1
|
Kong K, Ding X, Wang Y, Xu S, Li G, Wang X, Zhang M, Ni Y, Xu G. Circular RNA expression profile and functional analysis of circUvrag in light-induced photoreceptor degeneration. Clin Exp Ophthalmol 2024; 52:558-575. [PMID: 38282307 DOI: 10.1111/ceo.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/18/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are implicated in retinal pathophysiology; however, their expression profiles and functions in photoreceptor apoptosis are largely unknown. We explored circRNA-expression profiles and circUvrag (host gene: Uvrag, ultraviolet radiation resistance associated gene) function in light-induced photoreceptor apoptosis. METHODS Sprague-Dawley rats and 661 W photoreceptor cells were exposed to blue light to establish light-induced photoreceptor degeneration. Differentially expressed circRNAs were identified using microarrays. Potential functions of dysregulated circRNAs were analysed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. CircUvrag expression and localization were evaluated using quantitative RT-PCR and fluorescence in situ hybridization, respectively. CircUvrag overexpression and knockdown were induced using a plasmid and a small interfering RNA, respectively, and retinal function and structure were assessed using scotopic electroretinography, haematoxylin-eosin staining, and TUNEL staining. Microglial migration was assessed using IBA1 immunostaining. The apoptosis ratio of photoreceptor cells in vitro was detected using flow cytometry. RESULTS We identified 764 differentially expressed circRNAs, which were potentially related with the development of retinal structures, including neurons, dendrites, and synapses, and might participate in nervous-system pathophysiology. Light exposure enriched circUvrag in the cytoplasm of photoreceptors in the outer nuclear layer (ONL). CircUvrag knockdown decreased photoreceptor apoptosis and microglial migration to the ONL after light exposure, preserving ONL thickness and a-wave amplitude. In vitro, circUvrag knockdown inhibited photoreceptor apoptosis, although circUvrag overexpression slightly promoted photoreceptor apoptosis. CONCLUSIONS CircUvrag knockdown attenuated light-induced photoreceptor apoptosis, and might be a potential target in retinal degeneration.
Collapse
Affiliation(s)
- Kangjie Kong
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Yingchao Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Sisi Xu
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xin Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Yingqin Ni
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
2
|
Descalzi-Montoya DB, Yang Z, Fanning S, Hu W, LoMauro K, Zhao Y, Korngold R. Cord Blood-Derived Multipotent Stem Cells Ameliorate in Vitro/in Vivo Alloreactive Responses, and This Effect Is Associated with Exosomal Microvesicles in Vitro. Transplant Cell Ther 2024; 30:396.e1-396.e14. [PMID: 38307173 DOI: 10.1016/j.jtct.2024.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Human cord blood derived-multipotent stem cells (CB-SCs) have been found to have immunomodulatory capabilities that can result in inhibition of immune activation. Clinically, when used to interact with apheresed peripheral blood mononuclear cells (PBMCs) before reinfusion, they can counteract inflammation and restore immune balance in patients with autoimmune diseases, including alopecia areata and type 1 diabetes. The present study aimed to explore the potential application of CB-SCs to control donor alloreactive responses involved in allogeneic hematopoietic cell transplantation, which often results in acute graft-versus-host disease (GVHD). Phenotypically, we demonstrated that CB-SCs express CD45, CD11b, and CD9 markers on the cell surface; express Oct3/4, a transcription factor for embryonic stem cells; are negative for CD3, CD14, and CD34 expression; and have low expression of HLA-DR. In an allogeneic mixed lymphocyte culture (MLC) using human CD4 T cell enriched PBMCs and allogeneic myeloid derived dendritic cells, direct coculture with CB-SCs decreased CD4 T cell proliferation and activation, as evidenced by a marked decrease in the expression of the late activation markers CD25 and HLA-DR and a reduction of the PKH26 cell proliferation membrane lipophilic marker. Cytokine profiling of MLC supernatants revealed decreased concentrations of inflammatory proteins, including IFN-γ, IL-17, IL-13, IL-2, IL-6, and MIP1-α, along with marked increases in IL-1RA, IP-10, and MCP-1 concentrations in the presence of CB-SCs. Furthermore, transwell MLC experiments revealed that a soluble component was partially responsible for the immunomodulatory effects of CB-SCs. In this regard, exosomal microvesicles (EVs) positive for CD9, CD63, and CD81 were found in CB-SC-derived, ultrafiltered, and ultracentrifuged culture supernatants. CB-SC-EVs inhibited T cell proliferation in allogeneic MLC, suggesting a potential mode of action in allogeneic responses. Finally, CB-SCs were evaluated for their cellular therapy potential in vivo and found to ameliorate the development of GVHD responses in a xenogeneic human PBMC-induced NSG mouse model. Taken together, our results indicate that CB-SCs can directly and indirectly attenuate alloreactive CD4 T cell activation and proliferation in vitro with a potentially related EV mode of action and may have potential as a cellular therapy to control donor T cell-mediated GVHD responses in vivo.
Collapse
Affiliation(s)
| | - Zheng Yang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Stacey Fanning
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey; Touro College of Osteopathic Medicine, New York, New York
| | - Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey; Stevens Institute of Technology, Hoboken, New Jersey
| | - Katherine LoMauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey; Throne Biotechnologies, Paramus, New Jersey
| | - Robert Korngold
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey.
| |
Collapse
|
3
|
Rodriguez D, Church KA, Smith CT, Vanegas D, Cardona SM, Muzzio IA, Nash KR, Cardona AE. Therapeutic Delivery of Soluble Fractalkine Ameliorates Vascular Dysfunction in the Diabetic Retina. Int J Mol Sci 2024; 25:1727. [PMID: 38339005 PMCID: PMC10855319 DOI: 10.3390/ijms25031727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic retinopathy (DR)-associated vision loss is a devastating disease affecting the working-age population. Retinal pathology is due to leakage of serum components into retinal tissues, activation of resident phagocytes (microglia), and vascular and neuronal damage. While short-term interventions are available, they do not revert visual function or halt disease progression. The impact of microglial inflammatory responses on the neurovascular unit remains unknown. In this study, we characterized microglia-vascular interactions in an experimental model of DR. Early diabetes presents activated retinal microglia, vascular permeability, and vascular abnormalities coupled with vascular tortuosity and diminished astrocyte and endothelial cell-associated tight-junction (TJ) and gap-junction (GJ) proteins. Microglia exclusively bind to the neuronal-derived chemokine fractalkine (FKN) via the CX3CR1 receptor to ameliorate microglial activation. Using neuron-specific recombinant adeno-associated viruses (rAAVs), we therapeutically overexpressed soluble (sFKN) or membrane-bound (mFKN) FKN using intra-vitreal delivery at the onset of diabetes. This study highlights the neuroprotective role of rAAV-sFKN, reducing microglial activation, vascular tortuosity, fibrin(ogen) deposition, and astrogliosis and supporting the maintenance of the GJ connexin-43 (Cx43) and TJ zonula occludens-1 (ZO-1) molecules. The results also show that microglia-vascular interactions influence the vascular width upon administration of rAAV-sFKN and rAAV-mFKN. Administration of rAAV-sFKN improved visual function without affecting peripheral immune responses. These findings suggest that overexpression of rAAV-sFKN can mitigate vascular abnormalities by promoting glia-neural signaling. sFKN gene therapy is a promising translational approach to reverse vision loss driven by vascular dysfunction.
Collapse
Affiliation(s)
- Derek Rodriguez
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Kaira A. Church
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Chelsea T. Smith
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Sandra M. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| | - Isabel A. Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA;
| | - Kevin R. Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA;
| | - Astrid E. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (D.R.); (K.A.C.); (C.T.S.); (D.V.); (S.M.C.)
| |
Collapse
|
4
|
Huang JM, Zhao N, Hao XN, Li SY, Wei D, Pu N, Peng GH, Tao Y. CX3CL1/CX3CR1 Signaling Mediated Neuroglia Activation Is Implicated in the Retinal Degeneration: A Potential Therapeutic Target to Prevent Photoreceptor Death. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 38231527 PMCID: PMC10795588 DOI: 10.1167/iovs.65.1.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
Purpose Retinal degeneration (RD) is a large cluster of retinopathies that is characterized by the progressive photoreceptor death and visual impairments. CX3CL1/CX3CR1 signaling has been documented to mediate the microglia activation and gliosis reaction during neurodegeneration. We intend to verify whether the CX3CL1/CX3CR1 signaling is involved in the RD pathology. Methods A pharmacologically induced RD mice model was established. AZD8797, a CX3CR1 antagonist, was injected into the vitreous cavity of an RD model to modulate the neuroglia activation. Then, the experimental animals were subjected to functional, morphological, and behavioral analysis. Results The CX3CL1/CX3CR1 signaling mediated neuroglia activation was implicated in the photoreceptor demise of an RD model. Intravitreal injection of AZD8797 preserved the retinal structure and enhanced the photoreceptor survival through inhibiting the CX3CL1/CX3CR1 expressions. Fundus photography showed that the distribution of retinal vessel was clear, and the severity of lesions was alleviated by AZD8797. In particular, these morphological benefits could be translated into remarkable functional improvements, as evidenced by the behavioral test and electroretinogram (mf-ERG) examination. A mechanism study showed that AZD8797 mitigated the microglia activation and migration in the degenerative retinas. The Müller cell hyper-reaction and secondary gliosis response were also suppressed by AZD8797. Conclusions The neuroinflammation is implicated in the photoreceptor loss of RD pathology. Targeting the CX3CL1/CX3CR1 signaling may serve as an effective therapeutic strategy. Future refinements of these findings may cast light into the discovery of new medications for RD.
Collapse
Affiliation(s)
- Jie-Min Huang
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Zhao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao-Na Hao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Si-Yu Li
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dong Wei
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ning Pu
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ye Tao
- Department of Physiology and Neurobiology, Laboratory of Visual Cell Differentiation and Regulation, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Tolentino MJ, Tolentino AJ, Tolentino EM, Krishnan A, Genead MA. Sialic Acid Mimetic Microglial Sialic Acid-Binding Immunoglobulin-like Lectin Agonism: Potential to Restore Retinal Homeostasis and Regain Visual Function in Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2023; 16:1735. [PMID: 38139861 PMCID: PMC10747662 DOI: 10.3390/ph16121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis as the main determinant for the vision impairing complications of macular degeneration. The effect of altered glycosylation on microglial maintained retinal para-inflammatory homeostasis and eventual recruitment and polarization of peripheral blood monocyte-derived macrophages (PBMDMs) into the retina can explain the phenotypic variability seen in this clinically heterogenous disease. Restoring glyco-immune checkpoint control with a sialic acid mimetic agonist targeting microglial/macrophage Siglecs to regain retinal para-inflammatory and inflammatory homeostasis is a promising therapeutic that could halt the progression of and improve visual function in all stages of macular degeneration.
Collapse
Affiliation(s)
- Michael J. Tolentino
- Department of Ophthalmology, University of Central Florida College of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | - Andrew J. Tolentino
- Department of Biology, University of California Berkeley, Berkeley, CA 94720, USA;
| | | | - Anitha Krishnan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | | |
Collapse
|
6
|
Yamakawa N, Komatsu H, Usui Y, Tsubota K, Wakabayashi Y, Goto H. Immune Mediators Profiles in the Aqueous Humor of Patients with Simple Diabetic Retinopathy. J Clin Med 2023; 12:6931. [PMID: 37959396 PMCID: PMC10650684 DOI: 10.3390/jcm12216931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Various immune mediators identified to date are associated with the development of advanced forms of diabetic retinopathy (DR), such as proliferative DR and diabetic macular edema, although the exact pathophysiological mechanisms of early stages of DR such as simple DR remain unclear. We determined the immune mediator profile in the aqueous humor of eyes with simple DR. Fifteen eyes of fifteen patients with simple DR were studied. Twenty-two eyes of twenty-two patients with cataracts and no DR served as controls. Undiluted aqueous humor samples were collected, and a cytometric bead array was used to determine the aqueous humor concentrations of 32 immune mediators comprising 13 interleukins (IL), interferon-γ, interferon-γ-inducible protein-10 (IP-10), monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1α, MIP-1β, regulated on activation, normal T cell expressed and secreted (RANTES), monokine induced by interferon-γ, basic fibroblast growth factor (bFGF), Fas ligand, granzyme A, granzyme B, interferon-inducible T-cell alpha chemoattractant (ITAC), fractalkine, granulocyte macrophage colony-stimulating factor, granulocyte colony-stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), angiogenin, tumor necrosis factor-α, and CD40 ligand. Among the 32 immune mediators, 10 immune mediators, including bFGF, CD40 ligand, fractalkine, G-CSF, IL-6, IL-8, MIP-α, MIP-1β, and VEGF, showed significantly higher aqueous humor concentrations and the Fas ligand had significantly lower concentration (p < 0.05) in eyes with simple DR compared with control eyes. Of these 10 cytokines with significant concentration alteration, protein-protein interaction analysis revealed that 8 established an intricate interaction network. Various immune mediators may contribute to the pathogenesis of simple DR. Attention should be given to the concentrations of immune mediators in ocular fluids even in simple DR. Large-scale studies are warranted to assess whether altered aqueous humor concentrations of these 10 immune mediators are associated with an increased risk of progression to advanced stages of DR.
Collapse
Affiliation(s)
| | | | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (N.Y.); (H.K.); (K.T.); (Y.W.); (H.G.)
| | | | | | | |
Collapse
|
7
|
Qi Y, Liu L, Liang D, Tang S, Yu X, Ye H, Chen N. Bujing Yishi tablets alleviate photoreceptor cells death via the P2X7R/CX3CL1/CX3CR1 pathway in Retinitis Pigmentosa rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154828. [PMID: 37116386 DOI: 10.1016/j.phymed.2023.154828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Retinitis pigmentosa (RP) refers to a group of progressive photoreceptor degenerative diseases. The activation of microglia has been reported to play an important role in the photoreceptor degeneration in RP retinal. Bujing Yishi tablets (BJYS), a Chinese herbal medicine, has been used to treat retinal diseases in China with desirable effect in improving visual function. However, the mechanisms underlying the efficacy of BJYS treatment in RP are not yet fully understood. PURPOSE Based on the preliminary experiments, this study aimed to investigate the therapeutic mechanism involved in treating N-Methyl-N-Nitrosourea (MNU)-induced retinal degeneration of RP with BJYS. METHODS To explore the efficacy of BJYS, a rat experimental RP model was established through intraperitoneal injection of MNU (50 mg/kg). Two experiment was carried out. After the treatment, we conducted H&E, TUNEL, retinal cytokine levels and IBA-1 expression in microglia to confirm the impact on RP model. The specific mechanism of action of BJYS tablet was assessed by western blot, real-time polymerase chain reaction (RT-PCR), and immunofluorescence to determine the mRNA and protein expression levels involved in clarifying the effectiveness of BJYS exerted through P2X7R/CX3CL1/CX3CR1 pathway. RESULTS Significant alleviation of retinal morphological structure and photoreceptor degeneration by BJYS treatment was observed in the retinal of MNU-induced RP rats, BJYS prevented the reduction of ONL thickness and decreased the level of apoptotic cells in ONL. It also inhibited microglia overactivation and reduced retinal levels of IL-1β, IL-6, TNF-α. In addition, BJYS decreased the protein expression and mRNA expression of P2X7, CX3CL1 and CX3CR1 and reduced the phosphorylation of p38 MAPK. CONCLUSION In summary, this study suggested that BJYS treatment could alleviate photoreceptors degeneration of RP by inhibiting microglia overactivation and inflammation through the P2X7R/CX3CL1/CX3CR1 pathway. These effects suggest that BJYS tablets may serve as a promising oral therapeutic agent for RP.
Collapse
Affiliation(s)
- Yulin Qi
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China; Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Liang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyi Yu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hejiang Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China..
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Elzinga SE, Koubek EJ, Hayes JM, Carter A, Mendelson FE, Webber-Davis I, Lentz SI, Feldman EL. Modeling the innate inflammatory cGAS/STING pathway: sexually dimorphic effects on microglia and cognition in obesity and prediabetes. Front Cell Neurosci 2023; 17:1167688. [PMID: 37206668 PMCID: PMC10188944 DOI: 10.3389/fncel.2023.1167688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction The prevalence of obesity, prediabetes, and diabetes continues to grow worldwide. These metabolic dysfunctions predispose individuals to neurodegenerative diseases and cognitive impairment, including dementias such as Alzheimer's disease and Alzheimer's disease related dementias (AD/ADRD). The innate inflammatory cGAS/STING pathway plays a pivotal role in metabolic dysfunction and is an emerging target of interest in multiple neurodegenerative diseases, including AD/ADRD. Therefore, our goal was to establish a murine model to specifically target the cGAS/STING pathway to study obesity- and prediabetes-induced cognitive impairment. Methods We performed two pilot studies in cGAS knockout (cGAS-/-) male and female mice designed to characterize basic metabolic and inflammatory phenotypes and examine the impact of high-fat diet (HFD) on metabolic, inflammatory, and cognitive parameters. Results cGAS-/- mice displayed normal metabolic profiles and retained the ability to respond to inflammatory stimuli, as indicated by an increase in plasma inflammatory cytokine production in response to lipopolysaccharide injection. HFD feeding caused expected increases in body weight and decreases in glucose tolerance, although onset was accelerated in females versus males. While HFD did not increase plasma or hippocampal inflammatory cytokine production, it did alter microglial morphology to a state indicative of activation, particularly in female cGAS-/- mice. However, HFD negatively impacted cognitive outcomes in male, but not female animals. Discussion Collectively, these results suggest that cGAS-/- mice display sexually dimorphic responses to HFD, possibly based on differences in microglial morphology and cognition.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - A. Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Ian Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stephen I. Lentz
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
10
|
Glial cell response to constant low light exposure in rat retina. Vis Neurosci 2022; 39:E005. [PMID: 36164752 DOI: 10.1017/s0952523822000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To study the macroglia and microglia and the immune role in long-time light exposure in rat eyes, we performed glial cell characterization along the time-course of retinal degeneration induced by chronic exposure to low-intensity light. Animals were exposed to light for periods of 2, 4, 6, or 8 days, and the retinal glial response was evaluated by immunohistochemistry, western blot and real-time reverse transcription polymerase chain reaction. Retinal cells presented an increased expression of the macroglia marker GFAP, as well as increased mRNA levels of microglia markers Iba1 and CD68 after 6 days. Also, at this time-point, we found a higher number of Iba1-positive cells in the outer nuclear layer area; moreover, these cells showed the characteristic activated-microglia morphology. The expression levels of immune mediators TNF, IL-6, and chemokines CX3CR1 and CCL2 were also significantly increased after 6 days. All the events of glial activation occurred after 5-6 days of constant light exposure, when the number of photoreceptor cells has already decreased significantly. Herein, we demonstrated that glial and immune activation are secondary to neurodegeneration; in this scenario, our results suggest that photoreceptor death is an early event that occurs independently of glial-derived immune responses.
Collapse
|
11
|
Kumari A, Ayala-Ramirez R, Zenteno JC, Huffman K, Sasik R, Ayyagari R, Borooah S. Single cell RNA sequencing confirms retinal microglia activation associated with early onset retinal degeneration. Sci Rep 2022; 12:15273. [PMID: 36088481 PMCID: PMC9464204 DOI: 10.1038/s41598-022-19351-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the Membrane-type frizzled related protein (Mfrp) gene results in an early-onset retinal degeneration associated with retinitis pigmentosa, microphthalmia, optic disc drusen and foveal schisis. In the current study, a previously characterized mouse model of human retinal degeneration carrying homozygous c.498_499insC mutations in Mfrp (MfrpKI/KI) was used. Patients carrying this mutation have retinal degeneration at an early age. The model demonstrates subretinal deposits and develops early-onset photoreceptor degeneration. We observed large subretinal deposits in MfrpKI/KI mice which were strongly CD68 positive and co-localized with autofluorescent spots. Single cell RNA sequencing of MfrpKI/KI mice retinal microglia showed a significantly higher number of pan-macrophage marker Iba-1 and F4/80 positive cells with increased expression of activation marker (CD68) and lowered microglial homeostatic markers (TMEM119, P2ry13, P2ry13, Siglech) compared with wild type mice confirming microglial activation as observed in retinal immunostaining showing microglia activation in subretinal region. Trajectory analysis identified a small cluster of microglial cells with activation transcriptomic signatures that could represent a subretinal microglia population in MfrpKI/KI mice expressing higher levels of APOE. We validated these findings using immunofluorescence staining of retinal cryosections and found a significantly higher number of subretinal Iba-1/ApoE positive microglia in MfrpKI/KI mice with some subretinal microglia also expressing lowered levels of microglial homeostatic marker TMEM119, confirming microglial origin. In summary, we confirm that MfrpKI/KI mice carrying the c.498_499insC mutation had a significantly higher population of activated microglia in their retina with distinct subsets of subretinal microglia. Further, studies are required to confirm whether the association of increased subretinal microglia in MfrpKI/KI mice are causal in degeneration.
Collapse
|
12
|
Dhodapkar RM, Martell D, Hafler BP. Glial-mediated neuroinflammatory mechanisms in age-related macular degeneration. Semin Immunopathol 2022; 44:673-683. [PMID: 35513496 DOI: 10.1007/s00281-022-00939-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disorder characterized by photoreceptor and retinal pigment epithelium loss often complicated by neovascularization and is one of the leading causes of irreversible vision loss worldwide. However, the precise pathophysiology of AMD remains to date unclear, and there is a dearth of effective therapies for the early stages of the disease. A growing body of evidence has identified microglia-mediated neuroinflammation as a key driver of neuronal damage in AMD, presenting a novel avenue for the development of pharmacological agents targeting this cell population. The local microglial response interacts with other glia as well as engages in crosstalk with peripheral immunological niches. This article presents a review of the current evidence regarding the involvement of glia in the pathophysiology of AMD, an overview of the key immune circuits and effector mechanisms shown to be active in AMD, and potential therapeutic avenues targeting glial involvement.
Collapse
Affiliation(s)
| | - Diego Martell
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| | - Brian P Hafler
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Inoue K. Potential significance of CX3CR1 dynamics in stress resilience against neuronal disorders. Neural Regen Res 2022; 17:2153-2156. [PMID: 35259822 PMCID: PMC9083172 DOI: 10.4103/1673-5374.335831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent findings have implicated inflammatory responses in the central nervous system in a variety of neuropsychiatric and neurodegenerative diseases, and the understanding and control of immunological responses could be a major factor of future therapeutic strategies for neurological disorders. Microglia, derived from myelogenous cells, respond to a number of stimuli and make immune responses, resulting in a prominent role as cells that act on inflammation in the central nervous system. Fractalkine (FKN or CX3CL1) signaling is an important factor that influences the inflammatory response of microglia. The receptor for FKN, CX3CR1, is usually expressed in microglia in the brain, and therefore the inflammatory response of microglia is modified by FKN. Reportedly, FKN often suppresses inflammatory responses in microglia and activation of its receptor may be effective in the treatment of inflammatory neurological disorders. However, it has also been suggested that inflammatory responses facilitated by FKN signaling aggravate neurological disorders. Thus, further studies are still required to resolve the conflicting interpretation of the protective or deleterious contribution of microglial FKN signaling. Yet notably, regulation of FKN signaling has recently been shown to be beneficial in the treatment of human diseases, although not neurological diseases. In addition, a CX3CR1 inhibitor has been developed and successfully tested in animal models, and it is expected to be in human clinical trials in the future. In this review, I describe the potential therapeutic consideration of microglial CX3CR1 dynamics through altered FKN signaling.
Collapse
Affiliation(s)
- Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
14
|
Sorenson CM, Song YS, Zaitoun IS, Wang S, Hanna BA, Darjatmoko SR, Gurel Z, Fisk DL, McDowell CM, McAdams RM, Sheibani N. Caffeine Inhibits Choroidal Neovascularization Through Mitigation of Inflammatory and Angiogenesis Activities. Front Cell Dev Biol 2021; 9:737426. [PMID: 34722519 PMCID: PMC8551619 DOI: 10.3389/fcell.2021.737426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Adenosine receptors (AR) are widely expressed in a variety of tissues including the retina and brain. They are involved in adenosine-mediated immune responses underlying the onset and progression of neurodegenerative diseases. The expression of AR has been previously demonstrated in some retinal cells including endothelial cells and retinal pigment epithelial cells, but their expression in the choroid and choroidal cells remains unknown. Caffeine is a widely consumed AR antagonist that can influence inflammation and vascular cell function. It has established roles in the treatment of neonatal sleep apnea, acute migraine, and post lumbar puncture headache as well as the neurodegenerative diseases such as Parkinson and Alzheimer. More recently, AR antagonism with caffeine has been shown to protect preterm infants from ischemic retinopathy and retinal neovascularization. However, whether caffeine impacts the development and progression of ocular age-related diseases including neovascular age-related macular degermation remains unknown. Here, we examined the expression of AR in retinal and choroidal tissues and cells. We showed that antagonism of AR with caffeine or istradefylline decreased sprouting of thoracic aorta and choroid/retinal pigment epithelium explants in ex vivo cultures, consistent with caffeine's ability to inhibit endothelial cell migration in culture. In vivo studies also demonstrated the efficacy of caffeine in inhibition of choroidal neovascularization and mononuclear phagocyte recruitment to the laser lesion sites. Istradefylline, a specific AR 2A antagonist, also decreased choroidal neovascularization. Collectively, our studies demonstrate an important role for expression of AR in the choroid whose antagonism mitigate choroidal inflammatory and angiogenesis activities.
Collapse
Affiliation(s)
- Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ismail S Zaitoun
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Barbara A Hanna
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Soesiawati R Darjatmoko
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zafer Gurel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Debra L Fisk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Colleen M McDowell
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ryan M McAdams
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nader Sheibani
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
15
|
Guo M, Schwartz TD, Dunaief JL, Cui QN. Myeloid cells in retinal and brain degeneration. FEBS J 2021; 289:2337-2361. [PMID: 34478598 PMCID: PMC8891394 DOI: 10.1111/febs.16177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Retinal inflammation underlies multiple prevalent ocular and neurological diseases. Similar inflammatory processes are observed in glaucomatous optic neuropathy, age-related macular degeneration, retinitis pigmentosa, posterior uveitis, Alzheimer's disease, and Parkinson's disease. In particular, human and animal studies have demonstrated the important role microglia/macrophages play in initiating and maintaining a pro-inflammatory environment in degenerative processes impacting vision. On the other hand, microglia have also been shown to have a protective role in multiple central nervous system diseases. Identifying the mechanisms underlying cell dysfunction and death is the first step toward developing novel therapeutics for these diseases impacting the central nervous system. In addition to reviewing recent key studies defining important mediators of retinal inflammation, with an emphasis on translational studies that bridge this research from bench to bedside, we also highlight a promising therapeutic class of medications, the glucagon-like peptide-1 receptor agonists. Finally, we propose areas where additional research is necessary to identify mechanisms that can be modulated to shift the balance from a neurotoxic to a neuroprotective retinal environment.
Collapse
Affiliation(s)
- Michelle Guo
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Turner D Schwartz
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Osborne BF, Beamish SB, Schwarz JM. The effects of early-life immune activation on microglia-mediated neuronal remodeling and the associated ontogeny of hippocampal-dependent learning in juvenile rats. Brain Behav Immun 2021; 96:239-255. [PMID: 34126173 PMCID: PMC8319153 DOI: 10.1016/j.bbi.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/11/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
Many neurodevelopmental disorders and associated learning deficits have been linked to early-life immune activation or ongoing immune dysregulation (Laskaris et al., 2016; O'Connor et al., 2014; Frick et al., 2013). Neuroscientists have begun to understand how the maturation of neural circuits allows for the emergence of cognitive and learning behaviors; yet we know very little about how these developing neural circuits are perturbed by certain events, including risk-factors such as early-life immune activation and immune dysregulation. To answer these questions, we examined the impact of early-life immune activation on the emergence of hippocampal-dependent learning in juvenile male and female rats using a well-characterized hippocampal-dependent learning task and we investigated the corresponding, dynamic multicellular interactions in the hippocampus that may contribute to these learning deficits. We found that even low levels of immune activation can result in hippocampal-depedent learning deficits days later, but only when this activation occurs during a sensitive period of development. The initial immune response and associated cytokine production in the hippocampus resolved within 24 h, several days prior to the observed learning deficit, but notably the initial immune response was followed by altered microglial-neuronal communication and synapse remodeling that changed the structure of hippocampal neurons during this period of juvenile brain development. We conclude that immune activation or dysregulation during a sensitive period of hippocampal development can precipitate the emergence of learning deficits via a multi-cellular process that may be initiated by, but not the direct result of the initial cytokine response. SIGNIFICANCE STATEMENT: Many neurodevelopmental disorders have been linked to early-life immune activation or immune dysregulation; however, very little is known about how dynamic changes in neuroimmune cells mediate the transition from normal brain function to the early stages of cognitive disorders, or how changes in immune signaling are subsequently integrated into developing neuronal networks. The current experiments examined the consequences of immune activation on the cellular and molecular changes that accompany the emergence of learning deficits during a sensitive period of hippocampal development. These findings have the potential to significantly advance our understanding of how early-life immune activation or dysregulation can result in the emergence of cognitive and learning deficits that are the largest source of years lived with disability in humans.
Collapse
Affiliation(s)
- Brittany F. Osborne
- University of Delaware, Department of Psychological & Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA
| | - Sarah B. Beamish
- University of Delaware, Department of Psychological & Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA
| | - Jaclyn M. Schwarz
- University of Delaware, Department of Psychological & Brain Sciences, 108 Wolf Hall, Newark, DE, 19716, USA
| |
Collapse
|
17
|
Zhuang X, Ma J, Xu S, Zhang M, Xu G, Sun Z. All-Trans Retinoic Acid Attenuates Blue Light-Induced Apoptosis of Retinal Photoreceptors by Upregulating MKP-1 Expression. Mol Neurobiol 2021; 58:4157-4168. [PMID: 33950345 DOI: 10.1007/s12035-021-02380-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
The study investigated the antiapoptotic effects of all-trans retinoic acid (RA) on retinal degeneration caused by exposure to blue light. Sprague-Dawley rats received intraperitoneal injections of RA and, if necessary, the mitogen-activated protein kinase phosphotase-1(MKP-1) inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2, 3-dihydro-1H-inden-1-one (BCI), or the retinoic acid receptor (RAR) antagonist, AGN 193109. Retinal damage was induced by 24 h of continuous exposure to blue light. Haematoxylin and eosin staining and electroretinography were performed to measure retinal thickness and retinal function before and at 3 days and 7 days after light exposure. The retinal protein expression levels of phosphorylated c-Jun N-terminal kinase (JNK), phosphorylated nuclear factor-κB, MKP-1, Bim, Bax, and cleaved caspase-3 were also measured. Terminal-deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate-biotin nick end labelling (TUNEL) staining and immunofluorescent staining of cleaved caspase-3 were also performed to evaluate photoreceptor apoptosis. The administration of RA significantly mitigated retinal dysfunction and the decrease in the outer nuclear layer (ONL) thickness at 3 days and 7 days after light exposure. RA also reduced the percentage of TUNEL-positive nuclei in the ONL and cleaved caspase-3 immunofluorescence intensity at 3 days after light exposure. Light exposure increased the retinal expression of proapoptotic proteins (Bim, Bax, and cleaved caspase-3), which was attenuated by RA. Moreover, RA enhanced the expression of MKP-1 and inhibited the phosphorylation of JNK, which were attenuated by the inhibition of RAR. The inhibitory effects of RA on blue light-induced photoreceptor apoptosis were abrogated by the MKP-1inhibitor. Our results indicate that RA alleviates photoreceptor loss following blue light exposure, at least partly, by the MKP-1/JNK pathway, which may serve as a therapeutic target for relieving retinal degeneration.
Collapse
Affiliation(s)
- Xiaonan Zhuang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jun Ma
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Sisi Xu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Zhongcui Sun
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Xu S, Zhang P, Zhang M, Wang X, Li G, Xu G, Ni Y. Synaptic changes and the response of microglia in a light-induced photoreceptor degeneration model. Mol Vis 2021; 27:206-220. [PMID: 33967574 PMCID: PMC8100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 04/29/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose To explore synaptic changes and the response of microglia in a light-induced photoreceptor degeneration model. Methods Sprague-Dawley rats were euthanized 1 h, 1 day, 3 days, 7 days, and 14 days after being exposed to intense blue light for 24 h. Hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining were used to evaluate changes in the outer nuclear layer (ONL). Transmission electron microscopy (TEM) was applied to observe the ultrastructural changes in the synapses between the photoreceptors and second-order neurons. Western blotting was conducted to evaluate specific proteins, including postsynaptic density-95 (PSD-95), metabotropic glutamate receptor 6 (mGluR6), synapsin I, and synaptophysin. Immunofluorescence of CD11b and PKC-α or mGluR6 was used to explore the spatial relationships between microglial processes and synaptic elements. Immunoelectron microscopy of PSD-95 was performed to further confirm its engulfment of synaptic materials. Results H&E and TUNEL staining showed that the thickness of the ONL decreased markedly, and the number of apoptotic photoreceptors peaked at day 1. TEM revealed darkened photoreceptor terminals and that ribbons of them were floating in the cytoplasm, coinciding with the downregulation of PSD-95 and mGluR6. Downstream synaptic protein synapsin I and synaptophysin exhibited upregulation in the inner plexiform layer. Activated microglia migrated to the outer retina, and their processes were found in close proximity to synapses in the outer plexiform layer under light and electron microscopy levels. Double immunostaining of CD11b and mGluR6 showed colocalization. PSD-95-immunoreactive electron-dense materials were observed inside the microglia suggesting engulfment of synaptic components. Conclusions The study showed that there are early synaptic impairment and late compensatory changes in downstream synapses in this photic injury model. Activated microglia touched and directly engulfed synaptic materials. Microglia may play a role or a partial role in synaptic changes.
Collapse
Affiliation(s)
- Sisi Xu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University); Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Peijun Zhang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University); Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University); Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xin Wang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University); Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Gang Li
- Research Center, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University); Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yingqin Ni
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,Key NHC Key Laboratory of Myopia (Fudan University); Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
19
|
Cho I, Kim JM, Kim EJ, Kim SY, Kam EH, Cheong E, Suh M, Koo BN. Orthopedic surgery-induced cognitive dysfunction is mediated by CX3CL1/R1 signaling. J Neuroinflammation 2021; 18:93. [PMID: 33858422 PMCID: PMC8048361 DOI: 10.1186/s12974-021-02150-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background Postoperative pain is a common phenomenon after surgery and is closely associated with the development of postoperative cognitive dysfunction (POCD). Persistent pain and systemic inflammation caused by surgery have been suggested as key factors for the development of POCD. Fractalkine (CX3CL1) and its receptor, the CX3C chemokine receptor 1 (CX3CR1), are known to play a key role in pain and inflammation signaling pathways. Recent studies have shown that the regulation of CX3CR1/L1 signaling influences the development of various diseases including neuronal diseases. We determined whether CX3CR1/L1 signaling is a putative therapeutic target for POCD in a mouse model. Methods Adult (9–11 weeks) male mice were treated with neutralizing antibody to block CX3CR1/L1 signaling both before and after surgery. Inflammatory and behavioral responses including pain were assessed postoperatively. Also, CX3CR1 mRNA level was assessed. Hippocampal astrocyte activation, Mao B expression, and GABA expression were assessed at 2 days after surgery following neutralizing antibody administration. Results The behavioral response indicated cognitive dysfunction and development of pain in the surgery group compared with the control group. Also, increased levels of pro-inflammatory cytokines and CX3CR1 mRNA were observed in the surgery group. In addition, increased levels of GABA and increased Mao B expression were observed in reactive astrocytes in the surgery group; these responses were attenuated by neutralizing antibody administration. Conclusions Increased CX3CR1 after surgery is both necessary and sufficient to induce cognitive dysfunction. CX3CR1 could be an important target for therapeutic strategies to prevent the development of POCD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02150-x.
Collapse
Affiliation(s)
- Inja Cho
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Min Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jung Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Minah Suh
- Department of Biomedical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeong gi-do, 16419, Republic of Korea.,Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Suresh P, Phasuk S, Liu IY. Modulation of microglia activation and Alzheimer's disease: CX3 chemokine ligand 1/CX3CR and P2X 7R signaling. Tzu Chi Med J 2021; 33:1-6. [PMID: 33505871 PMCID: PMC7821819 DOI: 10.4103/tcmj.tcmj_144_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive deficits. Two hallmarks of AD that cause chronic inflammation and lead to neuronal dysfunction and damage are tau tangles and amyloid plaques. Microglial cells, the primary immune cells of the central nervous system, maintain a homeostatic active/inactive state via a bidirectional, dynamic communication with neurons. Several studies have revealed that dysregulated microglial activation leads to AD pathology. Therefore, we reviewed the relationship between AD and two important signaling complexes, CX3 chemokine ligand 1 (CX3CL1)/CX3CR1 and ATP/P2X7R, that play critical roles in the regulation of microglial activation. CX3CL1/CX3CR1 is one important signaling which controls the microglia function. Altering this pathway can have opposite effects on amyloid and tau pathology in AD. Another important molecule is P2X7R which involves in the activation of microglia. Over activation of P2X7R is evident in AD pathogenesis. In this review, we discuss influence of the two signaling pathways at different stages of AD pathology as well as the drug candidates that can modulate CX3CL1/CX3CR1 and ATP/P2X7R.
Collapse
Affiliation(s)
- Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Sarayut Phasuk
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Ingrid Y Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
21
|
Sectoral activation of glia in an inducible mouse model of autosomal dominant retinitis pigmentosa. Sci Rep 2020; 10:16967. [PMID: 33046772 PMCID: PMC7552392 DOI: 10.1038/s41598-020-73749-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of blinding disorders caused by diverse mutations, including in rhodopsin (RHO). Effective therapies have yet to be discovered. The I307N Rho mouse is a light-inducible model of autosomal dominant RP. Our purpose was to describe the glial response in this mouse model to educate future experimentation. I307N Rho mice were exposed to 20,000 lx of light for thirty minutes to induce retinal degeneration. Immunofluorescence staining of cross-sections and flat-mounts was performed to visualize the response of microglia and Müller glia. Histology was correlated with spectral-domain optical coherence tomography imaging (SD-OCT). Microglia dendrites extended between photoreceptors within two hours of induction, withdrew their dendrites between twelve hours and one day, appeared ameboid by three days, and assumed a ramified morphology by one month. Glial activation was more robust in the inferior retina and modulated across the boundary of light damage. SD-OCT hyper-reflectivity overlapped with activated microglia. Finally, microglia transiently adhered to the RPE before which RPE cells appeared dysmorphic. Our data demonstrate the spatial and temporal pattern of glial activation in the I307N Rho mouse, and correlate these patterns with SD-OCT images, assisting in interpretation of SD-OCT images in preclinical models and in human RP.
Collapse
|
22
|
Makabe K, Sugita S, Mandai M, Futatsugi Y, Takahashi M. Microglia dynamics in retinitis pigmentosa model: formation of fundus whitening and autofluorescence as an indicator of activity of retinal degeneration. Sci Rep 2020; 10:14700. [PMID: 32895435 PMCID: PMC7477572 DOI: 10.1038/s41598-020-71626-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/04/2020] [Indexed: 01/04/2023] Open
Abstract
In patients with retinitis pigmentosa (RP), color fundus photography and fundus autofluorescence (FAF) have been used to estimate the disease progression. To understand the origin and the diagnostic interpretation of the fundus color and FAF, we performed in vivo imaging of fundus color and FAF together with histological analyses of the retinal degeneration process using the RP model mice, rd10. FAF partly represented the accumulation of microglia in the photoreceptor outer segments. Fundus whitening suggested the presence of apoptotic cells, which spatiotemporally preceded increase in FAF. We observed two patterns of FAF localization, arcuate and diffuse, each indicating different pattern of apoptosis, wavy and diffuse, respectively. Diffuse pattern of apoptosis was suppressed in dark-raised rd10 mice, in which outer nuclear layer (ONL) loss was significantly suppressed. The occupancy of FAF correlated with the thinning rate of the ONL. Fractalkine, a microglia chemotactic factor, was detected in apoptotic photoreceptors, suggesting chemokine-induced recruitment of microglia into the ONL, which paralleled with accelerated ONL loss and increased FAF occupancy. Thus, we propose that the degree of photoreceptor apoptosis and the rate of ONL thinning in RP patients might be read from the fundus color and the FAF.
Collapse
Affiliation(s)
- Kenichi Makabe
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.,Department of Ophthalmology, Kobe Kaisei Hospital, 3-11-15 Shinoharakitamachi, Nada-ku, Kobe, 657-0068, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Yoko Futatsugi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
23
|
Kaiser N, Pätz C, Brachtendorf S, Eilers J, Bechmann I. Undisturbed climbing fiber pruning in the cerebellar cortex of CX 3 CR1-deficient mice. Glia 2020; 68:2316-2329. [PMID: 32488990 DOI: 10.1002/glia.23842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 11/11/2022]
Abstract
Pruning, the elimination of excess synapses is a phenomenon of fundamental importance for correct wiring of the central nervous system. The establishment of the cerebellar climbing fiber (CF)-to-Purkinje cell (PC) synapse provides a suitable model to study pruning and pruning-relevant processes during early postnatal development. Until now, the role of microglia in pruning remains under intense investigation. Here, we analyzed migration of microglia into the cerebellar cortex during early postnatal development and their possible contribution to the elimination of CF-to-PC synapses. Microglia enrich in the PC layer at pruning-relevant time points giving rise to the possibility that microglia are actively involved in synaptic pruning. We investigated the contribution of microglial fractalkine (CX3 CR1) signaling during postnatal development using genetic ablation of the CX3 CR1 receptor and an in-depth histological analysis of the cerebellar cortex. We found an aberrant migration of microglia into the granule and the molecular layer. By electrophysiological analysis, we show that defective fractalkine signaling and the associated migration deficits neither affect the pruning of excess CFs nor the development of functional parallel fiber and inhibitory synapses with PCs. These findings indicate that CX3 CR1 signaling is not mandatory for correct cerebellar circuit formation. MAIN POINTS: Ablation of CX3 CR1 results in a transient migration defect in cerebellar microglia. CX3 CR1 is not required for functional pruning of cerebellar climbing fibers. Functional inhibitory and parallel fiber synapse development with Purkinje cells is undisturbed in CX3 CR1-deficient mice.
Collapse
Affiliation(s)
- Nicole Kaiser
- Institute for Anatomy, University of Leipzig, Leipzig, Germany
| | - Christina Pätz
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Simone Brachtendorf
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Ingo Bechmann
- Institute for Anatomy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Wang S, Liu Y, Tan JW, Hu T, Zhang HF, Sorenson CM, Smith JA, Sheibani N. Tunicamycin-induced photoreceptor atrophy precedes degeneration of retinal capillaries with minimal effects on retinal ganglion and pigment epithelium cells. Exp Eye Res 2019; 187:107756. [PMID: 31421136 PMCID: PMC7412575 DOI: 10.1016/j.exer.2019.107756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) stress is recognized as a contributing factor to various ocular neurovascular pathologies including retinitis pigmentosa, glaucoma, and diabetic retinopathy (DR). ER stress in particular is implicated in the development of DR, which is significantly influenced by inflammation driven retinal vascular degeneration and dysfunction. Ultimately, loss of vision occurs if left untreated. However, the identity of the target cells and their temporal involvement in diabetes-mediated dysfunction need further investigation. Early diabetes-induced stress in photoreceptor cells is proposed as the driver of inflammatory mediated neurovascular changes during diabetes. Although tunicamycin induced ER stress results in photoreceptor loss, its consequences for retinal vascular degeneration and retinal ganglion (RGC) and pigment epithelium (RPE) cell loss remains unclear. Here we show intravitreal delivery of tunicamycin primarily induced ER stress in photoreceptor cells resulting in their loss by apoptosis. This was concomitant with induced expression of the unfolded protein response marker CHOP in these cells. We also demonstrated significant degeneration of retinal capillaries following the loss of photoreceptor cells with minimal impact on loss of RGC and RPE cells. However, activation of retinal microglial and Muller cells were noticeable. Thus, our data support the notion that ER stress mediated dysfunction and/or loss of photoreceptor cells in response to inflammation and oxidative stress could precede retinal vascular and neuronal dysfunction and degeneration.
Collapse
Affiliation(s)
- Shoujian Wang
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yiping Liu
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jin Wen Tan
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiancheng Hu
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Christine M Sorenson
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Judith A Smith
- Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
25
|
Elbaz-Hayoun S, Rinsky B, Hagbi-Levi S, Grunin M, Chowers I. Evaluation of antioxidant treatments for the modulation of macrophage function in the context of retinal degeneration. Mol Vis 2019; 25:479-488. [PMID: 31588172 PMCID: PMC6776439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/03/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose Oxidative stress and macrophages have been implicated in the pathogenesis of atrophic and neovascular age-related macular degeneration (aAMD and nvAMD). It is unclear whether oxidative injury mediates macrophage involvement in AMD. We aimed to investigate the effect of antioxidant treatments on human monocyte-derived macrophages (hMDMs) from patients with AMD in models for the disease. Methods Four antioxidant treatments were evaluated (G1: lutein + zeaxanthin, G2: lutein + zeaxanthin and zinc, G3: lutein + zeaxanthin, zinc, Lyc-O-Mato, and carnosic acid, G4: lutein + zeaxanthin, carnosic acid, and beta-carotene, G5: olive oil as vehicle control). The compounds were added to the culture medium of M1 (interferon-gamma [IFN-Ɣ] and lipopolysaccharide [LPS]) and M2a (interleukin-13 [IL-13] and IL-4) hMDMs from patients with AMD (n=7 and n=8, respectively). Mouse choroidal tissue was cultured with supernatants from treated M1/M2a hMDMs, to evaluate the effect of treatments on the angiogenic properties of macrophages with choroidal sprouting assay (CSA). Mouse retinal explants were cultured with treated hMDMs for 18 h, and evaluated for photoreceptor apoptosis using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) labeling. Adult BALB/c mice (n=8) were exposed to 8,000 lux bright light for 3 h, and treated orally with antioxidant supplements for 7 days that preceded light injury and following it. Oxidative stress was assessed using an anti-4 hydroxynonenal (4-HNE) antibody. Retinal function and the thickness of the outer nuclear layer were evaluated with electroretinography (ERG) and histological analysis, respectively. Results The G3 treatment reduced M2a hMDMs-associated sprouting in the CSA compared to the untreated group (n=7, -1.52-fold, p=0.05). Conversely, the G2 treatment was associated with an increased neurotoxic effect of M2a hMDMs in the retinal explant assay compared to the control group (n=7, 1.37-fold, p=0.047), as well as compared to the G3 treatment group (1.46-fold, p=0.01). The G4 treatment was also associated with increased cytotoxicity compared to the control group (1.48-fold, p=0.004), and compared to the G3 treatment group (1.58-fold, p=0.001). In the in vivo light damage model, mice (n=8) supplemented with G2, G3, and G4 had decreased levels of oxidative injury assessed using 4-HNE labeling (-2.32-fold, -2.17-fold, and -2.18-fold, respectively, p<0.05 for all comparisons). None of the treatments were associated with reduced photoreceptor cell loss, as shown with histology and ERG. Conclusions Antioxidant treatment modulates M2a hMDMs at the functional level. In particular, we found that the G3 combination has a beneficial effect on M2a macrophages in reducing their angiogenic and neurotoxic capacity ex vivo. In addition, antioxidant treatments considerably reduced the oxidative stress level in light-damaged retinas. Further research is required to assess whether such therapies may curb macrophage-driven photoreceptor loss and neovascularization in AMD.
Collapse
Affiliation(s)
- Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University - Hadassah School of Medicine
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University - Hadassah School of Medicine
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University - Hadassah School of Medicine
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University - Hadassah School of Medicine
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University - Hadassah School of Medicine
| |
Collapse
|
26
|
Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in Retinal Degeneration. Front Immunol 2019; 10:1975. [PMID: 31481963 PMCID: PMC6710350 DOI: 10.3389/fimmu.2019.01975] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
The retina is a complex tissue with multiple cell layers that are highly ordered. Its sophisticated structure makes it especially sensitive to external or internal perturbations that exceed the homeostatic range. This necessitates the continuous surveillance of the retina for the detection of noxious stimuli. This task is mainly performed by microglia cells, the resident tissue macrophages which confer neuroprotection against transient pathophysiological insults. However, under sustained pathological stimuli, microglial inflammatory responses become dysregulated, often worsening disease pathology. In this review, we provide an overview of recent studies that depict microglial responses in diverse retinal pathologies that have degeneration and chronic immune reactions as key pathophysiological components. We also discuss innovative immunomodulatory therapy strategies that dampen the detrimental immunological responses to improve disease outcome.
Collapse
Affiliation(s)
- Khalid Rashid
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isha Akhtar-Schaefer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
27
|
Wooff Y, Man SM, Aggio-Bruce R, Natoli R, Fernando N. IL-1 Family Members Mediate Cell Death, Inflammation and Angiogenesis in Retinal Degenerative Diseases. Front Immunol 2019; 10:1618. [PMID: 31379825 PMCID: PMC6646526 DOI: 10.3389/fimmu.2019.01618] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
Inflammation underpins and contributes to the pathogenesis of many retinal degenerative diseases. The recruitment and activation of both resident microglia and recruited macrophages, as well as the production of cytokines, are key contributing factors for progressive cell death in these diseases. In particular, the interleukin 1 (IL-1) family consisting of both pro- and anti-inflammatory cytokines has been shown to be pivotal in the mediation of innate immunity and contribute directly to a number of retinal degenerations, including Age-Related Macular Degeneration (AMD), diabetic retinopathy, retinitis pigmentosa, glaucoma, and retinopathy of prematurity (ROP). In this review, we will discuss the role of IL-1 family members and inflammasome signaling in retinal degenerative diseases, piecing together their contribution to retinal disease pathology, and identifying areas of research expansion required to further elucidate their function in the retina.
Collapse
Affiliation(s)
- Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Si Ming Man
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
28
|
Yuan Z, Chen X, Yang W, Lou B, Ye N, Liu Y. The anti-inflammatory effect of minocycline on endotoxin-induced uveitis and retinal inflammation in rats. Mol Vis 2019; 25:359-372. [PMID: 31354229 PMCID: PMC6620367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/03/2019] [Indexed: 11/20/2022] Open
Abstract
Purpose Uveitis is a serious inflammatory disease of the uvea, frequently leading to visual impairment and irreversible blindness. Here, we investigated the anti-inflammatory effect of minocycline on rat endotoxin-induced uveitis (EIU) and retinal inflammation. Methods For in vivo studies, the rat EIU model was induced with intravitreal injection of lipopolysaccharide (LPS). Minocycline was administered intraperitoneally 2 h before and after the LPS injection. The severity of the ocular inflammation was evaluated with slit-lamp photography, aqueous humor cell counting, protein quantitative determination, and histological analysis. Retinal microglia were labeled with a fluorescent dye 4Di-10ASP. Microglial activity and inflammatory cytokine production were analyzed with immunofluorescence and real-time PCR. For the in vitro studies, BV-2 microglia cells were stimulated with LPS or cotreated with minocycline for 6 h. Toll-like receptor (TLR) 2/4 levels were determined with real-time PCR and western blotting. Results The LPS-challenged eyes displayed severe inflammation in all ocular structures, including a large number of anterior chamber cells, fibrin exudation, hypopyon, and infiltrated inflammatory cells in the vitreous and retina. Immunostaining of the retinal whole-mounts also revealed numerous retinal microglia were activated promptly, and then more and more peripheral leukocytes were recruited and infiltrated in the LPS-injected retinas. Additionally, the production of tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL-2), interleukin-1 beta (IL-1β), and IL-6 was dramatically increased. However, minocycline treatment strongly inhibited microglia activation, decreased inflammatory cytokine production, prevented peripheral inflammatory cell recruitment, and significantly attenuated ocular inflammation. Finally, we demonstrated the mechanism of the microglia inactivation effect of minocycline is via suppression of TLR4 signaling. Conclusions This study indicates minocycline is far beyond an antibiotic. It not only attenuates rat EIU but also inhibits retinal inflammation through inactivating microglia, inhibiting inflammatory cell recruitment and inflammatory cytokine production.
Collapse
|
29
|
Basic Concept of Microglia Biology and Neuroinflammation in Relation to Psychiatry. Curr Top Behav Neurosci 2019; 44:9-34. [PMID: 30739307 DOI: 10.1007/7854_2018_83] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypothesis that the neuroimmune system plays a role in the pathogenesis of different psychiatric disorders, including schizophrenia, depression, and bipolar disease, has attained increasing interest over the past years. Previously thought to have the sole purpose of protecting the central nervous system (CNS) from harmful stimuli, it is now known that the central immune system is critically involved in regulating physiological processes including neurodevelopment, synaptic plasticity, and circuit maintenance. Hence, alterations in microglia - the main immune cell of the CNS - and/or inflammatory factors do not unequivocally connote ongoing neuroinflammation or neuroinflammatory processes per se but rather might signify changes in brain homoeostasis. Despite this, psychiatric research tends to equate functional changes in microglia or alterations in other immune mediators with neuroinflammation. It is the main impetus of this chapter to overcome some of the current misconceptions and possible oversimplifications with respect to neuroinflammation and microglia activity in psychiatry. In order to do so, we will first provide an overview of the basic concepts of neuroinflammation and neuroinflammatory processes. We will then focus on microglia with respect to their ontogeny and immunological and non-immunological functions presenting novel insights on how microglia communicate with other cell types of the central nervous system to ensure proper brain functioning. And lastly, we will delineate the non-immunological functions of inflammatory cytokines in order to address the possible misconception of equating alterations in central cytokine levels with ongoing central inflammation. We hereby hope to help unravel the functional relevance of neuroimmune dysfunctions in psychiatric illnesses and provide future research directions in the field of psychoneuroimmunology.
Collapse
|
30
|
Tang W, Ma J, Gu R, Lei B, Ding X, Xu G. Light-Induced Lipocalin 2 Facilitates Cellular Apoptosis by Positively Regulating Reactive Oxygen Species/Bim Signaling in Retinal Degeneration. ACTA ACUST UNITED AC 2018; 59:6014-6025. [PMID: 30574656 DOI: 10.1167/iovs.18-25213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Wenyi Tang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Jun Ma
- Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Boya Lei
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Ding XY, Gu RP, Tang WY, Shu QM, Xu GZ, Zhang M. Effect of Phosphorylated-Extracellular Regulated Kinase 1/2 Inhibitor on Retina from Light-induced Photoreceptor Degeneration. Chin Med J (Engl) 2018; 131:2836-2843. [PMID: 30511686 PMCID: PMC6278201 DOI: 10.4103/0366-6999.246064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background The demonstrated role of mitogen-activated protein kinase (MAPK) in both cell apoptosis and the inflammation pathway makes it an attractive target for photoreceptor protection. The aim of this study was to investigate the protective effects of MAPK antagonists against photoreceptor degeneration and retinal inflammation in a rat model of light-induced retinal degeneration. Methods Sprague Dawley rats were treated with intravitreal injections of MAPK antagonists, inhibitors of p-P38, phosphorylated-extracellular regulated kinase (p-ERK) 1/2, and p-c-Jun N-terminal kinase (JNK) just before they were assigned to dark adaptation. After dark adaptation for 24 h, rats were exposed to blue light (2500 lux) in a light box for 24 h, and then returned to the normal 12-h light/12-h dark cycle. Samples were collected at different time points. MAPK expression during light exposure was examined with immunofluorescence. Photoreceptor death was detected with histopathology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The expression of retinal p-ERK1/2, caspase 3, activated caspase 3, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β was examined by Western blotting. Differences between groups were evaluated using unpaired one-way analysis of variance and least significant difference post hoc tests. Results MAPKs (P38, ERK1/2, and p-JNK) were phosphorylated and activated in the light injury groups, compared with normal group, and their expressions were mainly elevated in the outer nuclear layer (ONL). Among the selected MAPK antagonists, only the p-ERK1/2 inhibitor attenuated the loss of photoreceptors and the thinning of ONL in light injury groups. Besides, p-ERK1/2 inhibitor refrained light-induced photoreceptor apoptosis, which was presented by TUNEL positive cells. Light injury significantly increased the expression of p-ERK1/2 (1.12 ± 0.06 vs. 0.57 ± 0.08, t = 9.99, P < 0.05; 1.23 ± 0.03 vs. 0.57 ± 0.08, t = 11.90, P < 0.05; and 1.12 ± 0.12 vs. 0.57 ± 0.08, t = 9.86, P < 0.05; F = 49.55, P < 0.001), and induced caspase 3 activating (0.63 ± 0.06 vs. 0.14 ± 0.05, t = 13.67, P < 0.05; 0.74 ± 0.05 vs. 0.14 ± 0.05, t = 16.87, P < 0.05; and 0.80 ± 0.05 vs. 0.14 ± 0.05, t = 18.57, P < 0.05; F = 100.15, P < 0.001), compared with normal group. The p-ERK1/2 inhibitor significantly reduced p-ERK1/2 overexpression (0.61 ± 0.06 vs. 1.12 ± 0.06, t = -9.26, P < 0.05; 0.77 ± 0.06 vs. 1.23 ± 0.03, t = -8.29, P < 0.05; and 0.68 ± 0.03 vs. 1.12 ± 0.12, t = -7.83, P < 0.05; F = 49.55, P < 0.001) and downregulated caspase 3 activating (0.23 ± 0.04 vs. 0.63 ± 0.06, t = -11.24, P < 0.05; 0.43 ± 0.03 vs. 0.74 ± 0.05, t = -8.86, P < 0.05; and 0.58 ± 0.03 vs. 0.80 ± 0.05, t = -6.17, P < 0.05; F = 100.15, P < 0.001), compared with light injury group. No significant change in the total level of caspase 3 was seen in different groups (F = 0.56, P = 0.75). As for inflammation, light injury significantly increased the expression of TNF-α (0.42 ± 0.04 vs. 0.25 ± 0.05, t = 5.99, P < 0.05; 0.65 ± 0.03 vs. 0.25 ± 0.05, t = 14.87, P < 0.05; and 0.86 ± 0.04 vs. 0.25 ± 0.05, t = 22.58, P < 0.05; F = 160.27, P < 0.001) and IL-1β (0.24 ± 0.01 vs. 0.19 ± 0.02, t = 2.33, P < 0.05; 0.35 ± 0.02 vs. 0.19 ± 0.02, t = 7.97, P < 0.05; and 0.48 ± 0.04 vs. 0.19 ± 0.02, t = 14.69, P < 0.05; F = 77.29, P < 0.001), compared with normal group. P-ERK1/2 inhibitor significantly decreased the overexpression of TNF-α (0.22 ± 0.02 vs. 0.42 ± 0.04, t = -7.40, P < 0.05; 0.27 ± 0.02 vs. 0.65 ± 0.03, t = -14.27, P < 0.05; and 0.33 ± 0.03 vs. 0.86 ± 0.04, t = -19.58, P < 0.05; F = 160.27, P < 0.001) and IL-1β (0.13 ± 0.03 vs. 0.24 ± 0.01, t = -5.77, P < 0.05; 0.17 ± 0.01 vs. 0.22 ± 0.02, t = -9.18, P < 0.05; and 0.76 ± 0.05 vs. 0.48 ± 0.04, t = -13.12, P < 0.05; F = 77.29, P < 0.001), compared with light injury group. Conclusion The p-ERK1/2 inhibitor might protect the retina from light-induced photoreceptor degeneration and retinal inflammation.
Collapse
Affiliation(s)
- Xin-Yi Ding
- Department of Ophthalmology; Institute of Eye Research, Eye and ENT Hospital of Fudan University; Key Laboratory of Myopia of State Health Ministry (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Rui-Ping Gu
- Department of Ophthalmology; Institute of Eye Research, Eye and ENT Hospital of Fudan University; Key Laboratory of Myopia of State Health Ministry (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Wen-Yi Tang
- Department of Ophthalmology; Institute of Eye Research, Eye and ENT Hospital of Fudan University; Key Laboratory of Myopia of State Health Ministry (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Qin-Meng Shu
- Department of Ophthalmology; Institute of Eye Research, Eye and ENT Hospital of Fudan University; Key Laboratory of Myopia of State Health Ministry (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Ge-Zhi Xu
- Department of Ophthalmology; Institute of Eye Research, Eye and ENT Hospital of Fudan University; Key Laboratory of Myopia of State Health Ministry (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Meng Zhang
- Department of Ophthalmology; Institute of Eye Research, Eye and ENT Hospital of Fudan University; Key Laboratory of Myopia of State Health Ministry (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| |
Collapse
|
32
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
33
|
The Role of the Microglial Cx3cr1 Pathway in the Postnatal Maturation of Retinal Photoreceptors. J Neurosci 2018; 38:4708-4723. [PMID: 29669747 DOI: 10.1523/jneurosci.2368-17.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
Microglia are the resident immune cells of the CNS, and their response to infection, injury and disease is well documented. More recently, microglia have been shown to play a role in normal CNS development, with the fractalkine-Cx3cr1 signaling pathway of particular importance. This work describes the interaction between the light-sensitive photoreceptors and microglia during eye opening, a time of postnatal photoreceptor maturation. Genetic removal of Cx3cr1 (Cx3cr1GFP/GFP ) led to an early retinal dysfunction soon after eye opening [postnatal day 17 (P17)] and cone photoreceptor loss (P30 onward) in mice of either sex. This dysfunction occurred at a time when fractalkine expression was predominantly outer retinal, when there was an increased microglial presence near the photoreceptor layer and increased microglial-cone photoreceptor contacts. Photoreceptor maturation and outer segment elongation was coincident with increased opsin photopigment expression in wild-type retina, while this was aberrant in the Cx3cr1GFP/GFP retina and outer segment length was reduced. A beadchip array highlighted Cx3cr1 regulation of genes involved in the photoreceptor cilium, a key structure that is important for outer segment elongation. This was confirmed with quantitative PCR with specific cilium-related genes, Rpgr and Rpgrip1, downregulated at eye opening (P14). While the overall cilium structure was unaffected, expression of Rpgr, Rpgrip1, and centrin were restricted to more proximal regions of the transitional zone. This study highlighted a novel role for microglia in postnatal neuronal development within the retina, with loss of fractalkine-Cx3cr1 signaling leading to an altered distribution of cilium proteins, failure of outer segment elongation and ultimately cone photoreceptor loss.SIGNIFICANCE STATEMENT Microglia are involved in CNS development and disease. This work highlights the role of microglia in postnatal development of the light-detecting photoreceptor neurons within the mouse retina. Loss of the microglial Cx3cr1 signaling pathway resulted in specific alterations in the cilium, a key structure in photoreceptor outer segment elongation. The distribution of key components of the cilium transitional zone, Rpgr, Rpgrip1, and centrin, were altered in retinae lacking Cx3cr1 with reduced outer segment length and cone photoreceptor death observed at later postnatal ages. This work identifies a novel role for microglia in the postnatal maturation of retinal photoreceptors.
Collapse
|
34
|
Wong EL, Lutz NM, Hogan VA, Lamantia CE, McMurray HR, Myers JR, Ashton JM, Majewska AK. Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex. Brain Behav Immun 2018; 67:257-278. [PMID: 28918081 PMCID: PMC5696045 DOI: 10.1016/j.bbi.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/23/2017] [Accepted: 09/04/2017] [Indexed: 12/26/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD), caused by gestational ethanol (EtOH) exposure, is one of the most common causes of non-heritable and life-long mental disability worldwide, with no standard treatment or therapy available. While EtOH exposure can alter the function of both neurons and glia, it is still unclear how EtOH influences brain development to cause deficits in sensory and cognitive processing later in life. Microglia play an important role in shaping synaptic function and plasticity during neural circuit development and have been shown to mount an acute immunological response to EtOH exposure in certain brain regions. Therefore, we hypothesized that microglial roles in the healthy brain could be permanently altered by early EtOH exposure leading to deficits in experience-dependent plasticity. We used a mouse model of human third trimester high binge EtOH exposure, administering EtOH twice daily by subcutaneous injections from postnatal day 4 through postnatal day 9 (P4-:P9). Using a monocular deprivation model to assess ocular dominance plasticity, we found an EtOH-induced deficit in this type of visually driven experience-dependent plasticity. However, using a combination of immunohistochemistry, confocal microscopy, and in vivo two-photon microscopy to assay microglial morphology and dynamics, as well as fluorescence activated cell sorting (FACS) and RNA-seq to examine the microglial transcriptome, we found no evidence of microglial dysfunction in early adolescence. We also found no evidence of microglial activation in visual cortex acutely after early ethanol exposure, possibly because we also did not observe EtOH-induced neuronal cell death in this brain region. We conclude that early EtOH exposure caused a deficit in experience-dependent synaptic plasticity in the visual cortex that was independent of changes in microglial phenotype or function. This demonstrates that neural plasticity can remain impaired by developmental ethanol exposure even in a brain region where microglia do not acutely assume nor maintain an activated phenotype.
Collapse
Affiliation(s)
- Elissa L. Wong
- Dept. of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nina M. Lutz
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Victoria A. Hogan
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cassandra E. Lamantia
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Helene R. McMurray
- Dept. of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY14642, USA,Inst. For Innovative Education, Miner Libraries, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jason R. Myers
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA,Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John M. Ashton
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA,Dept. of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ania K. Majewska
- Dept. of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA,Corresponding author: Ania K. Majewska:
| |
Collapse
|
35
|
Ischemic Retinopathies: Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3940241. [PMID: 29410732 PMCID: PMC5749295 DOI: 10.1155/2017/3940241] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity (ROP), diabetic retinopathy (DR), and (in many cases) age-related macular degeneration (AMD), are ocular disorders characterized by an initial phase of microvascular changes that results in ischemia, followed by a second phase of abnormal neovascularization that may culminate into retinal detachment and blindness. IRs are complex retinal conditions in which several factors play a key role during the development of the different pathological stages of the disease. Increasing evidence reveals that oxidative stress and inflammatory processes are important contributors to the pathogenesis of IRs. Despite the beneficial effects of the photocoagulation and anti-VEGF therapy during neovascularization phase, the need to identify novel targets to prevent initial phases of these ocular pathologies is still needed. In this review, we provide an update on the involvement of oxidative stress and inflammation in the progression of IRs and address some therapeutic interventions by using antioxidants and anti-inflammatory agents.
Collapse
|
36
|
Xiao J, Yao J, Jia L, Lin C, Zacks DN. Protective Effect of Met12, a Small Peptide Inhibitor of Fas, on the Retinal Pigment Epithelium and Photoreceptor After Sodium Iodate Injury. Invest Ophthalmol Vis Sci 2017; 58:1801-1810. [PMID: 28346613 PMCID: PMC5374881 DOI: 10.1167/iovs.16-21392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose A major problem in macular degeneration is the inability to reduce RPE and photoreceptor death. These cells die by necroptosis and apoptosis, respectively, but the upstream activator(s) of these death pathways is unknown. In this study, we use the sodium iodate (NaIO3) model of oxidative stress to test the hypothesis that activation of the Fas receptor contributes to the death of the RPE and photoreceptors. Methods Sodium iodate was injected in Brown-Norway rats via femoral vein injection. Both in vivo (fundus photography, optical coherence tomography, and fluorescein angiography) and ex vivo (histology, immunohistochemistry, Western blot, and RT-PCR) analyses of the RPE and retina were conducted at baseline, as well as at various times post NaIO3 injection. The ability of intravitreal injection of Met12, a small peptide inhibitor of the Fas receptor, to prevent RPE and photoreceptor cell death was assessed. Results Injection of NaIO3 led to Fas-mediated activation of both necroptosis and apoptosis in the RPE and photoreceptors, respectively. This was accompanied by a significant increase in the number of microglia/macrophages in the outer retina. Met12 significantly reduced the activation of the Fas-mediated death pathways, resulting in reduced RPE and photoreceptor death and a decreased immune response. Conclusions Our results demonstrate that NaIO3 activates Fas-mediated cell death, both in the RPE and photoreceptor, and that a small peptide antagonist of the Fas receptor, Met12, significantly reduces the extent of this cell death. These findings suggest a role for Fas inhibition to protect the RPE and photoreceptors from death due to oxidative stress.
Collapse
Affiliation(s)
- Jianhui Xiao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan, United States 2Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Lin Jia
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Chengmao Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan, United States
| |
Collapse
|
37
|
Fractalkine-CX3CR1 signaling is critical for progesterone-mediated neuroprotection in the retina. Sci Rep 2017; 7:43067. [PMID: 28216676 PMCID: PMC5316933 DOI: 10.1038/srep43067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022] Open
Abstract
Retinitis pigmentosa (RP) encompasses a group of retinal diseases resulting in photoreceptor loss and blindness. We have previously shown in the rd10 mouse model of RP, that rd10 microglia drive degeneration of viable neurons. Norgestrel, a progesterone analogue, primes viable neurons against potential microglial damage. In the current study we wished to investigate this neuroprotective effect further. We were particularly interested in the role of fractalkine-CX3CR1 signaling, previously shown to mediate photoreceptor-microglia crosstalk and promote survival in the rd10 retina. Norgestrel upregulates fractalkine-CX3CR1 signaling in the rd10 retina, coinciding with photoreceptor survival. We show that Norgestrel-treated photoreceptor-like cells, 661Ws, and C57 explants modulate rd10 microglial activity in co-culture, resulting in increased photoreceptor survival. Assessment of Norgestrel's neuroprotective effects when fractalkine was knocked-down in 661 W cells and release of fractalkine was reduced in rd10 explants confirms a crucial role for fractalkine-CX3CR1 signaling in Norgestrel-mediated neuroprotection. To further understand the role of fractalkine in neuroprotection, we assessed the release of 40 cytokines in fractalkine-treated rd10 microglia and explants. In both cases, treatment with fractalkine reduced a variety of pro-inflammatory cytokines. These findings further our understanding of Norgestrel's neuroprotective properties, capable of modulating harmful microglial activity indirectly through photoreceptors, leading to increased neuroprotection.
Collapse
|
38
|
Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS One 2016; 11:e0165197. [PMID: 27814376 PMCID: PMC5096718 DOI: 10.1371/journal.pone.0165197] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/08/2016] [Indexed: 01/29/2023] Open
Abstract
Retinitis pigmentosa (RP) is a degenerative disease leading to photoreceptor cell loss. Mouse models of RP, such as the rd10 mouse (B6.CXBl-Pde6brd10/J), have enhanced our understanding of the disease, allowing for development of potential therapeutics. In 2011, our group first demonstrated that the synthetic progesterone analogue ‘Norgestrel’ is neuroprotective in two mouse models of retinal degeneration, including the rd10 mouse. We have since elucidated several mechanisms by which Norgestrel protects stressed photoreceptors, such as upregulating growth factors. This study consequently aimed to further characterize Norgestrel’s neuroprotective effects. Specifically, we sought to investigate the role that microglia might play; for microglial-derived inflammation has been shown to potentiate neurodegeneration. Dams of post-natal day (P) 10 rd10 pups were given a Norgestrel-supplemented diet (80mg/kg). Upon weaning, pups remained on Norgestrel. Tissue was harvested from P15-P50 rd10 mice on control or Norgestrel-supplemented diet. Norgestrel-diet administration provided significant retinal protection out to P40 in rd10 mice. Alterations in microglial activity coincided with significant protection, implicating microglial changes in Norgestrel-induced neuroprotection. Utilizing primary cultures of retinal microglia and 661W photoreceptor-like cells, we show that rd10 microglia drive neuronal cell death. We reveal a novel role of Norgestrel, acting directly on microglia to reduce pro-inflammatory activation and prevent neuronal cell death. Norgestrel effectively suppresses cytokine, chemokine and danger-associated molecular pattern molecule (DAMP) expression in the rd10 retina. Remarkably, Norgestrel upregulates fractalkine-CX3CR1 signaling 1 000-fold at the RNA level, in the rd10 mouse. Fractalkine-CX3CR1 signaling has been shown to protect neurons by regulating retinal microglial activation and migration. Ultimately, these results present Norgestrel as a promising treatment for RP, with dual actions as a neuroprotective and anti-inflammatory agent in the retina.
Collapse
|
39
|
Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. Sci Rep 2016; 6:33356. [PMID: 27624537 PMCID: PMC5022039 DOI: 10.1038/srep33356] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023] Open
Abstract
Microglia act as the resident immune cells of the central nervous system, including the retina. In response to damaging stimuli microglia adopt an activated state, which can progress into a phagocytic phenotype and play a potentially harmful role by eliciting the expression and release of pro-inflammatory cytokines. The aim of the present study was to assess longitudinal changes in microglia during retinal degeneration in the homozygous P23H rat, a model of dominant retinitis pigmentosa. Microglial phenotypes, morphology and density were analyzed by immunohistochemistry, flow cytometry, and cytokine antibody array. In addition, we performed electroretinograms to evaluate the retinal response. In the P23H retina, sclera, choroid and ciliary body, inflammatory cells increased in number compared with the control at all ages analyzed. As the rats became older, a higher number of amoeboid MHC-II(+) cells were observed in the P23H retina, which correlated with an increase in the expression of pro-inflammatory cytokines. These findings suggest that, in the P23H model, retinal neuroinflammation persists throughout the rat's life span even after photoreceptor depletion. Therefore, the inclusion of anti-inflammatory drugs at advanced stages of the neurodegenerative process may provide better retinal fitness so the remaining cells could still be used as targets of cellular or gene therapies.
Collapse
|
40
|
Zabel MK, Zhao L, Zhang Y, Gonzalez SR, Ma W, Wang X, Fariss RN, Wong WT. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia 2016; 64:1479-91. [PMID: 27314452 PMCID: PMC4958518 DOI: 10.1002/glia.23016] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
Retinitis pigmentosa (RP), a disease characterized by the progressive degeneration of mutation‐bearing photoreceptors, is a significant cause of incurable blindness in the young worldwide. Recent studies have found that activated retinal microglia contribute to photoreceptor demise via phagocytosis and proinflammatory factor production, however mechanisms regulating these contributions are not well‐defined. In this study, we investigate the role of CX3CR1, a microglia‐specific receptor, in regulating microglia‐mediated degeneration using the well‐established rd10 mouse model of RP. We found that in CX3CR1‐deficient (CX3CR1GFP/GFP) rd10 mice microglial infiltration into the photoreceptor layer was significantly augmented and associated with accelerated photoreceptor apoptosis and atrophy compared with CX3CR1‐sufficient (CX3CR1GFP/+) rd10 littermates. CX3CR1‐deficient microglia demonstrated increased phagocytosis as evidenced by (1) having increased numbers of phagosomes in vivo, (2) an increased rate of phagocytosis of fluorescent beads and photoreceptor cellular debris in vitro, and (3) increased photoreceptor phagocytosis dynamics on live cell imaging in retinal explants, indicating that CX3CR1 signaling in microglia regulates the phagocytic clearance of at‐risk photoreceptors. We also found that CX3CR1 deficiency in retinal microglia was associated with increased expression of inflammatory cytokines and microglial activation markers. Significantly, increasing CX3CL1‐CX3CR1 signaling in the rd10 retina via exogenous intravitreal delivery of recombinant CX3CL1 was effective in (1) decreasing microglial infiltration, phagocytosis and activation, and (2) improving structural and functional features of photoreceptor degeneration. These results indicate that CX3CL1‐CX3CR1 signaling is a molecular mechanism capable of modulating microglial‐mediated degeneration and represents a potential molecular target in therapeutic approaches to RP. GLIA 2016;64:1479–1491
Collapse
Affiliation(s)
- Matthew K Zabel
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yikui Zhang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Shaimar R Gonzalez
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Xu Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Li Z, Zeng Y, Chen X, Li Q, Wu W, Xue L, Xu H, Yin ZQ. Neural stem cells transplanted to the subretinal space of rd1 mice delay retinal degeneration by suppressing microglia activation. Cytotherapy 2016; 18:771-84. [DOI: 10.1016/j.jcyt.2016.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
|
42
|
Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K. Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 2016; 73:1765-86. [PMID: 26852158 PMCID: PMC4819943 DOI: 10.1007/s00018-016-2147-8] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 01/05/2023]
Abstract
Inflammation is a cellular response to factors that challenge the homeostasis of cells and tissues. Cell-associated and soluble pattern-recognition receptors, e.g. Toll-like receptors, inflammasome receptors, and complement components initiate complex cellular cascades by recognizing or sensing different pathogen and damage-associated molecular patterns, respectively. Cytokines and chemokines represent alarm messages for leukocytes and once activated, these cells travel long distances to targeted inflamed tissues. Although it is a crucial survival mechanism, prolonged inflammation is detrimental and participates in numerous chronic age-related diseases. This article will review the onset of inflammation and link its functions to the pathogenesis of age-related macular degeneration (AMD), which is the leading cause of severe vision loss in aged individuals in the developed countries. In this progressive disease, degeneration of the retinal pigment epithelium (RPE) results in the death of photoreceptors, leading to a loss of central vision. The RPE is prone to oxidative stress, a factor that together with deteriorating functionality, e.g. decreased intracellular recycling and degradation due to attenuated heterophagy/autophagy, induces inflammation. In the early phases, accumulation of intracellular lipofuscin in the RPE and extracellular drusen between RPE cells and Bruch's membrane can be clinically detected. Subsequently, in dry (atrophic) AMD there is geographic atrophy with discrete areas of RPE loss whereas in the wet (exudative) form there is neovascularization penetrating from the choroid to retinal layers. Elevations in levels of local and systemic biomarkers indicate that chronic inflammation is involved in the pathogenesis of both disease forms.
Collapse
Affiliation(s)
- Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland.
| | - Jussi J Paterno
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
43
|
Fernandes NC, Sriram U, Gofman L, Cenna JM, Ramirez SH, Potula R. Methamphetamine alters microglial immune function through P2X7R signaling. J Neuroinflammation 2016; 13:91. [PMID: 27117066 PMCID: PMC4847215 DOI: 10.1186/s12974-016-0553-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 04/17/2016] [Indexed: 01/22/2023] Open
Abstract
Background Purinoceptors have emerged as mediators of chronic inflammation and neurodegenerative processes. The ionotropic purinoceptor P2X7 (P2X7R) is known to modulate proinflammatory signaling and integrate neuronal-glial circuits. Evidence of P2X7R involvement in neurodegeneration, chronic pain, and chronic inflammation suggests that purinergic signaling plays a major role in microglial activation during neuroinflammation. In this study, we investigated the effects of methamphetamine (METH) on microglial P2X7R. Methods ESdMs were used to evaluate changes in METH-induced P2X7R gene expression via Taqman PCR and protein expression via western blot analysis. Migration and phagocytosis assays were used to evaluate functional changes in ESdMs in response to METH treatment. METH-induced proinflammatory cytokine production following siRNA silencing of P2X7R in ESdMs measured P2X7R-dependent functional changes. In vivo expression of P2X7R and tyrosine hydroxylase (TH) was visualized in an escalating METH dose mouse model via immunohistochemical analysis. Results Stimulation of ESdMs with METH for 48 h significantly increased P2X7R mRNA (*p < 0.0336) and protein expression (*p < 0.022). Further analysis of P2X7R protein in cellular fractionations revealed increases in membrane P2X7R (*p < 0.05) but decreased cytoplasmic expression after 48 h METH treatment, suggesting protein mobilization from the cytoplasm to the membrane which occurs upon microglial stimulation with METH. Forty-eight hour METH treatment increased microglial migration towards Fractalkine (CX3CL1) compared to control (****p < 0.0001). Migration toward CX3CL1 was confirmed to be P2X7R-dependent through the use of A 438079, a P2X7R-competitive antagonist, which reversed the METH effects (****p < 0.0001). Similarly, 48 h METH treatment increased microglial phagocytosis compared to control (****p < 0.0001), and pretreatment of P2X7R antagonist reduced METH-induced phagocytosis (****p < 0.0001). Silencing the microglial P2X7R decreased TNF-α (*p < 0.0363) and IL-10 production after 48 h of METH treatment. Additionally, our studies demonstrate increased P2X7R and decreased TH expression in the striata of escalating dose METH animal model compared to controls. Conclusions This study sheds new light on the functional role of P2X7R in the regulation of microglial effector functions during substance abuse. Our findings suggest that P2X7R plays an important role in METH-induced microglial activation responses. P2X7R antagonists may thus constitute a novel target of therapeutic utility in neuroinflammatory conditions by regulating pathologically activated glial cells in stimulant abuse. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0553-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole C Fernandes
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Jonathan M Cenna
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, MERB 845A, 3500 N. Broad Street, Philadelphia, 19140, PA, USA. .,Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Chen KC, Jung JJ, Curcio CA, Balaratnasingam C, Gallego-Pinazo R, Dolz-Marco R, Freund KB, Yannuzzi LA. Intraretinal Hyperreflective Foci in Acquired Vitelliform Lesions of the Macula: Clinical and Histologic Study. Am J Ophthalmol 2016; 164:89-98. [PMID: 26868959 DOI: 10.1016/j.ajo.2016.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/10/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE To describe the natural course, visual outcomes, and anatomic changes and provide histologic correlates in eyes with intraretinal hyperreflective foci associated with acquired vitelliform lesions. DESIGN Retrospective cohort study and imaging-histology correlation in a single donor eye. METHODS participants: Patients with intraretinal hyperreflective foci and acquired vitelliform lesions from 2 tertiary referral centers were evaluated from January 2002 to January 2014. MAIN OUTCOME MEASURES The chronology of clinical and imaging features of retinal anatomic changes and the pattern of intraretinal hyperreflective foci migration were documented using spectral-domain optical coherence tomography (OCT). One donor eye with intraretinal hyperreflective foci was identified in a pathology archive by ex vivo OCT and was studied with high-resolution light and electron microscopic examination. RESULTS Intraretinal hyperreflective foci were associated with acquired vitelliform lesions in 25 of 254 eyes (9.8%) with a strong female preponderance (86% of patients). Focal disruptions to the ellipsoid zone and external limiting membrane overlying the acquired vitelliform lesions were observed prior to the occurrence of intraretinal hyperreflective foci in 75% of cases. Histologic evaluation showed that intraretinal hyperreflective foci represent cells of retinal pigment epithelium origin that are similar to those found in the vitelliform lesions themselves and contain lipofuscin granules, melanolipofuscin granules, and melanosomes. The occurrence of intraretinal hyperreflective foci was not a significant determinant of final visual acuity (P = .34), but development of outer retinal atrophy was (P = .003). CONCLUSIONS Intraretinal hyperreflective foci associated with acquired vitelliform lesions are of retinal pigment epithelium origin, and the natural course and functional changes are described.
Collapse
|
45
|
Bian M, Du X, Cui J, Wang P, Wang W, Zhu W, Zhang T, Chen Y. Celastrol protects mouse retinas from bright light-induced degeneration through inhibition of oxidative stress and inflammation. J Neuroinflammation 2016; 13:50. [PMID: 26920853 PMCID: PMC4769581 DOI: 10.1186/s12974-016-0516-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/21/2016] [Indexed: 11/29/2022] Open
Abstract
Background Photoreceptor death leads to vision impairment in several retinal degenerative disorders. Therapies protecting photoreceptor from degeneration remain to be developed. Anti-inflammation, anti-oxidative stress, and neuroprotective effects of celastrol have been demonstrated in a variety of disease models. The current study aimed to investigate the photoreceptor protective effect of celastrol. Methods Bright light-induced retinal degeneration in BALB/c mice was used, and morphological, functional, and molecular changes of retina were evaluated in the absence and presence of celastrol treatment. Results Significant morphological and functional protection was observed as a result of celastrol treatment in bright light-exposed BALB/c mice. Celastrol treatment resulted in suppression of cell death in photoreceptor cells, alleviation of oxidative stress in the retinal pigment epithelium and photoreceptors, downregulation of retinal expression of proinflammatory genes, and suppression of microglia activation and gliosis in the retina. Additionally, leukostasis was found to be induced in the retinal vasculature in light-exposed BALB/c mice, which was significantly attenuated by celastrol treatment. In vitro, celastrol attenuated all-trans-retinal-induced oxidative stress in cultured APRE19 cells. Moreover, celastrol treatment significantly suppressed lipopolysaccharides-stimulated expression of proinflammatory genes in both APRE19 and RAW264.7 cells. Conclusions The results demonstrated for the first time that celastrol prevents against light-induced retinal degeneration through inhibition of retinal oxidative stress and inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0516-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minjuan Bian
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.,Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Xiaoye Du
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.,Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Jingang Cui
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.,Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Peiwei Wang
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.,Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Wenjian Wang
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.,Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Shanghai, 201203, China
| | - Teng Zhang
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China. .,Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China.
| | - Yu Chen
- Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China. .,Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Rd, Shanghai, 200437, China.
| |
Collapse
|
46
|
Chirkova T, Lin S, Oomens AGP, Gaston KA, Boyoglu-Barnum S, Meng J, Stobart CC, Cotton CU, Hartert TV, Moore ML, Ziady AG, Anderson LJ. CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells. J Gen Virol 2015; 96:2543-2556. [PMID: 26297201 DOI: 10.1099/vir.0.000218] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe pneumonia and bronchiolitis in infants and young children, and causes disease throughout life. Understanding the biology of infection, including virus binding to the cell surface, should help develop antiviral drugs or vaccines. The RSV F and G glycoproteins bind cell surface heparin sulfate proteoglycans (HSPGs) through heparin-binding domains. The G protein also has a CX3C chemokine motif which binds to the fractalkine receptor CX3CR1. G protein binding to CX3CR1 is not important for infection of immortalized cell lines, but reportedly is so for primary human airway epithelial cells (HAECs), the primary site for human infection. We studied the role of CX3CR1 in RSV infection with CX3CR1-transfected cell lines and HAECs with variable percentages of CX3CR1-expressing cells, and the effect of anti-CX3CR1 antibodies or a mutation in the RSV CX3C motif. Immortalized cells lacking HSPGs had low RSV binding and infection, which was increased markedly by CX3CR1 transfection. CX3CR1 was expressed primarily on ciliated cells, and ∼50 % of RSV-infected cells in HAECs were CX3CR1+. HAECs with more CX3CR1-expressing cells had a proportional increase in RSV infection. Blocking G binding to CX3CR1 with anti-CX3CR1 antibody or a mutation in the CX3C motif significantly decreased RSV infection in HAECs. The kinetics of cytokine production suggested that the RSV/CX3CR1 interaction induced RANTES (regulated on activation normal T-cell expressed and secreted protein), IL-8 and fractalkine production, whilst it downregulated IL-15, IL1-RA and monocyte chemotactic protein-1. Thus, the RSV G protein/CX3CR1 interaction is likely important in infection and infection-induced responses of the airway epithelium, the primary site of human infection.
Collapse
Affiliation(s)
- Tatiana Chirkova
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Songbai Lin
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Antonius G P Oomens
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kelsey A Gaston
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Seyhan Boyoglu-Barnum
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Jia Meng
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Christopher C Stobart
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Calvin U Cotton
- Division of Pediatric Pulmonology, Case Western University, Cleveland, Ohio, USA
| | - Tina V Hartert
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine and Vanderbilt Center for Asthma and Environmental Health Sciences Research, Vanderbilt University, Nashville, Tennessee, USA
| | - Martin L Moore
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Assem G Ziady
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Larry J Anderson
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
47
|
Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice. Clin Sci (Lond) 2015. [PMID: 26223840 DOI: 10.1042/cs20150008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The distribution of microglia varies greatly throughout the brain. The substantia nigra (SN) contains the highest density of microglia among different brain regions. However, the mechanism underlying this uneven distribution remains unclear. Substance P (SP) is a potent proinflammatory neuropeptide with high concentrations in the SN. We recently demonstrated that SP can regulate nigral microglial activity. In the present study, we further investigated the involvement of SP in modulating nigral microglial density in postnatal developing mice. Nigral microglial density was quantified in wild-type (WT) and SP-deficient mice from postnatal day 1 (P1) to P30. SP was detected at high levels in the SN as early as P1 and microglial density did not peak until around P30 in WT mice. SP-deficient mice (TAC1(-/-)) had a significant reduction in nigral microglial density. No differences in the ability of microglia to proliferate were observed between TAC1(-/-) and WT mice, suggesting that SP may alter microglial density through chemotaxic recruitment. SP was confirmed to dose-dependently attract microglia using a trans-well culture system. Mechanistic studies revealed that both the SP receptor neurokinin-1 receptor (NK1R) and the superoxide-producing enzyme NADPH oxidase (NOX2) were necessary for SP-mediated chemotaxis in microglia. Furthermore, genetic ablation and pharmacological inhibition of NK1R or NOX2 attenuated SP-induced microglial migration. Finally, protein kinase Cδ (PKCδ) was recognized to couple SP/NK1R-mediated NOX2 activation. Altogether, we found that SP partly accounts for the increased density of microglia in the SN through chemotaxic recruitment via a novel NK1R-NOX2 axis-mediated pathway.
Collapse
|
48
|
Reichenbach A, Bringmann A. Purinergic signaling in retinal degeneration and regeneration. Neuropharmacology 2015; 104:194-211. [PMID: 25998275 DOI: 10.1016/j.neuropharm.2015.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 02/01/2023]
Abstract
Purinergic signaling is centrally involved in mediating the degeneration of the injured and diseased retina, the induction of retinal gliosis, and the protection of the retinal tissue from degeneration. Dysregulated calcium signaling triggered by overactivation of P2X7 receptors is a crucial step in the induction of neuronal and microvascular cell death under pathogenic conditions like ischemia-hypoxia, elevated intraocular pressure, and diabetes, respectively. Overactivation of P2X7 plays also a pathogenic role in inherited and age-related photoreceptor cell death and in the age-related dysfunction and degeneration of the retinal pigment epithelium. Gliosis of micro- and macroglial cells, which is induced and/or modulated by purinergic signaling and associated with an impaired homeostatic support to neurons, and the ATP-mediated propagation of retinal gliosis from a focal injury into the surrounding noninjured tissue are involved in inducing secondary cell death in the retina. On the other hand, alterations in the glial metabolism of extracellular nucleotides, resulting in a decreased level of ATP and an increased level of adenosine, may be neuroprotective in the diseased retina. Purinergic signals stimulate the proliferation of retinal glial cells which contributes to glial scarring which has protective effects on retinal degeneration and adverse effects on retinal regeneration. Pharmacological modulation of purinergic receptors, e.g., inhibition of P2X and activation of adenosine receptors, may have clinical importance for the prevention of photoreceptor, neuronal, and microvascular cell death in diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration, and glaucoma, respectively, for the clearance of retinal edema, and the inhibition of dysregulated cell proliferation in proliferative retinopathies. This article is part of a Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
49
|
Duan M, Yao H, Cai Y, Liao K, Seth P, Buch S. HIV-1 Tat disrupts CX3CL1-CX3CR1 axis in microglia via the NF-κBYY1 pathway. Curr HIV Res 2015; 12:189-200. [PMID: 24862326 DOI: 10.2174/1570162x12666140526123119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 11/22/2022]
Abstract
Microglia are critical for the pathogenesis of HIV-associated dementia not only by acting as conduits of viral entry but also as reservoirs for productive and latent virus infection, and as producers of neurotoxins. Interaction between CX3CL1 (fractalkine) and FKN receptor (CX3CR1) is highly functional in the brain, and is known to regulate a complex network of paracrine and autocrine interactions between neurons and microglia. The aim of the present study was to determine which extent of HIV-1 Tat protein causes the alteration of CX3CR1 expression and to investigate the regulatory mechanism for CX3CR1 expression. Here we showed that exposure of primary microglia and BV2 cells to exogenous Tat protein resulted in down-regulation of CX3CR1 mRNA and protein expression, with a concomitant induction of proinflammatory responses. Next, we further showed that NF-κB activation by Tat treatment negatively regulated CX3CR1 expression. Since a YY1 binding site ~10kb upstream of CX3CR1 promoter was predicted in rats, mice and humans, the classical NF-κB-YY1 regulatory pathway was considered. Our findings indicated that Tat repressed CX3CR1 expression via NF-κB-YY1 regulatory pathway. To gain insight into the effect of Tat on CX3CL1-CX3CR1 communication, calcium mobilization, MAPK activation and microglial migration, respectively, were tested in microglial cells after successive treatment with Tat and CX3CL1. The results suggested that Tat disrupted the responses of microglia to CX3CL1. Taken together, these results demonstrate that HIV-1 Tat protein suppresses CX3CR1 expression in microglia via NF-κB-YY1 pathway and attenuates CX3CL1-induced functional response of microglia.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
50
|
|