1
|
Hernández-González M, Barrera-Cobos FJ, Hernández-Arteaga E, González-Burgos I, Flores-Soto M, Guevara MA, Cortes PM. Sexual Experience Induces A Preponderance of Mushroom Spines in the Medial Prefrontal Cortex and Nucleus Accumbens of Male Rats. Behav Brain Res 2023; 447:114437. [PMID: 37059188 DOI: 10.1016/j.bbr.2023.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Sexual experience improves copulatory performance in male rats. Copulatory performance has been associated with dendritic spines density in the medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc), structures involved in the processing of sexual stimuli and the manifestation of sexual behavior. Dendritic spines modulate excitatory synaptic contacts, and their morphology is associated with the ability to learn from experience. This study was designed to determine the effect of sexual experience on the density of different types or shapes of dendritic spines in the mPFC and NAcc of male rats. A total of 16 male rats were used, half of them were sexually experienced while the other half were sexually inexperienced. After three sessions of sexual interaction to ejaculation, the sexually-experienced males presented shorter mount, intromission, and ejaculation latencies. Those rats presented a higher total dendritic density in the mPFC, and a higher numerical density of thin, mushroom, stubby, and wide spines. Sexual experience also increased the numerical density of mushroom spines in the NAcc. In both the mPFC and NAcc of the sexually experienced rats, there was a lower proportional density of thin spines and a higher proportional density of mushroom spines. Results show that the improvement in copulatory efficiency resulting from prior sexual experience in male rats is associated with changes in the proportional density of thin and mushroom dendritic spines in the mPFC and NAcc. This could represent the consolidation of afferent synaptic information in these brain regions, derived from the stimulus-sexual reward association.
Collapse
Affiliation(s)
- Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Francisco Javier Barrera-Cobos
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | - Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, Mexico
| | - Miguel Angel Guevara
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Pedro Manuel Cortes
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Corresponding author at: Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Francisco de Quevedo #180, Col. Arcos Vallarta, C.P 44130, Guadalajara, Jalisco, Mexico. E-mail:
| |
Collapse
|
2
|
Reciprocal effects of single or repeated exposure to methylphenidate or sex in adult male rats. Psychopharmacology (Berl) 2023; 240:227-237. [PMID: 36544054 DOI: 10.1007/s00213-022-06300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
RATIONALE Exposure to rewards can alter behavioral reactivity to them. For example, stimulants sensitize locomotor activation, whereas sexual experience sensitizes copulatory behaviors. Moreover, rewards can cross-sensitize one another. Although stimulants are known to cross-sensitize locomotor effects, the evidence for cross-sensitization between stimulants and sex is less clear. OBJECTIVES This study determined the effects of single and repeated pre-exposure to methylphenidate (MPH) or sex on one another in adult male rats. METHODS Cross-sensitization between MPH (5 mg/kg) and sex (30 min with sexually experienced female) was examined. Adult male rats were pre-exposed to 0, 1, or 10 trials of either sex or MPH before being exposed to the other reward. Locomotor chambers were used in MPH trials. Bilevel chambers were used in sexual trials, and sexual behaviors were video scored. RESULTS The amount of prior sexual experience differentially influenced the ceiling of MPH-dependent sensitization; in the last drug trial, locomotion was highest in males given 1 previous sexual trial compared with 0 or 10. Compared with MPH-naive males, pre-exposure to MPH (1 and 10 trials) reduced the number of ejaculations without impacting sexual performance (intromission/mount latency and frequency). CONCLUSIONS These findings indicate that the degree of pre-exposure to a reward can differentially affect reactivity to novel rewards. The results showed that previous findings of cross-sensitization between amphetamine and sex do not extend to MPH. However, exposure to MPH prior to sexual experience can increase the amount of sexual stimulation needed to achieve ejaculation.
Collapse
|
3
|
Li S, Zhang XQ, Liu CC, Wang ZY, Lu GY, Shen HW, Wu N, Li J, Li F. IRAS/Nischarin modulates morphine reward by glutamate receptor activation in the nucleus accumbens of mouse brain. Biomed Pharmacother 2022; 153:113346. [DOI: 10.1016/j.biopha.2022.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022] Open
|
4
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
5
|
Rodríguez-Manzo G, González-Morales E, Garduño-Gutiérrez R. Endocannabinoids Released in the Ventral Tegmental Area During Copulation to Satiety Modulate Changes in Glutamate Receptors Associated With Synaptic Plasticity Processes. Front Synaptic Neurosci 2021; 13:701290. [PMID: 34483875 PMCID: PMC8416467 DOI: 10.3389/fnsyn.2021.701290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Endocannabinoids modulate mesolimbic (MSL) dopamine (DA) neurons firing at the ventral tegmental area (VTA). These neurons are activated by copulation, increasing DA release in nucleus accumbens (NAcc). Copulation to satiety in male rats implies repeated ejaculation within a short period (around 2.5 h), during which NAcc dopamine concentrations remain elevated, suggesting continuous neuronal activation. During the 72 h that follow copulation to satiety, males exhibit long-lasting changes suggestive of brain plasticity processes. Enhanced DA neuron activity triggers the synthesis and release of endocannabinoids (eCBs) in the VTA, which participate in several long-term synaptic plasticity processes. Blockade of cannabinoid type 1 receptors (CB1Rs) during copulation to satiety interferes with the appearance of the plastic changes. Glutamatergic inputs to the VTA express CB1Rs and contribute to DA neuron burst firing and synaptic plasticity. We hypothesized that eCBs, released during copulation to satiety, would activate VTA CB1Rs and modulate synaptic plasticity processes involving glutamatergic transmission. To test this hypothesis, we determined changes in VTA CB1R density, phosphorylation, and internalization in rats that copulated to satiety 24 h earlier as compared both to animals that ejaculated only once and to sexually experienced unmated males. Changes in glutamate AMPAR and NMDAR densities and subunit composition and in ERK1/2 activation were determined in the VTA of males that copulated to satiety in the presence or absence of AM251, a CB1R antagonist. The CB1R density decreased and the proportion of phosphorylated CB1Rs increased in the animals that copulated compared to control rats. The CB1R internalization was detected only in sexually satiated males. A decrease in α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) density, blocked by AM251 pretreatment, and an increase in the proportion of GluA2-AMPARs occurred in sexually satiated rats. GluN2A- N-methyl-D-aspartate receptor (NMDAR) expression decreased, and GluN2B-NMDARs increased in these animals, both of which were prevented by AM251 pre-treatment. An increase in phosphorylated ERK1/2 emerged in males copulating to satiety in the presence of AM251. Results demonstrate that during copulation to satiety, eCBs activate CB1Rs in the VTA, producing changes in glutamate receptors compatible with a reduced neuronal activation. These changes could play a role in the induction of the long-lasting physiological changes that characterize sexually satiated rats.
Collapse
Affiliation(s)
- Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, Mexico
| | - Estefanía González-Morales
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, Mexico
| | - René Garduño-Gutiérrez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav-Sede Sur), Ciudad de México, Mexico
| |
Collapse
|
6
|
Goins A, Patel K, Alles SRA. The gabapentinoid drugs and their abuse potential. Pharmacol Ther 2021; 227:107926. [PMID: 34171338 DOI: 10.1016/j.pharmthera.2021.107926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023]
Abstract
The gabapentinoid drugs, gabapentin and pregabalin, are first-line treatments for neuropathic pain. The epidemics of chronic pain and opioid misuse have given rise to the widespread use of non-opioid drugs such as the gabapentinoids for treatment. Unfortunately, the widespread use of gabapentinoid drugs has resulted in reports of misuse and abuse. Here we summarize the clinical reports of gabapentinoid abuse in different patient populations to help inform clinical practice of chronic pain management.
Collapse
Affiliation(s)
- Aleyah Goins
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Keisha Patel
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sascha R A Alles
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
7
|
NMDA Receptors in Accumbal D1 Neurons Influence Chronic Sugar Consumption and Relapse. eNeuro 2021; 8:ENEURO.0029-21.2021. [PMID: 33906970 PMCID: PMC8143023 DOI: 10.1523/eneuro.0029-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022] Open
Abstract
Glutamatergic input via NMDA and AMPA receptors within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior and relapse toward drugs of abuse. Although well-established for drugs of abuse, it is not clear whether glutamate receptors within the mesolimbic system are involved in mediating chronic consumption and relapse following abstinence from a non-drug reward. Here, we evaluated the contribution of mesolimbic glutamate receptors in mediating chronic sugar consumption and the sugar-deprivation effect (SDE), which is used as a measure of relapse-like behavior following abstinence. We studied four inducible mutant mouse lines lacking the GluA1 or GluN1 subunit in either DA transporter (DAT) or D1R-expressing neurons in an automated monitoring system for free-choice sugar drinking in the home cage. Mice lacking either GluA1 or GluN1 in D1R-expressing neurons (GluA1D1CreERT2 or GluN1D1CreERT2mice) have altered sugar consumption in both sexes, whereas GluA1DATCreERT2 and GluN1DATCreERT2do not differ from their respective littermate controls. In terms of relapse-like behavior, female GluN1D1CreERT2mice show a more pronounced SDE. Given that glutamate receptors within the mesolimbic system play a critical role in mediating relapse behavior of alcohol and other drugs of abuse, it is surprising that these receptors do not mediate the SDE, or in the case of female GluN1D1CreERT2 mice, show an opposing effect. We conclude that a relapse-like phenotype of sugar consumption differs from that of drugs of abuse on the molecular level, at least with respect to the contribution of mesolimbic glutamate receptors.
Collapse
|
8
|
Chiang VSC, Park JH. Glutamate in Male and Female Sexual Behavior: Receptors, Transporters, and Steroid Independence. Front Behav Neurosci 2020; 14:589882. [PMID: 33328921 PMCID: PMC7732465 DOI: 10.3389/fnbeh.2020.589882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023] Open
Abstract
The survival of animal species predicates on the success of sexual reproduction. Neurotransmitters play an integral role in the expression of these sexual behaviors in the brain. Here, we review the role of glutamate in sexual behavior in rodents and non-rodent species for both males and females. These encompass the release of glutamate and correlations with glutamate receptor expression during sexual behavior. We then present the effects of glutamate on sexual behavior, as well as the effects of antagonists and agonists on different glutamate transporters and receptors. Following that, we discuss the potential role of glutamate on steroid-independent sexual behavior. Finally, we demonstrate the interaction of glutamate with other neurotransmitters to impact sexual behavior. These sexual behavior studies are crucial in the development of novel treatments of sexual dysfunction and in furthering our understanding of the complexity of sexual diversity. In the past decade, we have witnessed the burgeoning of novel techniques to study and manipulate neuron activity, to decode molecular events at the single-cell level, and to analyze behavioral data. They pose exciting avenues to gain further insight into future sexual behavior research. Taken together, this work conveys the essential role of glutamate in sexual behavior.
Collapse
Affiliation(s)
- Vic Shao-Chih Chiang
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Jin Ho Park
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
9
|
Borland JM, Kim E, Swanson SP, Rothwell PE, Mermelstein PG, Meisel RL. Effect of Aggressive Experience in Female Syrian Hamsters on Glutamate Receptor Expression in the Nucleus Accumbens. Front Behav Neurosci 2020; 14:583395. [PMID: 33328919 PMCID: PMC7719767 DOI: 10.3389/fnbeh.2020.583395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Our social relationships determine our health and well-being. In rodent models, there is now strong support for the rewarding properties of aggressive or assertive behaviors to be critical for the expression and development of adaptive social relationships, buffering from stress and protecting from the development of psychiatric disorders such as depression. However, due to the false belief that aggression is not a part of the normal repertoire of social behaviors displayed by females, almost nothing is known about the neural mechanisms mediating the rewarding properties of aggression in half the population. In the following study, using Syrian hamsters as a well-validated and translational model of female aggression, we investigated the effects of aggressive experience on the expression of markers of postsynaptic structure (PSD-95, Caskin I) and excitatory synaptic transmission (GluA1, GluA2, GluA4, NR2A, NR2B, mGluR1a, and mGluR5) in the nucleus accumbens (NAc), caudate putamen and prefrontal cortex. Aggressive experience resulted in an increase in PSD-95, GluA1 and the dimer form of mGluR5 specifically in the NAc 24 h following aggressive experience. There was also an increase in the dimer form of mGluR1a 1 week following aggressive experience. Aggressive experience also resulted in an increase in the strength of the association between these postsynaptic proteins and glutamate receptors, supporting a common mechanism of action. In addition, 1 week following aggressive experience there was a positive correlation between the monomer of mGluR5 and multiple AMPAR and NMDAR subunits. In conclusion, we provide evidence that aggressive experience in females results in an increase in the expression of postsynaptic density, AMPARs and group I metabotropic glutamate receptors, and an increase in the strength of the association between postsynaptic proteins and glutamate receptors. This suggests that aggressive experience may result in an increase in excitatory synaptic transmission in the NAc, potentially encoding the rewarding and behavioral effects of aggressive interactions.
Collapse
Affiliation(s)
- Johnathan M. Borland
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | | | | | | | |
Collapse
|
10
|
Sanna F, Bratzu J, Serra MP, Leo D, Quartu M, Boi M, Espinoza S, Gainetdinov RR, Melis MR, Argiolas A. Altered Sexual Behavior in Dopamine Transporter (DAT) Knockout Male Rats: A Behavioral, Neurochemical and Intracerebral Microdialysis Study. Front Behav Neurosci 2020; 14:58. [PMID: 32372926 PMCID: PMC7185326 DOI: 10.3389/fnbeh.2020.00058] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Central dopamine plays a key role in sexual behavior. Recently, a Dopamine Transporter knockout (DAT KO) rat has been developed, which displays several behavioral dysfunctions that have been related to increased extracellular dopamine levels and altered dopamine turnover secondary to DAT gene silencing. This prompted us to characterize the sexual behavior of these DAT KO rats and their heterozygote (HET) and wild type (WT) counterparts in classical copulatory tests with a sexually receptive female rat and to verify if and how the acquisition of sexual experience changes along five copulatory tests in these rat lines. Extracellular dopamine and glutamic acid concentrations were also measured in the dialysate obtained by intracerebral microdialysis from the nucleus accumbens (Acb) shell of DAT KO, HET and WT rats, which underwent five copulatory tests, when put in the presence of an inaccessible sexually receptive female rat and when copulation was allowed. Markers of neurotropism (BDNF, trkB), neural activation (Δ-FosB), functional (Arc and PSA-NCAM) and structural synaptic plasticity (synaptophysin, syntaxin-3, PSD-95) were also measured in the ventral tegmental area (VTA), Acb (shell and core) and medial prefrontal cortex (mPFC) by Western Blot assays. The results indicate that the sexual behavior of DAT KO vs. HET and WT rats shows peculiar differences, mainly due to a more rapid acquisition of stable sexual activity levels and to higher levels of sexual motivation and activity. These differences occurred with differential changes in dopamine and glutamic acid concentrations in Acb dialysates during sexual behavior, with lower increases of dopamine and glutamic acid in DAT KO vs. WT and HET rats, and a lower expression of the markers investigated, mainly in the mPFC, in DAT KO vs. WT rats. Together these findings confirm a key role of dopamine in sexual behavior and provide evidence that the permanently high levels of dopamine triggered by DAT gene silencing cause alterations in both the frontocortical glutamatergic neurons projecting to the Acb and VTA and in the mesolimbic dopaminergic neurons, leading to specific brain regional changes in trophic support and neuroplastic processes, which may have a role in the sexual behavior differences found among the three rat genotypes.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy
| | - Jessica Bratzu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, Section of Citomorphology, University of Cagliari, Cagliari, Italy
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Citomorphology, University of Cagliari, Cagliari, Italy
| | - Marianna Boi
- Department of Biomedical Sciences, Section of Citomorphology, University of Cagliari, Cagliari, Italy
| | - Stefano Espinoza
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, Cagliari, Italy.,Institute of Neuroscience, National Research Council, Cagliari Section, Cagliari, Italy
| |
Collapse
|
11
|
Different periods of forced abstinence after instrumental learning for food reward of different macronutrient value on responding for conditioned cues and AMPAr subunit levels. Behav Brain Res 2019; 375:112141. [PMID: 31394143 DOI: 10.1016/j.bbr.2019.112141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Food craving can be viewed as an intense desire for a specific food that propagates seeking and consuming behavior. Prolonged forced abstinence from rewarding foods can result in escalated food-seeking behavior as measured via elevated responding for food-paired cues in the absence of the primary reward. Palatable food consumption and food-seeking is associated with changes in the abundance and composition of AMPA receptors in the nucleus accumbens (NAc) but differing results have been reported. The present study examined whether different food types could produce escalated food-seeking behavior after various abstinence periods and whether this was associated with changes in AMPA receptor protein levels. Rats were trained for 10 days to bar press for purified, sucrose, or chocolate-flavored sucrose pellets. Rats were tested at 24 hrs, 7 d or 14 d whereby bar pressing resulted in presentation of cues paired with food but no food reward was delivered. Western blotting was used to determine protein levels of GluR1, GluR1pSer845, and GluR2 in the NAc. Three separate groups were assessed: 1) a group that was trained on the operant task and tested for conditioned responding (tested group); 2) a group that was trained on the operant task but not tested (non-tested group); 3) a group that was neither trained nor tested (control). The purified food group showed a time-dependent elevation in conditioned bar pressing over the 3 abstinence periods. GluR1 AMPAr subunit levels were higher in the purified and sucrose groups tested at 24 hours compared to the non-tested and control values. GluR1 levels subsequently declined at the 7- and 14-day abstinence periods in the purified and sucrose tested and non-tested groups compared to control values. GluR2 and pSer845 Glur1 levels were similar across all groups and abstinence periods. These results show that food-seeking behavior associated with forced abstinence from different food rewards may depend on the macronutrient composition of the food reward or the food type given during the abstinence period. A clear link with AMPAr subunit levels in this model was not established.
Collapse
|
12
|
Liu S, Borgland SL. Insulin actions in the mesolimbic dopamine system. Exp Neurol 2019; 320:113006. [DOI: 10.1016/j.expneurol.2019.113006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023]
|
13
|
Xia JD, Chen J, Yang BB, Sun HJ, Zhu GQ, Dai YT, Yang J, Wang ZJ. Differences in sympathetic nervous system activity and NMDA receptor levels within the hypothalamic paraventricular nucleus in rats with differential ejaculatory behavior. Asian J Androl 2019. [PMID: 29516873 PMCID: PMC6038171 DOI: 10.4103/aja.aja_4_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Differences in intravaginal ejaculation latency reflect normal biological variation, but the causes are poorly understood. Here, we investigated whether variation in ejaculation latency in an experimental rat model is related to altered sympathetic nervous system (SNS) activity and expression of N-methyl-D-aspartic acid (NMDA) receptors in the paraventricular nucleus of the hypothalamus (PVN). Male rats were classified as “sluggish,” “normal,” and “rapid” ejaculators on the basis of ejaculation frequency during copulatory behavioral testing. The lumbar splanchnic nerve activity baselines in these groups were not significantly different at 1460 ± 480 mV, 1660 ± 600 mV, and 1680 ± 490 mV, respectively (P = 0.71). However, SNS sensitivity was remarkably different between the groups (P < 0.01), being 28.9% ± 8.1% in “sluggish,” 48.4% ± 7.5% in “normal,” and 88.7% ± 7.4% in “rapid” groups. Compared with “normal” ejaculators, the percentage of neurons expressing NMDA receptors in the PVN of “rapid” ejaculators was significantly higher, whereas it was significantly lower in “sluggish” ejaculators (P = 0.01). In addition, there was a positive correlation between the expression of NMDA receptors in the PVN and SNS sensitivity (r = 0.876, P = 0.02). This study shows that intravaginal ejaculatory latency is associated with SNS activity and is mediated by NMDA receptors in the PVN.
Collapse
Affiliation(s)
- Jia-Dong Xia
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Bai-Bing Yang
- Department of Andrology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210000, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210000, China
| | - Yu-Tian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing 210000, China
| | - Jie Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zeng-Jun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
14
|
Sanna F, Poddighe L, Serra MP, Boi M, Bratzu J, Sanna F, Corda MG, Giorgi O, Melis MR, Argiolas A, Quartu M. c-Fos, ΔFosB, BDNF, trkB and Arc Expression in the Limbic System of Male Roman High- and Low-Avoidance Rats that Show Differences in Sexual Behavior: Effect of Sexual Activity. Neuroscience 2019; 396:1-23. [DOI: 10.1016/j.neuroscience.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022]
|
15
|
Cell type-specific activation of mitogen-activated protein kinase in D1 receptor-expressing neurons of the nucleus accumbens potentiates stimulus-reward learning in mice. Sci Rep 2018; 8:14413. [PMID: 30258218 PMCID: PMC6158283 DOI: 10.1038/s41598-018-32840-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 09/12/2018] [Indexed: 01/11/2023] Open
Abstract
Medium spiny neurons (MSN) in the nucleus accumbens (NAc) are a fundamental component of various aspects of motivated behavior. Although mitogen-activated protein kinase (MAPK) signaling plays a crucial role in several types of learning, the cell type-specific role of MAPK pathway in stimulus-reward learning and motivation remains unclear. We herein investigated the role of MAPK in accumbal MSNs in reward-associated learning and memory. During the acquisition of Pavlovian conditioning, the number of phosphorylated MAPK1/3-positive cells was increased significantly and exclusively in the NAc core by 7-days of extensive training. MAPK signaling in the respective D1R- and D2R-MSNs was manipulated by transfecting an adeno-associated virus (AAV) plasmid into the NAc of Drd1a-Cre and Drd2-Cre transgenic mice. Potentiation of MAPK signaling shifted the learning curve of Pavlovian conditioning to the left only in Drd1a-Cre mice, whereas such manipulation in D2R-MSNs had negligible effects. In contrast, MAPK manipulation in D2R-MSNs of the NAc core significantly increased motivation for food rewards as found in Drd1a-Cre mice. These results suggest that MAPK signaling in the D1R-MSNs of NAc core plays an important role in stimulus-reward learning, while MAPK signaling in both D1R- and D2R-MSNs is involved in motivation for natural rewards.
Collapse
|
16
|
Beny-Shefer Y, Zilkha N, Lavi-Avnon Y, Bezalel N, Rogachev I, Brandis A, Dayan M, Kimchi T. Nucleus Accumbens Dopamine Signaling Regulates Sexual Preference for Females in Male Mice. Cell Rep 2018; 21:3079-3088. [PMID: 29241537 DOI: 10.1016/j.celrep.2017.11.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/02/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022] Open
Abstract
Sexual preference for the opposite sex is a fundamental behavior underlying reproductive success, but the neural mechanisms remain unclear. Here, we examined the role of dopamine signaling in the nucleus accumbens core (NAcc) in governing chemosensory-mediated preference for females in TrpC2-/- and wild-type male mice. TrpC2-/- males, deficient in VNO-mediated signaling, do not display mating or olfactory preference toward females. We found that, during social interaction with females, TrpC2-/- males do not show increased NAcc dopamine levels, observed in wild-type males. Optogenetic stimulation of VTA-NAcc dopaminergic neurons in TrpC2-/- males during exposure to a female promoted preference response to female pheromones and elevated copulatory behavior toward females. Additionally, we found that signaling through the D1 receptor in the NAcc is necessary for the olfactory preference for female-soiled bedding. Our study establishes a critical role for the mesolimbic dopaminergic system in governing pheromone-mediated responses and mate choice in male mice.
Collapse
Affiliation(s)
- Yamit Beny-Shefer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Lavi-Avnon
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Bezalel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Rogachev
- Biological Services Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Biological Services Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Molly Dayan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
17
|
Willett JA, Johnson AG, Vogel AR, Patisaul HB, McGraw LA, Meitzen J. Nucleus accumbens core medium spiny neuron electrophysiological properties and partner preference behavior in the adult male prairie vole, Microtus ochrogaster. J Neurophysiol 2018; 119:1576-1588. [PMID: 29361665 DOI: 10.1152/jn.00737.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and probes the relationship between cellular excitability and social behavior.
Collapse
Affiliation(s)
- Jaime A Willett
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Physiology, North Carolina State University , Raleigh, North Carolina
| | - Ashlyn G Johnson
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina
| | - Andrea R Vogel
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Genetics, North Carolina State University , Raleigh, North Carolina
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina
| | - Lisa A McGraw
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Graduate Program in Genetics, North Carolina State University , Raleigh, North Carolina
| | - John Meitzen
- Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina.,W. M. Keck Center for Behavioral Biology, North Carolina State University , Raleigh, North Carolina.,Center for Human Health and the Environment, North Carolina State University , Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University , Raleigh, North Carolina
| |
Collapse
|
18
|
Beloate LN, Coolen LM. Effects of Sexual Experience on Psychostimulant- and Opiate-Induced Behavior and Neural Plasticity in the Mesocorticolimbic Pathway. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:249-270. [DOI: 10.1016/bs.irn.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Jean A, Bonnet P, Liere P, Mhaouty-Kodja S, Hardin-Pouzet H. Revisiting medial preoptic area plasticity induced in male mice by sexual experience. Sci Rep 2017; 7:17846. [PMID: 29259324 PMCID: PMC5736590 DOI: 10.1038/s41598-017-18248-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/07/2017] [Indexed: 01/25/2023] Open
Abstract
Sexual experience in male rodents, induced by a first exposure to a receptive female, improves efficiency of following copulations. In mice, the mechanisms supporting this improvement are poorly understood. We characterized molecular modifications of the mouse hypothalamic medial preoptic area (mPOA), the main integrative structure for male sexual behaviour, after a single mating event. This paradigm induced long-lasting behavioural improvements and mPOA morphological changes, evidenced by dendritic spine maturation and an increase in the acetylated and tri-methylated forms of histone H3. Ejaculation affected testosterone, progesterone and corticosterone levels in both naive and experienced mice, but sexual experience did not modify basal plasma or hypothalamic levels of steroids. In contrast to studies carried out in rats, no changes were observed, either in the nitrergic system, or in sex steroid receptor levels. However, levels of glutamate- and calcium-associated proteins, including PSD-95, calbindin and the GluN1 subunit of the NMDA receptor, were increased in sexually experienced male mice. The Iba-1 microglial marker was up-regulated in these animals suggesting multicellular interactions induced within the mPOA by sexual experience. In conclusion, plasticity mechanisms induced by sexual experience differ between rat and mouse, even if in both cases they converge to potentiation of the mPOA network.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France
| | - Pauline Bonnet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France
| | - Philippe Liere
- U1195 INSERM and Université Paris Sud and Université Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France
| | - Helene Hardin-Pouzet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
20
|
Beloate LN, Coolen LM. Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neurosci Biobehav Rev 2017; 83:356-372. [DOI: 10.1016/j.neubiorev.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/25/2022]
|
21
|
Choudhary AG, Somalwar AR, Sagarkar S, Rale A, Sakharkar A, Subhedar NK, Kokare DM. CART neurons in the lateral hypothalamus communicate with the nucleus accumbens shell via glutamatergic neurons in paraventricular thalamic nucleus to modulate reward behavior. Brain Struct Funct 2017; 223:1313-1328. [PMID: 29116427 DOI: 10.1007/s00429-017-1544-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/19/2017] [Indexed: 01/21/2023]
Abstract
Paraventricular thalamic nucleus (PVT) serves as a transit node processing food and drug-associated reward information, but its afferents and efferents have not been fully defined. We test the hypothesis that the CART neurons in the lateral hypothalamus (LH) project to the PVT neurons, which in turn communicate via the glutamatergic fibers with the nucleus accumbens shell (AcbSh), the canonical site for reward. Rats conditioned to self-stimulate via an electrode in the right LH-medial forebrain bundle were used. Intra-PVT administration of CART (55-102) dose-dependently (10-50 ng/rat) lowered intracranial self-stimulation (ICSS) threshold and increased lever press activity, suggesting reward-promoting action of the peptide. However, treatment with CART antibody (intra-PVT) or MK-801 (NMDA antagonist, intra-AcbSh) produced opposite effects. A combination of sub-effective dose of MK-801 (0.01 µg/rat, intra-AcbSh) and effective dose of CART (25 ng/rat, intra-PVT) attenuated CART's rewarding action. Further, we screened the LH-PVT-AcbSh circuit for neuroadaptive changes induced by conditioning experience. A more than twofold increase was noticed in the CART mRNA expression in the LH on the side ipsilateral to the implanted electrode for ICSS. In addition, the PVT of conditioned rats showed a distinct increase in the (a) c-Fos expressing cells and CART fiber terminals, and (b) CART and vesicular glutamate transporter 2 immunostained elements. Concomitantly, the AcbSh showed a striking increase in expression of NMDA receptor subunit NR1. We suggest that CART in LH-PVT and glutamate in PVT-AcbSh circuit might support food-seeking behavior under natural conditions and also store reward memory.
Collapse
Affiliation(s)
- Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Amita R Somalwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Abhishek Rale
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Amul Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India.
| |
Collapse
|
22
|
Dingess PM, Darling RA, Derman RC, Wulff SS, Hunter ML, Ferrario CR, Brown TE. Structural and Functional Plasticity within the Nucleus Accumbens and Prefrontal Cortex Associated with Time-Dependent Increases in Food Cue-Seeking Behavior. Neuropsychopharmacology 2017; 42:2354-2364. [PMID: 28294131 PMCID: PMC5645745 DOI: 10.1038/npp.2017.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/18/2023]
Abstract
Urges to consume food can be driven by stimuli in the environment that are associated with previous food experience. Identifying adaptations within brain reward circuits that facilitate cue-induced food seeking is critical for understanding and preventing the overconsumption of food and subsequent weight gain. Utilizing electrophysiological, biochemical, and DiI labeling, we examined functional and structural changes in the nucleus accumbens (NAc) and prefrontal cortex (PFC) associated with time-dependent increases in food craving ('incubation of craving'). Rats self-administered 60% high fat or chow 45 mg pellets and were then tested for incubation of craving either 1 or 30 days after training. High fat was chosen for comparison to determine whether palatability differentially affected incubation and/or plasticity. Rats showed robust incubation of craving for both food rewards, although responding for cues previously associated with high fat was greater than chow at both 1 and 30 days. In addition, previous experience with high-fat consumption reduced dendritic spine density in the PFC at both time points. In contrast, incubation was associated with an increase in NAc spine density and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission at 30 days in both groups. Finally, incubation of craving for chow and high fat was accompanied by an increase in calcium-permeable and calcium-impermeable AMPARs, respectively. Our results suggest that incubation of food craving alters brain reward circuitry and macronutrient composition specifically induces cortical changes in a way that may facilitate maladaptive food-seeking behaviors.
Collapse
Affiliation(s)
- Paige M Dingess
- Neuroscience Program, University of Wyoming, Laramie, WY, USA
| | | | - Rifka C Derman
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - Shaun S Wulff
- Department of Statistics, University of Wyoming, Laramie, WY, USA
| | | | - Carrie R Ferrario
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Travis E Brown
- Neuroscience Program, University of Wyoming, Laramie, WY, USA,Department of Statistics, University of Wyoming, Laramie, WY, USA,School of Pharmacy, Neuroscience Program, University of Wyoming, 1000 E. University Avenue, Department 3375, Laramie, WY 82071, USA, Tel: 307 766 6129, Fax: 307 766 2953, E-mail:
| |
Collapse
|
23
|
Sominsky L, Hodgson DM, McLaughlin EA, Smith R, Wall HM, Spencer SJ. Linking Stress and Infertility: A Novel Role for Ghrelin. Endocr Rev 2017; 38:432-467. [PMID: 28938425 DOI: 10.1210/er.2016-1133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Infertility affects a remarkable one in four couples in developing countries. Psychological stress is a ubiquitous facet of life, and although stress affects us all at some point, prolonged or unmanageable stress may become harmful for some individuals, negatively impacting on their health, including fertility. For instance, women who struggle to conceive are twice as likely to suffer from emotional distress than fertile women. Assisted reproductive technology treatments place an additional physical, emotional, and financial burden of stress, particularly on women, who are often exposed to invasive techniques associated with treatment. Stress-reduction interventions can reduce negative affect and in some cases to improve in vitro fertilization outcomes. Although it has been well-established that stress negatively affects fertility in animal models, human research remains inconsistent due to individual differences and methodological flaws. Attempts to isolate single causal links between stress and infertility have not yet been successful due to their multifaceted etiologies. In this review, we will discuss the current literature in the field of stress-induced reproductive dysfunction based on animal and human models, and introduce a recently unexplored link between stress and infertility, the gut-derived hormone, ghrelin. We also present evidence from recent seminal studies demonstrating that ghrelin has a principal role in the stress response and reward processing, as well as in regulating reproductive function, and that these roles are tightly interlinked. Collectively, these data support the hypothesis that stress may negatively impact upon fertility at least in part by stimulating a dysregulation in ghrelin signaling.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Eileen A McLaughlin
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.,School of Environmental & Life Sciences, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Lookout Road, New Lambton Heights, New South Wales 2305, Australia.,Priority Research Centre in Reproductive Science, The University of Newcastle, New South Wales 2308, Australia
| | - Hannah M Wall
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
24
|
Camacho A, Montalvo-Martinez L, Cardenas-Perez RE, Fuentes-Mera L, Garza-Ocañas L. Obesogenic diet intake during pregnancy programs aberrant synaptic plasticity and addiction-like behavior to a palatable food in offspring. Behav Brain Res 2017; 330:46-55. [DOI: 10.1016/j.bbr.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
|
25
|
mGluR5 activation in the nucleus accumbens is not essential for sexual behavior or cross-sensitization of amphetamine responses by sexual experience. Neuropharmacology 2016; 107:122-130. [DOI: 10.1016/j.neuropharm.2016.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/23/2022]
|
26
|
|
27
|
Namburi P, Al-Hasani R, Calhoon GG, Bruchas MR, Tye KM. Architectural Representation of Valence in the Limbic System. Neuropsychopharmacology 2016; 41:1697-715. [PMID: 26647973 PMCID: PMC4869057 DOI: 10.1038/npp.2015.358] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 12/05/2015] [Indexed: 11/08/2022]
Abstract
In order to thrive, animals must be able to recognize aversive and appetitive stimuli within the environment and subsequently initiate appropriate behavioral responses. This assignment of positive or negative valence to a stimulus is a key feature of emotional processing, the neural substrates of which have been a topic of study for several decades. Until recently, the result of this work has been the identification of specific brain regions, such as the basolateral amygdala (BLA) and nucleus accumbens (NAc), as important to valence encoding. The advent of modern tools in neuroscience has allowed further dissection of these regions to identify specific populations of neurons signaling the valence of environmental stimuli. In this review, we focus upon recent work examining the mechanisms of valence encoding, and provide a model for the systematic investigation of valence within anatomically-, genetically-, and functionally defined populations of neurons.
Collapse
Affiliation(s)
- Praneeth Namburi
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Neuroscience Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ream Al-Hasani
- Division of Basic Research, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Gwendolyn G Calhoon
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael R Bruchas
- Division of Basic Research, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Kay M Tye
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
28
|
Nucleus accumbens NMDA receptor activation regulates amphetamine cross-sensitization and deltaFosB expression following sexual experience in male rats. Neuropharmacology 2016; 101:154-64. [DOI: 10.1016/j.neuropharm.2015.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 11/24/2022]
|
29
|
D'Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015; 9:404. [PMID: 26594139 PMCID: PMC4633516 DOI: 10.3389/fnins.2015.00404] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University Ada, OH, USA
| |
Collapse
|
30
|
Marson L, Giamberardino MA, Costantini R, Czakanski P, Wesselmann U. Animal Models for the Study of Female Sexual Dysfunction. Sex Med Rev 2015; 1:108-122. [PMID: 27784584 DOI: 10.1002/smrj.14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Significant progress has been made in elucidating the physiological and pharmacological mechanisms of female sexual function through preclinical animal research. The continued development of animal models is vital for the understanding and treatment of the many diverse disorders that occur in women. AIM To provide an updated review of the experimental models evaluating female sexual function that may be useful for clinical translation. METHODS Review of English written, peer-reviewed literature, primarily from 2000 to 2012, that described studies on female sexual behavior related to motivation, arousal, physiological monitoring of genital function and urogenital pain. MAIN OUTCOMES MEASURES Analysis of supporting evidence for the suitability of the animal model to provide measurable indices related to desire, arousal, reward, orgasm, and pelvic pain. RESULTS The development of female animal models has provided important insights in the peripheral and central processes regulating sexual function. Behavioral models of sexual desire, motivation, and reward are well developed. Central arousal and orgasmic responses are less well understood, compared with the physiological changes associated with genital arousal. Models of nociception are useful for replicating symptoms and identifying the neurobiological pathways involved. While in some cases translation to women correlates with the findings in animals, the requirement of circulating hormones for sexual receptivity in rodents and the multifactorial nature of women's sexual function requires better designed studies and careful analysis. The current models have studied sexual dysfunction or pelvic pain in isolation; combining these aspects would help to elucidate interactions of the pathophysiology of pain and sexual dysfunction. CONCLUSIONS Basic research in animals has been vital for understanding the anatomy, neurobiology, and physiological mechanisms underlying sexual function and urogenital pain. These models are important for understanding the etiology of female sexual function and for future development of pharmacological treatments for sexual dysfunctions with or without pain. Marson L, Giamberardino MA, Costantini R, Czakanski P, and Wesselmann U. Animal models for the study of female sexual dysfunction. Sex Med Rev 2013;1:108-122.
Collapse
Affiliation(s)
- Lesley Marson
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | - Peter Czakanski
- University of Alabama at Birmingham-Departments of Anesthesiology and Obstetrics & Gynecology, Birmingham, AL, USA
| | - Ursula Wesselmann
- University of Alabama at Birmingham-Departments of Anesthesiology and Neurology, Birmingham, AL, USA
| |
Collapse
|
31
|
Salgado S, Kaplitt MG. The Nucleus Accumbens: A Comprehensive Review. Stereotact Funct Neurosurg 2015; 93:75-93. [PMID: 25720819 DOI: 10.1159/000368279] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Sanjay Salgado
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
32
|
Rodríguez-Manzo G. Glutamatergic transmission is involved in the long lasting sexual inhibition of sexually exhausted male rats. Pharmacol Biochem Behav 2015; 131:64-70. [PMID: 25668128 DOI: 10.1016/j.pbb.2015.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 01/29/2023]
Abstract
Copulation to satiation induces a series of enduring physiological changes in male rats, with the appearance of a long lasting sexual inhibitory period as the most conspicuous, that are suggestive of the occurrence of neuroplastic changes. Copulation is a natural reward activating the mesocorticolimbic circuit and inducing nucleus accumbens dopamine release. The repeated activation of this system by drug rewards induces neuroplastic changes involving both dopamine and glutamate transmission. We hypothesized that repeated activation of the mesocorticolimbic circuit during copulation to satiation might also activate these neurotransmitter systems. The objective of the present work was to establish the possible participation of glutamate transmission in sexual satiety. To this aim we tested if the systemic injection of specific glutamate receptor antagonists of the NMDA, AMPA and mGluR5 receptor subtypes would reverse the sexual inhibitory state characteristic of sexually satiated rats. Results showed that systemic administration of low doses of the three glutamate receptor antagonists reversed sexual exhaustion evidencing a role for glutamate in the maintenance of the sexual inhibition that follows copulation to satiation, with the participation of NMDA, AMPA and mGluR5 receptors. These glutamate receptor subtypes have been associated to the neuroplastic changes resulting from repeated activation of the mesocorticolimbic circuit by drug rewards, a phenomenon that might also result from its activation by continued copulation.
Collapse
Affiliation(s)
- Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Cinvestav-Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, Delegación Tlalpan 14330 D.F., Mexico.
| |
Collapse
|
33
|
Pitchers KK, Coppens CM, Beloate LN, Fuller J, Van S, Frohmader KS, Laviolette SR, Lehman MN, Coolen LM. Endogenous opioid-induced neuroplasticity of dopaminergic neurons in the ventral tegmental area influences natural and opiate reward. J Neurosci 2014; 34:8825-36. [PMID: 24966382 PMCID: PMC6608201 DOI: 10.1523/jneurosci.0133-14.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 11/21/2022] Open
Abstract
Natural reward and drugs of abuse converge on the mesolimbic pathway and activate common mechanism of neural plasticity in the nucleus accumbens. Chronic exposure to opiates induces plasticity in dopaminergic neurons of the ventral tegmental area (VTA), which regulates morphine reward tolerance. Here, we test the hypotheses that mating-induced release of endogenous opioids in the VTA causes morphological changes of VTA dopamine cells in male rats, which in-turn regulate the long-term expression of experience-induced reinforcement of sexual behavior. First, sexual experience decreased VTA dopamine soma size 1 and 7 days, but not 30 days after the last mating session. This effect was blocked with naloxone before each mating session; thus, VTA dopamine cell plasticity was dependent on action of endogenous opioids. In turn, VTA plasticity was associated with altered opiate reward, as sexually experienced males did not form conditioned place preference for 0.5 mg/kg morphine. Next, it was determined whether endogenous opioid action mediates sexual reward and memory in male rats treated with naloxone during mating experience, either systemically or intra-VTA. Naloxone did not prevent the initial experience-induced facilitation of sexual behavior over repeated mating sessions, or conditioned place preference for mating. However, naloxone treatment attenuated the longer-term expression of experience-induced facilitation of sexual behavior and neural activation in mesolimbic areas induced by mating-associated conditioned cues. Together, these data demonstrate that endogenous opioids during mating induce neural plasticity in VTA dopamine neurons that appear critical for morphine reward and long-term memory for natural reward behavior.
Collapse
Affiliation(s)
- Kyle K Pitchers
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 3K7, Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Caroline M Coppens
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 3K7
| | | | - Jonathan Fuller
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 3K7
| | - Sandy Van
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 3K7
| | - Karla S Frohmader
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 3K7
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 3K7
| | - Michael N Lehman
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 3K7, Departments of Neurobiology and Anatomical Sciences, and
| | - Lique M Coolen
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 3K7, Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, Departments of Neurobiology and Anatomical Sciences, and Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
34
|
Neural mechanisms of female sexual behavior in the rat; comparison with male ejaculatory control. Pharmacol Biochem Behav 2014; 121:16-30. [DOI: 10.1016/j.pbb.2013.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023]
|
35
|
Veening J, Coolen L. Neural mechanisms of sexual behavior in the male rat: Emphasis on ejaculation-related circuits. Pharmacol Biochem Behav 2014; 121:170-83. [DOI: 10.1016/j.pbb.2013.12.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 01/20/2023]
|
36
|
Counotte DS, Schiefer C, Shaham Y, O'Donnell P. Time-dependent decreases in nucleus accumbens AMPA/NMDA ratio and incubation of sucrose craving in adolescent and adult rats. Psychopharmacology (Berl) 2014; 231:1675-84. [PMID: 24114427 PMCID: PMC3967069 DOI: 10.1007/s00213-013-3294-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022]
Abstract
RATIONALE AND OBJECTIVE There is evidence that cue-induced sucrose seeking progressively increases after cessation of oral sucrose self-administration (incubation of sucrose craving) in both adolescent and adult rats. The synaptic plasticity changes associated with this incubation at different age groups are unknown. We assessed whether incubation of sucrose craving in rats trained to self-administer sucrose as young adolescents, adolescents, or adults is associated with changes in 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)/N-methyl-D-aspartate (NMDA) ratio (a measure of postsynaptic changes in synaptic strength) in nucleus accumbens. METHODS Three age groups initiated oral sucrose self-administration training (10 days) on postnatal day (P) 35 (young adolescents), P42 (adolescents), or P70 (adults). They were then tested for cue-induced sucrose seeking (assessed in an extinction test) on abstinence days 1 and 21. Separate groups of rats were trained to self-administer sucrose or water (a control condition), and assessed for AMPA/NMDA ratio in nucleus accumbens on abstinence days 1-3 and 21. RESULTS Adult rats earned more sucrose rewards, but sucrose intake per body weight was higher in young adolescent rats. Time-dependent increases in cue-induced sucrose seeking (incubation of sucrose craving) were more pronounced in adult rats, less pronounced in adolescents, and not detected in young adolescents. On abstinence day 21, but not days 1-3, AMPA/NMDA ratio in nucleus accumbens were decreased in rats that self-administered sucrose as adults and adolescents, but not young adolescents. CONCLUSIONS Our data demonstrate age-dependent changes in magnitude of incubation of sucrose craving and nucleus accumbens synaptic plasticity after cessation of sucrose self-administration.
Collapse
Affiliation(s)
- Danielle S Counotte
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, Rm S-251, Baltimore, MD, 21201, USA,
| | | | | | | |
Collapse
|
37
|
Cell-type specific increases in female hamster nucleus accumbens spine density following female sexual experience. Brain Struct Funct 2013; 219:2071-81. [PMID: 23934655 DOI: 10.1007/s00429-013-0624-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/02/2013] [Indexed: 01/01/2023]
Abstract
Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor-expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse.
Collapse
|
38
|
Hilton DL. Pornography addiction - a supranormal stimulus considered in the context of neuroplasticity. SOCIOAFFECTIVE NEUROSCIENCE & PSYCHOLOGY 2013; 3:20767. [PMID: 24693354 PMCID: PMC3960020 DOI: 10.3402/snp.v3i0.20767] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/01/2013] [Accepted: 06/01/2013] [Indexed: 01/19/2023]
Abstract
Addiction has been a divisive term when applied to various compulsive sexual behaviors (CSBs), including obsessive use of pornography. Despite a growing acceptance of the existence of natural or process addictions based on an increased understanding of the function of the mesolimbic dopaminergic reward systems, there has been a reticence to label CSBs as potentially addictive. While pathological gambling (PG) and obesity have received greater attention in functional and behavioral studies, evidence increasingly supports the description of CSBs as an addiction. This evidence is multifaceted and is based on an evolving understanding of the role of the neuronal receptor in addiction-related neuroplasticity, supported by the historical behavioral perspective. This addictive effect may be amplified by the accelerated novelty and the ‘supranormal stimulus’ (a phrase coined by Nikolaas Tinbergen) factor afforded by Internet pornography.
Collapse
Affiliation(s)
- Donald L Hilton
- Department of Neurosurgery, The University of Texas Health Sciences Center at San Antonio, USA
| |
Collapse
|
39
|
Natural and drug rewards act on common neural plasticity mechanisms with ΔFosB as a key mediator. J Neurosci 2013; 33:3434-42. [PMID: 23426671 DOI: 10.1523/jneurosci.4881-12.2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Drugs of abuse induce neuroplasticity in the natural reward pathway, specifically the nucleus accumbens (NAc), thereby causing development and expression of addictive behavior. Recent evidence suggests that natural rewards may cause similar changes in the NAc, suggesting that drugs may activate mechanisms of plasticity shared with natural rewards, and allowing for unique interplay between natural and drug rewards. In this study, we demonstrate that sexual experience in male rats when followed by short or prolonged periods of loss of sex reward causes enhanced amphetamine reward, indicated by sensitized conditioned place preference for low-dose (0.5 mg/kg) amphetamine. Moreover, the onset, but not the longer-term expression, of enhanced amphetamine reward was correlated with a transient increase in dendritic spines in the NAc. Next, a critical role for the transcription factor ΔFosB in sex experience-induced enhanced amphetamine reward and associated increases in dendritic spines on NAc neurons was established using viral vector gene transfer of the dominant-negative binding partner ΔJunD. Moreover, it was demonstrated that sexual experience-induced enhanced drug reward, ΔFosB, and spinogenesis are dependent on mating-induced dopamine D1 receptor activation in the NAc. Pharmacological blockade of D1 receptor, but not D2 receptor, in the NAc during sexual behavior attenuated ΔFosB induction and prevented increased spinogenesis and sensitized amphetamine reward. Together, these findings demonstrate that drugs of abuse and natural reward behaviors act on common molecular and cellular mechanisms of plasticity that control vulnerability to drug addiction, and that this increased vulnerability is mediated by ΔFosB and its downstream transcriptional targets.
Collapse
|
40
|
Chocyk A, Bobula B, Dudys D, Przyborowska A, Majcher-Maślanka I, Hess G, Wędzony K. Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur J Neurosci 2013; 38:2089-107. [PMID: 23581639 DOI: 10.1111/ejn.12208] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 03/03/2013] [Indexed: 02/06/2023]
Abstract
Early life experiences are crucial factors that shape brain development and function due to their ability to induce structural and functional plasticity. Among these experiences, early-life stress (ELS) is known to interfere with brain development and maturation, increasing the risk of future psychopathologies, including depression, anxiety, and personality disorders. Moreover, ELS may contribute to the emergence of these psychopathologies during adolescence. In this present study, we investigated the effects of ELS, in the form of maternal separation (MS), on the structural and functional plasticity of the medial prefrontal cortex (mPFC) and anxiety-like behavior in adolescent male rats. We found that the MS procedure resulted in disturbances in mother-pup interactions that lasted until weaning and were most strongly demonstrated by increases in nursing behavior. Moreover, MS caused atrophy of the basal dendritic tree and reduced spine density on both the apical and basal dendrites in layer II/III pyramidal neurons of the mPFC. The structural changes were accompanied by an impairment of long-term potentiation processes and increased expression of key proteins, specifically glutamate receptor 1, glutamate receptor 2, postsynaptic density protein 95, αCa(2+) /calmodulin-dependent protein kinase II and αCa(2+)/calmodulin-dependent protein kinase II phosphorylated at residue Thr305, that are engaged in long-term potentiation induction and maintenance in the mPFC. We also found that the MS animals were more anxious in the light/dark exploration test. The results of this study indicate that ELS has a significant impact on the structural and functional plasticity of the mPFC in adolescents. ELS-induced adaptive plasticity may underlie the pathomechanisms of some early-onset psychopathologies observed in adolescents.
Collapse
Affiliation(s)
- Agnieszka Chocyk
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|