1
|
Chiavaccini L, Gupta A, Chiavaccini G. From facial expressions to algorithms: a narrative review of animal pain recognition technologies. Front Vet Sci 2024; 11:1436795. [PMID: 39086767 PMCID: PMC11288915 DOI: 10.3389/fvets.2024.1436795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Facial expressions are essential for communication and emotional expression across species. Despite the improvements brought by tools like the Horse Grimace Scale (HGS) in pain recognition in horses, their reliance on human identification of characteristic traits presents drawbacks such as subjectivity, training requirements, costs, and potential bias. Despite these challenges, the development of facial expression pain scales for animals has been making strides. To address these limitations, Automated Pain Recognition (APR) powered by Artificial Intelligence (AI) offers a promising advancement. Notably, computer vision and machine learning have revolutionized our approach to identifying and addressing pain in non-verbal patients, including animals, with profound implications for both veterinary medicine and animal welfare. By leveraging the capabilities of AI algorithms, we can construct sophisticated models capable of analyzing diverse data inputs, encompassing not only facial expressions but also body language, vocalizations, and physiological signals, to provide precise and objective evaluations of an animal's pain levels. While the advancement of APR holds great promise for improving animal welfare by enabling better pain management, it also brings forth the need to overcome data limitations, ensure ethical practices, and develop robust ground truth measures. This narrative review aimed to provide a comprehensive overview, tracing the journey from the initial application of facial expression recognition for the development of pain scales in animals to the recent application, evolution, and limitations of APR, thereby contributing to understanding this rapidly evolving field.
Collapse
Affiliation(s)
- Ludovica Chiavaccini
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Anjali Gupta
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
2
|
Onuma K, Watanabe M, Sasaki N. The grimace scale: a useful tool for assessing pain in laboratory animals. Exp Anim 2024; 73:234-245. [PMID: 38382945 PMCID: PMC11254488 DOI: 10.1538/expanim.24-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Accurately and promptly assessing pain in experimental animals is extremely important to avoid unnecessary suffering of the animals and to enhance the reproducibility of experiments. This is a key concern for veterinarians, animal caretakers, and researchers from the perspectives of veterinary care and animal welfare. Various methods including ethology, immunohistochemistry, electrophysiology, and molecular biology are used for pain assessment. However, the grimace scale, which was developed by taking cues from interpreting pain through facial expressions of non-verbal infants, has become recognized as a very simple and practical method for objectively evaluating pain levels by scoring changes in an animal's expressions. This method, which was first implemented with mice approximately 10 years ago, is now being applied to various experimental animals and is widely used in research settings. This review focuses on the usability of the grimace scale from the "cage-side" perspective, aiming to make it a more user-friendly tool for those involved in animal experiments. Differences in facial expressions in response to pain in various animals, examples of applying the grimace scale, current automated analytical methods, and future prospects are discussed.
Collapse
Affiliation(s)
- Kenta Onuma
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-0021, Japan
| | - Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-0021, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-0021, Japan
| |
Collapse
|
3
|
Malkani R, Paramasivam S, Wolfensohn S. How does chronic pain impact the lives of dogs: an investigation of factors that are associated with pain using the Animal Welfare Assessment Grid. Front Vet Sci 2024; 11:1374858. [PMID: 38638643 PMCID: PMC11025458 DOI: 10.3389/fvets.2024.1374858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Chronic pain can profoundly affect the wellbeing of dogs and our understanding is limited regarding the multidimensional impact it has on dog quality of life. This study aimed to assess the factors that are significant and predictive of behavior problems in dogs using the Animal Welfare Assessment Grid (AWAG) to further understand what factors influence their welfare. Methods Seventy six AWAG assessments were undertaken across 46 dogs that clinicians diagnosed as having musculoskeletal conditions that caused chronic pain. Wilcoxon-rank sum tests were used to assess the difference in scores between dogs with behavior disorders and a cohort of healthy dogs (n = 143). Results All physical factors besides body condition, and all psychological, environmental, and procedural factors were significantly different between healthy dogs and dogs with chronic pain, evidencing how chronic pain impacts all domains of a dog's life. Spearman Rank Correlation Coefficient (RS) revealed several significant strong positive correlations such as the association between the severity of clinical symptoms with poorer mobility and the frequency at which the dog experienced fearful stimuli. Logistic regression showed that fears and anxieties frequency, the dog's reaction to stressors, engagement with enrichment, and social interactions were significant predictors of chronic pain in dogs. Discussion This highlights that typical signs of musculoskeletal disorders such as gait changes, stiffness, lameness might manifest after behavioral changes such as increased fearfulness, prolonged recovery from a stressful event, a reduced interested in social interactions, toys or play. Owners only seeking veterinary attention when the presence of physical signs of disease are evident may result in a delayed veterinary attention resulting in reduced welfare. Regular veterinary assessments combined with use of the AWAG can proactively identify these behavioral indicators and result in prompt treatment and improved quality of life.
Collapse
Affiliation(s)
- Rachel Malkani
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | | |
Collapse
|
4
|
Kume M, Ahmad A, DeFea KA, Vagner J, Dussor G, Boitano S, Price TJ. Protease-Activated Receptor 2 (PAR2) Expressed in Sensory Neurons Contributes to Signs of Pain and Neuropathy in Paclitaxel Treated Mice. THE JOURNAL OF PAIN 2023; 24:1980-1993. [PMID: 37315729 PMCID: PMC10615692 DOI: 10.1016/j.jpain.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose-limiting side effect of cancer therapy. Protease-activated receptor 2 (PAR2) is implicated in a variety of pathologies, including CIPN. In this study, we demonstrate the role of PAR2 expressed in sensory neurons in a paclitaxel (PTX)-induced model of CIPN in mice. PAR2 knockout/wildtype (WT) mice and mice with PAR2 ablated in sensory neurons were treated with PTX administered via intraperitoneal injection. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. We then examined immunohistochemical staining of dorsal root ganglion (DRG) and hind paw skin samples from CIPN mice to measure satellite cell gliosis and intra-epidermal nerve fiber (IENF) density. The pharmacological reversal of CIPN pain was tested with the PAR2 antagonist C781. Mechanical allodynia caused by PTX treatment was alleviated in PAR2 knockout mice of both sexes. In the PAR2 sensory neuronal conditional knockout (cKO) mice, both mechanical allodynia and facial grimacing were attenuated in mice of both sexes. In the DRG of the PTX-treated PAR2 cKO mice, satellite glial cell activation was reduced compared to control mice. IENF density analysis of the skin showed that the PTX-treated control mice had a reduction in nerve fiber density while the PAR2 cKO mice had a comparable skin innervation as the vehicle-treated animals. Similar results were seen with satellite cell gliosis in the DRG, where gliosis induced by PTX was absent in PAR cKO mice. Finally, C781 was able to transiently reverse established PTX-evoked mechanical allodynia. PERSPECTIVE: Our work demonstrates that PAR2 expressed in sensory neurons plays a key role in PTX-induced mechanical allodynia, spontaneous pain, and signs of neuropathy, suggesting PAR2 as a possible therapeutic target in multiple aspects of PTX CIPN.
Collapse
Affiliation(s)
- Moeno Kume
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Ayesha Ahmad
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | | | | | - Gregory Dussor
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Scott Boitano
- University of Arizona Bio5 Research Institute
- University of Arizona Heath Sciences, Asthma and Airway Disease Research Center
- University of Arizona Heath Sciences, Department of Physiology
| | - Theodore J. Price
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| |
Collapse
|
5
|
Cohen S, Ho C. Review of Rat ( Rattus norvegicus), Mouse ( Mus musculus), Guinea pig ( Cavia porcellus), and Rabbit ( Oryctolagus cuniculus) Indicators for Welfare Assessment. Animals (Basel) 2023; 13:2167. [PMID: 37443965 DOI: 10.3390/ani13132167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The monitoring and assessment of animals is important for their health and welfare. The appropriate selection of multiple, validated, and feasible welfare assessment indicators is required to effectively identify compromises or improvements to animal welfare. Animal welfare indicators can be animal or resource based. Indicators can be collated to form assessment tools (e.g., grimace scales) or animal welfare assessment models (e.g., 5 Domains) and frameworks (e.g., 5 Freedoms). The literature contains a wide variety of indicators, with both types needed for effective animal welfare assessment; however, there is yet to be an ideal constellation of indicators for animal-based welfare assessment in small mammals such as guinea pigs (Cavia Porcellus), mice (Mus musculus), rabbits (Oryctolagus cuniculus), and rats (Rattus norvegicus). A systematic review of grey and peer-reviewed literature was performed to determine the types of animal-based welfare indicators available to identify and assess animal health and welfare in these small mammals maintained across a wide variety of conditions. The available indicators were categorised and scored against a selection of criteria, including potential ease of use and costs. This review and analysis aim to provide the basis for further research into animal welfare indicators for these species. Future applications of this work may include improvements to animal welfare assessments or schemes, guiding better management, and implementing future strategies to enable better animal welfare.
Collapse
Affiliation(s)
- Shari Cohen
- Melbourne Veterinary School, Animal Welfare Science Centre, University of Melbourne, Parkville 3010, Australia
- School of Life and Environmental Sciences, University of Sydney, Camden 2570, Australia
| | - Cindy Ho
- Melbourne Veterinary School, Animal Welfare Science Centre, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
6
|
Peppermüller PP, Gehring J, Zentrich E, Bleich A, Häger C, Buettner M. Grimace scale assessment during Citrobacter rodentium inflammation and colitis development in laboratory mice. Front Vet Sci 2023; 10:1173446. [PMID: 37342621 PMCID: PMC10277495 DOI: 10.3389/fvets.2023.1173446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Bacterial infections and chronic intestinal inflammations triggered by genetic susceptibility, environment or an imbalance in the intestinal microbiome are usually long-lasting and painful diseases in which the development and maintenance of these various intestinal inflammations is not yet fully understood, research is still needed. This still requires the use of animal models and is subject to the refinement principle of the 3Rs, to minimize suffering or pain perceived by the animals. With regard to this, the present study aimed at the recognition of pain using the mouse grimace scale (MGS) during chronic intestinal colitis due to dextran sodium sulfate (DSS) treatment or after infection with Citrobacter rodentium. Methods In this study 56 animals were included which were divided into 2 experimental groups: 1. chronic intestinal inflammation (n = 9) and 2. acute intestinal inflammation (with (n = 23) and without (n = 24) C. rodentium infection). Before the induction of intestinal inflammation in one of the animal models, mice underwent an abdominal surgery and the live MGS from the cage side and a clinical score were assessed before (bsl) and after 2, 4, 6, 8, 24, and 48 hours. Results The highest clinical score as well as the highest live MGS was detected 2 hours after surgery and almost no sign of pain or severity were detected after 24 and 48 hours. Eight weeks after abdominal surgery B6-Il4/Il10-/- mice were treated with DSS to trigger chronic intestinal colitis. During the acute phase as well as the chronic phase of the experiment, the live MGS and a clinical score were evaluated. The clinical score increased after DSS administration due to weight loss of the animals but no change of the live MGS was observed. In the second C57BL/6J mouse model, after infection with C. rodentium the clinical score increased but again, no increased score values in the live MGS was detectable. Discussion In conclusion, the live MGS detected post-operative pain, but indicated no pain during DSS-induced colitis or C. rodentium infection. In contrast, clinical scoring and here especially the weight loss revealed a decreased wellbeing due to surgery and intestinal inflammation.
Collapse
|
7
|
Palumbo G, Kunze LH, Oos R, Wind-Mark K, Lindner S, von Ungern-Sternberg B, Bartenstein P, Ziegler S, Brendel M. Longitudinal Studies on Alzheimer Disease Mouse Models with Multiple Tracer PET/CT: Application of Reduction and Refinement Principles in Daily Practice to Safeguard Animal Welfare during Progressive Aging. Animals (Basel) 2023; 13:1812. [PMID: 37531139 PMCID: PMC10251952 DOI: 10.3390/ani13111812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 08/03/2023] Open
Abstract
Longitudinal studies on mouse models related to Alzheimer disease (AD) pathology play an important role in the investigation of therapeutic targets to help pharmaceutical research in the development of new drugs and in the attempt of an early diagnosis that can contribute to improving people's quality of life. There are several advantages to enriching longitudinal studies in AD models with Positron Emission Tomography (PET); among these advantages, the possibility of following the principle of the 3Rs of animal welfare is fundamental. In this manuscript, good daily experimental practice focusing on animal welfare is described and commented upon, based on the experience attained from studies conducted in our Nuclear Medicine department.
Collapse
Affiliation(s)
- Giovanna Palumbo
- Department of Nuclear Medicine, University Hospital LMU Munich, Marchionini Strasse 15, 81377 Munich, Germany
| | - Lea Helena Kunze
- Department of Nuclear Medicine, University Hospital LMU Munich, Marchionini Strasse 15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, University Hospital LMU Munich, Marchionini Strasse 15, 81377 Munich, Germany
| | - Karin Wind-Mark
- Department of Nuclear Medicine, University Hospital LMU Munich, Marchionini Strasse 15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital LMU Munich, Marchionini Strasse 15, 81377 Munich, Germany
| | | | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital LMU Munich, Marchionini Strasse 15, 81377 Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital LMU Munich, Marchionini Strasse 15, 81377 Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital LMU Munich, Marchionini Strasse 15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
8
|
Kim SM, Cho GJ. Analysis of Various Facial Expressions of Horses as a Welfare Indicator Using Deep Learning. Vet Sci 2023; 10:vetsci10040283. [PMID: 37104439 PMCID: PMC10141195 DOI: 10.3390/vetsci10040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
This study aimed to prove that deep learning can be effectively used for identifying various equine facial expressions as welfare indicators. In this study, a total of 749 horses (healthy: 586 and experiencing pain: 163) were investigated. Moreover, a model for recognizing facial expressions based on images and their classification into four categories, i.e., resting horses (RH), horses with pain (HP), horses immediately after exercise (HE), and horseshoeing horses (HH), was developed. The normalization of equine facial posture revealed that the profile (99.45%) had higher accuracy than the front (97.59%). The eyes-nose-ears detection model achieved an accuracy of 98.75% in training, 81.44% in validation, and 88.1% in testing, with an average accuracy of 89.43%. Overall, the average classification accuracy was high; however, the accuracy of pain classification was low. These results imply that various facial expressions in addition to pain may exist in horses depending on the situation, degree of pain, and type of pain experienced by horses. Furthermore, automatic pain and stress recognition would greatly enhance the identification of pain and other emotional states, thereby improving the quality of equine welfare.
Collapse
Affiliation(s)
- Su Min Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gil Jae Cho
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Kume M, Ahmad A, Shiers S, Burton MD, DeFea KA, Vagner J, Dussor G, Boitano S, Price TJ. C781, a β-Arrestin Biased Antagonist at Protease-Activated Receptor-2 (PAR2), Displays in vivo Efficacy Against Protease-Induced Pain in Mice. THE JOURNAL OF PAIN 2023; 24:605-616. [PMID: 36417966 PMCID: PMC10079573 DOI: 10.1016/j.jpain.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022]
Abstract
Given the limited options and often harmful side effects of current analgesics and the suffering caused by the opioid crisis, new classes of pain therapeutics are needed. Protease-activated receptors (PARs), particularly PAR2, are implicated in a variety of pathologies, including pain. Since the discovery of the role of PAR2 in pain, development of potent and specific antagonists has been slow. In this study, we describe the in vivo characterization of a novel small molecule/peptidomimetic hybrid compound, C781, as a β-arrestin-biased PAR2 antagonist. In vivo behavioral studies were done in mice using von Frey filaments and the Mouse Grimace Scale. Pharmacokinetic studies were done to assess pharmacokinetic/pharmacodynamic relationship in vivo. We used both prevention and reversal paradigms with protease treatment to determine whether C781 could attenuate protease-evoked pain. C781 effectively prevented and reversed mechanical and spontaneous nociceptive behaviors in response to small molecule PAR2 agonists, mast cell activators, and neutrophil elastase. The ED50 of C781 (intraperitoneal dosing) for inhibition of PAR2 agonist (20.9 ng 2-AT)-evoked nociception was 6.3 mg/kg. C781 was not efficacious in the carrageenan inflammation model. Pharmacokinetic studies indicated limited long-term systemic bioavailability for C781 suggesting that optimizing pharmacokinetic properties could improve in vivo efficacy. Our work demonstrates in vivo efficacy of a biased PAR2 antagonist that selectively inhibits β-arrestin/MAPK signaling downstream of PAR2. Given the importance of this signaling pathway in PAR2-evoked nociception, C781 exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development. PERSPECTIVE: Our work provides evidence that PAR2 antagonists that only block certain aspects of signaling by the receptor can be effective for blocking protease-evoked pain in mice. This is important because it creates a rationale for developing safer PAR2-targeting approaches for pain treatment.
Collapse
Affiliation(s)
- Moeno Kume
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Ayesha Ahmad
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Michael D Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | | | - Josef Vagner
- University of Arizona Bio5 Institute, Tucson, Arizona
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas
| | - Scott Boitano
- University of Arizona Bio5 Institute, Tucson, Arizona; Asthma and Airway Disease Research Center, University of Arizona Heath Sciences, Tucson, Arizona; Department of Physiology, University of Arizona Heath Sciences, Tucson, Arizona
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
10
|
Behavioral Voluntary and Social Bioassays Enabling Identification of Complex and Sex-Dependent Pain-(-Related) Phenotypes in Rats with Bone Cancer. Cancers (Basel) 2023; 15:cancers15051565. [PMID: 36900357 PMCID: PMC10000428 DOI: 10.3390/cancers15051565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is a common and devastating symptom with limited treatment options in patients, significantly affecting their quality of life. The use of rodent models is the most common approach to uncovering the mechanisms underlying CIBP; however, the translation of results to the clinic may be hindered because the assessment of pain-related behavior is often based exclusively on reflexive-based methods, which are only partially indicative of relevant pain in patients. To improve the accuracy and strength of the preclinical, experimental model of CIBP in rodents, we used a battery of multimodal behavioral tests that were also aimed at identifying rodent-specific behavioral components by using a home-cage monitoring assay (HCM). Rats of all sexes received an injection with either heat-deactivated (sham-group) or potent mammary gland carcinoma Walker 256 cells into the tibia. By integrating multimodal datasets, we assessed pain-related behavioral trajectories of the CIBP-phenotype, including evoked and non-evoked based assays and HCM. Using principal component analysis (PCA), we discovered sex-specific differences in establishing the CIBP-phenotype, which occurred earlier (and differently) in males. Additionally, HCM phenotyping revealed the occurrence of sensory-affective states manifested by mechanical hypersensitivity in sham when housed with a tumor-bearing cagemate (CIBP) of the same sex. This multimodal battery allows for an in-depth characterization of the CIBP-phenotype under social aspects in rats. The detailed, sex-specific, and rat-specific social phenotyping of CIBP enabled by PCA provides the basis for mechanism-driven studies to ensure robustness and generalizability of results and provide information for targeted drug development in the future.
Collapse
|
11
|
Buch T, Jerchow B, Zevnik B. Practical Application of the 3Rs in Rodent Transgenesis. Methods Mol Biol 2023; 2631:33-51. [PMID: 36995663 DOI: 10.1007/978-1-0716-2990-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The principles of the 3Rs (replace, reduce, refine), as originally published by Russell and Burch, are internationally acclaimed guidelines for meeting ethical and welfare standards in animal experimentation. Genome manipulation is a standard technique in biomedical research and beyond. The goal of this chapter is to give practical advice on the implementation of the 3Rs in laboratories generating genetically modified rodents. We cover 3R aspects from the planning phase through operations of the transgenic unit to the final genome-manipulated animals. The focus of our chapter is on an easy-to-use, concise protocol that is close to a checklist. While we focus on mice, the proposed methodological concepts can be easily adapted for the manipulation of other sentient animals.
Collapse
Affiliation(s)
- Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Boris Jerchow
- Novartis Institute for Biomedical Research (NIBR), Novartis Pharma AG, Basel, Switzerland
| | - Branko Zevnik
- In vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Swan J, Boyer S, Westlund K, Bengtsson C, Nordahl G, Törnqvist E. Decreased levels of discomfort in repeatedly handled mice during experimental procedures, assessed by facial expressions. Front Behav Neurosci 2023; 17:1109886. [PMID: 36873771 PMCID: PMC9978997 DOI: 10.3389/fnbeh.2023.1109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Mice are the most commonly used laboratory animal, yet there are limited studies which investigate the effects of repeated handling on their welfare and scientific outcomes. Furthermore, simple methods to evaluate distress in mice are lacking, and specialized behavioral or biochemical tests are often required. Here, two groups of CD1 mice were exposed to either traditional laboratory handling methods or a training protocol with cup lifting for 3 and 5 weeks. The training protocol was designed to habituate the mice to the procedures involved in subcutaneous injection, e.g., removal from the cage, skin pinch. This protocol was followed by two common research procedures: subcutaneous injection and tail vein blood sampling. Two training sessions and the procedures (subcutaneous injection and blood sampling) were video recorded. The mouse facial expressions were then scored, focusing on the ear and eye categories of the mouse grimace scale. Using this assessment method, trained mice expressed less distress than the control mice during subcutaneous injection. Mice trained for subcutaneous injection also had reduced facial scores during blood sampling. We found a clear sex difference as female mice responded to training faster than the male mice, they also had lower facial scores than the male mice when trained. The ear score appeared to be a more sensitive measure of distress than the eye score, which may be more indicative of pain. In conclusion, training is an important refinement method to reduce distress in mice during common laboratory procedures and this can best be assessed using the ear score of the mouse grimace scale.
Collapse
Affiliation(s)
- Julia Swan
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Scott Boyer
- Chemotargets SL, Barcelona, Spain.,Global Safety Assessment, AstraZeneca R&D, Södertälje, Sweden
| | | | - Camilla Bengtsson
- Global Safety Assessment, AstraZeneca R&D, Södertälje, Sweden.,Independant Consultant, Strömsund, Sweden
| | | | - Elin Törnqvist
- Global Safety Assessment, AstraZeneca R&D, Södertälje, Sweden.,Department of Animal Health and Antimicrobial Strategies, Swedish National Veterinary Institute (SVA), Uppsala, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
13
|
Aulehner K, Leenaars C, Buchecker V, Stirling H, Schönhoff K, King H, Häger C, Koska I, Jirkof P, Bleich A, Bankstahl M, Potschka H. Grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats-A systematic review. Front Vet Sci 2022; 9:930005. [PMID: 36277074 PMCID: PMC9583882 DOI: 10.3389/fvets.2022.930005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022] Open
Abstract
Several studies suggested an informative value of behavioral and grimace scale parameters for the detection of pain. However, the robustness and reliability of the parameters as well as the current extent of implementation are still largely unknown. In this study, we aimed to systematically analyze the current evidence-base of grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats. The following platforms were searched for relevant articles: PubMed, Embase via Ovid, and Web of Science. Only full peer-reviewed studies that describe the grimace scale, burrowing, and/or nest building as pain parameters in the post-surgical phase in mice and/or rats were included. Information about the study design, animal characteristics, intervention characteristics, and outcome measures was extracted from identified publications. In total, 74 papers were included in this review. The majority of studies have been conducted in young adult C57BL/6J mice and Sprague Dawley and Wistar rats. While there is an apparent lack of information about young animals, some studies that analyzed the grimace scale in aged rats were identified. The majority of studies focused on laparotomy-associated pain. Only limited information is available about other types of surgical interventions. While an impact of surgery and an influence of analgesia were rather consistently reported in studies focusing on grimace scales, the number of studies that assessed respective effects was rather low for nest building and burrowing. Moreover, controversial findings were evident for the impact of analgesics on post-surgical nest building activity. Regarding analgesia, a monotherapeutic approach was identified in the vast majority of studies with non-steroidal anti-inflammatory (NSAID) drugs and opioids being most commonly used. In conclusion, most evidence exists for grimace scales, which were more frequently used to assess post-surgical pain in rodents than the other behavioral parameters. However, our findings also point to relevant knowledge gaps concerning the post-surgical application in different strains, age levels, and following different surgical procedures. Future efforts are also necessary to directly compare the sensitivity and robustness of different readout parameters applied for the assessment of nest building and burrowing activities.
Collapse
Affiliation(s)
- Katharina Aulehner
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Hannah King
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
14
|
Lenert ME, Gomez R, Lane BT, Dailey DL, Vance CGT, Rakel BA, Crofford LJ, Sluka KA, Merriwether EN, Burton MD. Translating Outcomes from the Clinical Setting to Preclinical Models: Chronic Pain and Functionality in Chronic Musculoskeletal Pain. PAIN MEDICINE (MALDEN, MASS.) 2022; 23:1690-1707. [PMID: 35325207 PMCID: PMC9527603 DOI: 10.1093/pm/pnac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022]
Abstract
Fibromyalgia (FM) is a chronic pain disorder characterized by chronic widespread musculoskeletal pain (CWP), resting pain, movement-evoked pain (MEP), and other somatic symptoms that interfere with daily functioning and quality of life. In clinical studies, this symptomology is assessed, while preclinical models of CWP are limited to nociceptive assays. The aim of the study was to investigate the human-to-model translatability of clinical behavioral assessments for spontaneous (or resting) pain and MEP in a preclinical model of CWP. For preclinical measures, the acidic saline model of FM was used to induce widespread muscle pain in adult female mice. Two intramuscular injections of acidic or neutral pH saline were administered following baseline measures, 5 days apart. An array of adapted evoked and spontaneous pain measures and functional assays were assessed for 3 weeks. A novel paradigm for MEP assessment showed increased spontaneous pain following activity. For clinical measures, resting and movement-evoked pain and function were assessed in adult women with FM. Moreover, we assessed correlations between the preclinical model of CWP and in women with fibromyalgia to examine whether similar relationships between pain assays that comprise resting and MEP existed in both settings. For both preclinical and clinical outcomes, MEP was significantly associated with mechanical pain sensitivity. Preclinically, it is imperative to expand how the field assesses spontaneous pain and MEP when studying multi-symptom disorders like FM. Targeted pain assessments to match those performed clinically is an important aspect of improving preclinical to clinical translatability of animal models.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Rachelle Gomez
- Inclusive and Translational Research in Pain Lab, Department of Physical Therapy, Steinhardt School of Culture, Education, and Human Development, New York University, New York, New York, USA
| | - Brandon T Lane
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Dana L Dailey
- Neurobiology of Pain Lab, Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Physical Therapy, Center for Health Sciences, St. Ambrose University, Davenport, Iowa, USA
| | - Carol G T Vance
- Neurobiology of Pain Lab, Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Barbara A Rakel
- College of Nursing, University of Iowa, Iowa City, Iowa, USA
| | - Leslie J Crofford
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathleen A Sluka
- Neurobiology of Pain Lab, Department of Physical Therapy and Rehabilitation Science, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ericka N Merriwether
- Inclusive and Translational Research in Pain Lab, Department of Physical Therapy, Steinhardt School of Culture, Education, and Human Development, New York University, New York, New York, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies (CAPS), School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
15
|
Carvalho JRG, Trindade PHE, Conde G, Antonioli ML, Funnicelli MIG, Dias PP, Canola PA, Chinelatto MA, Ferraz GC. Facial Expressions of Horses Using Weighted Multivariate Statistics for Assessment of Subtle Local Pain Induced by Polylactide-Based Polymers Implanted Subcutaneously. Animals (Basel) 2022; 12:ani12182400. [PMID: 36139260 PMCID: PMC9495041 DOI: 10.3390/ani12182400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Facial expression (FE) has been used for pain diagnosis in horses. The current study aimed to identify pain in horses undergoing under-skin polylactide-based polymer implantation. Five statistical methods for analyzing FE were used, including conventional and new approaches. First, we scored the seven FEs separately. Subsequently, the scores of the seven FEs were added (SUM). Subsequently, principal component analysis (PCoA) was performed using the scores of the seven FEs obtained using the first method. Afterwards, weights were created for each FE based on each variable’s contribution variability obtained from the PCoA (SUM.W). Finally, we applied a general score to the animal’s face (GFS). The horses were filmed before and 24 and 48 h after implantation. The tissue sensitivity to mechanical stimulation and skin temperature of the horses were assessed at the same time points. The results show no changes in the FEs analyzed separately or jointly. The horses with incision and suture but no polymer implant displayed a higher pain-related FE 48 h after implantation, while the horses implanted with polymers displayed more apparent alterations in the mechanical skin sensitivity and temperature. Our findings show that the five statistical methods used to analyze the faces of the horses were not able to detect low-grade inflammatory pain. Abstract Facial-expression-based analysis has been widely applied as a pain coding system in horses. Herein, we aimed to identify pain in horses undergoing subcutaneously polylactide-based polymer implantation. The sham group was submitted only to surgical incision. The horses were filmed before and 24 and 48 h after implantation. Five statistical methods for evaluating their facial expressions (FEs) were tested. Primarily, three levels of scores (0, 1, and 2) were applied to the seven FEs (ear movements, eyebrow tension, orbicularis tension, dilated nostrils, eye opening, muzzle tension, and masticatory muscles tension). Subsequently, the scores of the seven FEs were added (SUM). Afterwards, principal component analysis (PCoA) was performed using the scores of the seven FEs obtained using the first method. Subsequently, weights were created for each FE, based on each variable’s contribution variability obtained from the PCoA (SUM.W). Lastly, we applied a general score (GFS) to the animal’s face (0 = without pain; 1 = moderate pain; 2 = severe pain). The mechanical nociceptive threshold (MNT) and cutaneous temperature (CT) values were collected at the same moments. The results show no intra- or intergroup differences, when evaluating each FE separately or in the GFS. In the intragroup comparison and 48 h after implantation, the control group showed higher values for SUM, PCoA, and SUM.W, although the horses implanted with polymers displayed more obvious alterations in the CT and MNT. Our findings show that the five statistical strategies used to analyze the faces of the horses were not able to detect low-grade inflammatory pain.
Collapse
Affiliation(s)
- Júlia R. G. Carvalho
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinarian Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Pedro H. E. Trindade
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, FMVZ/UNESP, Botucatu 18618-681, SP, Brazil
| | - Gabriel Conde
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinarian Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Marina L. Antonioli
- Department of Veterinary Clinical and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Michelli I. G. Funnicelli
- Department of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Paula P. Dias
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, EESC/USP, São Carlos 13563-120, SP, Brazil
| | - Paulo A. Canola
- Department of Veterinary Clinical and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Marcelo A. Chinelatto
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, EESC/USP, São Carlos 13563-120, SP, Brazil
| | - Guilherme C. Ferraz
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinarian Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
- Correspondence:
| |
Collapse
|
16
|
Neary JM, Porter ND, Viscardi AV, Jacobs L. Recognizing Post-Castration Pain in Piglets: A Survey of Swine Industry Stakeholders and the General Public. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.937020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We need validated, practical methods for pain assessment in piglets. Pain assessment can help researchers, veterinarians and industry professionals identify the need for analgesia or other pain management approaches when applying painful procedures, such as surgical castration. A pain assessment tool, the Piglet Grimace Scale (PGS), was previously validated in this context, but it is not widely applied. It is important that the PGS can be applied by a range of people, not just pain assessment experts. Our objective was to study the validity and reliability of PGS ratings applied by swine industry professionals and the general public, to assess its potential utility in non-research applications. To do so, we conducted an online Qualtrics survey in which, after completing a brief online training module and a practice test, 119 respondents were asked to rate 9 piglet images showing facial expressions immediately after surgical castration or sham-handling. Respondents were provided information on the castration treatment for each image and had continuous access to the scale throughout the survey. The survey also contained demographic questions. Industry respondents were recruited through networking, and participants from the general public were recruited through Amazon Mechanical Turk. Four trained experts scored each image, and these scores were averaged to produce gold standard scores. Intraclass correlations indicated strong internal consistency among experts, industry and public. ANOVA demonstrated scoring to be moderately comparable between groups. Campbell and Fiske’s Multi-Trait Multi-Method framework provided qualified support for the internal validity and reliability of the PGS scale, even applied by non-experts (industry and public). Both response groups were able to recognize pain in castrated piglets. However, public respondents attributed higher levels of pain to sham-handled piglets than industry respondents (2.83 vs. 2.35; p=0.047), and both response groups systematically overestimated pain experience compared to the experts, suggesting more training may be necessary before using the scale in a diagnostic capacity. Nevertheless, overall findings support wide applicability of PGS, even with minimal training, to improve awareness, recognition and monitoring of swine pain among veterinarians, industry professionals and even members of the public.
Collapse
|
17
|
3R measures in facilities for the production of genetically modified rodents. Lab Anim (NY) 2022; 51:162-177. [PMID: 35641635 DOI: 10.1038/s41684-022-00978-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
Sociocultural changes in the human-animal relationship have led to increasing demands for animal welfare in biomedical research. The 3R concept is the basis for bringing this demand into practice: Replace animal experiments with alternatives where possible, Reduce the number of animals used to a scientifically justified minimum and Refine the procedure to minimize animal harm. The generation of gene-modified sentient animals such as mice and rats involves many steps that include various forms of manipulation. So far, no coherent analysis of the application of the 3Rs to gene manipulation has been performed. Here we provide guidelines from the Committee on Genetics and Breeding of Laboratory Animals of the German Society for Laboratory Animal Science to implement the 3Rs in every step during the generation of genetically modified animals. We provide recommendations for applying the 3Rs as well as success/intervention parameters for each step of the process, from experiment planning to choice of technology, harm-benefit analysis, husbandry conditions, management of genetically modified lines and actual procedures. We also discuss future challenges for animal welfare in the context of developing technologies. Taken together, we expect that our comprehensive analysis and our recommendations for the appropriate implementation of the 3Rs to technologies for genetic modifications of rodents will benefit scientists from a wide range of disciplines and will help to improve the welfare of a large number of laboratory animals worldwide.
Collapse
|
18
|
Abdus-Saboor I, Luo W. Measuring Mouse Somatosensory Reflexive Behaviors with High-speed Videography, Statistical Modeling, and Machine Learning. NEUROMETHODS 2022; 178:441-456. [PMID: 35783537 PMCID: PMC9249079 DOI: 10.1007/978-1-0716-2039-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Objectively measuring and interpreting an animal's sensory experience remains a challenging task. This is particularly true when using preclinical rodent models to study pain mechanisms and screen for potential new pain treatment reagents. How to determine their pain states in a precise and unbiased manner is a hurdle that the field will need to overcome. Here, we describe our efforts to measure mouse somatosensory reflexive behaviors with greatly improved precision by high-speed video imaging. We describe how coupling sub-second ethograms of reflexive behaviors with a statistical reduction method and supervised machine learning can be used to create a more objective quantitative mouse "pain scale." Our goal is to provide the readers with a protocol of how to integrate some of the new tools described here with currently used mechanical somatosensory assays, while discussing the advantages and limitations of this new approach.
Collapse
Affiliation(s)
- Ishmail Abdus-Saboor
- Department of Biology, University of Pennsylvania, 3740 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Deep Learning-Based Grimace Scoring Is Comparable to Human Scoring in a Mouse Migraine Model. J Pers Med 2022; 12:jpm12060851. [PMID: 35743636 PMCID: PMC9225619 DOI: 10.3390/jpm12060851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 01/03/2023] Open
Abstract
Pain assessment is essential for preclinical and clinical studies on pain. The mouse grimace scale (MGS), consisting of five grimace action units, is a reliable measurement of spontaneous pain in mice. However, MGS scoring is labor-intensive and time-consuming. Deep learning can be applied for the automatic assessment of spontaneous pain. We developed a deep learning model, the DeepMGS, that automatically crops mouse face images, predicts action unit scores and total scores on the MGS, and finally infers whether pain exists. We then compared the performance of DeepMGS with that of experienced and apprentice human scorers. The DeepMGS achieved an accuracy of 70–90% in identifying the five action units of the MGS, and its performance (correlation coefficient = 0.83) highly correlated with that of an experienced human scorer in total MGS scores. In classifying pain and no pain conditions, the DeepMGS is comparable to the experienced human scorer and superior to the apprentice human scorers. Heatmaps generated by gradient-weighted class activation mapping indicate that the DeepMGS accurately focuses on MGS-relevant areas in mouse face images. These findings support that the DeepMGS can be applied for quantifying spontaneous pain in mice, implying its potential application for predicting other painful conditions from facial images.
Collapse
|
20
|
Antiorio AT, Alemán-Laporte J, Zanatto DA, Pereira MAA, Gomes MS, Wadt D, Yamamoto PK, Bernardi MM, Mori CM. Mouse Behavior in the Open-field Test after Meloxicam Administration. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:270-274. [PMID: 35101160 PMCID: PMC9137284 DOI: 10.30802/aalas-jaalas-21-000046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/03/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Several analgesics are suggested for pain management in mice. Nonsteroidal antiinflammatories (NSAIDs), such as meloxicam can be administered for the treatment of inflammation and acute pain; however, several side effects can occur which include gastrointestinal ulceration and renal and hepatic toxicity. We previously performed a pilot study to test the antinociceptive activity of meloxicam in mice, but we observed behavioral changes in unoperated control mice. These observations spurred further investigation. One hypothesis for the result was potential differences in formulation between commercial brands of meloxicam. Thus, this current study aimed to evaluate the effects of 3 different commercial brands of meloxicam (20 mg/kg) in the general activity of mice using the open field test. Our results showed that meloxicam had several effects on mouse behavior and caused the formation of skin lesions at the injection site, depending on the brand of the drug. The most significant adverse effect observed was decreased exploratory activity. Grooming frequency was reduced in all groups. These adverse effects might be related to the quality of the drugs because meloxicam formulations can contain crystal polymorphisms that affect drug quality and efficacy. This study points out the importance of drug quality variation that can affect the outcome of behavioral studies in mice.
Collapse
Affiliation(s)
- Ana Tfb Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil;,
| | - Jilma Alemán-Laporte
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Laboratory of Teaching in Surgery and Cancer, University of Costa Rica, San Jose, Costa Rica
| | - Dennis A Zanatto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marco A A Pereira
- Department of Surgery. School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mariana Sag Gomes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Danilo Wadt
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Pedro K Yamamoto
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria M Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Claudia Mc Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Administration of meloxicam to improve the welfare of mice in research: a systematic review (2000 - 2020). Vet Res Commun 2022; 46:1-8. [PMID: 34988874 DOI: 10.1007/s11259-021-09868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Although laboratory animals experience pain as a necessary component of the objectives of experimental protocols, the level of pain should be minimized through use of an adequate analgesic regimen. The non-steroidal anti-inflammatory drug meloxicam may be beneficial in alleviating post-operative pain in mice, although no regimen has been demonstrated as universally efficacious owing to differences in experimental protocols, strain, sex, and incomplete descriptions of methodology in the literature. The aim of this systematic literature review was to identify potential applications of meloxicam for pain management in experimental mice and to evaluate the general quality of study design. Searches of MEDLINE, Scopus and CAB Direct databases elicited 94 articles published between January 2000 and April 2020 that focused on the analgesic efficacy of meloxicam in the management of momentary or persistent pain in mice. The extracted data showed that most articles were deficient in descriptions of housing, husbandry, group size calculation and humane endpoint criteria, while few described adverse effects of the drug. A wide range of dosages of meloxicam was identified with analgesic efficiencies that varied considerably according to the different models or procedures studied. It was impossible to correlate the extracted data into a single meta-analysis because of the differences in experimental protocols and strains employed, the low representation of female mice in the studies, and incomplete descriptions of the methodology applied. We conclude that meloxicam has potential application for pain management in mice but that the dosage must be adjusted carefully according to the experimental procedures. Moreover, authors must take more care in designing their studies and in describing the methodology employed.
Collapse
|
22
|
Taurine Grafted Micro-Implants Improved Functions without Direct Dependency between Interleukin-6 and the Bile Acid Lithocholic Acid in Plasma. Biomedicines 2022; 10:biomedicines10010111. [PMID: 35052790 PMCID: PMC8772949 DOI: 10.3390/biomedicines10010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
A recent study showed an association between diabetes development and the bile acid lithocholic acid (LCA), while another study demonstrated positive biological effects of the conjugated bile acid, taurocholic acid (TCA), on pancreatic cells. Thus, this study aimed to encapsulate TCA with primary islets (graft) and study the biological effects of the graft, post-transplantation, in diabetic mice, including effects on LCA concentrations. Sixteen mature adult mice were made diabetic and randomly divided into two equal groups, control and test (transplanted encapsulated islets without or with TCA). Graft pharmaceutical features pre-transplantation, and biological effects including on LCA concentrations post-transplantation, were measured. TCA-microcapsules had an oval shape and similar size compared with the control. The treatment group survived longer, showed improved glucose and interleukin-6 concentrations, and lower LCA concentrations in plasma, large intestine, faeces, liver and spleen, compared with control. Results suggest that TCA incorporation with islets encapsulated graft exerted beneficial effects, but there was no direct and significant dependency between concentrations of interleukin-6 and LCA.
Collapse
|
23
|
Miller AL, Roughan JV. Welfare Assessment, End-Point Refinement and the Effects of Non-Aversive Handling in C57BL/6 Mice with Lewis Lung Cancer. Animals (Basel) 2021; 12:ani12010023. [PMID: 35011129 PMCID: PMC8749757 DOI: 10.3390/ani12010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer-bearing mice are at risk of developing anxiety, pain, or malaise. These conditions may not only harm welfare but could also undermine data quality and translational validity in studies to develop therapeutic interventions. We aimed to establish whether, or at what point mice developing lung cancer show these symptoms, what measures can best detect their onset, and if data quality and animal welfare can be enhanced by using non-aversive handling (NAH). Welfare was monitored using various daily methods. At the beginning and end of the study, we also scored behaviour for general welfare evaluation, recorded nociceptive thresholds, and applied the mouse grimace scale (MGS). Cancer caused a decline in daily welfare parameters (body weight, and food and water consumption) beginning at around 4 days prior to euthanasia. As cancer progressed, rearing and walking declined to a greater extent in cancer-bearing versus control mice, while grooming, inactive periods, and MGS scores increased. A decline in nest building capability and food consumption provided a particularly effective means of detecting deteriorating welfare. These changes suggested a welfare problem arose as cancer developed, so similar studies would benefit from refinement, with mice being removed from the study at least 4 days earlier. However, the problem of highly varied tumour growth made it difficult to determine this time-point accurately. There were no detectable beneficial effects of NAH on either data quality or in terms of enhanced welfare.
Collapse
Affiliation(s)
- Amy L. Miller
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Johnny V. Roughan
- Institute of Bioscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence:
| |
Collapse
|
24
|
Durst M, Graf TR, Graf R, Kron M, Arras M, Zechner D, Palme R, Talbot SR, Jirkof P. Analysis of Pain and Analgesia Protocols in Acute Cerulein-Induced Pancreatitis in Male C57BL/6 Mice. Front Physiol 2021; 12:744638. [PMID: 34880773 PMCID: PMC8645955 DOI: 10.3389/fphys.2021.744638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Pancreatitis is known to be painful in humans and companion animals. However, the extent of pain in experimental mouse models of acute pancreatitis is unknown. Consequently, the severity classification of acute pancreatitis in mice is controversially discussed and standardized pain management is missing. In this study, we investigated acute Cerulein-induced pancreatitis with pain-specific and well-being orientated parameters to detect its impact on mice. Male C57BL/6J male mice were injected with Cerulein; animals that received saline injections served as control group. The animals were observed for weight change and water intake. To assess pain, behaviors like stretch-and-press and reduced rearing, the Mouse Grimace Scale, and von Frey hypersensitivity were assessed. Fecal corticosterone metabolites and burrowing behavior were assessed to detect changes in the animal’s well-being. Pancreatitis severity was evaluated with amylase and lipase in the blood and pancreas histology. To investigate whether different analgesics can alleviate signs of pain, and if they influence pancreas inflammation, animals received Buprenorphine, Paracetamol in combination with Tramadol, or Metamizole in the drinking water. The calculated intake of these analgesics via drinking reached values stated to be efficient for pain alleviation. While pancreatitis did not seem to be painful, we detected acute pain from Cerulein injections that could not be alleviated by analgesics. The number of inflammatory cells in the pancreas did not differ with the analgesic administered. In conclusion: (1) Cerulein injections appear to be acutely painful but pain could not be alleviated by the tested analgesics, (2) acute pancreatitis induced by our protocol did not induce obvious signs of pain, (3) analgesic substances had no detectable influence on inflammation. Nevertheless, protocols inducing more severe or even chronic pancreatitis might evoke more pain and analgesic treatment might become imperative. Considering our results, we recommend the use of Buprenorphine via drinking water in these protocols. Further studies to search for efficient analgesics that can alleviate the acute pain induced by Cerulein injections are needed.
Collapse
Affiliation(s)
- Mattea Durst
- Centre for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Theresia Reding Graf
- Pancreas Research Laboratory, Department of Visceral Surgery & Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Rolf Graf
- Pancreas Research Laboratory, Department of Visceral Surgery & Transplantation, University Hospital Zurich, Zurich, Switzerland
| | - Mareike Kron
- Centre for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Margarete Arras
- Centre for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Paulin Jirkof
- Centre for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Office for Animal Welfare & 3R, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Measurement properties of grimace scales for pain assessment in non-human mammals: a systematic review. Pain 2021; 163:e697-e714. [PMID: 34510132 DOI: 10.1097/j.pain.0000000000002474] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Facial expressions of pain have been identified in several animal species. The aim of this systematic review was to provide evidence on the measurement properties of grimace scales for pain assessment. The protocol was registered (SyRF#21-Nov-2019) and the study is reported according to the PRISMA guidelines. Studies reporting the development, validation, and the assessment of measurement properties of grimace scales were included. Data extraction and assessment were performed by two investigators, following the Consensus-based Standards for the Selection of Health Measurement Instruments (COSMIN) guidelines. Six categories of measurement properties were assessed: internal consistency, reliability, measurement error, criterion and construct validity, and responsiveness. Overall strength of evidence (high, moderate, low) of each instrument was based on methodological quality, number of studies and studies' findings. Twelve scales for nine species were included (mice, rats, rabbits, horses, piglets, sheep/lamb, ferrets, cats and donkeys). Considerable variability regarding their development and measurement properties was observed. The Mouse, Rat, Horse and Feline Grimace Scales exhibited high level of evidence. The Rabbit, Lamb, Piglet and Ferret Grimace Scales and Sheep Pain Facial Expression Scale exhibited moderate level of evidence. The Sheep Grimace Scale, EQUUS-FAP and EQUUS-Donkey-FAP exhibited low level of evidence for measurement properties. Construct validity was the most reported measurement property. Reliability and other forms of validity have been understudied. This systematic review identified gaps in knowledge on the measurement properties of grimace scales. Further studies should focus on improving psychometric testing, instrument refinement and the use of grimace scales for pain assessment in non-human mammals.
Collapse
|
26
|
Watanabe S, Masuda S, Shinozuka K, Borlongan C. Preference and discrimination of facial expressions of humans, rats, and mice by C57 mice. Anim Cogn 2021; 25:297-306. [PMID: 34417921 DOI: 10.1007/s10071-021-01551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/23/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
Social animals likely recognize emotional expressions in other animals. Recent studies suggest that mice can visually perceive emotional expressions of other mice. In the first experiment, we measured the preference of mice for two different facial expressions (a normal facial expression and an expression of negative emotion such as pain) of rats, mice, and humans. Results revealed that mice showed a slight preference for the normal expression over the face expressing pain in the case of rats, but no preference in the case of others. In the second experiment, we trained mice to discriminate between the two facial expressions in an operant chamber with a touch screen. They could discriminate facial expressions of mice and rats, but they did not show discrimination of human facial expressions. Principal component analysis of the images of stimuli reveals negative correlation between pixel-based dissimilarity of training stimuli and the number of sessions to criterion. The mice showed generalization to novel images of the mouse faces with and without pain but did not maintain their discriminative behavior when new rat faces were shown. These results suggest that mice display category discrimination of conspecific facial expressions but not of other species.
Collapse
Affiliation(s)
- Shigeru Watanabe
- Department of Psychology, Keio University, Mita 2-15-45, Minato-Ku, Tokyo, 108-8345, Japan.
| | - Sayako Masuda
- Jyumonji University, 2-1-28 Sugasawa, Niiza, Saitama, Japan
| | - Kazutaka Shinozuka
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Cesario Borlongan
- University of South Florida, MDC 78, 12901 Bruce Downs Blvd, Tampa, FL33612, USA
| |
Collapse
|
27
|
Repetitive stress in mice causes migraine-like behaviors and calcitonin gene-related peptide-dependent hyperalgesic priming to a migraine trigger. Pain 2021; 161:2539-2550. [PMID: 32541386 DOI: 10.1097/j.pain.0000000000001953] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Migraine is one of the most disabling disorders worldwide but the underlying mechanisms are poorly understood. Stress is consistently reported as a common trigger of migraine attacks. Here, we show that repeated stress in mice causes migraine-like behaviors that are responsive to a migraine therapeutic. Adult female and male mice were exposed to 2 hours of restraint stress for 3 consecutive days, after which they demonstrated facial mechanical hypersensitivity and facial grimace responses that were resolved by 14 days after stress. Hypersensitivity or grimace was not observed in either control animals or those stressed for only 1 day. After return to baseline, the nitric oxide donor sodium nitroprusside (SNP; 0.1 mg/kg) elicited mechanical hypersensitivity in stressed but not in control animals, demonstrating the presence of hyperalgesic priming. This suggests the presence of a migraine-like state, because nitric oxide donors are reliable triggers of attacks in migraine patients but not controls. The stress paradigm also caused priming responses to dural pH 7.0 treatment. The presence of this primed state after stress is not permanent because it was no longer present at 35 days after stress. Finally, mice received either the calcitonin gene-related peptide monoclonal antibody ALD405 (10 mg/kg) 24 hours before SNP or a coinjection of sumatriptan (0.6 mg/kg). ALD405, but not sumatriptan, blocked the facial hypersensitivity due to SNP. This stress paradigm in mice and the subsequent primed state caused by stress allow further preclinical investigation of mechanisms contributing to migraine, particularly those caused by common triggers of attacks.
Collapse
|
28
|
Additional Assessment of Fecal Corticosterone Metabolites Improves Visual Rating in the Evaluation of Stress Responses of Laboratory Rats. Animals (Basel) 2021; 11:ani11030710. [PMID: 33807941 PMCID: PMC8001186 DOI: 10.3390/ani11030710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Assessment of animal welfare is an important aspect of preclinical studies to minimize suffering and burden and to improve scientific data. In a standard preclinical setup, such an assessment is normally done via so-called score sheets, which are part of the official documentation and approval of a preclinical study. These score sheets contain different categories, including objective parameters such as animals’ body weight, as well as more subjective criteria such as general status, behavior, and appearance, by which the animal is assessed and given a score reflecting the burden. However, very little is known about whether this mainly visual-based and subjective evaluation of the animals’ welfare reliably reflects the status of the animal and correlates well with more objective parameters used for assessment of animal welfare. To this end, the current study investigates the concordance of parameters obtained via standardized score sheets and fecal corticosterone metabolites in a preclinical neuroscientific setup. Determination of fecal corticosterone metabolites as response parameter of adrenocortical activity is thereby a well-validated parameter often used to determine animals’ stress levels. Our data reveal that specific but subjective scores did not mirror the stress response assessed via fecal corticosterone metabolites in the same animals. Abstract Since animal experiments cannot be completely avoided, the pain, suffering, and distress of laboratory animals must be minimized. To this end, a major prerequisite is reliable assessment of pain and distress. Usually, evaluation of animal welfare is done by visual inspection and score sheets. However, relatively little is known about whether standardized, but subjective, score sheets are able to reliably reflect the status of the animals. The current study aimed to compare visual assessment scores and changes in body weight with concentrations of fecal corticosterone metabolites (FCMs) in a neuroscientific experimental setup. Additionally, effects of refinement procedures were investigated. Eight male adult Sprague-Dawley rats underwent several experimental interventions, including electroencephalograph electrode implantation and subsequent recording, positron emission tomography (PET), and sleep deprivation (SD) by motorized activity wheels. Additional 16 rats were either used as controls without any treatment or to evaluate refinement strategies. Stress responses were determined on a daily basis by means of measuring FCMs, body weight, and evaluation of the animals’ welfare by standardized score sheets. Surgery provoked a significant elevation of FCM levels for up to five days. Increases in FCMs due to PET procedures or SD in activity wheels were also highly significant, while visual assessment scores did not indicate elevated stress levels and body weights remained constant. Visual assessment scores correlate with neither changes in body weight nor increases in FCM levels. Habituation procedures to activity wheels used for SD had no impact on corticosterone release. Our results revealed that actual score sheets for visual assessment of animal welfare did not mirror physiological stress responses assessed by FCM measurements. Moreover, small changes in body weight did not correlate with FCM concentration either. In conclusion, as visual assessment is a method allowing immediate interventions on suffering animals to alleviate burden, timely stress assessment in experimental rodents via score sheets should be ideally complemented by validated objective measures (e.g., fecal FCM measured by well-established assays for reliable detection of FCMs). This will complete a comprehensive appraisal of the animals’ welfare status in a retrospective manner and refine stressor procedures in the long run.
Collapse
|
29
|
Agreement and reliability of the Feline Grimace Scale among cat owners, veterinarians, veterinary students and nurses. Sci Rep 2021; 11:5262. [PMID: 33664387 PMCID: PMC7933168 DOI: 10.1038/s41598-021-84696-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to evaluate the agreement and reliability of the Feline Grimace Scale (FGS) among cat owners, veterinarians, veterinary students and nurses/technicians. Raters (n = 5/group) scored 100 images using the FGS (ear position, orbital tightening, muzzle tension, whiskers position and head position). Intra-class correlation coefficients (ICC) were used to assess inter- and intra-rater reliability. Agreement between each group and the veterinarian group (gold-standard) was calculated using the Bland-Altman method. Effects of gender, age and number of cats owned on FGS scores were assessed using linear mixed models. Inter-rater reliability was good for FGS final scores (ICC > 0.8). The muzzle and whiskers yielded lower reliability (ICC = 0.39 to 0.74). Intra-rater reliability was excellent for students and veterinarians (ICC = 0.91), and good for owners and nurses (ICC = 0.87 and 0.81, respectively). A very good agreement between all groups and veterinarians (bias < 0.1 and narrow limits of agreement) was observed. Female raters assigned higher FGS scores than males (p = 0.006); however, male raters were underrepresented in this study. Scores were not affected by age or number of cats owned. The FGS is reliable for feline acute pain assessment when used by individuals with different experience.
Collapse
|
30
|
Whittaker AL, Liu Y, Barker TH. Methods Used and Application of the Mouse Grimace Scale in Biomedical Research 10 Years on: A Scoping Review. Animals (Basel) 2021; 11:ani11030673. [PMID: 33802463 PMCID: PMC7999303 DOI: 10.3390/ani11030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Mouse Grimace Scale (MGS) was developed 10 years ago as a method for assessing pain through the characterisation of changes in five facial features or action units. The strength of the technique is that it is proposed to be a measure of spontaneous or non-evoked pain. The time is opportune to map all of the research into the MGS, with a particular focus on the methods used and the technique's utility across a range of mouse models. A comprehensive scoping review of the academic literature was performed. A total of 48 articles met our inclusion criteria and were included in this review. The MGS has been employed mainly in the evaluation of acute pain, particularly in the pain and neuroscience research fields. There has, however, been use of the technique in a wide range of fields, and based on limited study it does appear to have utility for pain assessment across a spectrum of animal models. Use of the method allows the detection of pain of a longer duration, up to a month post initial insult. There has been less use of the technique using real-time methods and this is an area in need of further research.
Collapse
Affiliation(s)
- Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
- Correspondence:
| | - Yifan Liu
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy 5371, Australia;
| | - Timothy H. Barker
- JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, Australia;
| |
Collapse
|
31
|
|
32
|
Diester CM, Santos EJ, Moerke MJ, Negus SS. Behavioral Battery for Testing Candidate Analgesics in Mice. I. Validation with Positive and Negative Controls. J Pharmacol Exp Ther 2021; 377:232-241. [PMID: 33622770 DOI: 10.1124/jpet.120.000464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
This study evaluated a battery of pain-stimulated, pain-depressed, and pain-independent behaviors for preclinical pharmacological assessment of candidate analgesics in mice. Intraperitoneal injection of dilute lactic acid (IP acid) served as an acute visceral noxious stimulus to produce four pain-related behaviors in male and female ICR mice: stimulation of 1) stretching, 2) facial grimace, 3) depression of rearing, and 4) depression of nesting. Additionally, nesting and locomotion in the absence of the noxious stimulus were used to assess pain-independent drug effects. These six behaviors were used to compare effects of two mechanistically distinct but clinically effective positive controls (ketoprofen and oxycodone) and two negative controls that are not clinically approved as analgesics but produce either general motor depression (diazepam) or motor stimulation (amphetamine). We predicted that analgesics would alleviate all IP acid effects at doses that did not alter pain-independent behaviors, whereas negative controls would not. Consistent with this prediction, ketoprofen (0.1-32 mg/kg) produced the expected analgesic profile, whereas oxycodone (0.32-3.2 mg/kg) alleviated all IP acid effects except depression of rearing at doses lower than those that altered pain-independent behaviors. For the negative controls, diazepam (1-10 mg/kg) failed to block IP acid-induced depression of either rearing or nesting and only decreased IP acid-stimulated behaviors at doses that also decreased pain-independent behaviors. Amphetamine (0.32-3.2 mg/kg) alleviated all IP acid effects but only at doses that also stimulated locomotion. These results support utility of this model as a framework to evaluate candidate-analgesic effects in a battery of complementary pain-stimulated, pain-depressed, and pain-independent behavioral endpoints. SIGNIFICANCE STATEMENT: Preclinical assays of pain and analgesia often yield false-positive effects with candidate analgesics. This study used two positive-control analgesics (ketoprofen, oxycodone) and two active negative controls (diazepam, amphetamine) to validate a strategy for distinguishing analgesics from nonanalgesics by profiling drug effects in a battery of complementary pain-stimulated, pain-depressed, and pain-independent behaviors in male and female mice.
Collapse
Affiliation(s)
- C M Diester
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - E J Santos
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - M J Moerke
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - S S Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
33
|
Fisher AS, Lanigan MT, Upton N, Lione LA. Preclinical Neuropathic Pain Assessment; the Importance of Translatability and Bidirectional Research. Front Pharmacol 2021; 11:614990. [PMID: 33628181 PMCID: PMC7897667 DOI: 10.3389/fphar.2020.614990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
For patients suffering with chronic neuropathic pain the need for suitable novel therapies is imperative. Over recent years a contributing factor for the lack of development of new analgesics for neuropathic pain has been the mismatch of primary neuropathic pain assessment endpoints in preclinical vs. clinical trials. Despite continuous forward translation failures across diverse mechanisms, reflexive quantitative sensory testing remains the primary assessment endpoint for neuropathic pain and analgesia in animals. Restricting preclinical evaluation of pain and analgesia to exclusively reflexive outcomes is over simplified and can be argued not clinically relevant due to the continued lack of forward translation and failures in the clinic. The key to developing new analgesic treatments for neuropathic pain therefore lies in the development of clinically relevant endpoints that can translate preclinical animal results to human clinical trials. In this review we discuss this mismatch of primary neuropathic pain assessment endpoints, together with clinical and preclinical evidence that supports how bidirectional research is helping to validate new clinically relevant neuropathic pain assessment endpoints. Ethological behavioral endpoints such as burrowing and facial grimacing and objective measures such as electroencephalography provide improved translatability potential together with currently used quantitative sensory testing endpoints. By tailoring objective and subjective measures of neuropathic pain the translatability of new medicines for patients suffering with neuropathic pain will hopefully be improved.
Collapse
Affiliation(s)
- Amy S. Fisher
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Michael T. Lanigan
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Neil Upton
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
34
|
Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research. Animals (Basel) 2020; 10:ani10101726. [PMID: 32977561 PMCID: PMC7598254 DOI: 10.3390/ani10101726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
The 3Rs, Replacement, Reduction and Refinement, is a framework to ensure the ethical and justified use of animals in research. The implementation of refinements is required to alleviate and minimise the pain and suffering of animals in research. Public acceptability of animal use in research is contingent on satisfying ethical and legal obligations to provide pain relief along with humane endpoints. To fulfil this obligation, staff, researchers, veterinarians, and technicians must rapidly, accurately, efficiently and consistently identify, assess and act on signs of pain. This ability is paramount to uphold animal welfare, prevent undue suffering and mitigate possible negative impacts on research. Identification of pain may be based on indicators such as physiological, behavioural, or physical ones. Each has been used to develop different pain scoring systems with potential benefits and limitations in identifying and assessing pain. Grimace scores are a promising adjunctive behavioural technique in some mammalian species to identify and assess pain in research animals. The use of this method can be beneficial to animal welfare and research outcomes by identifying animals that may require alleviation of pain or humane intervention. This paper highlights the benefits, caveats, and potential applications of grimace scales.
Collapse
|
35
|
Reliability of the Mouse Grimace Scale in C57BL/6JRj Mice. Animals (Basel) 2020; 10:ani10091648. [PMID: 32937881 PMCID: PMC7552260 DOI: 10.3390/ani10091648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
To maintain and foster the welfare of laboratory mice, tools that reliably measure the current state of the animals are applied in clinical assessment. One of these is the Mouse Grimace Scale (MGS), a coding system for facial expression analysis. Since there are concerns about the objectivity of the MGS, we further investigated its reliability. Four observers (two experienced and two inexperienced in use of the MGS) scored 188 images of 33 female and 31 male C57BL/6JRj mice. Images were generated prior to, 150 min, and two days after ketamine/xylazine anesthesia. The intraclass correlations coefficient (ICC = 0.851) indicated good agreement on total MGS scores between all observers when all three time points were included in the analysis. However, interrater reliability was higher in the early post-anesthetic period (ICC = 0.799) than at baseline (ICC = 0.556) and on day 2 after anesthesia (ICC = 0.329). The best agreement was achieved for orbital tightening, and the poorest agreement for nose and cheek bulge, depending on the observers' experience levels. In general, experienced observers produced scores of higher consistency when compared to inexperienced. Against this background, we critically discuss factors that potentially influence the reliability of MGS scoring.
Collapse
|
36
|
Mogil JS, Pang DSJ, Silva Dutra GG, Chambers CT. The development and use of facial grimace scales for pain measurement in animals. Neurosci Biobehav Rev 2020; 116:480-493. [PMID: 32682741 DOI: 10.1016/j.neubiorev.2020.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
The measurement of pain in animals is surprisingly complex, and remains a critical issue in veterinary care and biomedical research. Based on the known utility of pain measurement via facial expression in verbal and especially non-verbal human populations, "grimace scales" were first developed a decade ago for use in rodents and now exist for 10 different mammalian species. This review details the background context, historical development, features (including duration), psychometric properties, modulatory factors, and impact of animal grimace scales for pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada.
| | - Daniel S J Pang
- Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gabrielle Guanaes Silva Dutra
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada
| | | |
Collapse
|
37
|
Kahnau P, Habedank A, Diederich K, Lewejohann L. Behavioral Methods for Severity Assessment. Animals (Basel) 2020; 10:ani10071136. [PMID: 32635341 PMCID: PMC7401632 DOI: 10.3390/ani10071136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Simple Summary In 2017, 9.4 million animals were used for research and testing in the European Union. Animal testing always entails the potential for harm caused to the animals. In order to minimize animal suffering, it is of ethical and scientific interest to have a research-based severity assessment of animal experiments. In the past, many methods have been developed to investigate animal suffering. Initially, the focus was on physiological parameters, such as body weight or glucocorticoids as an indicator of stress. In addition, the animals’ behavior has come more into focus and has been included as an indicator of severity. However, in order to obtain a comprehensive understanding of animal suffering, an animal’s individual perspective should also be taken into account. Preference tests might be used, for example, to “ask” animals what they prefer, and providing such goods in turn allows, among other things, to improve housing conditions. In this review, different methods are introduced, which can be used to investigate and evaluate animal suffering and well-being with a special focus on animal-centric strategies. Abstract It has become mandatory for the application for allowance of animal experimentation to rate the severity of the experimental procedures. In order to minimize suffering related to animal experimentation it is therefore crucial to develop appropriate methods for the assessment of animal suffering. Physiological parameters such as hormones or body weight are used to assess stress in laboratory animals. However, such physiological parameters alone are often difficult to interpret and leave a wide scope for interpretation. More recently, behavior, feelings and emotions have come increasingly into the focus of welfare research. Tests like preference tests or cognitive bias tests give insight on how animals evaluate certain situations or objects, how they feel and what their emotional state is. These methods should be combined in order to obtain a comprehensive understanding of the well-being of laboratory animals.
Collapse
Affiliation(s)
- Pia Kahnau
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
- Correspondence: ; Tel.: +49-30-18412-29202
| | - Anne Habedank
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
| | - Kai Diederich
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
38
|
Hassler SN, Kume M, Mwirigi JM, Ahmad A, Shiers S, Wangzhou A, Ray PR, Belugin SN, Naik DK, Burton MD, Vagner J, Boitano S, Akopian AN, Dussor G, Price TJ. The cellular basis of protease-activated receptor 2-evoked mechanical and affective pain. JCI Insight 2020; 5:137393. [PMID: 32352932 PMCID: PMC7308051 DOI: 10.1172/jci.insight.137393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022] Open
Abstract
Protease-activated receptor 2 (PAR2) has long been implicated in inflammatory and visceral pain, but the cellular basis of PAR2-evoked pain has not been delineated. Although PAR2-evoked pain has been attributed to sensory neuron expression, RNA-sequencing experiments show ambiguous F2rl1 mRNA detection. Moreover, many pharmacological tools for PAR2 are nonspecific, acting also on the Mas-related GPCR family (Mrg) that are highly enriched in sensory neurons. We sought to clarify the cellular basis of PAR2-evoked pain. We developed a PAR2-conditional knockout mouse and specifically deleted PAR2 in all sensory neurons using the PirtCre mouse line. Our behavioral findings show that PAR2 agonist-evoked mechanical hyperalgesia and facial grimacing, but not thermal hyperalgesia, are dependent on PAR2 expression in sensory neurons that project to the hind paw in male and female mice. F2rl1 mRNA is expressed in a discrete population (~4%) of mostly small-diameter sensory neurons that coexpress the Nppb and IL31ra genes. This cell population has been implicated in itch, but our work shows that PAR2 activation in these cells causes clear pain-related behaviors from the skin. Our findings show that a discrete population of DRG sensory neurons mediate PAR2-evoked pain.
Collapse
Affiliation(s)
- Shayne N. Hassler
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Juliet M. Mwirigi
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Ayesha Ahmad
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Stephanie Shiers
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Pradipta R. Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Serge N. Belugin
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Dhananjay K. Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Michael D. Burton
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | | | - Scott Boitano
- BIO5 Research Institute and
- Department of Physiology, Asthma & Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
| | - Armen N. Akopian
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| | - Theodore J. Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|
39
|
Banchi P, Quaranta G, Ricci A, Mauthe von Degerfeld M. Reliability and construct validity of a composite pain scale for rabbit (CANCRS) in a clinical environment. PLoS One 2020; 15:e0221377. [PMID: 32352960 PMCID: PMC7192371 DOI: 10.1371/journal.pone.0221377] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/15/2020] [Indexed: 01/15/2023] Open
Abstract
A composite pain scale for assessing and quantifying pain in rabbits (CANCRS) has been designed merging the Rabbit Grimace Scale (RbtGS) and a scale including clinical parameters (CPS). Construct validity and inter-rater reliability were assessed for CANCRS, for RbtGS and for CPS, in order to test their potential to detect pain in a clinical setting. Rabbits (n = 116) were either hybrids or purebreds and they were independently evaluated by two raters, who could be veterinarians (V) or veterinary medicine students (S). Score intervals determined four pain classes (No pain, Discomfort, Moderate pain and Severe pain) that matched presumptive pain classes associated with some pathological conditions. A chi-square test was used to assess the construct validity of the scales by checking how frequently scale results and presumptive pain classes matched. Sixty-nine patients were evaluated by one V and one S, whereas forty-seven rabbits were assessed by two V, in order to test inter-rater reliability. An intra-class correlation coefficient (ICC) was used to test reliability of the scales, whereas Cohen’s kappa tested inter-rater agreement for each parameter of the CANCRS. Construct validity results show that CANCRS and RbtGS efficiently reveal pain (P ≤ 0.05), while CPS does not (p > 0.05). Inter-rater reliability was very good for both CANCRS and CPS (ICC 0.88 V-V, 0.94 between V-S; ICC 0.97 V-V, 0.91 V-S) and good for RbtGS (ICC 0.77 V-V, 0.88 V-S); therefore, CPS reproducibility was better between veterinarians and students than between veterinarians. Inter-rater agreement between veterinarians and veterinary medicine students was moderate to very good for all the parameters included in the CANCRS (Cohen’s kappa >0,60). In conclusion, it is possible to state that the CANCRS has construct validity and it is a reliable tool for use in clinical practice, when coping with many rabbits with morphological differences. It is easy and fast to use and enriches the RbtGS with some clinical parameters that should be monitored during any clinical examination, allowing for capture of the multidimensional aspect of pain.
Collapse
Affiliation(s)
- Penelope Banchi
- C.A.N.C. (Centro Animali Non Convenzionali), Dip. di Scienze Veterinarie, Università degli Studi di Torino, Grugliasco, Turin, Italy
| | - Giuseppe Quaranta
- C.A.N.C. (Centro Animali Non Convenzionali), Dip. di Scienze Veterinarie, Università degli Studi di Torino, Grugliasco, Turin, Italy
| | - Alessandro Ricci
- Dip. di Scienze Veterinarie, Università degli Studi di Torino, Grugliasco, Turin, Italy
| | - Mitzy Mauthe von Degerfeld
- C.A.N.C. (Centro Animali Non Convenzionali), Dip. di Scienze Veterinarie, Università degli Studi di Torino, Grugliasco, Turin, Italy
- * E-mail:
| |
Collapse
|
40
|
Andresen N, Wöllhaf M, Hohlbaum K, Lewejohann L, Hellwich O, Thöne-Reineke C, Belik V. Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis. PLoS One 2020; 15:e0228059. [PMID: 32294094 PMCID: PMC7159220 DOI: 10.1371/journal.pone.0228059] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
Assessing the well-being of an animal is hindered by the limitations of efficient communication between humans and animals. Instead of direct communication, a variety of parameters are employed to evaluate the well-being of an animal. Especially in the field of biomedical research, scientifically sound tools to assess pain, suffering, and distress for experimental animals are highly demanded due to ethical and legal reasons. For mice, the most commonly used laboratory animals, a valuable tool is the Mouse Grimace Scale (MGS), a coding system for facial expressions of pain in mice. We aim to develop a fully automated system for the surveillance of post-surgical and post-anesthetic effects in mice. Our work introduces a semi-automated pipeline as a first step towards this goal. A new data set of images of black-furred laboratory mice that were moving freely is used and provided. Images were obtained after anesthesia (with isoflurane or ketamine/xylazine combination) and surgery (castration). We deploy two pre-trained state of the art deep convolutional neural network (CNN) architectures (ResNet50 and InceptionV3) and compare to a third CNN architecture without pre-training. Depending on the particular treatment, we achieve an accuracy of up to 99% for the recognition of the absence or presence of post-surgical and/or post-anesthetic effects on the facial expression.
Collapse
Affiliation(s)
- Niek Andresen
- Department of Computer Vision & Remote Sensing, Technische Universität Berlin, Berlin, Germany
| | - Manuel Wöllhaf
- Department of Computer Vision & Remote Sensing, Technische Universität Berlin, Berlin, Germany
| | - Katharina Hohlbaum
- Institute of Animal Welfare, Animal Behavior, and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail: (KH); (VB)
| | - Lars Lewejohann
- Institute of Animal Welfare, Animal Behavior, and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Olaf Hellwich
- Department of Computer Vision & Remote Sensing, Technische Universität Berlin, Berlin, Germany
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior, and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Vitaly Belik
- System Modeling Group, Institute for Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail: (KH); (VB)
| |
Collapse
|
41
|
Gallo MS, Karas AZ, Pritchett-Corning K, Garner Guy Mulder JP, Gaskill BN. Tell-tale TINT: Does the Time to Incorporate into Nest Test Evaluate Postsurgical Pain or Welfare in Mice? JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 59:37-45. [PMID: 31862018 DOI: 10.30802/aalas-jaalas-19-000044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Identifying early indicators of distress in mice is difficult using either periodic monitoring or current technology. Likewise, poor pain identification remains a barrier to providing appropriate pain relief in many mouse models. The Time to Incorporate to Nest Test (TINT), a binary measure of the presence or absence of nesting behavior, was developed as a species-specific method of identifying moderate to severe distress and pain in mice. The current study was designed to evaluate alterations in nesting behavior after routine surgery and to validate the TINT's ability to measure pain-related behavioral changes. CD1 mice undergoing carotid artery catheterization as part of a commercial surgical cohort were randomly assigned various nesting, surgery, and analgesia conditions. To provide context for the TINT outcomes, we measured other variables affected by pain, such as weight loss, food consumption, and scores derived from the Mouse Grimace Scale (MGS). Mice that had surgery were more likely to have a negative TINT score as compared with controls. All mice were more likely to fail the TINT after receiving postoperative buprenorphine, suggesting that buprenorphine may have contributed to the failures. The TINT, MGS live scoring, and scoring MGS images all loaded strongly on a single component in a principal component analysis, indicating strong convergent validity between these measures. These data indicate that the TINT can provide a quick, objective indicator of altered welfare in mice, with the potential for a wide range of uses.
Collapse
|
42
|
Turner PV, Pang DS, Lofgren JL. A Review of Pain Assessment Methods in Laboratory Rodents. Comp Med 2019; 69:451-467. [PMID: 31896391 PMCID: PMC6935698 DOI: 10.30802/aalas-cm-19-000042] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/29/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022]
Abstract
Ensuring that laboratory rodent pain is well managed underpins the ethical acceptability of working with these animals in research. Appropriate treatment of pain in laboratory rodents requires accurate assessments of the presence or absence of pain to the extent possible. This can be challenging some situations because laboratory rodents are prey species that may show subtle signs of pain. Although a number of standard algesiometry assays have been used to assess evoked pain responses in rodents for many decades, these methods likely represent an oversimplification of pain assessment and many require animal handling during testing, which can result in stress-induced analgesia. More recent pain assessment methods, such as the use of ethograms, facial grimace scoring, burrowing, and nest-building, focus on evaluating changes in spontaneous behaviors or activities of rodents in their home environments. Many of these assessment methods are time-consuming to conduct. While many of these newer tests show promise for providing a more accurate assessment of pain, most require more study to determine their reliability and sensitivity across a broad range of experimental conditions, as well as between species and strains of animals. Regular observation of laboratory rodents before and after painful procedures with consistent use of 2 or more assessment methods is likely to improve pain detection and lead to improved treatment and care-a primary goal for improving overall animal welfare.
Collapse
Affiliation(s)
- Patricia V Turner
- Charles River, Wilmington , Massachusetts Dept of Pathobiology, University of Guelph, Guelph, Canada;,
| | - Daniel Sj Pang
- Dept of Clinical Sciences, Université de Montréal, Quebec, J2S 2M2, Veterinary Clinical and Diagnostic Sciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
43
|
Foley PL, Kendall LV, Turner PV. Clinical Management of Pain in Rodents. Comp Med 2019; 69:468-489. [PMID: 31822323 PMCID: PMC6935704 DOI: 10.30802/aalas-cm-19-000048] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022]
Abstract
The use of effective regimens for mitigating pain remain underutilized in research rodents despite the general acceptance of both the ethical imperative and regulatory requirements intended to maximize animal welfare. Factors contributing to this gap between the need for and the actual use of analgesia include lack of sufficient evidence-based data on effective regimens, under-dosing due to labor required to dose analgesics at appropriate intervals, concerns that the use of analgesics may impact study outcomes, and beliefs that rodents recover quickly from invasive procedures and as such do not need analgesics. Fundamentally, any discussion of clinical management of pain in rodents must recognize that nociceptive pathways and pain signaling mechanisms are highly conserved across mammalian species, and that central processing of pain is largely equivalent in rodents and other larger research species such as dogs, cats, or primates. Other obstacles to effective pain management in rodents have been the lack of objective, science-driven data on pain assessment, and the availability of appropriate pharmacological tools for pain mitigation. To address this deficit, we have reviewed and summarized the available publications on pain management in rats, mice and guinea pigs. Different drug classes and specific pharmacokinetic profiles, recommended dosages, and routes of administration are discussed, and updated recommendations are provided. Nonpharmacologic tools for increasing the comfort and wellbeing of research animals are also discussed. The potential adverse effects of analgesics are also reviewed. While gaps still exist in our understanding of clinical pain management in rodents, effective pharmacologic and nonpharmacologic strategies are available that can and should be used to provide analgesia while minimizing adverse effects. The key to effective clinical management of pain is thoughtful planning that incorporates study needs and veterinary guidance, knowledge of the pharmacokinetics and mechanisms of action of drugs being considered, careful attention to individual differences, and establishing an institutional culture that commits to pain management for all species as a central component of animal welfare.
Collapse
Affiliation(s)
- Patricia L Foley
- Division of Comparative Medicine, Georgetown University, Washington, DC;,
| | - Lon V Kendall
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Patricia V Turner
- Charles River, Wilmington, Massachusetts, Dept of Pathobiology, University of Guelph, Guelph, Canada
| |
Collapse
|
44
|
Larson CM, Wilcox GL, Fairbanks CA. The Study of Pain in Rats and Mice. Comp Med 2019; 69:555-570. [PMID: 31822322 PMCID: PMC6935695 DOI: 10.30802/aalas-cm-19-000062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Pain is a clinical syndrome arising from a variety of etiologies in a heterogeneous population, which makes successfully treating the individual patient difficult. Organizations and governments recognize the need for tailored and specific therapies, which drives pain research. This review summarizes the different types of pain assessments currently being used and the various rodent models that have been developed to recapitulate the human pain condition.
Collapse
Affiliation(s)
- Christina M Larson
- Comparative and Molecular Biosciences, University of Minnesota College of Veterinary Medicine, St Paul, Minnesota
| | - George L Wilcox
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota;,
| |
Collapse
|
45
|
Jirkof P, Rudeck J, Lewejohann L. Assessing Affective State in Laboratory Rodents to Promote Animal Welfare-What Is the Progress in Applied Refinement Research? Animals (Basel) 2019; 9:E1026. [PMID: 31775293 PMCID: PMC6941082 DOI: 10.3390/ani9121026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
An animal's capacity to suffer is a prerequisite for any animal welfare concern, and the minimization of suffering is a key aim of refinement research. In contrast to the traditional focus on avoiding or reducing negative welfare states, modern animal welfare concepts highlight the importance of promoting positive welfare states in laboratory animals. Reliable assessments of affective states, as well as the knowledge of how to elicit positive affective states, are central to this concept. Important achievements have been made to assess pain and other negative affective states in animals in the last decades, but it is only recently that the neurobiology of positive emotions in humans and animals has been gaining more interest. Thereby, the need for promotion of positive affective states for laboratory animals is gaining more acceptance, and methods allowing the assessment of affective states in animals have been increasingly introduced. In this overview article, we present common and emerging methods to assess affective states in laboratory rodents. We focus on the implementation of these methods into applied refinement research to identify achieved progress as well as the future potential of these tools to improve animal welfare in animal-based research.
Collapse
Affiliation(s)
- Paulin Jirkof
- Department Animal Welfare and 3R, University of Zurich, 8057 Zurich, Switzerland
| | - Juliane Rudeck
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (J.R.); (L.L.)
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (J.R.); (L.L.)
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie University Berlin, 14163 Berlin, Germany
| |
Collapse
|
46
|
Abstract
In order to survive, animals must avoid injury and be able to detect potentially damaging stimuli via nociceptive mechanisms. If the injury is accompanied by a negative affective component, future behaviour should be altered and one can conclude the animal experienced the discomfort associated with pain. Fishes are the most successful vertebrate group when considering the number of species that have filled a variety of aquatic niches. The empirical evidence for nociception in fishes from the underlying molecular biology, neurobiology and anatomy of nociceptors through to whole animal behavioural responses is reviewed to demonstrate the evolutionary conservation of nociception and pain from invertebrates to vertebrates. Studies in fish have shown that the biology of the nociceptive system is strikingly similar to that found in mammals. Further, potentially painful events result in behavioural and physiological changes such as reduced activity, guarding behaviour, suspension of normal behaviour, increased ventilation rate and abnormal behaviours which are all prevented by the use of pain-relieving drugs. Fish also perform competing tasks less well when treated with a putative painful stimulus. Therefore, there is ample evidence to demonstrate that it is highly likely that fish experience pain and that pain-related behavioural changes are conserved across vertebrates. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
|
47
|
Steiner AR, Flammer SA, Beausoleil NJ, Berg C, Bettschart-Wolfensberger R, Pinillos RG, Golledge HDW, Marahrens M, Meyer R, Schnitzer T, Toscano MJ, Turner PV, Weary DM, Gent TC. Humanely Ending the Life of Animals: Research Priorities to Identify Alternatives to Carbon Dioxide. Animals (Basel) 2019; 9:E911. [PMID: 31684044 PMCID: PMC6912382 DOI: 10.3390/ani9110911] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
: The use of carbon dioxide (CO2) for stunning and killing animals is considered to compromise welfare due to air hunger, anxiety, fear, and pain. Despite decades of research, no alternatives have so far been found that provide a safe and reliable way to induce unconsciousness in groups of animals, and also cause less distress than CO2. Here, we revisit the current and historical literature to identify key research questions that may lead to the identification and implementation of more humane alternatives to induce unconsciousness in mice, rats, poultry, and pigs. In addition to the evaluation of novel methods and agents, we identify the need to standardise the terminology and behavioural assays within the field. We further reason that more accurate measurements of consciousness state are needed and serve as a central component in the assessment of suffering. Therefore, we propose a roadmap toward improving animal welfare during end-of-life procedures.
Collapse
Affiliation(s)
- Aline R Steiner
- Department of Clinical and Diagnostic Services, Section of Anaesthesiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 258c, 8057 Zurich, Switzerland.
| | - Shannon Axiak Flammer
- Department of Clinical Veterinary Medicine, Section of Anesthesia and Analgesia, Vetsuisse Faculty, University of Berne, Laenggassstrasse 124, 3012 Bern, Switzerland.
| | - Ngaio J Beausoleil
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand.
| | - Charlotte Berg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Box 234, SE-53223 Skara, Sweden.
| | - Regula Bettschart-Wolfensberger
- Department of Clinical and Diagnostic Services, Section of Anaesthesiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 258c, 8057 Zurich, Switzerland.
| | - Rebeca García Pinillos
- Animal and Plant Health Agency and Department for Environment, Food and Rural Affairs, Nobel House, 17 Smith Square, London SW1P 3JR, UK.
| | - Huw D W Golledge
- Universities Federation for Animal Welfare (UFAW), The Old School, Brewhouse Hill, Wheathampstead, Hertfordshire AL4 8AN, UK.
| | - Michael Marahrens
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223 Celle, Germany.
| | - Robert Meyer
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Tobias Schnitzer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Michael J Toscano
- Center for Proper Housing: Poultry and Rabbits (ZTHZ), Animal Welfare Division, VPH Institute, University of Bern, 3052 Zollikofen, Switzerland.
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada and Charles River, Wilmington, MA 01887, USA.
| | - Daniel M Weary
- Animal Welfare Program, University of British Colombia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Thomas C Gent
- Department of Clinical and Diagnostic Services, Section of Anaesthesiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 258c, 8057 Zurich, Switzerland.
| |
Collapse
|
48
|
Sarfaty AE, Zeiss CJ, Willis AD, Harris JM, Smith PC. Concentration-dependent Toxicity after Subcutaneous Administration of Meloxicam to C57BL/6N Mice ( Mus musculus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:802-809. [PMID: 31540585 DOI: 10.30802/aalas-jaalas-19-000037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Studies using the Mouse Grimace Scale have shown that for many NSAID, including meloxicam, minimal doses of at least 20 mg/kg may be necessary to achieve adequate peri- and post-operative analgesia in mice. However, more data are needed to determine whether such NSAID doses exceed the threshold for gastrointestinal ulceration or induce other relevant pathology. We administered equal volumes of saline or injectable meloxicam (1 or 5 mg/mL) at a dose of 20 mg/kg SC to 20 young adult male and female C57BL/6N mice daily for 6 d and performed necropsies on all mice on the seventh day. Mice given 5 mg/mL meloxicam subcutaneously developed significantly more severe pathology at the injection site than saline controls. Pathology was characterized by full-thickness epidermal necrosis; cavitary lesions within subcutis, muscle, or fat; steatitis; and myositis. Mice that received 1 mg/mL meloxicam subcutaneously developed lesions that were qualitatively similar but far less severe than those after 5 mg/mL. However, no pathologic lesions typically associated with NSAID toxicity, such as gastric ulceration and liver and kidney lesions, were seen. These results demonstrate that although meloxicam injected subcutaneously causes concentration-dependent skin pathology at the injection site, a dose of 20 mg/kg can be safely administered subcutaneously at a concentration of 1 mg/mL for as long as 6 d.
Collapse
Affiliation(s)
- Anna E Sarfaty
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Jorgen M Harris
- Department of Economics, Cornell University, Ithaca, New York
| | - Peter C Smith
- Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
49
|
Müller BR, Soriano VS, Bellio JCB, Molento CFM. Facial expression of pain in Nellore and crossbred beef cattle. J Vet Behav 2019. [DOI: 10.1016/j.jveb.2019.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Smith BJ, Bruner KEP, Kendall LV. Female- and Intruder-induced Ultrasonic Vocalizations in C57BL/6J Mice as Proxy Indicators for Animal Wellbeing. Comp Med 2019; 69:374-383. [PMID: 31578163 DOI: 10.30802/aalas-cm-18-000147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Female urine-induced male mice ultrasonic vocalizations (FiUSV) are ultrasonic vocalizations produced by adult male mice after presentation of adult female urine, whereas intruder-induced ultrasonic vocalizations (IiUSV) are produced by resident adult female mice when interacting with an intruder female mouse. These affiliative behaviors may be reduced when mice have decreased wellbeing or are in pain and distress. To determine whether FiUSV and IiUSV can be used as proxy indicators of animal wellbeing, we assessed FiUSV produced by male C57BL/6J mice in response to female urine and IiUSV produced by female C57BL/6J mice in response to a female intruder at baseline and 1 and 3 h after administration of a sublethal dose of LPS (6 or 12.5 mg/kg IP) or an equal volume of saline. Behavior was assessed by evaluating orbital tightness, posture, and piloerection immediately after USV collection. We hypothesized that LPS-injected mice would have a decreased inclination to mate or to interact with same-sex conspecifics and therefore would produce fewer USV. At baseline, 32 of 33 male mice produced FiUSV (149 ± 127 USV in 2 min), whereas all 36 female mice produced IiUSV (370 ± 156 USV in 2 min). Saline-injected mice showed no change from baseline at the 1- and 3-h time points, whereas LPS-injected mice demonstrated significantly fewer USV than baseline, producing no USV at both 1 and 3 h. According to orbital tightness, posture, and piloerection, LPS-injected mice showed signs of poor wellbeing at 3 h but not 1 h. These findings indicate that FiUSV and IiUSV can be used as proxy indicators of animal wellbeing associated with acute inflammation in mice and can be detected before the onset of clinical signs.
Collapse
Affiliation(s)
- Brian J Smith
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado;,
| | - Kate E P Bruner
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Lon V Kendall
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|