1
|
Shi Y, Liu Y, Wu Y, Hu S, Sun B. Molecular epidemiology and recombination of enterovirus D68 in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105512. [PMID: 37827347 DOI: 10.1016/j.meegid.2023.105512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Enterovirus D68 (EV-D68), a member of Enterovirus genus of the Picornaviridae family, mainly causes respiratory system-related diseases as well as neurological complications in some patients. At present, there is no effective vaccine or treatment for the virus. The aim of this research was to systematically analyse the molecular epidemiology, recombination and changes in the epitope of EV-D68 in China from 2008 to 2022. Through phylogenetic analysis based on VP1 sequences, it was found that there was limited information about EV-D68 infection before 2011 and that EV-D68 infection was dominated by the A2 gene subtype from 2011 to 2013 and the B3 genotype from 2014 to 2018, during which A2 and B3 were coprevalent and alternately prevalent. We also constructed a phylogenetic tree using the EV-D68 full-length genome sequences, and the genotype of each sequence was consistent with that of the VP1 sequence evolutionary tree. Recombination analysis showed that MH341715 underwent intertypic recombination with the A2 genotype MH341729 at the 5' untranslated region (5'UTR) and that P1-P3 underwent recombination with the B3 genotype MH341712. The capsid protein VP1 is one of the most important structural proteins. In VP1, the BC-loop (89-105 amino acids) and DE-loop (140-152 amino acids) are the most variable domains on the surface of the virus and are associated with epitopes. In this study, it was found that the dominant amino acid composition of the BC-loop and DE-loop continued to change with the epidemic of the virus; the amino acid composition also differed in different regions of the same genotypes. The ongoing genomic and molecular epidemiology of EV-D68 remains important for predicting emergence of new viruses and preventing major outbreaks of respiratory diseases.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Yongjuan Liu
- Department of Central Laboratory, the Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222002, China
| | - Yanli Wu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
2
|
Hodcroft EB, Dyrdak R, Andrés C, Egli A, Reist J, García Martínez de Artola D, Alcoba-Flórez J, Niesters HGM, Antón A, Poelman R, Reynders M, Wollants E, Neher RA, Albert J. Evolution, geographic spreading, and demographic distribution of Enterovirus D68. PLoS Pathog 2022; 18:e1010515. [PMID: 35639811 PMCID: PMC9212145 DOI: 10.1371/journal.ppat.1010515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/21/2022] [Accepted: 04/10/2022] [Indexed: 12/26/2022] Open
Abstract
Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome (‘whole genome’) sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68’s rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future. Enterovirus D68 (EV-D68) has caused punctuated, global outbreaks of respiratory illness and neurological disease, including being implicated as the cause of acute flaccid myelitis (AFM). Serology studies and surveillance data suggests almost everyone is infected during early childhood. The majority of sequences collected are from young children, while adults retain high antibody titers against strains that circulated when they were young. However, little is known about how outbreaks are connected and how the virus evolves and spreads around the globe. Despite EV-D68’s apparent reliance on young, naive hosts, EV-D68 antibody binding sites are reportedly evolving under antigenic pressure, and EV-D68 seems to spread rapidly during outbreaks. In this multi-center European collaboration, we confirm that subclade specific age differences are present in those infected. Further, we were able to quantify between- and within-country migration and the ‘hidden’ diversification that indicates unsampled circulation between outbreaks. We conclude that the evolution of EV-D68 may be driven by substantial re-infection of adults, explaining the rapid geographic mixing and continuous antigenic evolution. The presence of largely unsampled circulation prior to outbreaks suggests there are gaps in current surveillance practices which could be addressed by expanding genetic surveillance.
Collapse
Affiliation(s)
- Emma B. Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| | - Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Adrian Egli
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josiane Reist
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Julia Alcoba-Flórez
- Department of Clinical Microbiology, Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain
| | - Hubert G. M. Niesters
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Randy Poelman
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Division of Clinical Virology, Groningen, The Netherlands
| | - Marijke Reynders
- Unit of Molecular Microbiology, Medical Microbiology, Department of Laboratory Medicine, AZ Sint-Jan Brugge AV, Bruges, Belgium
| | - Elke Wollants
- KU Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical & Epidemiological Virology, Leuven, Belgium
| | - Richard A. Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
3
|
Fall A, Kenmoe S, Ebogo-Belobo JT, Mbaga DS, Bowo-Ngandji A, Foe-Essomba JR, Tchatchouang S, Amougou Atsama M, Yéngué JF, Kenfack-Momo R, Feudjio AF, Nka AD, Mbongue Mikangue CA, Taya-Fokou JB, Magoudjou-Pekam JN, Noura EA, Zemnou-Tepap C, Meta-Djomsi D, Maïdadi-Foudi M, Kame-Ngasse GI, Nyebe I, Djukouo LG, Kengne Gounmadje L, Tchami Ngongang D, Oyono MG, Demeni Emoh CP, Tazokong HR, Mahamat G, Kengne-Ndé C, Sadeuh-Mba SA, Dia N, La Rosa G, Ndip L, Njouom R. Global prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010073. [PMID: 35134062 PMCID: PMC8824346 DOI: 10.1371/journal.pntd.0010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
A substantial amount of epidemiological data has been reported on Enterovirus D68 (EV-D68) infections after the 2014 outbreak. Our goal was to map the case fatality rate (CFR) and prevalence of current and past EV-D68 infections. We conducted a systematic review (PROSPERO, CRD42021229255) with published articles on EV-68 infections in PubMed, Embase, Web of Science and Global Index Medicus up to January 2021. We determined prevalences using a model random effect. Of the 4,329 articles retrieved from the databases, 89 studies that met the inclusion criteria were from 39 different countries with apparently healthy individuals and patients with acute respiratory infections, acute flaccid myelitis and asthma-related diseases. The CFR estimate revealed occasional deaths (7/1353) related to EV-D68 infections in patients with severe acute respiratory infections. Analyses showed that the combined prevalence of current and past EV-D68 infections was 4% (95% CI = 3.1-5.0) and 66.3% (95% CI = 40.0-88.2), respectively. The highest prevalences were in hospital outbreaks, developed countries, children under 5, after 2014, and in patients with acute flaccid myelitis and asthma-related diseases. The present study shows sporadic deaths linked to severe respiratory EV-D68 infections. The study also highlights a low prevalence of current EV-D68 infections as opposed to the existence of EV-D68 antibodies in almost all participants of the included studies. These findings therefore highlight the need to implement and/or strengthen continuous surveillance of EV-D68 infections in hospitals and in the community for the anticipation of the response to future epidemics.
Collapse
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Sebastien Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Marie Amougou Atsama
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | - Alex Durand Nka
- Virology Laboratory, Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | | | | | | | - Efietngab Atembeh Noura
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Dowbiss Meta-Djomsi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Martin Maïdadi-Foudi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Inès Nyebe
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | - Martin Gael Oyono
- Department of Animals Biology and Physiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Gadji Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lucy Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| |
Collapse
|
4
|
Cassidy H, Schuele L, Lizarazo-Forero E, Couto N, Rossen JWA, Friedrich AW, van Leer-Buter C, Niesters HGM. OUP accepted manuscript. Virus Evol 2022; 8:veab109. [PMID: 35317350 PMCID: PMC8932292 DOI: 10.1093/ve/veab109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/12/2022] Open
Abstract
Chronic enterovirus infections can cause significant morbidity, particularly in immunocompromised patients. This study describes a fatal case associated with a chronic untypeable enterovirus infection in an immunocompromised patient admitted to a Dutch university hospital over nine months. We aimed to identify the enterovirus genotype responsible for the infection and to determine potential evolutionary changes. Long-read sequencing was performed using viral targeted sequence capture on four respiratory and one faecal sample. Phylogenetic analysis was performed using a maximum likelihood method, along with a root-to-tip regression and time-scaled phylogenetic analysis to estimate evolutionary changes between sample dates. Intra-host variant detection, using a Fixed Ploidy algorithm, and selection pressure, using a Fixed Effect Likelihood and a Mixed Effects Model of Evolution, were also used to explore the patient samples. Near-complete genomes of enterovirus C104 (EV-C104) were recovered in all respiratory samples but not in the faecal sample. The recovered genomes clustered with a recently reported EV-C104 from Belgium in August 2018. Phylodynamic analysis including ten available EV-C104 genomes, along with the patient sequences, estimated the most recent common ancestor to occur in the middle of 2005 with an overall estimated evolution rate of 2.97 × 10−3 substitutions per year. Although positive selection pressure was identified in the EV-C104 reference sequences, the genomes recovered from the patient samples alone showed an overall negative selection pressure in multiple codon sites along the genome. A chronic infection resulting in respiratory failure from a relatively rare enterovirus was observed in a transplant recipient. We observed an increase in single-nucleotide variations between sample dates from a rapidly declining patient, suggesting mutations are weakly deleterious and have not been purged during selection. This is further supported by the persistence of EV-C104 in the patient, despite the clearance of other viral infections. Next-generation sequencing with viral enrichment could be used to detect and characterise challenging samples when conventional workflows are insufficient.
Collapse
Affiliation(s)
| | | | - Erley Lizarazo-Forero
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112, USA
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | - Coretta van Leer-Buter
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | | |
Collapse
|
5
|
Yang Z, Zheng H, Li H, Chen Y, Hou D, Fan Q, Song J, Guo L, Liu L. The expression of IFN-β is suppressed by the viral 3D polymerase via its impact on PGAM5 expression during enterovirus D68 infection. Virus Res 2021; 304:198549. [PMID: 34425164 DOI: 10.1016/j.virusres.2021.198549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Enterovirus D68 (EV-D68) belongs to the Picornaviridae family and can lead to severe clinical manifestations in the respiratory system. The 3D-polymerase (3Dpoly) is an important nonstructural protein during EV-D68 replication, but few studies have addressed its interaction with the host antiviral response during EV-D68 infection. Here, we used human bronchial epithelial cells to investigate the impact of the 3Dpoly on the mitochondrial dynamics and innate immune response. The results showed that the number and morphology of the mitochondria in 16HBE cells was affected during the early stage of infection, and these effects included the cellular apoptosis. Moreover, we found that the 3Dpoly of EV-D68 can interact with PGAM5 and promote mitofusin 2 protein upregulation, and subsequently, 3Dpoly impairs IFN-β expression by impacting the activation of the RIG-I receptor signaling pathway. Our findings suggest that during EV-D68 replication, the 3Dpoly, via its interaction with PGAM5, can affect the mitochondrial dynamics and suppress the expression of IFN-β by impacting the RIG-I-like receptor signal pathway.
Collapse
Affiliation(s)
- Zening Yang
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Huiwen Zheng
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Heng Li
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Yanli Chen
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Dongpei Hou
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Qiqi Fan
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Jie Song
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China
| | - Lei Guo
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| | - Longding Liu
- Chinese Academy of Medical Sciences, Key Laboratory of Virus Vaccine Research & Development System Innovation, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China; Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, China.
| |
Collapse
|
6
|
The role of conformational epitopes in the evolutionary divergence of enterovirus D68 clades: A bioinformatics-based study. INFECTION GENETICS AND EVOLUTION 2021; 93:104992. [PMID: 34242773 DOI: 10.1016/j.meegid.2021.104992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022]
Abstract
Enterovirus D68 (EV-D68), as one of the major pathogens of paediatric respiratory disease, has been widely spread in the population in recent years. As the basis of virus antigenicity, antigenic epitopes are essential to monitoring the transformation of virus antigenicity. However, there is a lack of systematic studies on the antigenic epitopes of EV-D68. In this study, a bioinformatics-based prediction algorithm for human enteroviruses was used to predict the conformational epitopes of EV-D68. The prediction results showed that the conformational epitopes of EV-D68 were clustered into three sites: site 1, site 2, and site 3. Site 1 was located in the "north rim" region of the canyon near the fivefold axis; site 2 was located in the "puff" region near the twofold axis; and site 3 consisted of two parts, one in the "knob" region on the south rim of the canyon and the other in the threefold axis region. The predicted epitopes overlapped highly with the binding regions of four reported monoclonal antibodies (mAbs), indicating that the predictions were highly reliable. Phylogenetic analysis showed that amino acid mutations in the epitopes of the VP1 BC loop, DE loop, C-terminus, and VP2 EF loop played a crucial role in the evolutionary divergence of EV-D68 clades/subclades and epidemics. This finding indicated that the VP1 BC loop, DE loop, C-terminus, and VP2 EF loop were the most important epitopes of EV-D68. Research on the epitopes of EV-D68 will contribute to outbreak surveillance and to the development of diagnostic reagents and recombinant vaccines.
Collapse
|
7
|
Mozhgani SH, Keshavarz M, Mousavi N, Namdari H, Salimi V, Mokhtari-Azad T, Zarei-Ghobadi M, Nadji SA, Ghavami N, Rezaei F. Frequent detection of enterovirus D68 and rhinovirus type C in children with acute respiratory infections. Eur J Clin Microbiol Infect Dis 2020; 40:637-642. [PMID: 33011904 DOI: 10.1007/s10096-020-04051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the prevalence of human rhinoviruses (HRVs) and the emergence of enterovirus D68 (EV-D68) in children. A total of 322 nasopharyngeal swab samples were provided from children with an initial diagnosis of upper and lower respiratory tract infections. A total of 34 and 70 cases were positive for EV-D68 and HRV, respectively. The phylogenetic analysis revealed that the clades A and B are the prevalent genotypes for EV-D68 and the HRV-positive samples belong to three types including HRV-A, HRV-B, and HRV-C. The results showed that EV-D68 and HRV-C are circulating in Iran especially in the winter.
Collapse
Affiliation(s)
- Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Mousavi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | | | - Seyed Alireza Nadji
- Virology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Ghavami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran.
| |
Collapse
|
8
|
Pellegrinelli L, Giardina F, Lunghi G, Uceda Renteria SC, Greco L, Fratini A, Galli C, Piralla A, Binda S, Pariani E, Baldanti F. Emergence of divergent enterovirus (EV) D68 sub-clade D1 strains, northern Italy, September to October 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 30782269 PMCID: PMC6381661 DOI: 10.2807/1560-7917.es.2018.24.7.1900090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Between September and October 2018, an enterovirus D68 (EV-D68) outbreak occurred in patients hospitalised with severe acute respiratory infection in northern Italy; 21 laboratory-confirmed cases were reported. Phylogenetic analysis revealed that 16/20 of the EV-D68 sequences belonged to a divergent group within the sub-clade D1. Since its upsurge, EV-D68 has undergone rapid evolution with the emergence of new viral variants, emphasising the need for molecular surveillance that include outpatients with respiratory illness.
Collapse
Affiliation(s)
- Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Federica Giardina
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanna Lunghi
- Microbiology and Virology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Letizia Greco
- Microbiology and Virology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alice Fratini
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
9
|
Pan HH, Tsai CR, Ting PJ, Huang FL, Wang LC, Lin CF, Ko JL, Lue KH, Chen PY. Respiratory presentation of patients infected with enterovirus D68 in Taiwan. Pediatr Neonatol 2020; 61:168-173. [PMID: 31575458 DOI: 10.1016/j.pedneo.2019.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 05/27/2019] [Accepted: 09/06/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Enterovirus-D68 (EV-D68) has been endemic in Taiwan for some years with a small number of positive cases. Detailed information about respiratory presentation is lacking. This study characterized the clinical course in children admitted to the medical center and regional hospital in Taichung during 2015. METHODS Retrospective chart review of patients with confirmed EV-D68 infection admitted to the medical center and regional hospital in Taichung with respiratory symptoms in the second half of 2015. Past medical history, clinical presentation, management, and course in hospital were collected and analyzed. Simple demographic data and clinical symptoms were also collected from patients confirmed with EV-D68 infection who visited clinics in Taichung. RESULTS Six children were included. Two patients had a prior history of asthma or recurrent dyspnea, and one had other preexisting medical comorbidities. One child was admitted to the pediatric intensive care unit. All the patients were cured. Cough, rhinorrhea, tachypnea and fever were the most common clinical symptoms among inpatients, while influenza-like illness (ILI) was prevalent in outpatients. CONCLUSION EV-D68 infection resulted in respiratory presentations of asthma-like illness in the hospitalized pediatric population. Patients with a prior history of asthma or recurrent dyspnea appear to be more severely affected.
Collapse
Affiliation(s)
- Hui-Hsien Pan
- Department of Pediatrics, Chung-Shan Medical University Hospital, Taichung City, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan; School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Chi-Ren Tsai
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Pei-Ju Ting
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Fang-Liang Huang
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung City, Taiwan; Hung Kuang University, Taichung, Taiwan
| | - Li-Chung Wang
- Microbiology Section of the Medical Laboratory Department, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-Fu Lin
- Microbiology Section of the Medical Laboratory Department, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Department of Pediatrics, Chung-Shan Medical University Hospital, Taichung City, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan; Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ko-Huang Lue
- Department of Pediatrics, Chung-Shan Medical University Hospital, Taichung City, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan; School of Medicine, Chung Shan Medical University, Taichung City, Taiwan.
| | - Po-Yen Chen
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan; Department of Pediatrics, Taichung Veterans General Hospital, Taichung City, Taiwan.
| |
Collapse
|
10
|
Uprety P, Curtis D, Elkan M, Fink J, Rajagopalan R, Zhao C, Bittinger K, Mitchell S, Ulloa ER, Hopkins S, Graf EH. Association of Enterovirus D68 with Acute Flaccid Myelitis, Philadelphia, Pennsylvania, USA, 2009-2018. Emerg Infect Dis 2019; 25:1676-1682. [PMID: 31407660 PMCID: PMC6711208 DOI: 10.3201/eid2509.190468] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute flaccid myelitis (AFM) is a polio-like disease that results in paralysis in previously healthy persons. Although the definitive cause of AFM remains unconfirmed, enterovirus D68 (EV-D68) is suspected based on 2014 data demonstrating an increase in AFM cases concomitant with an EV-D68 outbreak. We examined the prevalence in children and the molecular evolution of EV-D68 for 2009–2018 in Philadelphia, Pennsylvania, USA. We detected widespread EV-D68 circulation in 2009, rare detections in 2010 and 2011, and then biennial circulation, only in even years, during 2012–2018. Prevalence of EV-D68 significantly correlated with AFM cases during this period. Finally, whole-genome sequencing revealed early detection of the B1 clade in 2009 and continued evolution of the B3 clade from 2016 to 2018. These data reinforce the need to improve surveillance programs for nonpolio enterovirus to identify possible AFM triggers and predict disease prevalence to better prepare for future outbreaks.
Collapse
|
11
|
Hixon AM, Frost J, Rudy MJ, Messacar K, Clarke P, Tyler KL. Understanding Enterovirus D68-Induced Neurologic Disease: A Basic Science Review. Viruses 2019; 11:E821. [PMID: 31487952 PMCID: PMC6783995 DOI: 10.3390/v11090821] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022] Open
Abstract
In 2014, the United States (US) experienced an unprecedented epidemic of enterovirus D68 (EV-D68)-induced respiratory disease that was temporally associated with the emergence of acute flaccid myelitis (AFM), a paralytic disease occurring predominantly in children, that has a striking resemblance to poliomyelitis. Although a definitive causal link between EV-D68 infection and AFM has not been unequivocally established, rapidly accumulating clinical, immunological, and epidemiological evidence points to EV-D68 as the major causative agent of recent seasonal childhood AFM outbreaks in the US. This review summarizes evidence, gained from in vivo and in vitro models of EV-D68-induced disease, which demonstrates that contemporary EV-D68 strains isolated during and since the 2014 outbreak differ from historical EV-D68 in several factors influencing neurovirulence, including their genomic sequence, their receptor utilization, their ability to infect neurons, and their neuropathogenicity in mice. These findings provide biological plausibility that EV-D68 is a causal agent of AFM and provide important experimental models for studies of pathogenesis and treatment that are likely to be difficult or impossible in humans.
Collapse
Affiliation(s)
- Alison M Hixon
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua Frost
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Rudy
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin Messacar
- Hospital Medicine and Pediatric Infectious Disease Sections, Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA.
- Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - Penny Clarke
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Kenneth L Tyler
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Neurology Service, Rocky Mountain VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Shen L, Gong C, Xiang Z, Zhang T, Li M, Li A, Luo M, Huang F. Upsurge of Enterovirus D68 and Circulation of the New Subclade D3 and Subclade B3 in Beijing, China, 2016. Sci Rep 2019; 9:6073. [PMID: 30988475 PMCID: PMC6465342 DOI: 10.1038/s41598-019-42651-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
We conducted a surveillance among acute respiratory tract infection (ARTI) cases to define the epidemiology, clinical characteristics and genetic variations of enterovirus D68 (EV-D68) in Beijing, China from 2015 to 2017. Nasopharyngeal swabs and sputum were collected from 30 sentinel hospitals in Beijing and subjected to EV and EV-D68 detection by real-time PCR. The VP1 gene region and complete genome sequences of EV-D68 positive cases were analyzed. Of 21816 ARTI cases, 619 (2.84%) were EV positive and 42 cases were EV-D68 positive. The detection rates of EV-D68 were 0 (0/6644) in 2015, 0.53% (40/7522) in 2016 and 0.03% (2/7650) in 2017, respectively. Two peaks of EV-D68 infections occurred in late summer and early-winter. Ten cases (23.81%) with upper respiratory tract infection and 32 cases (76.19%) presented with pneumonia, including 3 cases with severe pneumonia. The phylogenetic analysis suggested 15 subclade D3 strains and 27 subclade B3 strains of EV-D68 were circulated in China from 2016 to 2017. A total of 52 amino acid polymorphisms were identified between subclades D1 and D3. These data suggest an upsurge of EV-D68 occurred in Beijing in 2016, the new subclade D3 emerged in 2016 and co-circulated with subclade B3 between 2016 and 2017.
Collapse
Affiliation(s)
- Lingyu Shen
- School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China
| | - Cheng Gong
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China
| | - Zichun Xiang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100730, P.R. China
| | - Tiegang Zhang
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China
| | - Maozhong Li
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China
| | - Aihua Li
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China
| | - Ming Luo
- School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Fang Huang
- School of Public Health, Capital Medical University, Beijing, 100069, P.R. China.
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China.
| |
Collapse
|
13
|
Lukashev AN, Vakulenko YA, Turbabina NA, Deviatkin AA, Drexler JF. Molecular epidemiology and phylogenetics of human enteroviruses: Is there a forest behind the trees? Rev Med Virol 2018; 28:e2002. [PMID: 30069956 DOI: 10.1002/rmv.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 11/05/2022]
Abstract
Enteroviruses are among the best studied small non-enveloped enteric RNA viruses. Most enteroviruses are easy to isolate in cell culture, and many non-polio enterovirus strains were archived worldwide as a byproduct of the WHO poliovirus surveillance system. Common outbreaks and epidemics, most prominently the epidemic of hand-foot-and-mouth disease with severe neurological complications in East and South-East Asia, justify practical interest of non-polio enteroviruses. As a result, there are over 50 000 enterovirus nucleotide sequences available in GenBank. Technical possibilities have been also improving, as Bayesian phylogenetic methods with an integrated molecular clock were introduced a decade ago and provided unprecedented opportunities for phylogenetic analysis. As a result, hundreds of papers were published on the molecular epidemiology of enteroviruses. This review covers the modern methodology, structure, and biases of the sequence dataset available in GenBank. The relevance of the subtype classification, findings of co-circulation of multiple genetic variants, previously unappreciated complexity of viral populations, and global evolutionary patterns are addressed. The most relevant conclusions and prospects for further studies on outbreak emergence mechanisms are discussed.
Collapse
Affiliation(s)
- Alexander N Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations, Moscow, Russia
| | - Yulia A Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.,Virology Department, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia A Turbabina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| |
Collapse
|
14
|
Itagaki T, Aoki Y, Matoba Y, Tanaka S, Ikeda T, Mizuta K, Matsuzaki Y. Clinical characteristics of children infected with enterovirus D68 in an outpatient clinic and the association with bronchial asthma. Infect Dis (Lond) 2017; 50:303-312. [PMID: 29119851 DOI: 10.1080/23744235.2017.1400176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND All reports of increases in severe respiratory disease associated with human enterovirus D68 (EV-D68) are from hospital settings. However, there are few reports describing clinical characteristics in less severely affected populations. METHODS We conducted a retrospective observational study from January 2010 to December 2015 in Yamagata, Japan. Using regional passive surveillance, 5794 respiratory specimens were collected from children who initially presented to an outpatient clinic with acute respiratory symptoms. The collected samples were tested for EV-D68 by reverse transcription PCR. RESULTS EV-D68 was detected in 79 specimens mainly during the two epidemic periods in August-October 2010 and August-October 2015, when detection rates were 10.2% (31 of 304 specimens) and 16.3% (46 of 282 specimens), respectively. Among the 69 EV-D68-positive children, excluding those with viral coinfection, 39 (57%) had upper respiratory tract infections, 23 (33%) bronchiolitis or asthma attack, 5 (7%) bronchitis, 1 (1%) meningitis and 1 (1%) acute flaccid paralysis. In 23 children with wheezing, retraction was observed in 10 (43%), and six (26%) were diagnosed with asthma exacerbation. Six children required hospital admission, five (83%) because of asthma exacerbation. A history of asthma or wheezing was the most significant risk factor for the development of wheezing (odds ratio, 8.23; 95% CI, 2.65-25.50; p < .001). CONCLUSIONS The low rate of hospitalization (9%, 6 of 69) indicates that most cases with EV-D68 infection were managed as outpatients. A history of asthma or wheezing was a potential risk factor for wheezing, resulting in hospitalization due to a severe asthma attack.
Collapse
Affiliation(s)
| | - Yoko Aoki
- b Department of Microbiology , Yamagata Prefectural Institute of Public Health , Tokamachi , Japan
| | - Yohei Matoba
- b Department of Microbiology , Yamagata Prefectural Institute of Public Health , Tokamachi , Japan
| | - Shizuka Tanaka
- b Department of Microbiology , Yamagata Prefectural Institute of Public Health , Tokamachi , Japan
| | - Tatsuya Ikeda
- b Department of Microbiology , Yamagata Prefectural Institute of Public Health , Tokamachi , Japan
| | - Katsumi Mizuta
- b Department of Microbiology , Yamagata Prefectural Institute of Public Health , Tokamachi , Japan
| | - Yoko Matsuzaki
- c Department of Infectious Diseases , Yamagata University Faculty of Medicine , Iida-Nishi , Japan
| |
Collapse
|
15
|
Kaida A, Iritani N, Yamamoto SP, Kanbayashi D, Hirai Y, Togawa M, Amo K, Kohdera U, Nishigaki T, Shiomi M, Asai S, Kageyama T, Kubo H. Distinct genetic clades of enterovirus D68 detected in 2010, 2013, and 2015 in Osaka City, Japan. PLoS One 2017; 12:e0184335. [PMID: 28902862 PMCID: PMC5597212 DOI: 10.1371/journal.pone.0184335] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
The first upsurge of enterovirus D68 (EV-D68), a causative agent of acute respiratory infections (ARIs), in Japan was reported in Osaka City in 2010. In this study, which began in 2010, we surveyed EV-D68 in children with ARIs and analyzed sequences of EV-D68 strains detected. Real-time PCR of 19 respiratory viruses or subtypes of viruses, including enterovirus, was performed on 2,215 specimens from ARI patients (<10 years of age) collected between November 2010 and December 2015 in Osaka City, Japan. EV-D68 was identified in 18 enterovirus-positive specimens (n = 4 in 2013, n = 1 in 2014, and n = 13 in 2015) by analysis of viral protein 1 (VP1) or VP4 sequences, followed by a BLAST search for similar sequences. All EV-D68 strains were detected between June and October (summer to autumn), except for one strain detected in 2014. A phylogenetic analysis of available VP1 sequences revealed that the Osaka strains detected in 2010, 2013, and 2015 belonged to distinct clusters (Clades C, A, and B [Subclade B3], respectively). Comparison of the 5' untranslated regions of these viruses showed that Osaka strains in Clades A, B (Subclade B3), and C commonly had deletions at nucleotide positions 681-703 corresponding to the prototype Fermon strain. Clades B and C had deletions from nucleotide positions 713-724. Since the EV-D68 epidemic in 2010, EV-D68 re-emerged in Osaka City, Japan, in 2013 and 2015. Results of this study indicate that distinct clades of EV-D68 contributed to re-emergences of this virus in 2010, 2013, and 2015 in this limited region.
Collapse
Affiliation(s)
- Atsushi Kaida
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
- * E-mail:
| | - Nobuhiro Iritani
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Seiji P. Yamamoto
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Daiki Kanbayashi
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yuki Hirai
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | | | - Kiyoko Amo
- Osaka City General Hospital, Osaka, Japan
| | | | | | | | | | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideyuki Kubo
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| |
Collapse
|
16
|
Huang YP, Lin TL, Lin TH, Wu HS. Molecular and epidemiological study of enterovirus D68 in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:411-417. [DOI: 10.1016/j.jmii.2015.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|
17
|
Ny NTH, Anh NT, Hang VTT, Nguyet LA, Thanh TT, Ha DQ, Minh NNQ, Ha DLA, McBride A, Tuan HM, Baker S, Tam PTT, Phuc TM, Huong DT, Loi TQ, Vu NTA, Hung NV, Minh TTT, Xang NV, Dong N, Nghia HDT, Chau NVV, Thwaites G, van Doorn HR, Anscombe C, Le Van T. Enterovirus D68 in Viet Nam (2009-2015). Wellcome Open Res 2017. [PMID: 28852711 DOI: 10.12688/wellcomeopenres.11558.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Since 1962, enterovirus D68 (EV-D68) has been implicated in multiple outbreaks and sporadic cases of respiratory infection worldwide, but especially in the USA and Europe with an increasing frequency between 2010 and 2014. We describe the detection, associated clinical features and molecular characterization of EV-D68 in central and southern Viet Nam between 2009 and 2015. METHODS Enterovirus/rhinovirus PCR positive respiratory or CSF samples taken from children and adults with respiratory/central nervous system infections in Viet Nam were tested by an EV-D68 specific PCR. The included samples were derived from 3 different observational studies conducted at referral hospitals across central and southern Viet Nam between 2009 and 2015. Whole-genome sequencing was carried out using a MiSeq based approach. Phylogenetic reconstruction and estimation of evolutionary rate and recombination were carried out in BEAST and Recombination Detection Program, respectively. RESULTS EV-D68 was detected in 21/625 (3.4%) enterovirus/rhinovirus PCR positive respiratory samples but in none of the 15 CSF. All the EV-D68 patients were young children (age range: 11.8 - 24.5 months) and had moderate respiratory infections. Phylogenetic analysis suggested that the Vietnamese sequences clustered with those from Asian countries, of which 9 fell in the B1 clade, and the remaining sequence was identified within the A2 clade. One intra sub-clade recombination event was detected, representing the second reported recombination within EV-D68. The evolutionary rate of EV-D68 was estimated to be 5.12E -3 substitutions/site/year. Phylogenetic analysis indicated that the virus was imported into Viet Nam in 2008. CONCLUSIONS We have demonstrated for the first time EV-D68 has been circulating at low levels in Viet Nam since 2008, associated with moderate acute respiratory infection in children. EV-D68 in Viet Nam is most closely related to Asian viruses, and clusters separately from recent US and European viruses that were suggested to be associated with acute flaccid paralysis.
Collapse
Affiliation(s)
- Nguyen Thi Han Ny
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Ho Chi Minh City University of Science, Ho Chi Minh City, Vietnam
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thi Ty Hang
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Tan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Do Quang Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Do Lien Anh Ha
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ha Manh Tuan
- Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tran My Phuc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Dang Thao Huong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Quoc Loi
- Dong Thap General Hospital, Ban Me Thuot City, Vietnam
| | | | | | | | | | - Nguyen Dong
- Khanh Hoa General Hospital, Nha Trang City, Vietnam
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Pham Ngoc Thach University, Ho Chi Minh City, Vietnam
| | | | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tan Le Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
18
|
Ny NTH, Anh NT, Hang VTT, Nguyet LA, Thanh TT, Ha DQ, Minh NNQ, Ha DLA, McBride A, Tuan HM, Baker S, Tam PTT, Phuc TM, Huong DT, Loi TQ, Vu NTA, Hung NV, Minh TTT, Xang NV, Dong N, Nghia HDT, Chau NVV, Thwaites G, van Doorn HR, Anscombe C, Le Van T. Enterovirus D68 in Viet Nam (2009-2015). Wellcome Open Res 2017; 2:41. [PMID: 28852711 PMCID: PMC5553084 DOI: 10.12688/wellcomeopenres.11558.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 11/30/2022] Open
Abstract
Background: Since 1962, enterovirus D68 (EV-D68) has been implicated in multiple outbreaks and sporadic cases of respiratory infection worldwide, especially in the USA and Europe with an increasing frequency between 2010 and 2014. We describe the detection, associated clinical features and molecular characterization of EV-D68 in central and southern Viet Nam between 2009 and 2015. Methods: Enterovirus/rhinovirus PCR positive respiratory or CSF samples taken from children and adults with respiratory/central nervous system infections in Viet Nam were tested by an EV-D68 specific PCR. The included samples were derived from 3 different observational studies conducted at referral hospitals across central and southern Viet Nam 2009 2015. Whole-genome sequencing was carried out using a MiSeq based approach. Phylogenetic reconstruction and estimation of evolutionary rate and recombination were carried out in BEAST and Recombination Detection Program, respectively. Results: EV-D68 was detected in 21/625 (3.4%) enterovirus/rhinovirus PCR positive respiratory samples but in none of the 15 CSF. All the EV-D68 patients were young children (age range: 11.8 – 24.5 months) and had moderate respiratory infections. Phylogenetic analysis suggested that the Vietnamese sequences clustered with those from Asian countries, of which 9 fell in the B1 clade, and the remaining sequence was identified within the A2 clade. One intra sub-clade recombination event was detected, representing the second reported recombination within EV-D68. The evolutionary rate of EV-D68 was estimated to be 5.12E
-3 substitutions/site/year. Phylogenetic analysis indicated that the virus was imported into Viet Nam in 2008. Conclusions: We have demonstrated for the first time EV-D68 has been circulating at low levels in Viet Nam since 2008, associated with moderate acute respiratory infection in children. EV-D68 in Viet Nam is most closely related to Asian viruses, and clusters separately from recent US and European viruses that were suggested to be associated with acute flaccid paralysis.
Collapse
Affiliation(s)
- Nguyen Thi Han Ny
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Ho Chi Minh City University of Science, Ho Chi Minh City, Vietnam
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thi Ty Hang
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Tan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Do Quang Ha
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Do Lien Anh Ha
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Angela McBride
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ha Manh Tuan
- Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Stephen Baker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tran My Phuc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Dang Thao Huong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tran Quoc Loi
- Dong Thap General Hospital, Ban Me Thuot City, Vietnam
| | | | | | | | | | - Nguyen Dong
- Khanh Hoa General Hospital, Nha Trang City, Vietnam
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Pham Ngoc Thach University, Ho Chi Minh City, Vietnam
| | | | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Tan Le Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
19
|
First Report of a Fatal Case Associated with EV-D68 Infection in Hong Kong and Emergence of an Interclade Recombinant in China Revealed by Genome Analysis. Int J Mol Sci 2017; 18:ijms18051065. [PMID: 28509856 PMCID: PMC5454976 DOI: 10.3390/ijms18051065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
A fatal case associated with enterovirus D68 (EV-D68) infection affecting a 10-year-old boy was reported in Hong Kong in 2014. To examine if a new strain has emerged in Hong Kong, we sequenced the partial genome of the EV-D68 strain identified from the fatal case and the complete VP1, and partial 5′UTR and 2C sequences of nine additional EV-D68 strains isolated from patients in Hong Kong. Sequence analysis indicated that a cluster of strains including the previously recognized A2 strains should belong to a separate clade, clade D, which is further divided into subclades D1 and D2. Among the 10 EV-D68 strains, 7 (including the fatal case) belonged to the previously described, newly emerged subclade B3, 2 belonged to subclade B1, and 1 belonged to subclade D1. Three EV-D68 strains, each from subclades B1, B3, and D1, were selected for complete genome sequencing and recombination analysis. While no evidence of recombination was noted among local strains, interclade recombination was identified in subclade D2 strains detected in mainland China in 2008 with VP2 acquired from clade A. This study supports the reclassification of subclade A2 into clade D1, and demonstrates interclade recombination between clades A and D2 in EV-D68 strains from China.
Collapse
|
20
|
Nasal Infection of Enterovirus D68 Leading to Lower Respiratory Tract Pathogenesis in Ferrets (Mustela putorius furo). Viruses 2017; 9:v9050104. [PMID: 28489053 PMCID: PMC5454417 DOI: 10.3390/v9050104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
Data from EV-D68-infected patients demonstrate that pathological changes in the lower respiratory tract are principally characterized by severe respiratory illness in children and acute flaccid myelitis. However, lack of a suitable animal model for EV-D68 infection has limited the study on the pathogenesis of this critical pathogen, and the development of a vaccine. Ferrets have been widely used to evaluate respiratory virus infections. In the current study, we used EV-D68-infected ferrets as a potential animal to identify impersonal indices, involving clinical features and histopathological changes in the upper and lower respiratory tract (URT and LRT). The research results demonstrate that the EV-D68 virus leads to minimal clinical symptoms in ferrets. According to the viral load detection in the feces, nasal, and respiratory tracts, the infection and shedding of EV-D68 in the ferret model was confirmed, and these results were supported by the EV-D68 VP1 immunofluorescence confocal imaging with α2,6-linked sialic acid (SA) in lung tissues. Furthermore, we detected the inflammatory cytokine/chemokine expression level, which implied high expression levels of interleukin (IL)-1a, IL-8, IL-5, IL-12, IL-13, and IL-17a in the lungs. These data indicate that systemic observation of responses following infection with EV-D68 in ferrets could be used as a model for EV-D68 infection and pathogenesis.
Collapse
|
21
|
Eshaghi A, Duvvuri VR, Isabel S, Banh P, Li A, Peci A, Patel SN, Gubbay JB. Global Distribution and Evolutionary History of Enterovirus D68, with Emphasis on the 2014 Outbreak in Ontario, Canada. Front Microbiol 2017; 8:257. [PMID: 28298902 PMCID: PMC5331033 DOI: 10.3389/fmicb.2017.00257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Despite its first appearance in 1962, human enterovirus D68 (EV-D68) has been recognized as an emerging respiratory pathogen in the last decade when it caused outbreaks and clusters in several countries including Japan, the Philippines, and the Netherlands. The most recent and largest outbreak of EV-D68 associated with severe respiratory illness took place in North America between August 2014 and January 2015. Between September 1 and October 31 2014, EV-D68 infection was laboratory confirmed among 153/907 (16.9%) persons tested for the virus in Ontario, Canada, using real time RT-PCR and subsequent genotyping by sequencing of partial VP1 gene. In order to understand the evolutionary history of the 2014 North American EV-D68 outbreak, we conducted phylogenetic and phylodynamic analyses using available partial VP1 genes (n = 469) and NCBI available whole genome sequences (WGS) (n = 38). The global EV-D68 phylogenetic tree (n = 469) reconfirms the divergence of three distinct clades A, B, and C from the prototype EV-D68 Fermon strain as previously documented. Two sub-clades (B1 and B2) were identified, with most 2014 EV-D68 outbreak strains belonging to sub-cluster B2b2 (one of the two emerging clusters within sub-clade B2), with two signature substitutions T650A and M700V in BC and DE loops of VP1 gene, respectively. The close homology between WGS of strains from Ontario (n = 2) and USA (n = 21) in the recent EV-D68 outbreak suggests genetic relatedness and also a common source for the outbreak. The time of most recent common ancestor of EV-D68 and the 2014 EV-D68 outbreak strain suggest that the viruses possibly emerged during 1960-1961 and 2012-2013, respectively. We observed lower mean evolutionary rates of global EV-D68 using WGS data than estimated with partial VP1 gene sequences. Based on WGS data, the estimated mean rate of evolution of the EV-D68 B2b cluster was 9.75 × 10-3 substitutions/site/year (95% BCI 4.11 × 10-3 to 16 × 10-3).
Collapse
Affiliation(s)
- Alireza Eshaghi
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Venkata R. Duvvuri
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Sandra Isabel
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, TorontoON, Canada
| | - Philip Banh
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Aimin Li
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Adriana Peci
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
| | - Samir N. Patel
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, TorontoON, Canada
| | - Jonathan B. Gubbay
- Department of Clinical Laboratory and Microbiology Sciences, Public Health Ontario, TorontoON, Canada
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, TorontoON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, TorontoON, Canada
- Department of Microbiology, Mount Sinai Hospital, TorontoON, Canada
| |
Collapse
|
22
|
Hellferscee O, Treurnicht FK, Tempia S, Variava E, Dawood H, Kahn K, Cohen AL, Pretorius M, Cohen C, Madhi SA, Venter M. Enterovirus D68 and other enterovirus serotypes identified in South African patients with severe acute respiratory illness, 2009-2011. Influenza Other Respir Viruses 2017; 11:211-219. [PMID: 28122175 PMCID: PMC5410726 DOI: 10.1111/irv.12444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/03/2022] Open
Abstract
Background Human enteroviruses (EV) have been associated with severe acute respiratory illness (SARI) in South Africa. Objectives We aimed to describe the molecular epidemiology of EV serotypes among patients hospitalized with SARI during 2009‐2011. Patients/Methods Study samples from patients were tested for the presence of enterovirus using a polymerase chain reaction assay. Results 8.2% (842/10 260) of SARI cases tested positive for enterovirus; 16% (7/45) were species EV‐A, 44% (20/45) EV‐B, 18% (8/45) EV‐C and 22% (10/45) EV‐D. Seventeen different EV serotypes were identified within EV‐A to EV‐D, of which EV‐D68 (22%; 10/45) and Echovirus 3 (11%; 5/45) were the most prevalent. Conclusions EV‐D68 should be monitored in South Africa to assess the emergence of highly pathogenic strains.
Collapse
Affiliation(s)
- Orienka Hellferscee
- National Institute for Communicable Diseases of the National Health Laboratory Service; Johannesburg South Africa
- University of the Witwatersrand; Johannesburg South Africa
| | - Florette K. Treurnicht
- National Institute for Communicable Diseases of the National Health Laboratory Service; Johannesburg South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases of the National Health Laboratory Service; Johannesburg South Africa
- Centres for Disease Control and Prevention; Atlanta Georgia USA
| | - Ebrahim Variava
- University of the Witwatersrand; Johannesburg South Africa
- Pietermaritzburg Metropolitan Hospital; Pietermaritzburg South Africa
| | - Halima Dawood
- Pietermaritzburg Metropolitan Hospital; Pietermaritzburg South Africa
- Caprisa; University of KwaZulu-Natal; Pietermaritzburg South Africa
| | - Kathleen Kahn
- University of the Witwatersrand; Johannesburg South Africa
| | - Adam L. Cohen
- Centres for Disease Control and Prevention; Atlanta Georgia USA
| | | | - Cheryl Cohen
- National Institute for Communicable Diseases of the National Health Laboratory Service; Johannesburg South Africa
- University of the Witwatersrand; Johannesburg South Africa
| | - Shabir A. Madhi
- National Institute for Communicable Diseases of the National Health Laboratory Service; Johannesburg South Africa
- University of the Witwatersrand; Johannesburg South Africa
| | - Marietjie Venter
- Centres for Disease Control and Prevention; Atlanta Georgia USA
- University of Pretoria; Pretoria South Africa
| |
Collapse
|
23
|
Patel MC, Wang W, Pletneva LM, Rajagopala SV, Tan Y, Hartert TV, Boukhvalova MS, Vogel SN, Das SR, Blanco JCG. Enterovirus D-68 Infection, Prophylaxis, and Vaccination in a Novel Permissive Animal Model, the Cotton Rat (Sigmodon hispidus). PLoS One 2016; 11:e0166336. [PMID: 27814404 PMCID: PMC5096705 DOI: 10.1371/journal.pone.0166336] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been a significant increase in detection of Enterovirus D-68 (EV-D68) among patients with severe respiratory infections worldwide. EV-D68 is now recognized as a re-emerging pathogen; however, due to lack of a permissive animal model for EV-D68, a comprehensive understanding of the pathogenesis and immune response against EV-D68 has been hampered. Recently, it was shown that EV-D68 has a strong affinity for α2,6-linked sialic acids (SAs) and we have shown previously that α2,6-linked SAs are abundantly present in the respiratory tract of cotton rats (Sigmodon hispidus). Thus, we hypothesized that cotton rats could be a potential model for EV-D68 infection. Here, we evaluated the ability of two recently isolated EV-D68 strains (VANBT/1 and MO/14/49), along with the historical prototype Fermon strain (ATCC), to infect cotton rats. We found that cotton rats are permissive to EV-D68 infection without virus adaptation. The different strains of EV-D68 showed variable infection profiles and the ability to produce neutralizing antibody (NA) upon intranasal infection or intramuscular immunization. Infection with the VANBT/1 resulted in significant induction of pulmonary cytokine gene expression and lung pathology. Intramuscular immunization with live VANBT/1 or MO/14/49 induced strong homologous antibody responses, but a moderate heterologous NA response. We showed that passive prophylactic administration of serum with high content of NA against VANBT/1 resulted in an efficient antiviral therapy. VANBT/1-immunized animals showed complete protection from VANBT/1 challenge, but induced strong pulmonary Th1 and Th2 cytokine responses and enhanced lung pathology, indicating the generation of exacerbated immune response by immunization. In conclusion, our data illustrate that the cotton rat is a powerful animal model that provides an experimental platform to investigate pathogenesis, immune response, anti-viral therapies and vaccines against EV-D68 infection.
Collapse
Affiliation(s)
- Mira C. Patel
- Sigmovir Biosystems Inc., Rockville, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Wei Wang
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Seesandra V. Rajagopala
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi Tan
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
| | - Suman R. Das
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (JCGB); (SRD)
| | - Jorge C. G. Blanco
- Sigmovir Biosystems Inc., Rockville, Maryland, United States of America
- * E-mail: (JCGB); (SRD)
| |
Collapse
|
24
|
Zhang T, Li A, Chen M, Wu J, Huang F. Respiratory infections associated with enterovirus D68 from 2011 to 2015 in Beijing, China. J Med Virol 2016; 88:1529-34. [PMID: 26896830 PMCID: PMC7166988 DOI: 10.1002/jmv.24505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 11/24/2022]
Abstract
Enterovirus D68 (EV-D68) is an emergent viral pathogen associated with mild to severe respiratory infections. In this study, we describe respiratory infections associated with EV-D68 in Beijing over a 4 year period. Total nucleic acid was extracted from 7,945 clinical specimens collected between January 5, 2011 and July 30, 2015 in Beijing and used for detecting EV-D68 and other enteroviruses by real-time PCR. Overall, 555/7,945 (6.99%) specimens were enterovirus positive: 12/7,945 (0.2%) specimens were EV-D68 positive. Of these patients, 11 were pediatric patients and 1 was a 76-year-old man. The main symptoms for the 12 EV-D68 positive patients were fever (10/12, 83.3%) and cough (6/12, 50%). Ten EV-D68 infection cases were identified in autumn or winter season. The phylogenetic relationships of the 12 EV-D68 viral strains with other strains were analyzed based on the sequences of viral protein 1(VP1). The EV-D68 strains from 2011 to 2013 belonged to groups 1 or 3, while all strains in 2014 were clustered into group 1 together with the strains circulating in the USA. In conclusion, EV-D68 played a role in respiratory infections in Beijing during this period. In addition, the most common EV-D68 strain detected was similar to that circulating in the USA in 2014. J. Med. Virol. 88:1529-1534, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tiegang Zhang
- Beijing Center for Disease Prevention and ControlBeijingP. R. China
| | - Aihua Li
- Beijing Center for Disease Prevention and ControlBeijingP. R. China
| | - Meng Chen
- Beijing Center for Disease Prevention and ControlBeijingP. R. China
| | - Jiang Wu
- Beijing Center for Disease Prevention and ControlBeijingP. R. China
| | - Fang Huang
- Beijing Center for Disease Prevention and ControlBeijingP. R. China
| |
Collapse
|
25
|
Respiratory Presentation of Pediatric Patients in the 2014 Enterovirus D68 Outbreak. Can Respir J 2016; 2016:8302179. [PMID: 27610028 PMCID: PMC5004002 DOI: 10.1155/2016/8302179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/06/2016] [Indexed: 11/17/2022] Open
Abstract
Background. In the fall of 2014, a North American outbreak of enterovirus D68 resulted in a significant number of pediatric hospital admissions for respiratory illness throughout North America. This study characterized the clinical presentation and risk factors for a severe clinical course in children admitted to British Columbia Children's Hospital during the 2014 outbreak. Methods. Retrospective chart review of patients with confirmed EV-D68 infection admitted to BCCH with respiratory symptoms in the fall of 2014. Past medical history, clinical presentation, management, and course in hospital was collected and analyzed using descriptive statistics. Comparison was made between those that did and did not require ICU admission to identify risk factors. Results. Thirty-four patients were included (median age 7.5 years). Fifty-three percent of children had a prior history of wheeze, 32% had other preexisting medical comorbidities, and 15% were previously healthy. Ten children (29%) were admitted to the pediatric intensive care unit. The presence of complex medical conditions (excluding wheezing) (P = 0.03) and copathogens was associated with PICU admission (P = 0.02). Conclusions. EV-D68 infection resulted in severe, prolonged presentations of asthma-like illness in the hospitalized pediatric population. Patients with a prior history of wheeze and preexisting medical comorbidities appear to be most severely affected, but the virus can also cause wheezing in previously well children.
Collapse
|
26
|
Abstract
Enterovirus D68 (EV-D68) is a member of the species Enterovirus D in the genus Enterovirus of the Picornaviridae family. EV-D68 was first isolated in the United States in 1962 and is primarily an agent of respiratory disease. Infections with EV-D68 have been rarely reported until recently, when reports of EV-D68 associated with respiratory disease increased notably worldwide. An outbreak in 2014 in the United States, for example, involved more than 1,000 cases of severe respiratory disease that occurred across almost all states. Phylogenetic analysis of all EV-D68 sequences indicates that the circulating strains of EV-D68 can be classified into two lineages, lineage 1 and lineage 2. In contrast to the prototype Fermon strain, all circulating strains have deletions in their genomes. Respiratory illness associated with EV-D68 infection ranges from mild illness that just needs outpatient service to severe illness requiring intensive care and mechanical ventilation. To date, there are no specific medicines and vaccines to treat or prevent EV-D68 infection. This review provides a detailed overview about our current understanding of EV-D68-related virology, epidemiology and clinical syndromes, pathogenesis, and laboratory diagnostics.
Collapse
Affiliation(s)
- Zichun Xiang
- MOH Key Laboratory of Systems Biology of Pathogens, and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P.R. China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
27
|
Machin N, Whitfield T, Mutton K, Hesketh L, Guiver M, Turner A. A prospective study of enterovirus D68 in a regional UK center. Future Virol 2016. [DOI: 10.2217/fvl-2016-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: A prospective study was undertaken to establish the prevalence of enterovirus D68 (EV-D68) in the northwest of England. Patients & samples: In the period 24 October through 31 December 2014, respiratory samples were screened by a specific real-time PCR and EV-D68 was identified by nucleotide sequence-based typing. Results: Enterovirus was detected in 7.4% of samples and EV-D68 was confirmed in 32 cases. Phylogenetic analysis showed that EV-D68 strains corresponded to clades A and B. Clinical presentation of cases ranged from mild to severe respiratory infection. The majority of cases had comorbidities that might predispose to severe infection. Conclusion: EV-D68 was circulating in our region during late 2014 and has the potential to cause severe disease.
Collapse
Affiliation(s)
- Nicholas Machin
- Public Health England, Public Health Laboratory Manchester, Manchester Royal Infirmary, Oxford Road, Manchester, M1 3NT, UK
- Department of Virology, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, M1 3NT, UK
| | - Thomas Whitfield
- Public Health England, Public Health Laboratory Manchester, Manchester Royal Infirmary, Oxford Road, Manchester, M1 3NT, UK
- Department of Virology, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, M1 3NT, UK
| | - Ken Mutton
- Public Health England, Public Health Laboratory Manchester, Manchester Royal Infirmary, Oxford Road, Manchester, M1 3NT, UK
- Department of Virology, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, M1 3NT, UK
| | - Louise Hesketh
- Public Health England, Public Health Laboratory Manchester, Manchester Royal Infirmary, Oxford Road, Manchester, M1 3NT, UK
- Department of Virology, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, M1 3NT, UK
| | - Malcolm Guiver
- Public Health England, Public Health Laboratory Manchester, Manchester Royal Infirmary, Oxford Road, Manchester, M1 3NT, UK
- Department of Virology, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, M1 3NT, UK
| | - Andrew Turner
- Public Health England, Public Health Laboratory Manchester, Manchester Royal Infirmary, Oxford Road, Manchester, M1 3NT, UK
- Department of Virology, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, M1 3NT, UK
| |
Collapse
|
28
|
Gong YN, Yang SL, Shih SR, Huang YC, Chang PY, Huang CG, Kao KC, Hu HC, Liu YC, Tsao KC. Molecular evolution and the global reemergence of enterovirus D68 by genome-wide analysis. Medicine (Baltimore) 2016; 95:e4416. [PMID: 27495059 PMCID: PMC4979813 DOI: 10.1097/md.0000000000004416] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human enterovirus D68 (EV-D68) was first reported in the United States in 1962; thereafter, a few cases were reported from 1970 to 2005, but 2 outbreaks occurred in the Philippines (2008) and the United States (2014). However, little is known regarding the molecular evolution of this globally reemerging virus due to a lack of whole-genome sequences and analyses. Here, all publically available sequences including 147 full and 1248 partial genomes from GenBank were collected and compared at the clade and subclade level; 11 whole genomes isolated in Taiwan (TW) in 2014 were also added to the database. Phylogenetic trees were constructed to identify a new subclade, B3, and represent clade circulations among strains. Nucleotide sequence identities of the VP1 gene were 94% to 95% based on a comparison of subclade B3 to B1 and B2 and 87% to 91% when comparing A, C, and D. The patterns of clade circulation need to be clarified to improve global monitoring of EV-D68, even though this virus showed lower diversity among clades compared with the common enterovirus EV-71. Notably, severe cases isolated from Taiwan and China in 2014 were found in subclade B3. One severe case from Taiwan occurred in a female patient with underlying angioimmunoblastic T-cell lymphoma, from whom a bronchoalveolar lavage specimen was obtained. Although host factors play a key role in disease severity, we cannot exclude the possibility that EV-D68 may trigger clinical symptoms or death. To further investigate the genetic diversity of EV-D68, we reported 34 amino acid (aa) polymorphisms identified by comparing subclade B3 to B1 and B2. Clade D strains had a 1-aa deletion and a 2-aa insertion in the VP1 gene, and 1 of our TW/2014 strains had a shorter deletion in the 5' untranslated region than a previously reported deletion. In summary, a new subclade, genetic indels, and polymorphisms in global strains were discovered elucidating evolutionary and epidemiological trends of EV-D68, and 11 genomes were added to the database. Virus variants may contribute to disease severity and clinical manifestations, and further studies are needed to investigate the associations between genetic diversity and clinical outcomes.
Collapse
Affiliation(s)
- Yu-Nong Gong
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
| | - Shu-Li Yang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
| | - Shin-Ru Shih
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
- Research Center for Emerging Viral Infections, Chang Gung University
| | - Yhu-Chering Huang
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital
- College of Medicine, Chang Gung University
| | - Pi-Yueh Chang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
| | - Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
- Research Center for Emerging Viral Infections, Chang Gung University
| | - Kuo-Chin Kao
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Han-Chung Hu
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital
- Department of Respiratory Therapy
- Department of Pulmonary and Critical Care Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chun Liu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital
- Department of Medical Biotechnology and Laboratory Science
- Research Center for Emerging Viral Infections, Chang Gung University
- Correspondence: Kuo-ChienTsao, Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan (e-mail: )
| |
Collapse
|
29
|
Lau SKP, Yip CCY, Zhao PSH, Chow WN, To KKW, Wu AKL, Yuen KY, Woo PCY. Enterovirus D68 Infections Associated with Severe Respiratory Illness in Elderly Patients and Emergence of a Novel Clade in Hong Kong. Sci Rep 2016; 6:25147. [PMID: 27121085 PMCID: PMC4848506 DOI: 10.1038/srep25147] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/11/2016] [Indexed: 01/23/2023] Open
Abstract
Despite the recent emergence of enterovirus D68 (EV-D68), its clinical impact on adult population is less well defined. To better define the epidemiology of EV-D68, 6,800 nasopharyngeal aspirates (NPAs) from 2010–2014 were subject to EV-D68 detection by RT-PCR and sequencing of 5′UTR and partial VP1. EV-D68 was detected in 30 (0.44%) NPAs from 22 children and 8 adults/elderlies. Sixteen patients (including five elderly) (53%) had pneumonia and 13 (43%) patients were complicated by small airway disease exacerbation. Phylogenetic analysis of VP1, 2C and 3D regions showed four distinct lineages of EV-D68, clade A1, A2, B1 and B3, with adults/elderlies exclusively infected by clade A2. The potentially new clade, B3, has emerged in 2014, while strains closely related to recently emerged B1 strains in the United States were also detected as early as 2011 in Hong Kong. The four lineages possessed distinct aa sequence patterns in BC and DE loops. Amino acid residues 97 and 140, within BC and DE-surface loops of VP1 respectively, were under potential positive selection. EV-D68 infections in Hong Kong usually peak in spring/summer, though with a delayed autumn/winter peak in 2011. This report suggests that EV-D68 may cause severe respiratory illness in adults/elderlies with underlying co-morbidities.
Collapse
Affiliation(s)
- Susanna K P Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Cyril C Y Yip
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Pyrear Su-Hui Zhao
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Wang-Ngai Chow
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kelvin K W To
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Alan K L Wu
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Lam HY, Wong ATC, Tsao YC, Tang BSF. Prevalence and phylogenetic characterization of human enterovirus D68 among children with respiratory infection in Hong Kong. Diagn Microbiol Infect Dis 2016; 85:174-6. [PMID: 27036976 DOI: 10.1016/j.diagmicrobio.2016.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/30/2016] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
This is the first report on the prevalence of human enterovirus D68 (EV-D68) among children with respiratory infection in Hong Kong. Among 1461 respiratory samples taken in 2014, EV-D68 was identified in 24 (1.64%) of them with a unusual seasonal pattern. Phylogenetic analysis indicated that all EV-D68 detected in this study belong to clade B.
Collapse
Affiliation(s)
- Ho-Yin Lam
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, HKSAR
| | | | - Yen-Chow Tsao
- Department of Pediatrics, Hong Kong Sanatorium & Hospital, Hong Kong, HKSAR
| | - Bone Siu-Fai Tang
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, HKSAR.
| |
Collapse
|
31
|
Holm-Hansen CC, Midgley SE, Fischer TK. Global emergence of enterovirus D68: a systematic review. THE LANCET. INFECTIOUS DISEASES 2016; 16:e64-e75. [PMID: 26929196 DOI: 10.1016/s1473-3099(15)00543-5] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023]
Abstract
Since its discovery in California in 1962, reports of enterovirus D68 have been infrequent. Before 2014, infections were confirmed in only 699 people worldwide. In August, 2014, two paediatric hospitals in the USA reported increases in the number of patients with severe respiratory illness, with an over-representation in children with asthma. Shortly after, the authorities recognised a nationwide outbreak, which then spread to Canada, Europe, and Asia. In 2014, more than 2000 cases of enterovirus D68 were reported in 20 countries. Concurrently, clusters of children with acute flaccid paralysis of unknown cause were reported in several US states and in Europe. Enterovirus D68 infection was confirmed in some of the paralysed children, but not all. Complications in patients who were severely neurologically affected resemble those caused by poliomyelitis. In this paper we systematically review reports on enterovirus D68 to estimate its global epidemiology and its ability to cause respiratory infections and neurological damage in children. We extracted data from 70 papers to report on prevalence, symptoms, hospitalisation and mortality, and complications of enterovirus D68, both before and during the large outbreak of 2014. The magnitude and severity of the enterovirus D68 outbreak underscores a need for improved diagnostic work-up of paediatric respiratory illness, not only to prevent unnecessary use of antibiotics, but also to ensure better surveillance of diseases. Existing surveillance systems should be assessed in terms of capacity and ability to detect and report any upsurge of respiratory viruses such as enterovirus D68 in a timely manner, and focus should be paid to development of preventive measures against these emerging enteroviruses that have potential for severe disease.
Collapse
Affiliation(s)
- Charlotte Carina Holm-Hansen
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Sofie Elisabeth Midgley
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Thea Kølsen Fischer
- Virology Surveillance and Research Section, Department of Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen, Denmark; Center for Global Health and Department of Infectious Diseases, Clinical Institute, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
32
|
Opanda SM, Wamunyokoli F, Khamadi S, Coldren R, Bulimo WD. Genotyping of enteroviruses isolated in Kenya from pediatric patients using partial VP1 region. SPRINGERPLUS 2016; 5:158. [PMID: 27026855 PMCID: PMC4766141 DOI: 10.1186/s40064-016-1834-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/15/2016] [Indexed: 01/12/2023]
Abstract
Enteroviruses (EV) are responsible for a wide range of clinical diseases in humans. Though studied broadly in several regions of the world, the genetic diversity of human enteroviruses (HEV) circulating in the sub-Saharan Africa remains under-documented. In the current study, we molecularly typed 61 HEV strains isolated in Kenya between 2008 and 2011 targeting the 3′-end of the VP1 gene. Viral RNA was extracted from the archived isolates and part of the VP1 gene amplified by RT-PCR, followed by sequence analysis. Twenty-two different EV types were detected. Majority (72.0 %) of these belonged to Enterovirus B species followed by Enterovirus D (21.3 %) and Enterovirus A (6.5 %). The most frequently detected types were Enterovirus-D68 (EV-D68), followed by Coxsackievirus B2 (CV-B2), CV-B1, CV-B4 and CV-B3. Phylogenetic analyses of these viruses revealed that Kenyan CV-B1 isolates were segregated among sequences of global CV-B1 strains. Conversely, the Kenyan CV-B2, CV-B3, CV-B4 and EV-D68 strains generally grouped together with those detected from other countries. Notably, the Kenyan EV-D68 strains largely clustered with sequences of global strains obtained between 2008 and 2010 than those circulating in recent years. Overall, our results indicate that HEV strains belonging to Enterovirus D and Enterovirus B species pre-dominantly circulated and played a significant role in pediatric respiratory infection in Kenya, during the study period. The Kenyan CV-B1 strains were genetically divergent from those circulating in other countries. Phylogenetic clustering of Kenyan EV-D68 strains with sequences of global strains circulating between 2008 and 2010 than those obtained in recent years suggests a high genomic variability associated with the surface protein encoding VP1 gene in these enteroviruses.
Collapse
Affiliation(s)
- Silvanos M Opanda
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya ; College of Health Sciences (COHES), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Fred Wamunyokoli
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Samoel Khamadi
- The Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Rodney Coldren
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya
| | - Wallace D Bulimo
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya, P.O. Box 606-00621, Nairobi, Kenya ; Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
33
|
Xiang Z, Liu L, Lei X, Zhou Z, He B, Wang J. 3C Protease of Enterovirus D68 Inhibits Cellular Defense Mediated by Interferon Regulatory Factor 7. J Virol 2016; 90:1613-21. [PMID: 26608321 PMCID: PMC4719596 DOI: 10.1128/jvi.02395-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/18/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Human enterovirus 68 (EV-D68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, clusters of EV-D68 infections have occurred worldwide. A recent outbreak in the United States is the largest one associated with severe respiratory illness and neurological complication. Although clinical symptoms are recognized, the virus remains poorly understood. Here we report that EV-D68 inhibits innate antiviral immunity by downregulation of interferon regulatory factor 7 (IRF7), an immune factor with a pivotal role in viral pathogenesis. This process depends on 3C(pro), an EV-D68-encoded protease, to mediate IRF7 cleavage. When expressed in host cells, 3C(pro) targets Q167 and Q189 within the constitutive activation domain, resulting in cleavage of IRF7. Accordingly, wild-type IRF7 is fully active. However, IRF7 cleavage abrogated its capacity to activate type I interferon expression and limit replication of EV-D68. Notably, IRF7 cleavage strictly requires the protease activity of 3C(pro). Together, these results suggest that a dynamic interplay between 3C(pro) and IRF7 may determine the outcome of EV-D68 infection. IMPORTANCE EV-D68 is a globally emerging pathogen, but the molecular basis of EV-D68 pathogenesis is unclear. Here we report that EV-D68 inhibits innate immune responses by targeting an immune factor, IRF7. This involves the 3C protease encoded by EV-D68, which mediates the cleavage of IRF7. These observations suggest that the 3C(pro)-IRF7 interaction may represent an interface that dictates EV-D68 infection.
Collapse
Affiliation(s)
- Zichun Xiang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, People's Republic of China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Lulu Liu
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaobo Lei
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, People's Republic of China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Zhuo Zhou
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, People's Republic of China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, People's Republic of China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| |
Collapse
|
34
|
Pabbaraju K, Wong S, Drews SJ, Tipples G, Tellier R. Full genome analysis of enterovirus D-68 strains circulating in Alberta, Canada. J Med Virol 2015; 88:1194-203. [PMID: 26643129 DOI: 10.1002/jmv.24444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2015] [Indexed: 11/09/2022]
Abstract
A widespread outbreak of enterovirus (EV)-D68 that started in the summer of 2014 has been reported in the USA and Canada. During the course of this outbreak, EV-D68 was identified as a possible cause of acute, unexplained severe respiratory illness and a temporal association was observed between acute flaccid paralysis with anterior myelitis and EV-D68 detection in the upper respiratory tract. In this study, four nasopharyngeal samples collected from patients in Alberta, Canada with a laboratory diagnosis of EV-D68 were used to determine the near full-length genome sequence directly from the specimens. Phylogenetic analysis was performed to study the genotypes and pathogenesis of the circulating strains. Our results support the contention that mutations in the VP1 gene and other regions of the genome causing altered antigenicity, as well as lack of immunity in the younger population, may be responsible for the increased severe respiratory disease outbreaks of EV-D68 worldwide.
Collapse
Affiliation(s)
- Kanti Pabbaraju
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada
| | - Sallene Wong
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada
| | - Steven J Drews
- Provincial Laboratory for Public Health, Edmonton, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Graham Tipples
- Provincial Laboratory for Public Health, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond Tellier
- Provincial Laboratory for Public Health, Calgary, Alberta, Canada.,Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
35
|
Molecular Evolution and Intraclade Recombination of Enterovirus D68 during the 2014 Outbreak in the United States. J Virol 2015; 90:1997-2007. [PMID: 26656685 DOI: 10.1128/jvi.02418-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED In August 2014, an outbreak of enterovirus D68 (EV-D68) occurred in North America, causing severe respiratory disease in children. Due to a lack of complete genome sequence data, there is only a limited understanding of the molecular evolution and epidemiology of EV-D68 during this outbreak, and it is uncertain whether the differing clinical manifestations of EV-D68 infection are associated with specific viral lineages. We developed a high-throughput complete genome sequencing pipeline for EV-D68 that produced a total of 59 complete genomes from respiratory samples with a 95% success rate, including 57 genomes from Kansas City, MO, collected during the 2014 outbreak. With these data in hand, we performed phylogenetic analyses of complete genome and VP1 capsid protein sequences. Notably, we observed considerable genetic diversity among EV-D68 isolates in Kansas City, manifest as phylogenetically distinct lineages, indicative of multiple introductions of this virus into the city. In addition, we identified an intersubclade recombination event within EV-D68, the first recombinant in this virus reported to date. Finally, we found no significant association between EV-D68 genetic variation, either lineages or individual mutations, and a variety of demographic and clinical variables, suggesting that host factors likely play a major role in determining disease severity. Overall, our study revealed the complex pattern of viral evolution within a single geographic locality during a single outbreak, which has implications for the design of effective intervention and prevention strategies. IMPORTANCE Until recently, EV-D68 was considered to be an uncommon human pathogen, associated with mild respiratory illness. However, in 2014 EV-D68 was responsible for more than 1,000 disease cases in North America, including severe respiratory illness in children and acute flaccid myelitis, raising concerns about its potential impact on public health. Despite the emergence of EV-D68, a lack of full-length genome sequences means that little is known about the molecular evolution of this virus within a single geographic locality during a single outbreak. Here, we doubled the number of publicly available complete genome sequences of EV-D68 by performing high-throughput next-generation sequencing, characterized the evolutionary history of this outbreak in detail, identified a recombination event, and investigated whether there was any correlation between the demographic and clinical characteristics of the patients and the viral variant that infected them. Overall, these results will help inform the design of intervention strategies for EV-D68.
Collapse
|
36
|
Du J, Zheng B, Zheng W, Li P, Kang J, Hou J, Markham R, Zhao K, Yu XF. Analysis of Enterovirus 68 Strains from the 2014 North American Outbreak Reveals a New Clade, Indicating Viral Evolution. PLoS One 2015; 10:e0144208. [PMID: 26630383 PMCID: PMC4667938 DOI: 10.1371/journal.pone.0144208] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Enterovirus 68 (EVD68) causes respiratory illness, mostly in children. Despite a reported low-level of transmission, the occurrence of several recent outbreaks worldwide including the 2014 outbreak in North America has raised concerns regarding the pathogenesis and evolution of EVD68. To elucidate the phylogenetic features of EVD68 and possible causes for the 2014 outbreak, 216 EVD68 strain sequences were retrieved from Genbank, including 22 from the 2014 outbreak. Several geographic and genotypic origins were established for these 22 strains, 19 of which were classified as Clade B. Of these 19 strains, 17 exhibited subsequent clustering and variation in protein residues involved in host-receptor interaction and/or viral antigenicity. Approximately 18 inter-clade variations were detected in VP1, which led to the identification of a new Clade D in EVD68 strains. The classification of this new clade was also verified by the re-construction of a Neighbor-Joining tree during the phylogenetic analysis. In addition, our results indicate that members of Clade B containing highly specific alterations in VP1 protein residues were the foremost contributors to the 2014 outbreak in the US. Altered host-receptor interaction and/or host immune recognition may explain the evolution of EVD68 as well as the global emergence and ongoing adaptation of this virus.
Collapse
Affiliation(s)
- Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenwen Zheng
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Kang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jingwei Hou
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
| | - Richard Markham
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
- * E-mail: (KZ); (XFY)
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (KZ); (XFY)
| |
Collapse
|
37
|
Prevalence and molecular characterizations of enterovirus D68 among children with acute respiratory infection in China between 2012 and 2014. Sci Rep 2015; 5:16639. [PMID: 26568267 PMCID: PMC4644992 DOI: 10.1038/srep16639] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/16/2015] [Indexed: 01/02/2023] Open
Abstract
EV-D68 is associated with respiratory tract infections (RTIs). Since its first isolation, EV-D68 has been detected sporadically. However, the US and Canada have experienced outbreaks of EV-D68 infections between August and December 2014. This study aimed to investigate the molecular epidemiology and clinical characteristics of EV-D68 in Chongqing, Southwestern China. From January 2012 to November 2014, 1876 nasopharyngeal aspirate specimens (NPAs) were collected from hospitalized children with RTIs. Among the 1876 NPAs, EV-D68 was detected in 19 samples (1.0%, 19/1876). Of these, 13 samples were detected in September and October 2014 (9.8%, 13/132). Phylogenetic analysis showed that all 13 strains detected in the 2014 Chongqing had high homology with the main strains of the 2014 US outbreak. Among the children with EV-D68 infection, 13 (68%) had a history of recurrent wheezing. A total of 13 children had a discharge diagnosis of asthma. Of these, 11 children were diagnosed with acute asthma exacerbation. EV-D68 was the predominant pathogen that evoked asthma exacerbation in September and October 2014. In conclusion, our results found that a history of recurrent wheezing may be a risk factor for the detection of EV-D68 and viral-induced asthma exacerbation may be a clinical feature of EV-D68 infection.
Collapse
|
38
|
Thongpan I, Wanlapakorn N, Vongpunsawad S, Linsuwanon P, Theamboonlers A, Payungporn S, Poovorawan Y. Prevalence and Phylogenetic Characterization of Enterovirus D68 in Pediatric Patients with Acute Respiratory Tract Infection in Thailand. Jpn J Infect Dis 2015; 69:426-30. [PMID: 26567839 DOI: 10.7883/yoken.jjid.2015.352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enterovirus D68 (EV-D68) is associated with severe lower respiratory tract infection and neurological abnormalities including acute myelitis and cranial nerve dysfunction. To determine whether an increased incidence of EV-D68 occurs in Southeast Asia, we retrospectively tested specimens collected from Thai pediatric patients who were less than 5 years of age and presented with acute respiratory tract infections between 2012 and 2014. Reverse transcription-polymerase chain reaction and nucleotide sequencing of the 5'-UTR/VP2 region were used to identify EV-D68. We also examined the epidemiological pattern of EV-D68 since 2009, when it was first identified in Thailand, and compiled records of clinical manifestations in children with confirmed EV-D68 infection. From 837 samples, 5 samples (0.6%) tested positive for EV-D68. All patients presented with viral pneumonia and required hospitalization. Phylogenetic analysis of the VP4/VP2 regions revealed that EV-D68 strains circulating in Thailand between 2012 and 2014 were closely related to strains reported in Japan, United Kingdom, China, and France. Continued surveillance of probable EV-D68-associated severe respiratory tract infection and the development of a rapid diagnostic test for EV-D68 are essential in supporting awareness and facilitating disease prevention and control.
Collapse
Affiliation(s)
- Ilada Thongpan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University
| | | | | | | | | | | | | |
Collapse
|
39
|
Vongpunsawad S, Prachayangprecha S, Chansaenroj J, Haagmans BL, Smits SL, Poovorawan Y. Genome sequence of enterovirus D68 and clinical disease, Thailand. Emerg Infect Dis 2015; 21:384. [PMID: 25625890 PMCID: PMC4313665 DOI: 10.3201/eid2102.141742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
40
|
Midgley CM, Watson JT, Nix WA, Curns AT, Rogers SL, Brown BA, Conover C, Dominguez SR, Feikin DR, Gray S, Hassan F, Hoferka S, Jackson MA, Johnson D, Leshem E, Miller L, Nichols JB, Nyquist AC, Obringer E, Patel A, Patel M, Rha B, Schneider E, Schuster JE, Selvarangan R, Seward JF, Turabelidze G, Oberste MS, Pallansch MA, Gerber SI. Severe respiratory illness associated with a nationwide outbreak of enterovirus D68 in the USA (2014): a descriptive epidemiological investigation. THE LANCET RESPIRATORY MEDICINE 2015; 3:879-87. [PMID: 26482320 PMCID: PMC5693332 DOI: 10.1016/s2213-2600(15)00335-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Enterovirus D68 (EV-D68) has been infrequently reported historically, and is typically associated with isolated cases or small clusters of respiratory illness. Beginning in August, 2014, increases in severe respiratory illness associated with EV-D68 were reported across the USA. We aimed to describe the clinical, epidemiological, and laboratory features of this outbreak, and to better understand the role of EV-D68 in severe respiratory illness. METHODS We collected regional syndromic surveillance data for epidemiological weeks 23 to 44, 2014, (June 1 to Nov 1, 2014) and hospital admissions data for epidemiological weeks 27 to 44, 2014, (June 29 to Nov 1, 2014) from three states: Missouri, Illinois and Colorado. Data were also collected for the same time period of 2013 and 2012. Respiratory specimens from severely ill patients nationwide, who were rhinovirus-positive or enterovirus-positive in hospital testing, were submitted between Aug 1, and Oct 31, 2014, and typed by molecular sequencing. We collected basic clinical and epidemiological characteristics of EV-D68 cases with a standard data collection form submitted with each specimen. We compared patients requiring intensive care with those who did not, and patients requiring ventilator support with those who did not. Mantel-Haenszel χ(2) tests were used to test for statistical significance. FINDINGS Regional and hospital-level data from Missouri, Illinois, and Colorado showed increases in respiratory illness between August and September, 2014, compared with in 2013 and 2012. Nationwide, 699 (46%) of 1529 patients tested were confirmed as EV-D68. Among the 614 EV-D68-positive patients admitted to hospital, age ranged from 3 days to 92 years (median 5 years). Common symptoms included dyspnoea (n=513 [84%]), cough (n=500 [81%]), and wheezing (n=427 [70%]); 294 (48%) patients had fever. 338 [59%] of 574 were admitted to intensive care units, and 145 (28%) of 511 received ventilator support; 322 (52%) of 614 had a history of asthma or reactive airway disease; 200 (66%) of 304 patients with a history of asthma or reactive airway disease required intensive care compared with 138 (51%) of 270 with no history of asthma or reactive airway disease (p=0·0004). Similarly, 89 (32%) of 276 patients with a history of asthma or reactive airway disease required ventilator support compared with 56 (24%) of 235 patients with no history of asthma or reactive airway disease (p=0·039). INTERPRETATION In 2014, EV-D68 caused widespread severe respiratory illness across the USA, disproportionately affecting those with asthma. This unexpected event underscores the need for robust surveillance of enterovirus types, enabling improved understanding of virus circulation and disease burden. FUNDING None.
Collapse
Affiliation(s)
- Claire M Midgley
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - John T Watson
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - W Allan Nix
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aaron T Curns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shannon L Rogers
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Betty A Brown
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Craig Conover
- Illinois Department of Public Health, Chicago, IL, USA
| | | | - Daniel R Feikin
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samantha Gray
- Cook County Department of Public Health, Oak Forest, IL, USA
| | - Ferdaus Hassan
- Children's Mercy Hospitals and Clinics, Kansas City, MO, USA
| | | | | | - Daniel Johnson
- The University of Chicago Comer Children's Hospital, Chicago, IL, USA
| | - Eyal Leshem
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa Miller
- Colorado Department of Public Health and Environment, Denver, CO, USA
| | | | | | - Emily Obringer
- The University of Chicago Comer Children's Hospital, Chicago, IL, USA
| | - Ajanta Patel
- The University of Chicago Comer Children's Hospital, Chicago, IL, USA
| | - Megan Patel
- Cook County Department of Public Health, Oak Forest, IL, USA
| | - Brian Rha
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eileen Schneider
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Jane F Seward
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - George Turabelidze
- Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - M Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark A Pallansch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Susan I Gerber
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
41
|
Linsuwanon P, Poovorawan Y, Li L, Deng X, Vongpunsawad S, Delwart E. The Fecal Virome of Children with Hand, Foot, and Mouth Disease that Tested PCR Negative for Pathogenic Enteroviruses. PLoS One 2015; 10:e0135573. [PMID: 26288145 PMCID: PMC4545796 DOI: 10.1371/journal.pone.0135573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/24/2015] [Indexed: 01/21/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) affects infant and young children. A viral metagenomic approach was used to identify the eukaryotic viruses in fecal samples from 29 Thai children with clinical diagnosis of HFMD collected during the 2012 outbreak. These children had previously tested negative by PCR for enterovirus 71 and coxsackievirus A16 and A6. Deep sequencing revealed nine virus families: Picornaviridae, Astroviridae, Parvoviridae, Caliciviridae, Paramyxoviridae, Adenoviridae, Reoviridae, Picobirnaviridae, and Polyomaviridae. The highest number of viral sequences belonged to human rhinovirus C, astrovirus-MLB2, and coxsackievirus A21. Our study provides an overview of virus community and highlights a broad diversity of viruses found in feces from children with HFMD.
Collapse
Affiliation(s)
- Piyada Linsuwanon
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
42
|
Schuster JE, Miller JO, Selvarangan R, Weddle G, Thompson MT, Hassan F, Rogers SL, Oberste MS, Nix WA, Jackson MA. Severe enterovirus 68 respiratory illness in children requiring intensive care management. J Clin Virol 2015; 70:77-82. [PMID: 26305825 DOI: 10.1016/j.jcv.2015.07.298] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/16/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Enterovirus 68 (EV-D68) causes acute respiratory tract illness in epidemic cycles, most recently in Fall 2014, but clinical characteristics of severe disease are not well reported. OBJECTIVES Children with EV-D68 severe respiratory disease requiring pediatric intensive care unit (PICU) management were compared with children with severe respiratory disease from other enteroviruses/rhinoviruses. STUDY DESIGN A retrospective review was performed of all children admitted to Children's Mercy Hospital PICU from August 1-September 15, 2014 with positive PCR testing for enterovirus/rhinovirus. Specimens were subsequently tested for the presence of EV-D68. We evaluated baseline characteristics, symptomatology, lab values, therapeutics, and outcomes of children with EV-D68 viral infection compared with enterovirus/rhinovirus-positive, EV-D68-negative children. RESULTS A total of 86 children with positive enterovirus/rhinovirus testing associated with respiratory symptoms were admitted to the PICU. Children with EV-D68 were older than their EV-D68-negative counterparts (7.1 vs. 3.5 years, P=0.01). They were more likely to have a history of asthma or recurrent wheeze (68% vs. 42%, P=0.03) and to present with cough (90% vs. 63%, P=0.009). EV-D68 children were significantly more likely to receive albuterol (95% vs. 79%, P=0.04), magnesium (75% vs. 42%, P=0.004), and aminophylline (25% vs. 4%, P=0.03). Other adjunctive medications used in EV-D68 children included corticosteroids, epinephrine, and heliox; 44% of EV-D68-positive children required non-invasive ventilatory support. CONCLUSIONS EV-D68 causes severe disease in the pediatric population, particularly in children with asthma and recurrent wheeze; children may require multiple adjunctive respiratory therapies.
Collapse
Affiliation(s)
- Jennifer E Schuster
- Division of Infectious Diseases, Children's Mercy Hospital, Kansas City, MO, USA.
| | - Jenna O Miller
- Division of Critical Care, Children's Mercy Hospital, Kansas City, MO, USA
| | - Rangaraj Selvarangan
- Division of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Gina Weddle
- Division of Infectious Diseases, Children's Mercy Hospital, Kansas City, MO, USA
| | - Marita T Thompson
- Division of Critical Care, Children's Mercy Hospital, Kansas City, MO, USA
| | - Ferdaus Hassan
- Division of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Shannon L Rogers
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - W Allan Nix
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mary Anne Jackson
- Division of Infectious Diseases, Children's Mercy Hospital, Kansas City, MO, USA
| |
Collapse
|
43
|
Levy A, Roberts J, Lang J, Tempone S, Kesson A, Dofai A, Daley AJ, Thorley B, Speers DJ. Enterovirus D68 disease and molecular epidemiology in Australia. J Clin Virol 2015. [PMID: 26209392 DOI: 10.1016/j.jcv.2015.06.079] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Enterovirus D68 (EV-D68) has received considerable recent attention as a cause of widespread respiratory illness. Neurological syndromes such as acute flaccid paralysis following EV-D68 infection have also been reported in a small number of cases. OBJECTIVES To summarize the clinical and epidemiological characteristics of laboratory confirmed EV-D68 cases in Australia. STUDY DESIGN We combined EV-D68 data acquired through laboratory surveillance in Western Australia with cases from national enterovirus surveillance and regional acute flaccid paralysis (AFP) surveillance. Clinical data was obtained for EV-D68 cases and capsid protein sequences were used for phylogenetic analysis. RESULTS Sporadic cases of EV-D68 were recorded in Australia since 2008, with peaks in activity during 2011 and 2013. EV-D68 was primarily associated with respiratory disease, but was also detected in cerebrospinal fluid of one patient and faeces of two patients presenting with AFP. CONCLUSIONS EV-D68 has been circulating in Western Australia and is likely to have also been present in the wider region for a number of years, causing primarily respiratory disease. Detection of EV-D68 in cerebrospinal fluid of one patient and in faeces of two AFP cases reinforces the association between EV-D68 and neurological disease.
Collapse
Affiliation(s)
- Avram Levy
- PathWest Laboratory Medicine WA, Perth, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia.
| | - Jason Roberts
- National Enterovirus Reference Laboratory, VIDRL, Doherty Institute, Melbourne, Australia; School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Jurissa Lang
- PathWest Laboratory Medicine WA, Perth, Australia
| | - Simone Tempone
- PathWest Laboratory Medicine WA, Perth, Australia; Current affiliate: Communicable Disease Control Directorate, Health Department of Western Australia, Perth, Australia
| | - Alison Kesson
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child health and the Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Sydney Medical School, Sydney, Australia
| | - Alfred Dofai
- National Referral Hospital, Honiara, Solomon Islands
| | - Andrew J Daley
- The Royal Children's Hospital, Melbourne, Australia; The University of Melbourne, Department of Paediatrics, Melbourne, Australia
| | - Bruce Thorley
- National Enterovirus Reference Laboratory, VIDRL, Doherty Institute, Melbourne, Australia; School of Applied Sciences, RMIT University, Melbourne, Australia
| | - David J Speers
- PathWest Laboratory Medicine WA, Perth, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| |
Collapse
|
44
|
Enterovirus D68. A Focused Review and Clinical Highlights from the 2014 U.S. Outbreak. Ann Am Thorac Soc 2015; 12:775-81. [DOI: 10.1513/annalsats.201412-592fr] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
45
|
McAllister SC, Schleiss MR, Arbefeville S, Steiner ME, Hanson RS, Pollock C, Ferrieri P. Epidemic 2014 enterovirus D68 cross-reacts with human rhinovirus on a respiratory molecular diagnostic platform. PLoS One 2015; 10:e0118529. [PMID: 25799541 PMCID: PMC4370466 DOI: 10.1371/journal.pone.0118529] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/20/2015] [Indexed: 11/30/2022] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging virus known to cause sporadic disease and occasional epidemics of severe lower respiratory tract infection. However, the true prevalence of infection with EV-D68 is unknown, due in part to the lack of a rapid and specific nucleic acid amplification test as well as the infrequency with which respiratory samples are analyzed by enterovirus surveillance programs. During the 2014 EV-D68 epidemic in the United States, we noted an increased frequency of “low-positive” results for human rhinovirus (HRV) detected in respiratory tract samples using the GenMark Diagnostics eSensor respiratory viral panel, a multiplex PCR assay able to detect 14 known respiratory viruses but not enteroviruses. We simultaneously noted markedly increased admissions to our Pediatric Intensive Care Unit for severe lower respiratory tract infections in patients both with and without a history of reactive airway disease. Accordingly, we hypothesized that these “low-positive” RVP results were due to EV-D68 rather than rhinovirus infection. Sequencing of the picornavirus 5’ untranslated region (5’-UTR) of 49 samples positive for HRV by the GenMark RVP revealed that 33 (67.3%) were in fact EV-D68. Notably, the mean intensity of the HRV RVP result was significantly lower in the sequence-identified EV-D68 samples (20.3 nA) compared to HRV (129.7 nA). Using a cut-off of 40 nA for the differentiation of EV-D68 from HRV resulted in 94% sensitivity and 88% specificity. The robust diagnostic characteristics of our data suggest that the cross-reactivity of EV-D68 and HRV on the GenMark Diagnostics eSensor RVP platform may be an important factor to consider in making accurate molecular diagnosis of EV-D68 at institutions utilizing this system or other molecular respiratory platforms that may also cross-react.
Collapse
Affiliation(s)
- Shane C. McAllister
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Infectious Disease and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Mark R. Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Infectious Disease and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Sophie Arbefeville
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Marie E. Steiner
- Division of Pediatric Hematology and Oncology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Division of Pediatric Critical Care, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Ryan S. Hanson
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Infectious Disease and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Catherine Pollock
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Infectious Disease and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Patricia Ferrieri
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
46
|
Characterization of enterovirus activity, including that of enterovirus D68, in pediatric patients in Alberta, Canada, in 2014. J Clin Microbiol 2015; 53:1042-5. [PMID: 25588657 DOI: 10.1128/jcm.02982-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Molecular epidemiology of enterovirus D68 from 2013 to 2014 in Philippines. J Clin Microbiol 2015; 53:1015-8. [PMID: 25568441 DOI: 10.1128/jcm.03362-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterovirus D68 (EV-D68) has been recognized as an important cause of acute respiratory infections. Here we report the molecular epidemiology of EV-D68 in Philippines from 2013 to 2014; we found cases in areas affected by Typhoon Haiyan and found new strains in the country.
Collapse
|
48
|
Ly N, Tokarz R, Mishra N, Sameroff S, Jain K, Rachmat A, An US, Newell S, Harrison DJ, Lipkin WI. Multiplex PCR analysis of clusters of unexplained viral respiratory tract infection in Cambodia. Virol J 2014; 11:224. [PMID: 25514971 PMCID: PMC4280028 DOI: 10.1186/s12985-014-0224-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/05/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Fevers of unknown origin constitute a substantial disease burden in Southeast Asia. In majority of the cases, the cause of acute febrile illness is not identified. METHODS We used MassTag PCR, a multiplex assay platform, to test for the presence of 15 viral respiratory agents from 85 patients with unexplained respiratory illness representing six disease clusters that occurred in Cambodia between 2009 and 2012. RESULTS We detected a virus in 37 (44%) of the cases. Human rhinovirus, the virus detected most frequently, was found in both children and adults. The viruses most frequently detected in children and adults, respectively, were respiratory syncytial virus and enterovirus 68. Sequence analysis indicated that two distinct clades of enterovirus 68 were circulating during this time period. CONCLUSIONS This is the first report of enterovirus 68 in Cambodia and contributes to the appreciation of this virus as an important respiratory pathogen.
Collapse
Affiliation(s)
- Nary Ly
- U.S. Naval Medical Research Unit-2 Detachment, Phnom Penh, Cambodia.
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York City, USA.
| | - Nischay Mishra
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York City, USA.
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York City, USA.
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York City, USA.
| | - Agus Rachmat
- U.S. Naval Medical Research Unit-2 Detachment, Phnom Penh, Cambodia.
| | - Ung Sam An
- National Institute of Public Health, Cambodian Ministry of Health, Phnom Penh, Cambodia.
| | - Steven Newell
- U.S. Naval Medical Research Unit-2 Detachment, Phnom Penh, Cambodia.
| | - Dustin J Harrison
- U.S. Naval Medical Research Unit-2 Detachment, Phnom Penh, Cambodia.
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York City, USA.
| |
Collapse
|
49
|
Imamura T, Oshitani H. Global reemergence of enterovirus D68 as an important pathogen for acute respiratory infections. Rev Med Virol 2014; 25:102-14. [PMID: 25471236 PMCID: PMC4407910 DOI: 10.1002/rmv.1820] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/09/2022]
Abstract
We previously detected enterovirus D68 (EV-D68) in children with severe acute respiratory infections in the Philippines in 2008-2009. Since then, the detection frequency of EV-D68 has increased in different parts of the world, and EV-D68 is now recognized as a reemerging pathogen. However, the epidemiological profile and clinical significance of EV-D68 is yet to be defined, and the virological characteristics of EV-D68 are not fully understood. Recent studies have revealed that EV-D68 is detected among patients with acute respiratory infections of differing severities ranging from mild upper respiratory tract infections to severe pneumonia including fatal cases in pediatric and adult patients. In some study sites, the EV-D68 detection rate was higher among patients with lower respiratory tract infections than among those with upper respiratory tract infections, suggesting that EV-D68 infections are more likely to be associated with severe respiratory illnesses. EV-D68 strains circulating in recent years have been divided into three distinct genetic lineages with different antigenicity. However, the association between genetic differences and disease severity, as well as the occurrence of large-scale outbreaks, remains elusive. Previous studies have revealed that EV-D68 is acid sensitive and has an optimal growth temperature of 33 °C. EV-D68 binds to α2,6-linked sialic acids; hence, it is assumed that it has an affinity for the upper respiratory track where these glycans are present. However, the lack of suitable animal model constrains comprehensive understanding of the pathogenesis of EV-D68.
Collapse
|
50
|
Nidaira M, Kuba Y, Saitoh M, Taira K, Maeshiro N, Mahoe Y, Kyan H, Takara T, Okano S, Kudaka J, Yoshida H, Oishi K, Kimura H. Molecular evolution of VP3, VP1, 3C(pro) and 3D(pol) coding regions in coxsackievirus group A type 24 variant isolates from acute hemorrhagic conjunctivitis in 2011 in Okinawa, Japan. Microbiol Immunol 2014; 58:227-38. [PMID: 24517637 DOI: 10.1111/1348-0421.12141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 11/28/2022]
Abstract
A large acute hemorrhagic conjunctivitis (AHC) outbreak occurred in 2011 in Okinawa Prefecture in Japan. Ten strains of coxsackievirus group A type 24 variant (CA24v) were isolated from patients with AHC and full sequence analysis of the VP3, VP1, 3C(pro) and 3D(pol) coding regions performed. To assess time-scale evolution, phylogenetic analysis was performed using the Bayesian Markov chain Monte Carlo method. In addition, similarity plots were constructed and pairwise distance (p-distance) and positive pressure analyses performed. A phylogenetic tree based on the VP1 coding region showed that the present strains belong to genotype 4 (G4). In addition, the present strains could have divided in about 2010 from the same lineages detected in other countries such as China, India and Australia. The mean rates of molecular evolution of four coding regions were estimated at about 6.15 to 7.86 × 10(-3) substitutions/site/year. Similarity plot analyses suggested that nucleotide similarities between the present strains and a prototype strain (EH24/70 strain) were 0.77-0.94. The p-distance of the present strains was relatively short (<0.01). Only one positive selected site (L25H) was identified in the VP1 protein. These findings suggest that the present CA24v strains causing AHC are genetically related to other AHC strains with rapid evolution and emerged in around 2010.
Collapse
Affiliation(s)
- Minoru Nidaira
- Okinawa Prefectural Institute of Health and Environment, 2085 Ozato, Nanjo-Shi, Okinawa, 901-1202
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|