this tended to be more pronounced for consortia containing multiple genera compared with those consisting of bacteria from a single genus (i.e., with lower genetic distance), but critically, this effect was not uniform across all B. dendrobatidis isolates. These novel insights have important implications for the effective design of bacterial probiotics to mitigate emerging infectious diseases.
Collapse
Affiliation(s)
- Rachael E Antwis
- School of Environment and Life Sciences, University of Salford, Salford, UK.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | |
Collapse
|
41
|
Nemcová R, Maďar M, Gancarčíková S, Pistl J. The Influence of Supplementation of Feed with Lactobacillus reuteri L2/6 Biocenol on Intestinal Microbiota of Conventional Mice. FOLIA VETERINARIA 2017. [DOI: 10.1515/fv-2017-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
FISH (fluorescence in situ hybridization) analysis of the intestinal tract of conventional mice, following 14-day supplementation of feed with host non-specific (porcine) strain L. reuteri L2/6, showed in the presence of complex microbiota, a significant increase in the counts of representatives of the genera Lactobacillus and Bifidobacterium, and a significant decrease in the representatives of the genera Clostridium, Bacteroides and Enterobacteriaceae. At the same time, the supplemented strain stimulated the population of caecal lactobacilli of the species L. reuteri. These results demonstrated that the L. reuteri L2/6 colonised the jejunum, ileum and caecum and modulated the investigated intestinal microbiota.
Collapse
Affiliation(s)
- R. Nemcová
- Department of Microbiology and Immunology , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| | - M. Maďar
- Department of Microbiology and Immunology , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| | - S. Gancarčíková
- Department of Microbiology and Immunology , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| | - J. Pistl
- Department of Microbiology and Immunology , University of Veterinary Medicine and Pharmacy , Komenského 73, 041 81 Košice , Slovakia
| |
Collapse
|
42
|
Sun J, Alper H. Synthetic Biology: An Emerging Approach for Strain Engineering. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jie Sun
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| | - Hal Alper
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| |
Collapse
|
43
|
Smith CR, Blair PL, Boyd C, Cody B, Hazel A, Hedrick A, Kathuria H, Khurana P, Kramer B, Muterspaw K, Peck C, Sells E, Skinner J, Tegeler C, Wolfe Z. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecol Evol 2016; 6:8075-8084. [PMID: 27878079 PMCID: PMC5108259 DOI: 10.1002/ece3.2553] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022] Open
Abstract
The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no‐till, had a much greater impact on nearly everything measured compared to the crop planted. No‐till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no‐till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff—both of which have ecosystem‐level effects and both direct and indirect effects on humans and other organisms.
Collapse
Affiliation(s)
- Chris R Smith
- Department of Biology Earlham College Richmond IN USA
| | - Peter L Blair
- Department of Biology Earlham College Richmond IN USA
| | - Charlie Boyd
- Department of Biology Earlham College Richmond IN USA
| | - Brianne Cody
- Department of Biology Earlham College Richmond IN USA
| | - Alexander Hazel
- Department of Biology Earlham College Richmond IN USA; Present address: Department of Entomology University of Illinois Urbana Champaign IL USA
| | | | - Hitesh Kathuria
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Parul Khurana
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Brent Kramer
- Department of Biology Earlham College Richmond IN USA
| | | | - Charles Peck
- Department of Computer Science Earlham College Richmond IN USA
| | - Emily Sells
- Department of Biology Earlham College Richmond IN USA
| | - Jessica Skinner
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Cara Tegeler
- School of Natural Science and Mathematics Indiana University East Richmond IN USA
| | - Zoe Wolfe
- Department of Biology Earlham College Richmond IN USA
| |
Collapse
|
44
|
Andrade R, Pascoal C, Cássio F. Effects of inter and intraspecific diversity and genetic divergence of aquatic fungal communities on leaf litter decomposition—a microcosm experiment. FEMS Microbiol Ecol 2016; 92:fiw102. [DOI: 10.1093/femsec/fiw102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 01/18/2023] Open
|
45
|
Wu H, Wu L, Wang J, Zhu Q, Lin S, Xu J, Zheng C, Chen J, Qin X, Fang C, Zhang Z, Azeem S, Lin W. Mixed Phenolic Acids Mediated Proliferation of Pathogens Talaromyces helicus and Kosakonia sacchari in Continuously Monocultured Radix pseudostellariae Rhizosphere Soil. Front Microbiol 2016; 7:335. [PMID: 27014250 PMCID: PMC4795122 DOI: 10.3389/fmicb.2016.00335] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 03/03/2016] [Indexed: 12/22/2022] Open
Abstract
Radix pseudostellariae L. is a common and popular Chinese medication. However, continuous monoculture has increased its susceptibility to severe diseases. We identified two pathogenic microorganisms, Talaromyces helicus M. (KU355274) and Kosakonia sacchari W. (KU324465), and their antagonistic bacterium, Bacillus pumilus Z. in rhizosphere soil of continuously monocultured R. pseudostellariae. Nine types of phenolic acids were identified both in the rhizosphere soil and in culture medium under sterile conditions. A syringic acid and phenolic acid mixture significantly promoted the growth of T. helicus and K. sacchari. T. helicus could utilize eight types of phenolic acids, whereas K. sacchari could only use four phenolic acids. K. sacchari produced protocatechuic acid when consuming vanillin. Protocatechuic acid negatively affected the growth of B. pumilus. The 3A-DON toxin produced by T. helicus promoted the growth of K. sacchari and inhibited growth of B. pumilus at low concentrations. These data help explain why phenolic exudates mediate a microflora shift and structure disorder in the rhizosphere soil of continuously monocultured R. pseudostellariae and lead to increased replanting disease incidence.
Collapse
Affiliation(s)
- Hongmiao Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Linkun Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Juanying Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Quan Zhu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Sheng Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jiahui Xu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Cailiang Zheng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jun Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xianjin Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Changxun Fang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhixing Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Saadia Azeem
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry UniversityFuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology, College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
46
|
Lokmer A, Kuenzel S, Baines JF, Wegner KM. The role of tissue-specific microbiota in initial establishment success of Pacific oysters. Environ Microbiol 2016; 18:970-87. [DOI: 10.1111/1462-2920.13163] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/27/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Ana Lokmer
- Helmholtz Centre for Polar and Marine Research; Alfred Wegener Institute; Coastal Ecology; Wadden Sea Station Sylt; List Sylt Germany
| | - Sven Kuenzel
- Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 D-24306 Plön Germany
| | - John F. Baines
- Max Planck Institute for Evolutionary Biology; August-Thienemann-Strasse 2 D-24306 Plön Germany
- Institute for Experimental Medicine; Christian-Albrechts-University of Kiel; Arnold-Heller-Strasse 3 D-24105 Kiel Germany
| | - Karl Mathias Wegner
- Helmholtz Centre for Polar and Marine Research; Alfred Wegener Institute; Coastal Ecology; Wadden Sea Station Sylt; List Sylt Germany
| |
Collapse
|
47
|
Jobard M, Pessiot J, Nouaille R, Fonty G, Sime-Ngando T. Microbial diversity in support of anaerobic biomass valorization. Crit Rev Biotechnol 2015; 37:1-10. [PMID: 26516020 DOI: 10.3109/07388551.2015.1100584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbial diversity provides an immense reservoir of functions and supports key steps in maintaining ecosystem balance through matter decomposition processes and nutrient recycling. The use of microorganisms for biomolecule production is now common, but often involves single-strain cultures. In this review, we highlight the significance of using ecosystem-derived microbial diversity for biotechnological researches. In the context of organic matter mineralization, diversity of microorganisms is essential and enhances the degradation processes. We focus on anaerobic production of biomolecules of interest from discarded biomass, which is an important issue in the context of organic waste valorization and processing. Organic waste represents an important and renewable raw material but remains underused. It is commonly accepted that anaerobic mineralization of organic waste allows the production of diverse interesting molecules within several fields of application. We provide evidence that complex and diversified microbial communities isolated from ecosystems, i.e. microbial consortia, offer considerable advantages in degrading complex organic waste, to yield biomolecules of interest. We defend our opinion that this approach is more efficient and offers enhanced potential compared to the approaches that use single strain cultures.
Collapse
Affiliation(s)
- M Jobard
- a AFYREN SAS, Biopole Clermont Limagne , Saint-Beauzire Cedex , France
| | - J Pessiot
- a AFYREN SAS, Biopole Clermont Limagne , Saint-Beauzire Cedex , France.,b Laboratoire "Microorganismes: Génome et Environnement" , Clermont Université, Université Blaise Pascal , Clermont-Ferrand , France , and
| | - R Nouaille
- a AFYREN SAS, Biopole Clermont Limagne , Saint-Beauzire Cedex , France
| | - G Fonty
- b Laboratoire "Microorganismes: Génome et Environnement" , Clermont Université, Université Blaise Pascal , Clermont-Ferrand , France , and
| | - T Sime-Ngando
- b Laboratoire "Microorganismes: Génome et Environnement" , Clermont Université, Université Blaise Pascal , Clermont-Ferrand , France , and.,c CNRS, UMR 6023, LMGE , Aubiere , France
| |
Collapse
|
48
|
Pittol M, Durso L, Valiati VH, Fiuza LM. Agronomic and environmental aspects of diazotrophic bacteria in rice fields. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1154-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. FUNGAL DIVERS 2015. [DOI: 10.1007/s13225-015-0341-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Slížová M, Nemcová R, Mad’ar M, Hadryová J, Gancarčíková S, Popper M, Pistl J. Analysis of biofilm formation by intestinal lactobacilli. Can J Microbiol 2015; 61:437-46. [DOI: 10.1139/cjm-2015-0007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the biofilm-forming potential of intestinal Lactobacillus reuteri strains under different culture conditions was characterized by microtiter plate biofilm assays. Moreover, the spatial organization of exogenously applied L. reuteri L2/6 (a pig isolate) at specific locations in gastrointestinal tract of monoassociated mice was investigated by fluorescence in situ hybridization. We did not detect biofilm formation by tested strains in nutrient-rich de Man–Rogosa–Sharpe (MRS) medium. On the contrary, a highly positive biofilm formation was observed in medium with lower accessibility to the carbon sources and lack of salts. The results obtained confirmed the significant role of Tween 80 and the quantity and nature of the sugars in the growth medium in biofilm formation. The omission of Tween 80 in MRS medium favored the formation of biofilm. Abundant biofilm formation was detected in the presence of lactose, galactose, and glucose. However, a gradual increase in sugar concentration triggered a significant decrease in biofilm formation. In addition, conditions related to the gastrointestinal environment, such as low pH and the presence of bile and mucins, highly modulated biofilm production. This effect seems to be dependent on the specificity and properties of the medium used for cultivation. From the evidence provided by this study we conclude that the biofilm formation capacity of L. reuteri is strongly dependent on the environmental factors and culture medium used.
Collapse
Affiliation(s)
- Magdaléna Slížová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Radomíra Nemcová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Marián Mad’ar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Jana Hadryová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Soňa Gancarčíková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Miroslav Popper
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| | - Juraj Pistl
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovak Republic
| |
Collapse
|