1
|
Schorpp M, Swann JB, Hess I, Ho HC, Pietsch TW, Boehm T. Foxn1 is not essential for T-cell development in teleosts. Eur J Immunol 2023; 53:e2350725. [PMID: 37724048 DOI: 10.1002/eji.202350725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
In mammals, T-cell development depends on the activity of the Foxn1 transcription factor in the thymic epithelium; mutations in the vertebrate-specific Foxn1 gene are associated with profound T-cell lymphopenia and fatal immunodeficiency. Here, we examined the extent of T-cell development in teleosts lacking a functional foxn1 gene. In zebrafish carrying a deleterious internal deletion of foxn1, reduced but robust lymphopoietic activity is maintained in the mutant thymus. Moreover, pseudogenization or loss of foxn1 in the genomes of deep-sea anglerfishes is independent of the presence or absence of the canonical signatures of the T-cell lineage. Thus, in contrast to the situation in mammals, the teleost thymus can support foxn1-independent lymphopoiesis, most likely through the activity of the Foxn4, an ancient metazoan paralog of Foxn1. Our results imply that during the early stages of vertebrate evolution, genetic control of thymopoiesis was functionally redundant and thus robust; in mammals, the genetic network was reorganized to become uniquely dependent on the FOXN1 transcription factor.
Collapse
Affiliation(s)
| | - Jeremy B Swann
- Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Isabell Hess
- Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Hsuan-Ching Ho
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
- Department and Graduate Institution of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Theodore W Pietsch
- School of Aquatic and Fishery Sciences and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | - Thomas Boehm
- Max Planck Institute of Immunobiology, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Howley E, Davies EG, Kreins AY. Congenital Athymia: Unmet Needs and Practical Guidance. Ther Clin Risk Manag 2023; 19:239-254. [PMID: 36935770 PMCID: PMC10022451 DOI: 10.2147/tcrm.s379673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/14/2023] Open
Abstract
Inborn errors of thymic stromal cell development and function which are associated with congenital athymia result in life-threatening immunodeficiency with susceptibility to infections and autoimmunity. Athymic patients can be treated by thymus transplantation using cultured donor thymus tissue. Outcomes in patients treated at Duke University Medical Center and Great Ormond Street Hospital (GOSH) over the past three decades have shown that sufficient T-cell immunity can be recovered to clear and prevent infections, but post-treatment autoimmune manifestations are relatively common. Whilst thymus transplantation offers the chance of long-term survival, significant challenges remain to optimise the outcomes for the patients. In this review, we will discuss unmet needs and offer practical guidance based on the experience of the European Thymus Transplantation programme at GOSH. Newborn screening (NBS) for severe combined immunodeficiency (SCID) and routine use of next-generation sequencing (NGS) platforms have improved early recognition of congenital athymia and increasing numbers of patients are being referred for thymus transplantation. Nevertheless, there remain delays in diagnosis, in particular when the cause is genetically undefined, and treatment accessibility needs to be improved. The majority of athymic patients have syndromic features with acute and chronic complex health issues, requiring life-long multidisciplinary and multicentre collaboration to optimise their medical and social care. Comprehensive follow up after thymus transplantation including monitoring of immunological results, management of co-morbidities and patient and family quality-of-life experience, is vital to understanding long-term outcomes for this rare cohort of patients. Alongside translational research into improving strategies for thymus replacement therapy, patient-focused clinical research will facilitate the design of strategies to improve the overall care for athymic patients.
Collapse
Affiliation(s)
- Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - E Graham Davies
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, UK
- Correspondence: Alexandra Y Kreins, Email
| |
Collapse
|
3
|
Vascular Neonatal Thymus Transplantation in Rabbits. Transplant Proc 2022; 54:2381-2387. [DOI: 10.1016/j.transproceed.2022.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
|
4
|
Collins C, Sharpe E, Silber A, Kulke S, Hsieh EWY. Congenital Athymia: Genetic Etiologies, Clinical Manifestations, Diagnosis, and Treatment. J Clin Immunol 2021; 41:881-895. [PMID: 33987750 PMCID: PMC8249278 DOI: 10.1007/s10875-021-01059-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Congenital athymia is an ultra-rare disease characterized by the absence of a functioning thymus. It is associated with several genetic and syndromic disorders including FOXN1 deficiency, 22q11.2 deletion, CHARGE Syndrome (Coloboma, Heart defects, Atresia of the nasal choanae, Retardation of growth and development, Genitourinary anomalies, and Ear anomalies), and Complete DiGeorge Syndrome. Congenital athymia can result from defects in genes that impact thymic organ development such as FOXN1 and PAX1 or from genes that are involved in development of the entire midline region, such as TBX1 within the 22q11.2 region, CHD7, and FOXI3. Patients with congenital athymia have profound immunodeficiency, increased susceptibility to infections, and frequently, autologous graft-versus-host disease (GVHD). Athymic patients often present with absent T cells but normal numbers of B cells and Natural Killer cells (T-B+NK+), similar to a phenotype of severe combined immunodeficiency (SCID); these patients may require additional steps to confirm the diagnosis if no known genetic cause of athymia is identified. However, distinguishing athymia from SCID is crucial, as treatments differ for these conditions. Cultured thymus tissue is being investigated as a treatment for congenital athymia. Here, we review what is known about the epidemiology, underlying etiologies, clinical manifestations, and treatments for congenital athymia.
Collapse
Affiliation(s)
- Cathleen Collins
- Department of Pediatrics, Division of Allergy Immunology, Rady Children's Hospital, University of California San Diego, San Diego, CA, USA
| | | | | | - Sarah Kulke
- Enzyvant Therapeutics, Inc, Cambridge, MA, USA
| | - Elena W Y Hsieh
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
5
|
Kreins AY, Bonfanti P, Davies EG. Current and Future Therapeutic Approaches for Thymic Stromal Cell Defects. Front Immunol 2021; 12:655354. [PMID: 33815417 PMCID: PMC8012524 DOI: 10.3389/fimmu.2021.655354] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of thymic stromal cell development and function lead to impaired T-cell development resulting in a susceptibility to opportunistic infections and autoimmunity. In their most severe form, congenital athymia, these disorders are life-threatening if left untreated. Athymia is rare and is typically associated with complete DiGeorge syndrome, which has multiple genetic and environmental etiologies. It is also found in rare cases of T-cell lymphopenia due to Nude SCID and Otofaciocervical Syndrome type 2, or in the context of genetically undefined defects. This group of disorders cannot be corrected by hematopoietic stem cell transplantation, but upon timely recognition as thymic defects, can successfully be treated by thymus transplantation using cultured postnatal thymic tissue with the generation of naïve T-cells showing a diverse repertoire. Mortality after this treatment usually occurs before immune reconstitution and is mainly associated with infections most often acquired pre-transplantation. In this review, we will discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia. We will discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymic stromal cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders. Immune reconstitution after the current treatment is usually incomplete with relatively common inflammatory and autoimmune complications, emphasizing the importance for improving strategies for thymus replacement therapy by optimizing the current use of postnatal thymus tissue and developing new approaches using engineered thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y. Kreins
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Paola Bonfanti
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London, United Kingdom
- Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - E. Graham Davies
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Expanding the Nude SCID/CID Phenotype Associated with FOXN1 Homozygous, Compound Heterozygous, or Heterozygous Mutations. J Clin Immunol 2021; 41:756-768. [PMID: 33464451 PMCID: PMC8068652 DOI: 10.1007/s10875-021-00967-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Human nude SCID is a rare autosomal recessive inborn error of immunity (IEI) characterized by congenital athymia, alopecia, and nail dystrophy. Few cases have been reported to date. However, the recent introduction of newborn screening for IEIs and high-throughput sequencing has led to the identification of novel and atypical cases. Moreover, immunological alterations have been recently described in patients carrying heterozygous mutations. The aim of this paper is to describe the extended phenotype associated with FOXN1 homozygous, compound heterozygous, or heterozygous mutations. We collected clinical and laboratory information of a cohort of 11 homozygous, 2 compound heterozygous, and 5 heterozygous patients with recurrent severe infections. All, except one heterozygous patient, had signs of CID or SCID. Nail dystrophy and alopecia, that represent the hallmarks of the syndrome, were not always present, while almost 50% of the patients developed Omenn syndrome. One patient with hypomorphic compound heterozygous mutations had a late-onset atypical phenotype. A SCID-like phenotype was observed in 4 heterozygous patients coming from the same family. A spectrum of clinical manifestations may be associated with different mutations. The severity of the clinical phenotype likely depends on the amount of residual activity of the gene product, as previously observed for other SCID-related genes. The severity of the manifestations in this heterozygous family may suggest a mechanism of negative dominance of the specific mutation or the presence of additional mutations in noncoding regions.
Collapse
|
7
|
Giardino G, Borzacchiello C, De Luca M, Romano R, Prencipe R, Cirillo E, Pignata C. T-Cell Immunodeficiencies With Congenital Alterations of Thymic Development: Genes Implicated and Differential Immunological and Clinical Features. Front Immunol 2020; 11:1837. [PMID: 32922396 PMCID: PMC7457079 DOI: 10.3389/fimmu.2020.01837] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Combined Immunodeficiencies (CID) are rare congenital disorders characterized by defective T-cell development that may be associated with B- and NK-cell deficiency. They are usually due to alterations in genes expressed in hematopoietic precursors but in few cases, they are caused by impaired thymic development. Athymia was classically associated with DiGeorge Syndrome due to TBX1 gene haploinsufficiency. Other genes, implicated in thymic organogenesis include FOXN1, associated with Nude SCID syndrome, PAX1, associated with Otofaciocervical Syndrome type 2, and CHD7, one of the genes implicated in CHARGE syndrome. More recently, chromosome 2p11.2 microdeletion, causing FOXI3 haploinsufficiency, has been identified in 5 families with impaired thymus development. In this review, we will summarize the main genetic, clinical, and immunological features related to the abovementioned gene mutations. We will also focus on different therapeutic approaches to treat SCID in these patients.
Collapse
Affiliation(s)
- Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Carla Borzacchiello
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Martina De Luca
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| |
Collapse
|
8
|
Bosticardo M, Yamazaki Y, Cowan J, Giardino G, Corsino C, Scalia G, Prencipe R, Ruffner M, Hill DA, Sakovich I, Yemialyanava I, Tam JS, Padem N, Elder ME, Sleasman JW, Perez E, Niebur H, Seroogy CM, Sharapova S, Gebbia J, Kleiner GI, Peake J, Abbott JK, Gelfand EW, Crestani E, Biggs C, Butte MJ, Hartog N, Hayward A, Chen K, Heimall J, Seeborg F, Bartnikas LM, Cooper MA, Pignata C, Bhandoola A, Notarangelo LD. Heterozygous FOXN1 Variants Cause Low TRECs and Severe T Cell Lymphopenia, Revealing a Crucial Role of FOXN1 in Supporting Early Thymopoiesis. Am J Hum Genet 2019; 105:549-561. [PMID: 31447097 PMCID: PMC6731368 DOI: 10.1016/j.ajhg.2019.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022] Open
Abstract
FOXN1 is the master regulatory gene of thymic epithelium development. FOXN1 deficiency leads to thymic aplasia, alopecia, and nail dystrophy, accounting for the nude/severe combined immunodeficiency (nu/SCID) phenotype in humans and mice. We identified several newborns with low levels of T cell receptor excision circles (TRECs) and T cell lymphopenia at birth, who carried heterozygous loss-of-function FOXN1 variants. Longitudinal analysis showed persistent T cell lymphopenia during infancy, often associated with nail dystrophy. Adult individuals with heterozygous FOXN1 variants had in most cases normal CD4+ but lower than normal CD8+ cell counts. We hypothesized a FOXN1 gene dosage effect on the function of thymic epithelial cells (TECs) and thymopoiesis and postulated that these effects would be more prominent early in life. To test this hypothesis, we analyzed TEC subset frequency and phenotype, early thymic progenitor (ETP) cell count, and expression of FOXN1 target genes (Ccl25, Cxcl12, Dll4, Scf, Psmb11, Prss16, and Cd83) in Foxn1nu/+ (nu/+) mice and age-matched wild-type (+/+) littermate controls. Both the frequency and the absolute count of ETP were significantly reduced in nu/+ mice up to 3 weeks of age. Analysis of the TEC compartment showed reduced expression of FOXN1 target genes and delayed maturation of the medullary TEC compartment in nu/+ mice. These observations establish a FOXN1 gene dosage effect on thymic function and identify FOXN1 haploinsufficiency as an important genetic determinant of T cell lymphopenia at birth.
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jennifer Cowan
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Giuliana Giardino
- Department of Translational Medical Sciences Federico II University, Naples 80138, Italy
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Giulia Scalia
- Laboratory of Clinical research and Advanced Diagnostics, CEINGE Biotecnologie Avanzate, Naples 80131, Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences Federico II University, Naples 80138, Italy
| | - Melanie Ruffner
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Philadelphia, Philadelphia, PA 19104, USA
| | - David A Hill
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Philadelphia, Philadelphia, PA 19104, USA
| | - Inga Sakovich
- Immunology Lab, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk 223053, Belarus
| | - Irma Yemialyanava
- Immunology Lab, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk 223053, Belarus
| | - Jonathan S Tam
- Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Nurcicek Padem
- Division of Allergy and Immunology, Lurie Children's Hospital, Chicago, IL 60611, USA
| | - Melissa E Elder
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - John W Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27705, USA
| | - Elena Perez
- Allergy Associates of the Palm Beaches, North Palm Beach, FL 33408, USA
| | - Hana Niebur
- Division of Pediatric Allergy and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christine M Seroogy
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Svetlana Sharapova
- Immunology Lab, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk 223053, Belarus
| | - Jennifer Gebbia
- Department of Pediatric Allergy and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gary Ira Kleiner
- Department of Pediatric Allergy and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jane Peake
- Division of Paediatric Immunology and Allergy, Lady Cilento Children's Hospital, University of Queensland School of Medicine, South Brisbane, QLD 4101, Australia
| | - Jordan K Abbott
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Erwin W Gelfand
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Catherine Biggs
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Manish J Butte
- Division of Allergy, Immunology and Rheumatology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas Hartog
- Spectrum Health Allergy and Immunology, Grand Rapids, MI 49525, USA
| | - Anthony Hayward
- Division of Allergy and Immunology, Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI 02905, USA
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jennifer Heimall
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Philadelphia, Philadelphia, PA 19104, USA
| | - Filiz Seeborg
- Section of Allergy, Immunology and Rheumatology & Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lisa M Bartnikas
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University in St. Louis, MO 63110, USA
| | - Claudio Pignata
- Department of Translational Medical Sciences Federico II University, Naples 80138, Italy
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, IDGS, DIR, NIAID, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Albar R, Mahdi M, Alkeraithe F, Almufarriji KN. Epstein-Barr virus associated with high-grade B-cell lymphoma in nude severe combined immunodeficiency. BMJ Case Rep 2019; 12:12/5/e227715. [PMID: 31151968 PMCID: PMC6557313 DOI: 10.1136/bcr-2018-227715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is an extremely rare disease caused by a disruption in the forkhead box N1 (FOXN1) gene, with an incidence of <1 per 1 000 000 live births. We report a boy aged 4 months who presented with a history of fever for 3 weeks and enlarged lymph nodes. The fever was associated with dry cough and runny nose. On physical examination, we noted oral thrush, generalised lymphadenopathy, nail dystrophy and alopecia. Flow cytometry of lymph node biopsy showed high-grade B-cell lymphoma. In addition, Epstein-Barr virus (EBV) infection was documented by PCR. The diagnosis of SCID was made by genetic testing, which revealed a homozygous variant of the FOXN1 gene. The variant was confirmed with Sanger sequencing. Management of EBV infection and lymphoma was initiated; unfortunately, the patient passed away on day 45 of hospitalisation.
Collapse
Affiliation(s)
- Rawia Albar
- King Saud bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, Saudi Arabia.,Pediatric Department, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Moaffaq Mahdi
- King Saud bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, Saudi Arabia
| | - Fawaz Alkeraithe
- King Saud bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, Saudi Arabia
| | - Khalid Nawaf Almufarriji
- King Saud bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Pan Y, Xiong M, Chen R, Ma Y, Corman C, Maricos M, Kindler U, Semtner M, Chen YH, Dahiya S, Gutmann DH. Athymic mice reveal a requirement for T-cell-microglia interactions in establishing a microenvironment supportive of Nf1 low-grade glioma growth. Genes Dev 2018; 32:491-496. [PMID: 29632086 PMCID: PMC5959233 DOI: 10.1101/gad.310797.117] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
Murine Neurofibromatosis-1 (Nf1) optic low-grade glioma (LGG) stem cells (o-GSCs) form glioma-like lesions in wild-type, but not athymic, mice following transplantation. Here, Pan et al. show that the inability of athymic mice to support o-GSC engraftment results from impaired brain microglia/macrophage function, including reduced expression of Ccr2 and Ccl5, both of which are required for o-GSC engraftment and Nf1 optic glioma growth. Pediatric low-grade gliomas (LGGs) frequently do not engraft in immunocompromised mice, limiting their use as an experimental platform. In contrast, murine Neurofibromatosis-1 (Nf1) optic LGG stem cells (o-GSCs) form glioma-like lesions in wild-type, but not athymic, mice following transplantation. Here, we show that the inability of athymic mice to support o-GSC engraftment results from impaired microglia/macrophage function, including reduced expression of Ccr2 and Ccl5, both of which are required for o-GSC engraftment and Nf1 optic glioma growth. Impaired Ccr2 and Ccl5 expression in athymic microglia/macrophages was restored by T-cell exposure, establishing T-cell–microglia/macrophage interactions as critical stromal determinants that support NF1 LGG growth.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Min Xiong
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ran Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yu Ma
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Courtney Corman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Meron Maricos
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Urs Kindler
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Marcus Semtner
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Yi-Hsien Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Genome Engineering and iPSC Center (GEIC), Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Sonika Dahiya
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
11
|
Human naïve regulatory T-cells feature high steady-state turnover and are maintained by IL-7. Oncotarget 2017; 7:12163-75. [PMID: 26910841 PMCID: PMC4914276 DOI: 10.18632/oncotarget.7512] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Naïve FoxP3-expressing regulatory T-cells (Tregs) are essential to control immune responses via continuous replenishment of the activated-Treg pool with thymus-committed suppressor cells. The mechanisms underlying naïve-Treg maintenance throughout life in face of the age-associated thymic involution remain unclear. We found that in adults thymectomized early in infancy the naïve-Treg pool is remarkably well preserved, in contrast to conventional naïve CD4 T-cells. Naïve-Tregs featured high levels of cycling and pro-survival markers, even in healthy individuals, and contrasted with other circulating naïve/memory CD4 T-cell subsets in terms of their strong γc-cytokine-dependent signaling, particularly in response to IL-7. Accordingly, ex-vivo stimulation of naïve-Tregs with IL-7 induced robust cytokine-dependent signaling, Bcl-2 expression, and phosphatidylinositol 3-kinase (PI3K)-dependent proliferation, whilst preserving naïve phenotype and suppressive capacity. Altogether, our data strongly implicate IL-7 in the thymus-independent long-term survival of functional naïve-Tregs, and highlight the potential of targeting the IL-7 pathway to modulate Tregs in different clinical settings.
Collapse
|
12
|
Silva SL, Albuquerque AS, Matoso P, Charmeteau-de-Muylder B, Cheynier R, Ligeiro D, Abecasis M, Anjos R, Barata JT, Victorino RMM, Sousa AE. IL-7-Induced Proliferation of Human Naive CD4 T-Cells Relies on Continued Thymic Activity. Front Immunol 2017; 8:20. [PMID: 28154568 PMCID: PMC5243809 DOI: 10.3389/fimmu.2017.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/05/2017] [Indexed: 01/06/2023] Open
Abstract
Naive CD4 T-cell maintenance is critical for immune competence. We investigated here the fine-tuning of homeostatic mechanisms of the naive compartment to counteract the loss of de novo CD4 T-cell generation. Adults thymectomized in early childhood during corrective cardiac surgery were grouped based on presence or absence of thymopoiesis and compared with age-matched controls. We found that the preservation of the CD31- subset was independent of the thymus and that its size is tightly controlled by peripheral mechanisms, including prolonged cell survival as attested by Bcl-2 levels. Conversely, a significant contraction of the CD31+ naive subset was observed in the absence of thymic activity. This was associated with impaired responses of purified naive CD4 T-cells to IL-7, namely, in vitro proliferation and upregulation of CD31 expression, which likely potentiated the decline in recent thymic emigrants. Additionally, we found no apparent constraint in the differentiation of naive cells into the memory compartment in individuals completely lacking thymic activity despite upregulation of DUSP6, a phosphatase associated with increased TCR threshold. Of note, thymectomized individuals featuring some degree of thymopoiesis were able to preserve the size and diversity of the naive CD4 compartment, further arguing against complete thymectomy in infancy. Overall, our data suggest that robust peripheral mechanisms ensure the homeostasis of CD31- naive CD4 pool and point to the requirement of continuous thymic activity to the maintenance of IL-7-driven homeostatic proliferation of CD31+ naive CD4 T-cells, which is essential to secure T-cell diversity throughout life.
Collapse
Affiliation(s)
- Susana L Silva
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Centro Hospitalar de Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal
| | - Adriana S Albuquerque
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Paula Matoso
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Bénédicte Charmeteau-de-Muylder
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Paris, France
| | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Paris, France
| | - Dário Ligeiro
- Centro de Sangue e Tranplantação de Lisboa, Instituto Português de Sangue e Transplantação, IP , Lisboa , Portugal
| | - Miguel Abecasis
- Departamento do Coração, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental , Carnaxide , Portugal
| | - Rui Anjos
- Departamento do Coração, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental , Carnaxide , Portugal
| | - João T Barata
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Rui M M Victorino
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal; Centro Hospitalar de Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal
| | - Ana E Sousa
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
13
|
Rota IA, Dhalla F. FOXN1 deficient nude severe combined immunodeficiency. Orphanet J Rare Dis 2017; 12:6. [PMID: 28077132 PMCID: PMC5225657 DOI: 10.1186/s13023-016-0557-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Nude severe combined immunodeficiency is a rare inherited disease caused by autosomal recessive loss-of-function mutations in FOXN1. This gene encodes a transcription factor essential for the development of the thymus, the primary lymphoid organ that supports T-cell development and selection. To date nine cases have been reported presenting with the clinical triad of absent thymus resulting in severe T-cell immunodeficiency, congenital alopecia universalis and nail dystrophy. Diagnosis relies on testing for FOXN1 mutations, which allows genetic counselling and guides therapeutic management. Options for treating the underlying immune deficiency include HLA-matched genoidentical haematopoietic cell transplantation containing mature donor T-cells or thymus tissue transplantation. Experience from other severe combined immune deficiency syndromes suggests that early diagnosis, supportive care and definitive management result in better patient outcomes. Without these the prognosis is poor due to early-onset life threatening infections.
Collapse
Affiliation(s)
- Ioanna A Rota
- Developmental Immunology Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Developmental Immunology Group, Department of Paediatrics, University of Oxford, Oxford, UK. .,Department of Clinical Immunology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
14
|
Tajima A, Pradhan I, Trucco M, Fan Y. Restoration of Thymus Function with Bioengineered Thymus Organoids. CURRENT STEM CELL REPORTS 2016; 2:128-139. [PMID: 27529056 PMCID: PMC4982700 DOI: 10.1007/s40778-016-0040-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The thymus is the primary site for the generation of a diverse repertoire of T-cells that are essential to the efficient function of adaptive immunity. Numerous factors varying from aging, chemotherapy, radiation exposure, virus infection and inflammation contribute to thymus involution, a phenomenon manifested as loss of thymus cellularity, increased stromal fibrosis and diminished naïve T-cell output. Rejuvenating thymus function is a challenging task since it has limited regenerative capability and we still do not know how to successfully propagate thymic epithelial cells (TECs), the predominant population of the thymic stromal cells making up the thymic microenvironment. Here, we will discuss recent advances in thymus regeneration and the prospects of applying bioengineered artificial thymus organoids in regenerative medicine and solid organ transplantation.
Collapse
Affiliation(s)
- Asako Tajima
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
| | - Isha Pradhan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104
| |
Collapse
|
15
|
Silva SL, Sousa AE. Establishment and Maintenance of the Human Naïve CD4 + T-Cell Compartment. Front Pediatr 2016; 4:119. [PMID: 27843891 PMCID: PMC5086629 DOI: 10.3389/fped.2016.00119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
The naïve CD4+ T-cell compartment is considered essential to guarantee immune competence throughout life. Its replenishment with naïve cells with broad diverse receptor repertoire, albeit with reduced self-reactivity, is ensured by the thymus. Nevertheless, cumulative data support a major requirement of post-thymic proliferation both for the establishment of the human peripheral naïve compartment during the accelerated somatic growth of childhood, as well as for its lifelong maintenance. Additionally, a dynamic equilibrium is operating at the cell level to fine-tune the T-cell receptor threshold to activation and survival cues, in order to counteract the continuous naïve cell loss by death or conversion into memory/effector cells. The main players in these processes are low-affinity self-peptide/MHC and cytokines, particularly IL-7. Moreover, although naïve CD4+ T-cells are usually seen as a homogeneous population regarding stage of maturation and cell differentiation, increasing evidence points to a variety of phenotypic and functional subsets with distinct homeostatic requirements. The paradigm of cells committed to a distinct lineage in the thymus are the naïve regulatory T-cells, but other functional subpopulations have been identified based on their time span after thymic egress, phenotypic markers, such as CD31, or cytokine production, namely IL-8. Understanding the regulation of these processes is of utmost importance to promote immune reconstitution in several clinical settings, namely transplantation, persistent infections, and aging. In this mini review, we provide an overview of the mechanisms underlying human naïve CD4+ T-cell homeostasis, combining clinical data, experimental studies, and modeling approaches.
Collapse
Affiliation(s)
- Susana L Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Centro de Imunodeficiências Primárias, Lisboa, Portugal; Clinica Universitária de Imunoalergologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Centro de Imunodeficiências Primárias, Lisboa, Portugal
| |
Collapse
|
16
|
Caramalho Í, Nunes-Cabaço H, Foxall RB, Sousa AE. Regulatory T-Cell Development in the Human Thymus. Front Immunol 2015; 6:395. [PMID: 26284077 PMCID: PMC4522873 DOI: 10.3389/fimmu.2015.00395] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/19/2015] [Indexed: 12/23/2022] Open
Abstract
The thymus generates a lineage-committed subset of regulatory T-cells (Tregs), best identified by the expression of the transcription factor FOXP3. The development of thymus-derived Tregs is known to require high-avidity interaction with MHC-self peptides leading to the generation of self-reactive Tregs fundamental for the maintenance of self-tolerance. Notwithstanding their crucial role in the control of immune responses, human thymic Treg differentiation remains poorly understood. In this mini-review, we will focus on the developmental stages at which Treg lineage commitment occurs, and their spatial localization in the human thymus, reviewing the molecular requirements, including T-cell receptor and cytokine signaling, as well as the cellular interactions involved. An overview of the impact of described thymic defects on the Treg compartment will be provided, illustrating the importance of these in vivo models to investigate human Treg development.
Collapse
Affiliation(s)
- Íris Caramalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Russell B Foxall
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
17
|
Morillon YM, Manzoor F, Wang B, Tisch R. Isolation and transplantation of different aged murine thymic grafts. J Vis Exp 2015:e52709. [PMID: 25992870 DOI: 10.3791/52709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The mechanisms that regulate the efficacy of thymic selection remain ill-defined. The method presented here allows in vivo analyses of the development and selection of T cells specific for self and foreign antigens. The approach entails implantation of thymic grafts derived from various aged mice into immunodeficient scid recipients. Over a relatively short period of time the recipients are fully reconstituted with T cells derived from the implanted thymus graft. Only thymocytes seeding the thymus at the time of isolation undergo selection and develop into mature T cells. As such, changes in the nature and specificity of the engrafted T cells as a function of age-dependent thymic events can be assessed. Although technical expertise is required for successful thymic transplantation, this method provides a unique strategy to study in vivo a wide range of pathologies that are due to or a result of aberrant thymic function and/or homeostasis.
Collapse
Affiliation(s)
- Y Maurice Morillon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - Fatima Manzoor
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill;
| |
Collapse
|
18
|
Rodríguez-Rodríguez N, Apostolidis SA, Penaloza-MacMaster P, Martín Villa JM, Barouch DH, Tsokos GC, Crispín JC. Programmed cell death 1 and Helios distinguish TCR-αβ+ double-negative (CD4-CD8-) T cells that derive from self-reactive CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:4207-14. [PMID: 25825451 DOI: 10.4049/jimmunol.1402775] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/01/2015] [Indexed: 01/20/2023]
Abstract
TCR-αβ(+) double-negative (DN; CD4(-)CD8(-)) T cells represent a poorly understood cellular subset suggested to contribute to the pathogenesis of the autoimmune disease systemic lupus erythematosus. DN T cells have been proposed to derive from CD8(+) cells. However, the conditions that govern the loss of CD8 expression after Ag encounter are unknown. In this study, we tracked the fate of CD8 T cells from transgenic TCR mice exposed to their cognate Ags as self or in the context of infection. We demonstrate that CD8 T cells lose CD8 expression and become DN only when cognate Ag is sensed as self. This process is restricted to tissues where the Ag is present. We also show that DN T cells derived from self-reactive CD8 cells express the inhibitory molecules PD-1 and Helios. These molecules identify a subset of DN T cells in normal mice. A similar population expands when CD8 T cells from repertoires enriched in self-reactive cells (Aire-deficient) are transferred into cognate hosts. Collectively, our data suggest that a subset of DN T cells, identified by the expression of PD-1 and Helios, represent self-reactive cells. Our results provide an explanation for the origin of DN T cells and introduce CD8 loss as a process associated with self-Ag encounter.
Collapse
Affiliation(s)
- Noé Rodríguez-Rodríguez
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215; Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Sokratis A Apostolidis
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Pablo Penaloza-MacMaster
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and
| | - José Manuel Martín Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; and Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215;
| | - José C Crispín
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215;
| |
Collapse
|
19
|
A novel mutation in FOXN1 resulting in SCID: A case report and literature review. Clin Immunol 2014; 155:30-32. [DOI: 10.1016/j.clim.2014.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 08/19/2014] [Indexed: 11/23/2022]
|
20
|
Reduced BAFF-R and increased TACI expression in common variable immunodeficiency. J Clin Immunol 2014; 34:573-83. [PMID: 24809296 DOI: 10.1007/s10875-014-0047-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE B-cell survival and differentiation critically depend on the interaction of BAFF-R and TACI with their ligands, BAFF and APRIL. Mature B-cell defects lead to Common Variable Immunodeficiency (CVID), which is associated with elevated serum levels of BAFF and APRIL. Nevertheless, BAFF-R and TACI expression in CVID and their relationship with ligand availability remain poorly understood. METHODS AND RESULTS We found that BAFF-R expression was dramatically reduced on B cells of CVID patients, relative to controls. BAFF-R levels inversely correlated with serum BAFF concentration both in CVID and healthy subjects. We also found that recombinant BAFF stimulation reduced BAFF-R expression on B cells without decreasing transcript levels. On the other hand, CVID subjects had increased TACI expression on B cells in direct association with serum BAFF but not APRIL levels. Moreover, splenomegaly was associated with higher TACI expression, suggesting that perturbations of TACI function may underlie lymphoproliferation in CVID. CONCLUSIONS Our results indicate that availability of BAFF determines BAFF-R and TACI expression on B cells, and that BAFF-R expression is controlled by BAFF binding. Identification of the factors governing BAFF-R and TACI is crucial to understanding CVID pathogenesis, and B-cell biology in general, as well as to explore their potential as therapeutic targets.
Collapse
|
21
|
Palamaro L, Romano R, Fusco A, Giardino G, Gallo V, Pignata C. FOXN1 in Organ Development and Human Diseases. Int Rev Immunol 2014; 33:83-93. [DOI: 10.3109/08830185.2013.870171] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Fusco A, Panico L, Gorrese M, Bianchino G, Barone MV, Grieco V, Vitiello L, D’Assante R, Romano R, Palamaro L, Scalia G, Vecchio LD, Pignata C. Molecular evidence for a thymus-independent partial T cell development in a FOXN1-/- athymic human fetus. PLoS One 2013; 8:e81786. [PMID: 24349129 PMCID: PMC3857207 DOI: 10.1371/journal.pone.0081786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
The thymus is the primary organ able to support T cell ontogeny, abrogated in FOXN1(-/-) human athymia. Although evidence indicates that in animal models T lymphocytes may differentiate at extrathymic sites, whether this process is really thymus-independent has still to be clarified. In an athymic FOXN1(-/-) fetus, in which we previously described a total blockage of CD4(+) and partial blockage of CD8(+) cell development, we investigated whether intestine could play a role as extrathymic site of T-lymphopoiesis in humans. We document the presence of few extrathymically developed T lymphocytes and the presence in the intestine of CD3(+) and CD8(+), but not of CD4(+) cells, a few of them exhibiting a CD45RA(+) naïve phenotype. The expression of CD3εεpTα, RAG1 and RAG2 transcripts in the intestine and TCR gene rearrangement was also documented, thus indicating that in humans the partial T cell ontogeny occurring at extrathymic sites is a thymus- and FOXN1-independent process.
Collapse
Affiliation(s)
- Anna Fusco
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
| | - Luigi Panico
- Unit of Pathology, National Relevance Hospital “S.G. Moscati”, Avellino, Italy
| | - Marisa Gorrese
- Department of Biochemistry and Medical Biotechnology–CEINGE, “Federico II” University, Naples, Italy
| | - Gabriella Bianchino
- Molecular Oncology Unit, IRCCS, “Centro di Riferimento Oncologico della Basilicata”, Rionero in Vulture, Pz, Italy
| | - Maria V. Barone
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
| | - Vitina Grieco
- Molecular Oncology Unit, IRCCS, “Centro di Riferimento Oncologico della Basilicata”, Rionero in Vulture, Pz, Italy
| | - Laura Vitiello
- Department of Cellular and Molecular Biology and Pathology, “Federico II” University, Naples, Italy
| | - Roberta D’Assante
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
| | - Rosa Romano
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
| | - Loredana Palamaro
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
| | - Giulia Scalia
- Department of Biochemistry and Medical Biotechnology–CEINGE, “Federico II” University, Naples, Italy
| | - Luigi Del Vecchio
- Department of Biochemistry and Medical Biotechnology–CEINGE, “Federico II” University, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, “Federico II” University, Naples, Italy
- * E-mail:
| |
Collapse
|
23
|
Boehm T, Swann JB. Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 2013; 13:831-8. [DOI: 10.1038/nri3534] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Romano R, Palamaro L, Fusco A, Giardino G, Gallo V, Del Vecchio L, Pignata C. FOXN1: A Master Regulator Gene of Thymic Epithelial Development Program. Front Immunol 2013; 4:187. [PMID: 23874334 PMCID: PMC3709140 DOI: 10.3389/fimmu.2013.00187] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/25/2013] [Indexed: 11/18/2022] Open
Abstract
T cell ontogeny is a sophisticated process, which takes place within the thymus through a series of well-defined discrete stages. The process requires a proper lympho-stromal interaction. In particular, cortical and medullary thymic epithelial cells (cTECs, mTECs) drive T cell differentiation, education, and selection processes, while the thymocyte-dependent signals allow thymic epithelial cells (TECs) to maturate and provide an appropriate thymic microenvironment. Alterations in genes implicated in thymus organogenesis, including Tbx1, Pax1, Pax3, Pax9, Hoxa3, Eya1, and Six1, affect this well-orchestrated process, leading to disruption of thymic architecture. Of note, in both human and mice, the primordial TECs are yet unable to fully support T cell development and only after the transcriptional activation of the Forkhead-box n1 (FOXN1) gene in the thymic epithelium this essential function is acquired. FOXN1 is a master regulator in the TEC lineage specification in that it down-stream promotes transcription of genes, which, in turn, regulate TECs differentiation. In particular, FOXN1 mainly regulates TEC patterning in the fetal stage and TEC homeostasis in the post-natal thymus. An inborn null mutation in FOXN1 leads to Nude/severe combined immunodeficiency (SCID) phenotype in mouse, rat, and humans. In Foxn1−/− nude animals, initial formation of the primordial organ is arrested and the primordium is not colonized by hematopoietic precursors, causing a severe primary T cell immunodeficiency. In humans, the Nude/SCID phenotype is characterized by congenital alopecia of the scalp, eyebrows, and eyelashes, nail dystrophy, and a severe T cell immunodeficiency, inherited as an autosomal recessive disorder. Aim of this review is to summarize all the scientific information so far available to better characterize the pivotal role of the master regulator FOXN1 transcription factor in the TEC lineage specifications and functionality.
Collapse
Affiliation(s)
- Rosa Romano
- Department of Translational Medical Sciences, "Federico II" University , Naples , Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Maintenance of T-cell function and modulation of tolerance are critical issues in organ transplantation. The thymus is the primary organ for T-cell generation, and a preserved thymic function is essential for a self-tolerant diverse T-cell repertoire. Transplant procedures and related immunosuppressive drugs may hinder thymic integrity and function. We review here the recent advances in understanding the regulation of the unique thymic microenvironment with relevance for the field of transplantation. RECENT FINDINGS Recent studies have assigned a role for IL-22 in the regeneration of thymic epithelium, and for microRNAs in the modulation of its survival and function. The interplay of key molecules in the cross-talk between thymic epithelial cells and thymocytes was depicted, opening new perspectives for the in-vitro recapitulation of T-cell development and for thymic transplantation. Additionally, the thymus was shown to be able to sustain thymocyte progenitor renewal. SUMMARY These findings open new venues of research toward therapeutic interventions in the endogenous thymus to modulate or reconstitute the immune system; thymic transplantation; and the future development of artificial thymus, which would represent an important tool to achieve tolerance across the histocompatibility barriers.
Collapse
|
26
|
Chinn IK, Milner JD, Scheinberg P, Douek DC, Markert ML. Thymus transplantation restores the repertoires of forkhead box protein 3 (FoxP3)+ and FoxP3- T cells in complete DiGeorge anomaly. Clin Exp Immunol 2013; 173:140-9. [PMID: 23607606 PMCID: PMC3694544 DOI: 10.1111/cei.12088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 12/27/2022] Open
Abstract
The development of T cells with a regulatory phenotype after thymus transplantation has not been examined previously in complete DiGeorge anomaly (cDGA). Seven athymic infants with cDGA and non-maternal pretransplantation T cell clones were assessed. Pretransplantation forkhead box protein 3 (Foxp3)(+) T cells were detected in five of the subjects. Two subjects were studied in greater depth. T cell receptor variable β chain (TCR-Vβ) expression was assessed by flow cytometry. In both subjects, pretransplantation FoxP3(+) and total CD4(+) T cells showed restricted TCR-Vβ expression. The development of naive T cells and diverse CD4(+) TCR-Vβ repertoires following thymic transplantation indicated successful thymopoiesis from the thymic tissue grafts. Infants with atypical cDGA develop rashes and autoimmune phenomena before transplantation, requiring treatment with immunosuppression, which was discontinued successfully subsequent to the observed thymopoiesis. Post-transplantation, diverse TCR-Vβ family expression was also observed in FoxP3(+) CD4(+) T cells. Interestingly, the percentages of each of the TCR-Vβ families expressed on FoxP3(+) and total CD4(+) T cells differed significantly between these T lymphocyte subpopulations before transplantation. By 16 months post-transplantation, however, the percentages of expression of each TCR-Vβ family became significantly similar between FoxP3(+) and total CD4(+) T cells. Sequencing of TCRBV DNA confirmed the presence of clonally amplified pretransplantation FoxP3(+) and FoxP3(-) T cells. After thymus transplantation, increased polyclonality was observed for both FoxP3(+) and FoxP3(-) cells, and pretransplantation FoxP3(+) and FoxP3(-) clonotypes essentially disappeared. Thus, post-transplantation thymic function was associated with the development of a diverse repertoire of FoxP3(+) T cells in cDGA, corresponding with immunological and clinical recovery.
Collapse
Affiliation(s)
- I K Chinn
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | |
Collapse
|
27
|
Azevedo RI, Soares MV, Albuquerque AS, Tendeiro R, Soares RS, Martins M, Ligeiro D, Victorino RM, Lacerda JF, Sousa AE. Long-Term Immune Reconstitution of Naive and Memory T Cell Pools after Haploidentical Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2013; 19:703-12. [DOI: 10.1016/j.bbmt.2013.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/19/2013] [Indexed: 02/04/2023]
|
28
|
Zhang Z, Burnley P, Coder B, Su DM. Insights on FoxN1 biological significance and usages of the "nude" mouse in studies of T-lymphopoiesis. Int J Biol Sci 2012; 8:1156-67. [PMID: 23091413 PMCID: PMC3477685 DOI: 10.7150/ijbs.5033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/13/2012] [Indexed: 11/24/2022] Open
Abstract
Mutation in the “nude” gene, i.e. the FoxN1 gene, induces a hairless phenotype and a rudimentary thymus gland in mice (nude mouse) and humans (T-cell related primary immunodeficiency). Conventional FoxN1 gene knockout and transgenic mouse models have been generated for studies of FoxN1 gene function related to skin and immune diseases, and for cancer models. It appeared that FoxN1's role was fully understood and the nude mouse model was fully utilized. However, in recent years, with the development of inducible gene knockout/knockin mouse models with the loxP-Cre(ERT) and diphtheria toxin receptor-induced cell abolished systems, it appears that the complete repertoire of FoxN1's roles and deep-going usage of nude mouse model in immune function studies have just begun. Here we summarize the research progress made by several recent works studying the role of FoxN1 in the thymus and utilizing nude and “second (conditional) nude” mouse models for studies of T-cell development and function. We also raise questions and propose further consideration of FoxN1 functions and utilizing this mouse model for immune function studies.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | | | | | |
Collapse
|