1
|
Shin GE, Lee KK, Ku BK, Oh SH, Jang SH, Kang B, Jeoung HY. Prevalence of viral agents causing swine reproductive failure in Korea and the development of multiplex real-time PCR and RT-PCR assays. Biologicals 2024; 86:101763. [PMID: 38641502 DOI: 10.1016/j.biologicals.2024.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/21/2024] Open
Abstract
This study aimed to investigate the prevalence of viral agents causing reproductive failure in pigs in Korea. In addition, two types of multiplex real-time PCR (mqPCR) were developed for the simultaneous detection of Aujeszky's disease virus (ADV) and porcine parvovirus (PPV) in mqPCR and encephalomyocarditis virus (EMCV) and Japanese encephalitis virus (JEV) in reverse transcription mqPCR (mRT-qPCR). A total of 150 aborted fetus samples collected from 2020 to 2022 were analyzed. Porcine reproductive and respiratory syndrome virus was the most prevalent (49/150 32.7%), followed by porcine circovirus type 2 (31/150, 20.7%), and PPV1 (7/150, 4.7%), whereas ADV, EMCV, and JEV were not detected. The newly developed mqPCR and mRT-qPCR could simultaneously detect and differentiate with high sensitivities and specificities. When applied to aborted fetuses, the newly developed mqPCR for PPV was 33.3% more sensitivities than the previously established diagnostic method. Amino acid analysis of the VP2 sequences of PPV isolates revealed considerable similarity to the highly pathogenic Kresse strain. This study successfully evaluated the prevalence of viral agents causing reproductive failure among swine in Korea, the developed mqPCR and mRT-qPCR methods could be utilized as effective and accurate diagnostic methods for the epidemiological surveillance of ADV, PPV, EMCV, and JEV.
Collapse
Affiliation(s)
- Go-Eun Shin
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Bok-Kyung Ku
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| | - Su Hong Oh
- Mediandiagnostics, Chuncheon, 24399, Gangwon-do, Republic of Korea.
| | - Sang-Ho Jang
- Mediandiagnostics, Chuncheon, 24399, Gangwon-do, Republic of Korea.
| | - Bokyu Kang
- Mediandiagnostics, Chuncheon, 24399, Gangwon-do, Republic of Korea.
| | - Hye-Young Jeoung
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| |
Collapse
|
2
|
Deb R, Sengar GS, Sonowal J, Pegu SR, Das PJ, Singh I, Chakravarti S, Selvaradjou A, Attupurum N, Rajkhowa S, Gupta VK. Transcriptome signatures of host tissue infected with African swine fever virus reveal differential expression of associated oncogenes. Arch Virol 2024; 169:54. [PMID: 38381218 DOI: 10.1007/s00705-023-05959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 02/22/2024]
Abstract
African swine fever (ASF) has emerged as a threat to swine production worldwide. Evasion of host immunity by ASF virus (ASFV) is well understood. However, the role of ASFV in triggering oncogenesis is still unclear. In the present study, ASFV-infected kidney tissue samples were subjected to Illumina-based transcriptome analysis. A total of 2463 upregulated and 825 downregulated genes were differentially expressed (p < 0.05). A literature review revealed that the majority of the differentially expressed host genes were key molecules in signaling pathways involved in oncogenesis. Bioinformatic analysis indicated the activation of certain oncogenic KEGG pathways, including basal cell carcinoma, breast cancer, transcriptional deregulation in cancer, and hepatocellular carcinoma. Analysis of host-virus interactions revealed that the upregulated oncogenic RELA (p65 transcription factor) protein of Sus scrofa can interact with the A238L (hypothetical protein of unknown function) of ASFV. Differential expression of oncogenes was confirmed by qRT-PCR, using the H3 histone family 3A gene (H3F3A) as an internal control to confirm the RNA-Seq data. The levels of gene expression indicated by qRT-PCR matched closely to those determined through RNA-Seq. These findings open up new possibilities for investigation of the mechanisms underlying ASFV infection and offer insights into the dynamic interaction between viral infection and oncogenic processes. However, as these investigations were conducted on pigs that died from natural ASFV infection, the role of ASFV in oncogenesis still needs to be investigated in controlled experimental studies.
Collapse
Affiliation(s)
- Rajib Deb
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | | | - Joyshikh Sonowal
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat, Assam, 785001, India
| | - Seema Rani Pegu
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Pranab Jyoti Das
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | | | - Soumendu Chakravarti
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
- Pirbright Institute, Ash Road, Pirbright, Surrey, United Kingdom
| | | | - Nitin Attupurum
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Swaraj Rajkhowa
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Vivek Kumar Gupta
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| |
Collapse
|
3
|
Rawal G, Krueger KM, Yim-im W, Li G, Gauger PC, Almeida MN, Aljets EK, Zhang J. Development, Evaluation, and Clinical Application of PRRSV-2 Vaccine-like Real-Time RT-PCR Assays. Viruses 2023; 15:2240. [PMID: 38005917 PMCID: PMC10675446 DOI: 10.3390/v15112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
In this study, we developed and validated (1) singleplex real-time RT-PCR assays for specific detection of five PRRSV-2 MLV vaccine viruses (Ingelvac MLV, Ingelvac ATP, Fostera, Prime Pac, and Prevacent) and (2) a four-plex real-time RT-PCR assay (IngelvacMLV/Fostera/Prevacent/XIPC) including the internal positive control XIPC for detecting and distinguishing the three most commonly used vaccines in the USA (Prevacent, Ingelvac MLV, and Fostera). The singleplex and 4-plex vaccine-like PCRs and the reference PCR (VetMAXTM PRRSV NA&EU, Thermo Fisher Scientific, Waltham, MA, USA) did not cross-react with non-PRRSV swine viral and bacterial pathogens. The limits of detection of vaccine-like PCRs ranged from 25 to 50 genomic copies/reactions. The vaccine-like PCRs all had excellent intra-assay and inter-assay repeatability. Based on the testing of 531 clinical samples and in comparison to the reference PCR, the diagnostic sensitivity, specificity, and agreement were in the respective range of 94.67-100%, 100%, and 97.78-100% for singleplex PCRs and 94.94-100%, 100%, and 97.78-100% for the 4-plex PCR, with a CT cutoff of 37. In addition, 45 PRRSV-2 isolates representing different genetic lineages/sublineages were tested with the vaccine-like PCRs and the results were verified with sequencing. In summary, the vaccine-like PCRs specifically detect the respective vaccine-like viruses with comparable performances to the reference PCR, and the 4-plex PCR allows to simultaneously detect and differentiate the three most commonly used vaccine viruses in the same sample. PRRSV-2 vaccine-like PCRs provide an additional tool for detecting and characterizing PRRSV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (K.M.K.); (W.Y.-i.); (G.L.); (P.C.G.); (M.N.A.); (E.K.A.)
| |
Collapse
|
4
|
Song H, Gao X, Fu Y, Li J, Fan G, Shao L, Zhang J, Qiu HJ, Luo Y. Isolation and Molecular Characterization of Atypical Porcine Pestivirus Emerging in China. Viruses 2023; 15:2149. [PMID: 38005827 PMCID: PMC10675531 DOI: 10.3390/v15112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Atypical porcine pestivirus (APPV) is a recently discovered and very divergent species of the genus Pestivirus within the family Flaviviridae, which causes congenital tremor (CT) in newborn piglets. In this study, an APPV epidemiological investigation was conducted by studying 975 swine samples (562 tissue and 413 serum samples) collected from different parts of China from 2017 to 2021. The results revealed that the overall positive rate of the APPV genome was 7.08% (69/975), among which 50.7% (35/69) of the samples tested positive for one or more other common swine viruses, especially porcine circovirus type 2 (PCV2) with a coinfection rate of 36.2% (25/69). Subsequently, a novel APPV strain, named China/HLJ491/2017, was isolated in porcine kidney (PK)-15 cells for the first time from a weaned piglet that was infected with both APPV and PCV2. The new APPV isolate was confirmed by RT-PCR, sequencing, immunofluorescence assay, and transmission electron microscopy. After clearing PCV2, a pure APPV strain was obtained and further stably propagated in PK-15 cells for more than 30 passages. Full genome sequencing and phylogenetic analysis showed that the China/HLJ491/2017 strain was classified as genotype 2, sharing 80.8 to 97.6% of its nucleotide identity with previously published APPV strains. In conclusion, this study enhanced our knowledge of this new pestivirus and the successful isolation of the APPV strain provides critical material for the investigation of the biological and pathogenic properties of this emerging virus, as well as the development of vaccines and diagnostic reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China; (H.S.); (X.G.); (Y.F.); (J.L.); (G.F.); (L.S.); (J.Z.)
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China; (H.S.); (X.G.); (Y.F.); (J.L.); (G.F.); (L.S.); (J.Z.)
| |
Collapse
|
5
|
Chae H, Roh HS, Jo YM, Kim WG, Chae JB, Shin SU, Kang JW. Development of a one-step reverse transcription-quantitative polymerase chain reaction assay for the detection of porcine reproductive and respiratory syndrome virus. PLoS One 2023; 18:e0293042. [PMID: 37844073 PMCID: PMC10578580 DOI: 10.1371/journal.pone.0293042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is an important disease that severely affects the swine industry and, therefore, warrants rapid and accurate diagnosis for its control. Despite the progress in developing diagnostic tools, including polymerase chain reaction (PCR)-based methods such as reverse transcription quantitative PCR (RT-qPCR) to diagnose PRRSV infection, its diagnosis at the genetic level is challenging because of its high genetic variability. Nevertheless, RT-qPCR is the easiest and fastest method for diagnosing PRRSV. Therefore, this study aimed to develop an RT-qPCR assay for rapid and accurate diagnosis of PRRSV by encompassing all publicly available PRRSV sequences. The developed assay using highly specific primers and probes could detect up to 10 copies of PRRSV-1 and -2 subtypes. Furthermore, a comparison of the performance of the developed assay with those of two commercial kits widely used in South Korea demonstrated the higher efficiency of the developed assay in detecting PRRSV infections in field samples. For PRRSV-1 detection, the developed assay showed a diagnostic agreement of 97.7% with the results of ORF5 sequencing, while for commercial kits, it showed 95.3% and 72.1% agreement. For PRRSV-2, the developed assay showed a diagnostic agreement of 97.7%, whereas the commercial kits showed 93% and 90.7% agreement. In conclusion, we developed an assay with higher accuracy than those of the tested commercial kits, which will contribute markedly to global PRRSV control.
Collapse
Affiliation(s)
- Hansong Chae
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Hyun Soo Roh
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Young Mi Jo
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Won Gyeong Kim
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Jeong Byoung Chae
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Seung-Uk Shin
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| | - Jung Won Kang
- R&D Center of Animal Technology, Animal Industry Data Korea, Gangnam-gu, Seoul, South Korea
| |
Collapse
|
6
|
Development of a Multiplex Crystal Digital RT-PCR for Differential Detection of Classical, Highly Pathogenic, and NADC30-like Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2023; 13:ani13040594. [PMID: 36830384 PMCID: PMC9951750 DOI: 10.3390/ani13040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 (European genotype) and PRRSV type 2 (North American genotype) are prevalent all over the world. Nowadays, the North American genotype PRRSV (NA-PRRSV) has been widely circulating in China and has caused huge economic losses to the pig industry. In recent years, classical PRRSV (C-PRRSV), highly pathogenic PRRSV (HP-PRRSV), and NADC30-like PRRSV (NL-PRRSV) have been the most common circulating strains in China. In order to accurately differentiate the circulating strains of NA-PRRSV, three pairs of specific primers and corresponding probes were designed for the Nsp2 region of C-PRRSV, HP-PRRSV, and NL-PRRSV. After optimizing the annealing temperature, primer concentration, and probe concentration, a multiplex real-time quantitative RT-PCR (qRT-PCR) and a multiplex Crystal digital RT-PCR (cdRT-PCR) for the differential detection of C-PRRSV, HP-PRRSV, and NL-PRRSV were developed. The results showed that the two assays illustrated high sensitivity, with a limit of detection (LOD) of 3.20 × 100 copies/μL for the multiplex qRT-PCR and 3.20 × 10-1 copies/μL for the multiplex cdRT-PCR. Both assays specifically detected the targeted viruses, without cross-reaction with other swine viruses, and indicated excellent repeatability, with coefficients of variation (CVs) of less than 1.26% for the multiplex qRT-PCR and 2.68% for the multiplex cdRT-PCR. Then, a total of 320 clinical samples were used to evaluate the application of these assays, and the positive rates of C-PRRSV, HP-PRRSV, and NL-PRRSV by the multiplex qRT-PCR were 1.88%, 21.56%, and 9.69%, respectively, while the positive rates by the multiplex cdRT-PCR were 2.19%, 25.31%, and 11.56%, respectively. The high sensitivity, strong specificity, excellent repeatability, and reliability of these assays indicate that they could provide useful tools for the simultaneous and differential detection of the circulating strains of C-PRRSV, HP-PRRSV, and NL-PRRSV in the field.
Collapse
|
7
|
Comparison of virus detection, productivity, and economic performance between lots of growing pigs vaccinated with two doses or one dose of PRRS MLV vaccine, under field conditions. Prev Vet Med 2022; 204:105669. [DOI: 10.1016/j.prevetmed.2022.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/01/2022] [Accepted: 05/08/2022] [Indexed: 11/19/2022]
|
8
|
Blasi B, Sipos W, Knecht C, Dürlinger S, Ma L, Cissé OH, Nedorost N, Matt J, Weissenböck H, Weissenbacher-Lang C. Pneumocystis spp. in Pigs: A Longitudinal Quantitative Study and Co-Infection Assessment in Austrian Farms. J Fungi (Basel) 2021; 8:jof8010043. [PMID: 35049984 PMCID: PMC8779942 DOI: 10.3390/jof8010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
While Pneumocystis has been recognized as both a ubiquitous commensal fungus in immunocompetent mammalian hosts and a major opportunistic pathogen in humans responsible for severe pneumonias in immunocompromised patients, in pigs its epidemiology and association with pulmonary diseases have been rarely reported. Nevertheless, the fungus can be quite abundant in porcine populations with up to 51% of prevalence reported so far. The current study was undertaken to longitudinally quantify Pneumocystis carinii f. sp. suis and other pulmonary pathogens in a cohort of 50 pigs from five Austrian farms (i.e., 10 pigs per farm) with a history of respiratory disease at five time points between the first week and the fourth month of life. The fungus was present as early as the suckling period (16% and 26% of the animals in the first and the third week, respectively), yet not in a high amount. Over time, both the organism load (highest 4.4 × 105 copies/mL) and prevalence (up to 88% of positive animals in the third month) increased in each farm. The relative prevalence of various coinfection patterns was significantly different over time. The current study unravelled a complex co-infection history involving Pneumocystis and other pulmonary pathogens in pigs, suggesting a relevant role of the fungus in the respiratory disease scenario of this host.
Collapse
Affiliation(s)
- Barbara Blasi
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Wolfgang Sipos
- Department for Farm Animals and Veterinary Public Health, Clinic for Swine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (W.S.); (C.K.); (S.D.)
| | - Christian Knecht
- Department for Farm Animals and Veterinary Public Health, Clinic for Swine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (W.S.); (C.K.); (S.D.)
| | - Sophie Dürlinger
- Department for Farm Animals and Veterinary Public Health, Clinic for Swine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (W.S.); (C.K.); (S.D.)
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA; (L.M.); (O.H.C.)
| | - Ousmane H. Cissé
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA; (L.M.); (O.H.C.)
| | - Nora Nedorost
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Julia Matt
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Herbert Weissenböck
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
| | - Christiane Weissenbacher-Lang
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (B.B.); (N.N.); (J.M.); (H.W.)
- Correspondence: ; Tel.: +43-(1)-25077-2413
| |
Collapse
|
9
|
Inhibition of endocytosis of porcine reproductive and respiratory syndrome virus by rottlerin and its potential prophylactic administration in piglets. Antiviral Res 2021; 195:105191. [PMID: 34678331 DOI: 10.1016/j.antiviral.2021.105191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
Owing to several limitations of porcine reproductive and respiratory syndrome virus (PRRSV) control procedures, the importance of antiviral agents is increasing; however, limited studies have been done on the development of anti-PRRSV agents. Herein, we explored the antiviral effect and mechanism of rottlerin against PRRSV. We demonstrated that treatment of rottlerin at an early stage of PRRSV infection significantly inhibited the viral replication. PRRSV infection induced protein kinase C-δ phosphorylation, which was specifically downregulated by rottlerin. The treatment of rottlerin led to disrupting the PRRSV entry pathway by blocking endocytosis of the virions. Further, to evaluate the anti-PRRSV effect of the rottlerin in vivo, we administrated rottlerin loaded liposome to pigs infected with PRRSV LMY or FL12 strain. The treatment of rottlerin-liposome reduced the blood viral load, interstitial pneumonia and clinical scores compared to untreated pigs. These results provide an evidence of anti-PRRSV effect of rottlerin in vitro via inhibiting PRRSV internalization and in vivo, all of which strongly suggest the applicability of rottlerin as a potential PRRSV prophylactic treatment.
Collapse
|
10
|
Zhao D, Yang B, Yuan X, Shen C, Zhang D, Shi X, Zhang T, Cui H, Yang J, Chen X, Hao Y, Zheng H, Zhang K, Liu X. Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-infection With Other Pathogens in Swine. Front Vet Sci 2021; 8:699561. [PMID: 34513970 PMCID: PMC8426627 DOI: 10.3389/fvets.2021.699561] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen causing epidemics of porcine reproductive and respiratory syndrome (PRRS), and is present in every major swine-farming country in the world. Previous studies have demonstrated that PRRSV infection leads to a range of consequences, such as persistent infection, secondary infection, and co-infection, and is common among pigs in the field. In recent years, coinfection of PRRSV and other porcine pathogens has occurred often, making it more difficult to define and diagnose PRRSV-related diseases. The study of coinfections may be extremely suitable for the current prevention and control in the field. However, there is a limited understanding of coinfection. Therefore, in this review, we have focused on the epidemiology of PRRSV coinfection with other pathogens in swine, both in vivo and in vitro.
Collapse
Affiliation(s)
- Dengshuai Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xingguo Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Chaochao Shen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Dajun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xijuan Shi
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Ting Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Huimei Cui
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Jinke Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xuehui Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Yu Hao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| |
Collapse
|
11
|
Choi HY, Lee SH, Ahn SH, Choi JC, Jeong JY, Lee BJ, Kang YL, Hwang SS, Lee JK, Lee SW, Park SY, Song CS, Choi IS, Lee JB. A chimeric porcine reproductive and respiratory syndrome virus (PRRSV)-2 vaccine is safe under international guidelines and effective both in experimental and field conditions. Res Vet Sci 2021; 135:143-152. [PMID: 33517163 DOI: 10.1016/j.rvsc.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Vaccination is currently the most effective strategy to control porcine reproductive and respiratory syndrome (PRRS). New-generation PRRS vaccines are required to be safe and broadly cross-protective. We have recently created the chimeric PRRS virus K418DM which proved to be a good vaccine candidate under field conditions. In the present study, we designed safety and efficacy tests under experimental and field conditions for further evaluation of K418DM1.1, a plaque-purified K418DM. In the homologous challenge study, K418DM1.1 induced high serum virus neutralization (SVN) antibody titers (i.e., 4.2 log2 ± 1.7) at 21 days post-challenge (dpc) and provided protection as demonstrated by the significantly lower levels of viremia at 3 and 7 dpc and significantly lower microscopic lung lesion scores compared to the unvaccinated group. K418DM1.1 was also protective in the heterologous challenge study, with vaccinated pigs showing significantly lower levels of viremia at 14 dpc compared to the unvaccinated pigs. A field study was performed to evaluate the efficacy of K418DM1.1 against heterologous exposure and vaccinated pigs presented significantly lower viremia than unvaccinated pigs. According to the safety test for the examination of virulence reversion, no infectivity was observed in tissue homogenate filtrate both in the vaccinated and comingled groups. Thus, the risk of virulence, as well as transmission, appeared negligible. These overall results indicate that K418DM1.1 is a good vaccine candidate based on its safety and protective efficacy.
Collapse
Affiliation(s)
- Hwi-Yeon Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - So-Hyun Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - So-Hyeun Ahn
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jong-Chul Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji-Yun Jeong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Beom-Joo Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeong-Lim Kang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seong-Soo Hwang
- Samhwa Breedings Agri. Inc., 435, Sinjin-ri, Gwangcheon-eup, Hongseong-gun, Chungcheongnam-Do 350-900, Republic of Korea
| | - Jung-Keun Lee
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555, North 59th Avenue, Glendale, AZ 85308, USA
| | - Sang-Won Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Soo Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
12
|
Sunaga F, Tsuchiaka S, Kishimoto M, Aoki H, Kakinoki M, Kure K, Okumura H, Okumura M, Okumura A, Nagai M, Omatsu T, Mizutani T. Development of a one-run real-time PCR detection system for pathogens associated with porcine respiratory diseases. J Vet Med Sci 2019; 82:217-223. [PMID: 31866601 PMCID: PMC7041981 DOI: 10.1292/jvms.19-0063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The etiology of Porcine respiratory disease complex is complicated by infections with
multiple pathogens, and multiple infections increase the difficulty in identifying the
causal pathogen. In this present study, we developed a detection system of microbes from
porcine respiratory by using TaqMan real-time PCR (referred to as Dempo-PCR) to screen a
broad range of pathogens associated with porcine respiratory diseases in a single run. We
selected 17 porcine respiratory pathogens (Actinobacillus
pleuropneumoniae, Boldetella bronchiseptica,
Haemophilus parasuis, Pasteurella multocida,
Pasteurella multocida toxin, Streptococcus suis,
Mycoplasma hyopneumoniae, Mycoplasma hyorhinis,
Mycoplasma hyosynovie, porcine circovirus 2, pseudorabies virus,
porcine cytomegalovirus, swine influenza A virus, porcine reproductive and respiratory
virus US strain, EU strain, porcine respiratory coronavirus and porcine hemagglutinating
encephalomyelitis virus) as detection targets and designed novel specific primer-probe
sets for seven of them. In sensitivity test by using standard curves from synthesized DNA,
all primer-probe sets showed high sensitivity. However, porcine reproductive and
respiratory virus is known to have a high frequency of genetic mutations, and the primer
and probe sequences will need to be checked at a considerable frequency when performing
Dempo-PCR from field samples. A total of 30 lung samples from swine showing respiratory
symptoms on six farms were tested by the Dempo-PCR to validate the assay’s clinical
performance. As the results, 12 pathogens (5 virus and 7 bacteria) were detected and
porcine reproductive and respiratory virus US strain, Mycoplasma
hyorhinis, Haemophilus parasuis, and porcine cytomegalovirus
were detected at high frequency. These results suggest that Dempo-PCR assay can be applied
as a screening system with wide detection targets.
Collapse
Affiliation(s)
- Fujiko Sunaga
- Laboratory of Infectious Disease, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Yanagito, Gifu 501-1193, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Mari Kakinoki
- Laboratory of Infectious Disease, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Katsumasa Kure
- Value Farm Consulting Co., Ltd., 1704-3 Nishi Oi, Tsukuba, Ibaraki 300-1260, Japan
| | - Hanako Okumura
- Value Farm Consulting Co., Ltd., 1704-3 Nishi Oi, Tsukuba, Ibaraki 300-1260, Japan
| | - Maho Okumura
- Drexel University Dornsife School of Public Health, Philadelphia PA 19104, USA
| | - Atsushi Okumura
- Centre for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Makoto Nagai
- Laboratory of Infectious Disease, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.,Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Yanagito, Gifu 501-1193, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Yanagito, Gifu 501-1193, Japan
| |
Collapse
|
13
|
Rapid, Unbiased PRRSV Strain Detection Using MinION Direct RNA Sequencing and Bioinformatics Tools. Viruses 2019; 11:v11121132. [PMID: 31817886 PMCID: PMC6950593 DOI: 10.3390/v11121132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Prompt detection and effective control of porcine reproductive and respiratory syndrome virus (PRRSV) during outbreaks is important given its immense adverse impact on the swine industry. However, the diagnostic process can be challenging due to the high genetic diversity and high mutation rate of PRRSV. A diagnostic method that can provide more detailed genetic information about pathogens is urgently needed. In this study, we evaluated the ability of Oxford Nanopore MinION direct RNA sequencing to generate a PRRSV whole genome sequence and detect and discriminate virus at the strain-level. A nearly full length PRRSV genome was successfully generated from raw sequence reads, achieving an accuracy of 96% after consensus genome generation. Direct RNA sequencing reliably detected the PRRSV strain present with an accuracy of 99.9% using as few as 5 raw sequencing reads and successfully differentiated multiple co-infecting strains present in a sample. In addition, PRRSV strain information was obtained from clinical samples containing 104 to 106 viral copies or more within 6 hours of sequencing. Overall, direct viral RNA sequencing followed by bioinformatic analysis proves to be a promising approach for identification of the viral strain or strains involved in clinical infections, allowing for more precise prevention and control strategies during PRRSV outbreaks.
Collapse
|
14
|
Qiu W, Meng K, Liu Y, Zhang Y, Wang Z, Chen Z, Yang J, Sun W, Guo L, Ren S, Chen L, Yang G, Zhang F, Shi J, Li J, Du Y, Yu J, Wu J. Simultaneous detection of classical PRRSV, highly pathogenic PRRSV and NADC30-like PRRSV by TaqMan probe real-time PCR. J Virol Methods 2019; 282:113774. [PMID: 31726113 DOI: 10.1016/j.jviromet.2019.113774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 01/12/2023]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS), an acute infectious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV), is one of the most devastating diseases affecting the global swine industry. In order to establish a multiplex real-time PCR method for the simultaneous detection of the classical PRRSV (C-PRRSV) strain, the highly pathogenic PRRSV (HP-PRRSV) strain and NADC30-like PRRSV (NL-PRRSV) strain, we designed specific primers and TaqMan fluorescent probes based on the Nsp2 target gene sequence of these three different PRRSV strains, and designed American-type PRRSV (PRRSV-U) special primers and probes based on the relatively conserved target gene sequence of ORF7. The method established in this study can quickly and accurately detect and differentiate three types of strains of clinical tissue samples, respectively. This method plays a key role in the rapid diagnosis and determination of PRRSV.
Collapse
Affiliation(s)
- Wenbin Qiu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; School of Life Sciences, Shandong Normal University, Jinan, Jinan, 250014, China
| | - Kai Meng
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, 250023, China
| | - Yanyan Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zhao Wang
- China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian, Beijing, 100081, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jie Yang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lihui Guo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lei Chen
- School of Life Sciences, Shandong Normal University, Jinan, Jinan, 250014, China
| | - Guiwen Yang
- School of Life Sciences, Shandong Normal University, Jinan, Jinan, 250014, China
| | - Fan Zhang
- School of Life Sciences, Shandong Normal University, Jinan, Jinan, 250014, China
| | - Jianli Shi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jun Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; School of Life Sciences, Shandong Normal University, Jinan, Jinan, 250014, China; Shandong Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, 250023, China.
| |
Collapse
|
15
|
Fluorescence resonance energy transfer combined with asymmetric PCR for broad and sensitive detection of porcine reproductive and respiratory syndrome virus 2. J Virol Methods 2019; 272:113710. [PMID: 31351984 DOI: 10.1016/j.jviromet.2019.113710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 11/21/2022]
Abstract
With its ever-increasing viral genetic diversity, accurate diagnosis of porcine reproductive and respiratory syndrome virus (PRRSV) infection is indispensable for PRRSV control. Here, a sensitive graphene oxide (GO)-based FRET method was developed to detect PRRSV-2 based on the ability of GO to quench fluorophore by fluorescence resonance energy transfer (FRET). Using primers and a fluorophore-labeled ssDNA probe targeting a conserved region between the PRRSV M gene and 3'UTR, asymmetric PCR specifically amplified viral ssDNA that could anneal with probe to generate dsDNA only in the presence of virus. Upon exonuclease III treatment to release the probe fluorophore, which degrades dsDNA with blunt ends or recessed 3´-termini, the ssDNA annealed with other probe to generate enhanced fluorescence. This GO-based FRET assay specifically detected both classical and highly pathogenic PRRSV, with analytical sensitivity approaching 10 copies/μL, similar to that of real-time PCR but greater than that of conventional reverse transcription PCR (RT-PCR). Consistent with real-time RT-PCR detection, the assay developed here exhibited high diagnostic sensitivity for virus detection of sera from experimentally and naturally infected pigs. Thus, this novel GO-based FRET assay combined with asymmetric PCR detection is sensitive and specific and will be valuable for future PRRSV diagnosis.
Collapse
|
16
|
Jäckel S, Muluneh A, Pöhle D, Ulber C, Dähnert L, Vina-Rodriguez A, Groschup MH, Eiden M. Co-infection of pigs with Hepatitis E and porcine circovirus 2, Saxony 2016. Res Vet Sci 2018; 123:35-38. [PMID: 30583230 DOI: 10.1016/j.rvsc.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022]
Abstract
Hepatitis E virus (HEV) is a recognized zoonotic disease; autochthonous infections in Europe are caused to a great extent by HEV genotype 3. Pigs and wild boar are the main reservoirs for this genotype and normally they develop no or only subclinical symptoms with mild histopathological lesions. However, co-infections with other pig pathogens can lead to severe cases in pigs, including liver hemorrhage and necrosis. During a monitoring program 2016 in Saxony, Germany, farmed pigs with various clinical outcomes including fatalities were analysed for HEV and concurrent infections. We could detect eight HEV infected pigs from which six were co-infected with porcine circovirus 2 (PCV2). Phylogenetic analysis revealed HEV sub-genotypes 3e and 3f as well as PCV2 genotypes 2b and 2d. A direct correlation of the co-infection to the course of disease could not be determined, but the results provide hints that the immune modulatory effects of PCV2 combined with HEV influence the disease pattern in pigs.
Collapse
Affiliation(s)
- Susanne Jäckel
- Saxon State Laboratory of Health and Veterinary Affairs, Jägerstraße 8/10, 01099 Dresden, Germany
| | - Aemero Muluneh
- Saxon State Laboratory of Health and Veterinary Affairs, Jägerstraße 8/10, 01099 Dresden, Germany
| | - Dietrich Pöhle
- Saxon State Laboratory of Health and Veterinary Affairs, Jägerstraße 8/10, 01099 Dresden, Germany
| | - Claudia Ulber
- Saxon State Laboratory of Health and Veterinary Affairs, Jägerstraße 8/10, 01099 Dresden, Germany
| | - Lisa Dähnert
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Ariel Vina-Rodriguez
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany.
| |
Collapse
|
17
|
Erickson A, Fisher M, Furukawa-Stoffer T, Ambagala A, Hodko D, Pasick J, King DP, Nfon C, Ortega Polo R, Lung O. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine. Transbound Emerg Dis 2018; 65:e272-e283. [PMID: 29194985 PMCID: PMC7169841 DOI: 10.1111/tbed.12749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 11/29/2022]
Abstract
Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional microarrays that rely on passive hybridization. With further refinement, this novel, rapid, highly automated microarray technology has potential applications in multipathogen surveillance of livestock diseases.
Collapse
Affiliation(s)
- A Erickson
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - M Fisher
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - T Furukawa-Stoffer
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - A Ambagala
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - D Hodko
- Nexogen, Inc., San Diego, CA, USA
| | - J Pasick
- National Centres for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - D P King
- The Pirbright Institute, Pirbright, UK
| | - C Nfon
- National Centres for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - R Ortega Polo
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - O Lung
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| |
Collapse
|
18
|
A novel HRM assay for differentiating classical strains and highly pathogenic strains of type 2 porcine reproductive and respiratory syndrome virus. Mol Cell Probes 2018; 39:25-32. [PMID: 29609038 DOI: 10.1016/j.mcp.2018.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022]
Abstract
Differentiation of classical strains and highly pathogenic strains of porcine reproductive and respiratory syndrome virus is crucial for effective vaccination programs and epidemiological studies. We used nested PCR and high resolution melting curve analysis with unlabeled probe to distinguish between the classical and the highly pathogenic strains of this virus. Two sets of primers and a 20 bp unlabeled probe were designed from the NSP3 gene. The unlabeled probe included two mutations specific for the classical and highly pathogenic strains of the virus. An additional primer set from the NSP2 gene of the highly pathogenic vaccine strain JXA1-R was used to detect its exclusive single nucleotide polymorphism. We tested 107 clinical samples, 21 clinical samples were positive for PRRSV (consistent with conventional PCR assay), among them four were positive for the classical strain with the remainder 17 for the highly pathogenic strain. Around 10 °C difference between probe melting temperatures showed the high discriminatory power of this method. Among highly pathogenic positive samples, three samples were determined as positive for JXA1-R vaccine-related strain with a 95% genotype confidence percentage. All these genotyping results using the high resolution melting curve assay were confirmed with DNA sequencing. This unlabeled probe method provides an alternative means to differentiate the classical strains from the highly pathogenic porcine reproductive and respiratory syndrome virus strains rapidly and accurately.
Collapse
|
19
|
Yang K, Tian Y, Zhou D, Duan Z, Guo R, Liu Z, Yuan F, Liu W. A Multiplex RT-PCR Assay to Detect and Discriminate Porcine Reproductive and Respiratory Syndrome Viruses in Clinical Specimens. Viruses 2017; 9:v9080205. [PMID: 28763016 PMCID: PMC5580462 DOI: 10.3390/v9080205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 11/25/2022] Open
Abstract
Outbreaks of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) have led to large economic losses in China. The attenuated vaccine (HP-PRRSV JXA1-R) was used to control HP-PRRSV. However, in recent years, co-infection with classical PRRSV (C-PRRSV), HP-PRRSV, and/or HP-PRRSV JXA1-R has been increasing in China, resulting in a significant impact on PRRSV diagnostics and management. To facilitate rapid discrimination of HP-PRRSV JXA1-R from HP-PRRSV and C-PRRSV, a multiplex RT-PCR assay for the visual detection of HP-PRRSV JXA1-R, HP-PRRSV, and C-PRRSV was established and evaluated with reference PRRSV strains and clinical samples. Primer specificities were evaluated with RNA/DNA extracted from 10 viral strains, and our results revealed that the primers had a high specificity for PRRSV. The assay sensitivity was 24 copies/μL for PRRSVs. A total of 516 serum samples were identified, of which 12.21% (63/516) were HP-PRRSV-positive, 2.33% (12/516) were HP-PRRSV JXA1-R-positive, and 1.16% (6/516) were C-PRRSV-positive, respectively, which was completely consistent with the sequencing method. The high specificity, sensitivity, and reliability of the multiplex RT-PCR assay described in this study indicate that it is useful for the rapid and differential diagnosis of HP-PRRSV JXA1-R, HP-PRRSV, and C-PRRSV.
Collapse
Affiliation(s)
- Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zhengying Duan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
20
|
Wang JC, Yuan WZ, Han QA, Wang JF, Liu LB. Reverse transcription recombinase polymerase amplification assay for the rapid detection of type 2 porcine reproductive and respiratory syndrome virus. J Virol Methods 2017; 243:55-60. [PMID: 28122203 DOI: 10.1016/j.jviromet.2017.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pigs, and has tremendous negative economic impact on the swine industry worldwide. PRRSV is classified into the two distinct genotypes: type 1 and type 2, and most of the described PRRSV isolates in China are type 2. Rapid and sensitive detection of PRRSV is of great importance for the disease control and regional eradication programs. Recombinase polymerase amplification (RPA) has emerged as a novel isothermal amplification technology for the molecular diagnosis of infectious diseases. In this study, a fluorescence reverse transcription RPA (RT-RPA) assay was developed to detect the type 2 PRRSV using primers and exo probe specific for the viral nucleocapsid gene. The reaction was performed at 40°C within 20min. The RT-RPA assay could detect both the classical (C-PRRSV) and highly pathogenic PRRSV (HP-PRRSV), but there was no cross-reaction to other pathogens. Using the in vitro transcribed PRRSV RNA as template, the analytical sensitivity of RT-RPA was 690 copies. The assay performance was evaluated by testing 60 field samples and compared to real-time RT-PCR. The detection rate of RT-RPA was 86.6% (52/60), while the detection rate of real-time RT-PCR was 83.3% (50/60). This simple, rapid and reliable method could be potentially applied for rapid detection of PRRSV in point-of-care and rural areas.
Collapse
Affiliation(s)
- Jian-Chang Wang
- Inspection and Quarantine Technical Center of Hebei Entry-Exit Inspection and Quarantine Bureau, 318 Heping West Rd., Shijiazhuang, Hebei 050051, China
| | - Wan-Zhe Yuan
- College of Veterinary Medicine, Agricultural University of Hebei, No. 38 Lingyusi Street, Baoding, Hebei 071001, China.
| | - Qing-An Han
- Hebei Animal Disease Control Center, 219 Alishan Street, Shijiazhuang, Hebei 050050, China
| | - Jin-Feng Wang
- Inspection and Quarantine Technical Center of Hebei Entry-Exit Inspection and Quarantine Bureau, 318 Heping West Rd., Shijiazhuang, Hebei 050051, China
| | - Li-Bing Liu
- Inspection and Quarantine Technical Center of Hebei Entry-Exit Inspection and Quarantine Bureau, 318 Heping West Rd., Shijiazhuang, Hebei 050051, China
| |
Collapse
|
21
|
Rappe JCF, García-Nicolás O, Flückiger F, Thür B, Hofmann MA, Summerfield A, Ruggli N. Heterogeneous antigenic properties of the porcine reproductive and respiratory syndrome virus nucleocapsid. Vet Res 2016; 47:117. [PMID: 27871316 PMCID: PMC5118883 DOI: 10.1186/s13567-016-0399-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus responsible for a widespread contagious disease of domestic pigs with high economic impact. Switzerland is one of the rare PRRSV-free countries in Europe, although sporadic outbreaks have occurred in the past. The PRRSV isolate IVI-1173 from the short outbreak in Switzerland in 2012 was entirely sequenced, and a functional full-length cDNA clone was constructed. Genetic and antigenic characterization of IVI-1173 revealed the importance of amino acid 90 of the nucleocapsid protein N as part of a conformational epitope. IVI-1173 was not detected by SDOW17, a monoclonal antibody against N widely used to detect PRRSV-infected cells. Substitution of alanine at position 90 of N [N(A90)] with a threonine [N(T90)] restored reactivity of vIVI1173-N(T90) to SDOW17 completely. The relevance of this amino acid for the conformational SDOW17 epitope of PRRSV N was further confirmed by the opposite substitution in a functional cDNA clone of the genotype 2 isolate RVB-581. Finally, N proteins from ten genotype 1 strains differing from threonine at position 90 were analysed for reactivity with SDOW17. N(A90) totally disrupted or severely affected the epitope in 7 out of 8 strains tested. Based on these findings, 225 genotype 1 strains were screened for the prevalence of N(A90). N(A90) is rare in classical subtype 1 and in subtype 3 strains, but is frequent in Russian subtype 1 (70%) and in subtype 2 (45%) isolates. In conclusion, this study highlights the variable antigenic properties of N among genotype 1 PRRSV strains.
Collapse
Affiliation(s)
- Julie C F Rappe
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | - Barbara Thür
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Office for Consumer Protection, Canton Aargau, Obere Vorstadt 14, 5000, Aarau, Switzerland
| | - Martin A Hofmann
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
| | - Artur Summerfield
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland.
| |
Collapse
|
22
|
Wang X, Liu F, Jiang L, Bao Y, Xiao Y, Wang H. Use of chimeric influenza viruses as a novel internal control for diagnostic rRT-PCR assays. Appl Microbiol Biotechnol 2016; 100:1667-1676. [PMID: 26474983 PMCID: PMC7080162 DOI: 10.1007/s00253-015-7042-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 02/01/2023]
Abstract
Real-time quantitative reverse transcriptase polymerase chain reaction (rRT-PCR) is now widely used to detect viral pathogens in various human specimens. The application of internal controls to validate the entire process of these assays is necessary to prevent false-negative results caused by unexpected inhibition or inefficient extraction. In the present study, we describe a strategy to produce a stable internal control for rRT-PCR by packaging foreign RNA into influenza virions using plasmid-based reverse genetics technology. The envelope structure of influenza virus can effectively protect RNA segments from RNase digestion, which provides an advantage for its routine use as an internal control. Utilizing this approach, we successfully generated a recombinant influenza virus (rPR8-HCV) containing the 5′ untranslated region (5′ UTR) of the hepatitis C virus (HCV) RNA genome. After inactivation and purification, the rPR8-HCV particles were demonstrated to be RNase resistant and stable at 4 °C for at least 252 days in human plasma, with no degradation even after being frozen and thawed multiple times. These results were reproducible in the COBAS TaqMan HCV test for 164 days. Moreover, the chimeric influenza virus particles could be easily produced in embryonated eggs and were noninfectious after inactivation treatment. Additionally, this strategy could also be adapted for real-time clinical applications of other RNA targets, providing a universal approach with broad clinical applications in rRT-PCR assays.
Collapse
Affiliation(s)
- Xueliang Wang
- Shanghai Centre for Clinical Laboratory, 528 Hongshan Road, Shanghai, 200126, China
| | - Fen Liu
- Shanghai Institute of Biological Products, 1262 West Yanan Road, Shanghai, 200052, China
| | - Lingli Jiang
- Shanghai Centre for Clinical Laboratory, 528 Hongshan Road, Shanghai, 200126, China
| | - Yun Bao
- Shanghai Centre for Clinical Laboratory, 528 Hongshan Road, Shanghai, 200126, China
| | - Yanqun Xiao
- Shanghai Centre for Clinical Laboratory, 528 Hongshan Road, Shanghai, 200126, China
| | - Hualiang Wang
- Shanghai Centre for Clinical Laboratory, 528 Hongshan Road, Shanghai, 200126, China.
| |
Collapse
|
23
|
Shi X, Liu X, Wang Q, Das A, Ma G, Xu L, Sun Q, Peddireddi L, Jia W, Liu Y, Anderson G, Bai J, Shi J. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses. J Virol Methods 2016; 236:258-265. [PMID: 27506582 PMCID: PMC7119729 DOI: 10.1016/j.jviromet.2016.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022]
Abstract
A multiplex real-time PCR panel assay was developed for the detection of 12 major swine pathogens including VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU;. The panel assay was 100% specific against common swine pathogens;. Limits of detection of the assay were ranged 1–16 copies per reaction;. Detection sensitivity was not reduced by multiplexing three targets into one PCR reaction.
Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R2) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections.
Collapse
Affiliation(s)
- Xiju Shi
- Beijing Entry-Exit Inspection & Quarantine Bureau, Beijing, China; Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Xuming Liu
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Qin Wang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Amaresh Das
- Foreign Animal Diseases Diagnostic Laboratory, NVSL, APHIS, USDA, Greenport, NY, United States
| | - Guiping Ma
- Beijing Entry-Exit Inspection & Quarantine Bureau, Beijing, China
| | - Lu Xu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Qing Sun
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Wei Jia
- Foreign Animal Diseases Diagnostic Laboratory, NVSL, APHIS, USDA, Greenport, NY, United States
| | - Yanhua Liu
- Beijing Entry-Exit Inspection & Quarantine Bureau, Beijing, China
| | - Gary Anderson
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.
| |
Collapse
|
24
|
García-Nicolás O, Auray G, Sautter CA, Rappe JCF, McCullough KC, Ruggli N, Summerfield A. Sensing of Porcine Reproductive and Respiratory Syndrome Virus-Infected Macrophages by Plasmacytoid Dendritic Cells. Front Microbiol 2016; 7:771. [PMID: 27458429 PMCID: PMC4937788 DOI: 10.3389/fmicb.2016.00771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/06/2016] [Indexed: 11/17/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) represents a macrophage (MØ)-tropic virus which is unable to induce interferon (IFN) type I in its target cells. Nevertheless, infected pigs show a short but prominent systemic IFN alpha (IFN-α) response. A possible explanation for this discrepancy is the ability of plasmacytoid dendritic cells (pDC) to produce IFN-α in response to free PRRSV virions, independent of infection. Here, we show that the highly pathogenic PRRSV genotype 1 strain Lena is unique in not inducing IFN-α production in pDC, contrasting with systemic IFN-α responses found in infected pigs. We also demonstrate efficient pDC stimulation by PRRSV Lena-infected MØ, resulting in a higher IFN-α production than direct stimulation of pDC by PRRSV virions. This response was strain-independent, required integrin-mediated intercellular contact, intact actin filaments in the MØ and was partially inhibited by an inhibitor of neutral sphingomyelinase. Although infected MØ-derived exosomes stimulated pDC, an efficient delivery of the stimulatory component was dependent on a tight contact between pDC and the infected cells. In conclusion, with this mechanism the immune system can efficiently sense PRRSV, resulting in production of considerable quantities of IFN-α. This is adding complexity to the immunopathogenesis of PRRSV infections, as IFN-α should alert the immune system and initiate the induction of adaptive immune responses, a process known to be inefficient during infection of pigs.
Collapse
Affiliation(s)
| | - Gaël Auray
- The Institute of Virology and Immunology (IVI) Mittelhäusern, Switzerland
| | - Carmen A Sautter
- The Institute of Virology and Immunology (IVI) Mittelhäusern, Switzerland
| | - Julie C F Rappe
- The Institute of Virology and Immunology (IVI) Mittelhäusern, Switzerland
| | | | - Nicolas Ruggli
- The Institute of Virology and Immunology (IVI) Mittelhäusern, Switzerland
| | - Artur Summerfield
- The Institute of Virology and Immunology (IVI)Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of BernBern, Switzerland
| |
Collapse
|
25
|
Zheng X, Liu G, Opriessnig T, Wang Z, Yang Z, Jiang Y. Rapid detection and grouping of porcine bocaviruses by an EvaGreen(®) based multiplex real-time PCR assay using melting curve analysis. Mol Cell Probes 2016; 30:195-204. [PMID: 27180269 DOI: 10.1016/j.mcp.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/20/2023]
Abstract
Several novel porcine bocaviruses (PBoVs) have been identified in pigs in recent years and association of these viruses with respiratory signs or diarrhea has been suggested. In this study, an EvaGreen(®)-based multiplex real-time PCR (EG-mPCR) with melting curve analysis was developed for simultaneous detection and grouping of novel PBoVs into the same genogroups G1, G2 and G3. Each target produced a specific amplicon with a melting peak of 81.3 ± 0.34 °C for PBoV G1, 78.2 ± 0.37 °C for PBoV G2, and 85.0 ± 0.29 °C for PBoV G3. Non-specific reactions were not observed when other pig viruses were used to assess the EG-mPCR assay. The sensitivity of the EG-mPCR assay using purified plasmid constructs containing the specific viral target fragments was 100 copies for PBoV G1, 50 for PBoV G2 and 100 for PBoV G3. The assay is able to detect and distinguish three PBoV groups with intra-assay and inter-assay variations ranging from 0.13 to 1.59%. The newly established EG-mPCR assay was validated with 227 field samples from pigs. PBoV G1, G2 and G3 was detected in 15.0%, 25.1% and 41.9% of the investigated samples and coinfections of two or three PBoV groups were also detected in 25.1% of the cases, indicating that all PBoV groups are prevalent in Chinese pigs. The agreement of the EG-mPCR assay with an EvaGreen-based singleplex real-time PCR (EG-sPCR) assay was 99.1%. This EG-mPCR will serve as a rapid, sensitive, reliable and cost effective alternative for routine surveillance testing of multiple PBoVs in pigs and will enhance our understanding of the epidemiological features and possible also pathogenetic changes associated with these viruses in pigs.
Collapse
Affiliation(s)
- Xiaowen Zheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gaopeng Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK; Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Zining Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zongqi Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghou Jiang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
26
|
Faisal F, Widayanti R, Haryanto A, Tabu CR. Molecular identification and genetic diversity of open reading frame 7 field isolated porcine reproductive and respiratory syndrome in North Sumatera, Indonesia, in the period of 2008-2014. Vet World 2016; 8:875-80. [PMID: 27047168 PMCID: PMC4774680 DOI: 10.14202/vetworld.2015.875-880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/13/2015] [Accepted: 06/22/2015] [Indexed: 11/16/2022] Open
Abstract
AIM Molecular identification and genetic diversity of open reading frame 7 (ORF7) of field isolated porcine reproductive and respiratory syndrome virus (PRRSV) in North Sumatera, Indonesia, in the period of 2008-2014. MATERIALS AND METHODS A total of 47 PRRSV samples were collected from the death case of pigs. The samples were collected from different districts in the period of 2008-2014 from North Sumatera province. Two pairs of primer were designed to amplify ORF7 of Type 1 and 2 PRRSV based on the sequence of reference viruses VR2332 and Lelystad. Viral RNAs were extracted from samples using PureLink™ micro-to-Midi total RNA purification system (Invitrogen). To amplify the ORF7 of PRRSV, the synthesis cDNA and DNA amplification were performed by reverse transcription polymerase chain reaction (RT-PCR) and nested PCR method. Then the DNA sequencing of PCR products and phylogenetic analysis were accomplished by molecular evolutionary genetics analysis version 6.0 software program. RESULTS RT-: PCR and nested PCR used in this study had successfully detected of 18 samples positive PRRS virus with the amplification products at 703bp and 508bp, respectively. Sequencing of the ORF7 shows that 18 PRRS viruses isolated from North Sumatera belonged to North American (NA). JXA1 Like and classic NA type viruses. Several mutations were detected, particularly in the area of nuclear localization signal (NLS1) and in NLS2. In the local viruses, which were related closed to JXA1 virus; there are two differences in amino acids in position 12 and 43 of ORF7. Our tested viruses showed that the amino acid positions 12 and 43 are Asparagine and Arginine, while the reference virus (VR2332, Lelystad, and JXA1) occupied both by Lysine. Based on differences in two amino acids at position 12 and 43 showed that viruses from North Sumatera has its own uniqueness and related closed to highly pathogenic PRRS (HP-PRRS) virus (JXA1). CONCLUSION The results demonstrated that North Sumatera type PRRS virus has caused PRRS outbreaks in pig in North Sumatera between 2008 and 2014. The JAX1 like viruses had unique amino acid residue in position 12 and 43 of asparagine and lysine, and these were genetic determinants of North Sumatera viruses compared to other PRRS viruses.
Collapse
Affiliation(s)
- Faisal Faisal
- Department of Veterinary Science, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia; Department of Molecular Biology, Animal Disease Investigation Centre of Medan, North Sumatera, Indonesia
| | - Rini Widayanti
- Department of Biochemistry, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Aris Haryanto
- Department of Biochemistry, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Charles Rangga Tabu
- Department of Pathology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
27
|
Lung O, Ohene-Adjei S, Buchanan C, Joseph T, King R, Erickson A, Detmer S, Ambagala A. Multiplex PCR and Microarray for Detection of Swine Respiratory Pathogens. Transbound Emerg Dis 2015; 64:834-848. [PMID: 26662640 PMCID: PMC7169873 DOI: 10.1111/tbed.12449] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/26/2022]
Abstract
Porcine respiratory disease complex (PRDC) is one of the most important health concerns for pig producers and can involve multiple viral and bacterial pathogens. No simple, single‐reaction diagnostic test currently exists for the simultaneous detection of major pathogens commonly associated with PRDC. Furthermore, the detection of most of the bacterial pathogens implicated in PRDC currently requires time‐consuming culture‐based methods that can take several days to obtain results. In this study, a novel prototype automated microarray that integrates and automates all steps of post‐PCR microarray processing for the simultaneous detection and typing of eight bacteria and viruses commonly associated with PRDC is described along with associated multiplex reverse transcriptase PCR. The user‐friendly assay detected and differentiated between four viruses [porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus, porcine circovirus type 2, porcine respiratory corona virus], four bacteria (Mycoplasma hyopneumoniae, Pasteurella multocida, Salmonella enterica serovar Choleraesuis, Streptococcus suis), and further differentiated between type 1 and type 2 PRRSV as well as toxigenic and non‐toxigenic P. multocida. The assay accurately identified and typed a panel of 34 strains representing the eight targeted pathogens and was negative when tested with 34 relevant and/or closely related non‐target bacterial and viral species. All targets were also identified singly or in combination in a panel of clinical lung samples and/or experimentally inoculated biological material.
Collapse
Affiliation(s)
- O Lung
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - S Ohene-Adjei
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - C Buchanan
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - T Joseph
- Animal Health Centre, BC Ministry of Agriculture, Abbotsford, BC, Canada
| | - R King
- Animal Health and Assurance Division, Alberta Agriculture and Rural Development, Edmonton, AB, Canada
| | - A Erickson
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| | - S Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - A Ambagala
- Lethbridge Laboratory, National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, AB, Canada
| |
Collapse
|
28
|
Eschbaumer M, Li W(M, Wernike K, Marshall F, Czub M. Probe-free real-time reverse transcription polymerase chain reaction assays for the detection and typing of porcine reproductive and respiratory syndrome virus in Canada. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2015; 79:170-179. [PMID: 26130848 PMCID: PMC4445508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has tremendous impact on the pork industry in North America. The molecular diagnosis of infection with PRRS virus (PRRSV) is hampered by its considerable strain diversity. In this study, 43 previously published or newly developed primers for probe-free real-time reverse transcription polymerase chain reaction (RT-PCR) were evaluated on their sensitivity, specificity, reproducibility, and repeatability, using a diverse panel of 36 PRRSV strains as well as other arteriviruses and unrelated porcine viruses. Three primer pairs had excellent diagnostic and analytical sensitivity on par with a probe-based reference assay, absolute specificity to virus genotype and species, as well as over 95% reproducibility and repeatability across a wide dynamic range.
Collapse
Affiliation(s)
- Michael Eschbaumer
- Address all correspondence to Dr. Michael Eschbaumer; telephone: +1 (631) 323-3068; fax: +1 (631) 323-3006; e-mail:
| | | | | | | | | |
Collapse
|
29
|
Chen R, Yu XL, Gao XB, Xue CY, Song CX, Li Y, Cao YC. Bead-based suspension array for simultaneous differential detection of five major swine viruses. Appl Microbiol Biotechnol 2015; 99:919-28. [PMID: 25557628 DOI: 10.1007/s00253-014-6337-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 02/02/2023]
Abstract
A novel multiplex detection array based on Luminex xMAP technology was developed and validated for simultaneous detection of five major viruses causing swine reproductive diseases. By combining one-step asymmetric multiplex reverse transcription polymerase chain reaction (RT-PCR) with xMAP bead-based hybridization and flow cytometry analysis, the resulting multiplex assay was capable of detecting single and mixed infections of PRRSV, PCV-2, PRV, CSFV, and PPV in a single reaction. The assay accurately detected and differentiated 23 viral strains used in this study. The low detection limit was determined as 2.2-22 copies/μL (corresponding to 0.5-6.8 fg/μL DNA template) on plasmid constructs containing viral fragments. The intra-assay and inter-assay variances (CV%) were low that ranged from 2.5 to 5.4 % and 4.1 to 7.6 %, respectively. The assay was applied to test field samples and detected single and mixed viral infections. The detection rate was higher than that of uniplex conventional PCR and RT-PCR methods. The detection of PRRSV by the bead-based multiplex assay was comparable with a commercially available real time RT-PCR kit. The test procedure on purified DNA or RNA samples could be completed within 2 h. In conclusion, the bead-based suspension array presented here proved to be a high-throughput practical tool that provided highly specific and sensitive identification of single and multiple infections of five major viruses in pigs and boar semen.
Collapse
Affiliation(s)
- Ru Chen
- Animal Inspection and Quarantine Laboratory, Technical Center, Guangdong Entry-Exit Inspection and Quarantine Bureau, No.66 Huacheng Dadao Ave., Zhujiangxincheng, Guangzhou, 510623, China,
| | | | | | | | | | | | | |
Collapse
|
30
|
Rao P, Wu H, Jiang Y, Opriessnig T, Zheng X, Mo Y, Yang Z. Development of an EvaGreen-based multiplex real-time PCR assay with melting curve analysis for simultaneous detection and differentiation of six viral pathogens of porcine reproductive and respiratory disorder. J Virol Methods 2014; 208:56-62. [DOI: 10.1016/j.jviromet.2014.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/17/2014] [Accepted: 06/20/2014] [Indexed: 11/27/2022]
|
31
|
Kang K, Yang K, Zhong J, Tian Y, Zhang L, Zhai J, Zhang L, Song C, Gou CY, Luo J, Gou D. A direct real-time polymerase chain reaction assay for rapid high-throughput detection of highly pathogenic North American porcine reproductive and respiratory syndrome virus in China without RNA purification. J Anim Sci Biotechnol 2014; 5:45. [PMID: 25324970 PMCID: PMC4198619 DOI: 10.1186/2049-1891-5-45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/25/2014] [Indexed: 01/16/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV), and particularly its highly pathogenic genotype (HP-PRRSV), have caused massive economic losses to the global swine industry. Results To rapidly identify HP-PRRSV, we developed a direct real-time reverse transcription polymerase chain reaction method (dRT-PCR) that could detect the virus from serum specimen without the need of RNA purification. Our dRT-PCR assay can be completed in 1.5 h from when a sample is received to obtaining a result. Additionally, the sensitivity of dRT-PCR matched that of conventional reverse transcription PCR (cRT-PCR) that used purified RNA. The lowest detection limit of HP-PRRSV was 6.3 TCID50 using dRT-PCR. We applied dRT-PCR assay to 144 field samples and the results showed strong consistency with those obtained by cRT-PCR. Moreover, the dRT-PCR method was able to tolerate 5-20% (v/v) serum. Conclusions Our dRT-PCR assay allows for easier, faster, more cost-effective and higher throughput detection of HP-PRRSV compared with cRT-PCR methods. To the best of our knowledge, this is the first report to describe a real-time RT-PCR assay capable of detecting PRRSV in crude serum samples without the requirement for purifying RNA. We believe our approach has a great potential for application to other RNA viruses. Electronic supplementary material The online version of this article (doi:10.1186/2049-1891-5-45) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kang Kang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China ; College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Keli Yang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Jiasheng Zhong
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Yongxiang Tian
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Limin Zhang
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Jianxin Zhai
- Shenzhen Ao Dong Inspection and Testing Technology Co,. Ltd, Shenzhen, 518000 China
| | - Li Zhang
- Shenzhen Ao Dong Inspection and Testing Technology Co,. Ltd, Shenzhen, 518000 China
| | - Changxu Song
- Veterinary Medicine Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | | | - Jun Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Deming Gou
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
32
|
Nathues C, Perler L, Bruhn S, Suter D, Eichhorn L, Hofmann M, Nathues H, Baechlein C, Ritzmann M, Palzer A, Grossmann K, Schüpbach-Regula G, Thür B. An Outbreak of Porcine Reproductive and Respiratory Syndrome Virus in Switzerland Following Import of Boar Semen. Transbound Emerg Dis 2014; 63:e251-61. [PMID: 25209832 DOI: 10.1111/tbed.12262] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 12/26/2022]
Abstract
An outbreak of porcine reproductive and respiratory syndrome virus (PRRSV) occurred in November 2012 in Switzerland (CH), traditionally PRRSV-free. It was detected after a German boar stud informed a semen importer about the detection of PRRSV during routine monitoring. Tracing of semen deliveries revealed 26 Swiss sow herds that had used semen from this stud after its last negative routine monitoring and 62 further contact herds. All herds were put under movement restrictions and examined serologically and virologically. As a first measure, 59 sows from five herds that had previously been inseminated with suspicious semen were slaughtered and tested immediately. Investigations in the stud resulted in 8 positive boars with recent semen deliveries to CH (Seven with antibodies and virus, one with antibodies only). In one boar out of six tested, virus was detected in semen. Of the 59 slaughtered sows, five from three herds were virus-positive. In one herd, the virus had spread, and all pigs were slaughtered or non-marketable animals euthanized. In the remaining herds, no further infections were detected. After confirmatory testings in all herds 3 weeks after the first examination gave negative results, restrictions were lifted in January 2013, and Switzerland regained its PRRSV-free status. The events demonstrate that import of semen from non-PRRS-free countries--even from negative studs--poses a risk, because monitoring protocols in boar studs are often insufficient to timely detect an infection, and infections of sows/herds occur even with low numbers of semen doses. The outbreak was eradicated successfully mainly due to the high disease awareness of the importer and because immediate actions were taken before clinical or laboratory diagnosis of a single case in the country was made. To minimize the risk of an introduction of PRRSV in the future, stricter import guidelines for boar semen have been implemented.
Collapse
Affiliation(s)
- C Nathues
- Veterinary Public Health Institute, University of Berne, Liebefeld, Switzerland
| | - L Perler
- Federal Veterinary Office, Liebefeld, Switzerland
| | - S Bruhn
- Federal Veterinary Office, Liebefeld, Switzerland
| | - D Suter
- Federal Veterinary Office, Liebefeld, Switzerland
| | - L Eichhorn
- Qualiporc Genossenschaft, Oberriet, Switzerland
| | - M Hofmann
- Institute for Virology and Immunology, Mittelhäusern, Switzerland
| | - H Nathues
- Clinic for Swine, University of Berne, Berne, Switzerland
| | - C Baechlein
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M Ritzmann
- Clinic for Swine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - A Palzer
- Clinic for Swine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - K Grossmann
- Swine Health Service Baden-Wuerttemberg, Aulendorf, Germany
| | - G Schüpbach-Regula
- Veterinary Public Health Institute, University of Berne, Liebefeld, Switzerland
| | - B Thür
- Institute for Virology and Immunology, Mittelhäusern, Switzerland
| |
Collapse
|
33
|
Porcine reproductive and respiratory syndrome virus nonstructural protein 4 antagonizes beta interferon expression by targeting the NF-κB essential modulator. J Virol 2014; 88:10934-45. [PMID: 25008936 DOI: 10.1128/jvi.01396-14] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious pathogen that causes severe diseases in pigs and great economic losses to the swine industry worldwide. Type I interferons (IFNs) play a crucial role in antiviral immunity. In the present study, we demonstrated that infection with the highly pathogenic PRRSV strain JXwn06 antagonized type I IFN expression induced by poly(I·C) in both porcine alveolar macrophages (PAMs) and blood monocyte-derived macrophages (BMo). Subsequently, we showed that the inhibition of poly(I·C)-induced IFN-β production by PRRSV was dependent on the blocking of NF-κB signaling pathways. By screening PRRSV nonstructural and structural proteins, we demonstrated that nonstructural protein 4 (nsp4), a viral 3C-like serine protease, significantly suppressed IFN-β expression. Moreover, we verified that nsp4 inhibited NF-κB activation induced by signaling molecules, including RIG-I, VISA, TRIF, and IKKβ. nsp4 was shown to target the NF-κB essential modulator (NEMO) at the E349-S350 site to mediate its cleavage. Importantly, nsp4 mutants with defective protease activity abolished its ability to cleave NEMO and inhibit IFN-β production. These findings might have implications for our understanding of PRRSV pathogenesis and its mechanisms for evading the host immune response. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is a major agent of respiratory diseases in pigs. Like many other viruses, PRRSV has evolved a variety of strategies to evade host antiviral innate immunity for survival and propagation. In this study, we show that PRRSV nsp4 is a novel antagonist of the NF-κB signaling pathway, which is responsible for regulating the expression of type I interferons and other crucial cytokines. We then investigated the underlying mechanism used by nsp4 to suppress NF-κB-mediated IFN-β production. We found that nsp4 interfered with the NF-κB signaling pathway through the cleavage of NEMO (a key regulator of NF-κB signaling) at the E349-S350 site, leading to the downregulation of IFN-β production induced by poly(I·C). The data presented here may help us to better understand PRRSV pathogenesis.
Collapse
|
34
|
Comparison of real-time reverse transcriptase PCR assays for detection of swine hepatitis E virus in fecal samples. J Clin Microbiol 2014; 52:1045-51. [PMID: 24430450 DOI: 10.1128/jcm.03118-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in people in many developing countries and is also endemic in many industrialized countries. Mammalian HEV (mHEV) isolates can be divided into at least four recognized major genotypes. Several nucleic acid amplification techniques have been developed for mHEV detection, with great differences in sensitivity. The aim of this study was to compare the performances of two singleplex real-time reverse transcriptase (RT) PCR assays for broad detection of all four mHEV genotypes (assays A and B) and two duplex real-time RT-PCR assays for detection and differentiation of mHEV genotypes 3 and 4 (assays C and D). RNAs extracted from 28 fecal samples from pigs experimentally inoculated with HEV genotype 3 and 186 fecal samples from commercial pigs with unknown HEV exposure were tested by all four assays. In experimental samples, HEV RNA was detected in 96.4% (assay A), 39.2% (assay B), 14.2% (assay C), and 0% (assay D) of the samples. In field samples with unknown HEV exposure, HEV RNA was detected in 67.2% (assay A), 36.4% (assay B), 1.1% (assay C), and 0.5% (assay D) of the samples. The assays showed overall poor agreement (κ = 0.19 to 0.03), with differences in detection rates between assays (P < 0.01). Assays A and B, which broadly detect HEV genotypes 1 to 4, had significantly higher detection rates for HEV RNA than the duplex assays C and D, which were both designed to detect and differentiate between HEV genotypes 3 and 4.
Collapse
|
35
|
Chaumpluk P, Suriyasomboon A. A Simple Paper-Based Lab-on-a-Chip for the Detection of a Highly Pathogenic Strain of Porcine Reproductive and Respiratory Syndrome Virus. Aust J Chem 2014. [DOI: 10.1071/ch14222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A paper-based laboratory-on-a-chip assay for the rapid detection of a highly pathogenic strain of porcine reproductive and respiratory syndrome virus (HP-PRRSV) was developed for the first time. The single-unit chip was simply fabricated using Whatman filter paper and plastic lamination. The chip measured 2.5 × 3.0 cm2 and was divided into two parts, one for nucleic acid amplification and the other for signal detection. The HP-PRRSV assay was performed by specific ORF I Nsp 2 gene amplification via an isothermal reverse transcription loop-mediated DNA amplification platform, whereas the cDNA signal detection was performed by visual observation of colorimetric changes in blue silver nanoplates (AgNPls). Positive results caused non-aggregation of the blue AgNPls on the detection pad, whereas negative results induced colorimetric changes in the AgNPls from blue to colourless on the pad. The assay had a limit of detection of 100 copies of the target Nsp 2 gene and high specificity for other types of infectious viruses. The assay required only one hour to complete. This work demonstrates a simple and rapid assay for viruses using a simple, low-cost, paper-based chip.
Collapse
|
36
|
García-Nicolás O, Baumann A, Vielle NJ, Gómez-Laguna J, Quereda JJ, Pallarés FJ, Ramis G, Carrasco L, Summerfield A. Virulence and genotype-associated infectivity of interferon-treated macrophages by porcine reproductive and respiratory syndrome viruses. Virus Res 2014; 179:204-11. [DOI: 10.1016/j.virusres.2013.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
37
|
Highly pathogenic porcine reproductive and respiratory syndrome virus induces prostaglandin E2 production through cyclooxygenase 1, which is dependent on the ERK1/2-p-C/EBP-β pathway. J Virol 2013; 88:2810-20. [PMID: 24352469 DOI: 10.1128/jvi.03205-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Atypical porcine reproductive and respiratory syndrome (PRRS) caused by highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is characterized by high fever and high mortality. However, the mechanism underlying the fever induction is still unknown. Prostaglandin E2 (PGE2), synthesized by cyclooxygenase type 1/2 (COX-1/2) enzymes, is essential for inducing fever. In this study, we found that PGE2, together with COX-1, was significantly elevated by HP-PRRSV. We subsequently demonstrated that extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylated ERK (p-ERK) were the key nodes to trigger COX-1 expression after HP-PRRSV infection. Furthermore, we proved the direct binding of p-C/EBP-β to the COX-1 promoter by luciferase reporter and chromatin immunoprecipitation assays. In addition, silencing of C/EBP-β remarkably impaired the enhancement of COX-1 production induced by HP-PRRSV infection. Taken together, our results indicate that HP-PPRSV elicits the expression of COX-1 through the ERK1/2-p-C/EBP-β signaling pathway, resulting in the increase of PGE2, which might be the cause of high fever in infected pigs. Our findings might provide new insights into the molecular mechanisms underlying the pathogenesis of HP-PRRSV infection. IMPORTANCE The atypical PRRS caused by HP-PRRSV was characterized by high fever, high morbidity, and high mortality in pigs of all ages, yet how HP-PRRSV induces high fever in pigs remains unknown. In the present study, we found out that HP-PRRSV infection could increase PGE2 production by upregulation of COX-1, and we subsequently characterized the underlying mechanisms about how HP-PRRSV enhances COX-1 production. PGE2 plays a critical role in inducing high temperature in hosts during pathogen infections. Thus, our findings here could help us have a better understanding of HP-PRRSV pathogenesis.
Collapse
|
38
|
Yang K, Li Y, Duan Z, Guo R, Liu Z, Zhou D, Yuan F, Tian Y. A one-step RT-PCR assay to detect and discriminate porcine reproductive and respiratory syndrome viruses in clinical specimens. Gene 2013; 531:199-204. [PMID: 24035936 DOI: 10.1016/j.gene.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/28/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022]
Abstract
Outbreaks of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) have led to large economic losses and, subsequently, have drawn great attention to its diagnosis and prevention. To facilitate rapid discrimination of HP-PRRSV from classical PRRSV (C-PRRSV), we developed a one-step RT-PCR assay. Primer specificities were evaluated with RNA extracted from 8 viral strains and our results revealed that the primers had a high specificity for PRRSV. The assay sensitivity was 25 copies/μL for both HP-PRRSV and C-PRRSV. A total of 929 serum samples were identified, of which 20.45% were HP-PRRSV-positive and 1.51% were C-PRRSV-positive, which was completely consistent with that of immunochromatochemistry and sequencing method. The proposed assay can detect the virus 2 days prior the onset of symptoms and it can be performed in 2h, thereby providing a rapid method to discriminate HP-PRRSV from C-PRRSV for the identification and prevention of PRRSV infections.
Collapse
Affiliation(s)
- Keli Yang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Baumann A, Mateu E, Murtaugh MP, Summerfield A. Erratum to: Impact of genotype 1 and 2 of porcine reproductive and respiratory syndrome viruses on interferon-α responses by plasmacytoid dendritic cells. Vet Res 2013. [PMCID: PMC3848481 DOI: 10.1186/1297-9716-44-74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Zhang X, Li A, Shuai J, Dai Y, Zhu Z, Wu S, He Y. Validation of an internally controlled multiplex real time RT-PCR for detection and typing of HEV genotype 3 and 4. J Virol Methods 2013; 193:432-8. [PMID: 23850697 DOI: 10.1016/j.jviromet.2013.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/25/2013] [Accepted: 07/03/2013] [Indexed: 12/31/2022]
Abstract
Hepatitis E virus (HEV) genotypes 1 and 2 are restricted to humans, whereas genotypes 3 (HEV 3) and genotype 4 (HEV 4) infect humans and a variety of animal species. Cross-species infections by animal strains raise potential public health concerns for zoonotic HEV transmission. Therefore, a real-time reverse transcription polymerase chain reaction (RT-qPCR) combining the HEV 3-tpye specific RT-qPCR assay with the HEV 4-tpye specific assay was developed. Furthermore, a heterologous RNA, an in vitro transcript of the enhanced green fluorescent protein (EGFP) gene, was introduced as an internal control. The data showed that EGFP gene provided a very reliable and simple way of monitoring both the sample manipulation and amplification procedures. The final multiplex RT-qPCR assay showed a high analytical sensitivity of less than 50 copies RNA per reaction for both HEV genotypes. The specificity and amplification efficiency of the multiplex assay for the respective HEV were confirmed by co-amplification of the other target. By comparing with the results of mono-specific assay and nested PCR as well as sequencing, HEV infection in a panel of clinical samples was reliably detected and typed, which indicated that the novel multiplex RT-qPCR assay could be used for sensitive detection and rapid differentiation of zoonotic HEV genotype 3 and 4.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Zhejiang Entry-Exit Inspection and Quarantine Bureau, 126 Fuchun Road, Hangzhou 310016, China; Yiwu Entry-Exit Inspection and Quarantine Bureau, 299 Chengbei Road, Yiwu 322000, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Mingxiao M, Jinhua L, Yingjin S, Li L, Yongfei L. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus. PLoS One 2013; 8:e52670. [PMID: 23408931 PMCID: PMC3568131 DOI: 10.1371/journal.pone.0052670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/19/2012] [Indexed: 11/19/2022] Open
Abstract
Sacbrood virus (SBV) is a picorna-like virus that affects honey bees (Apis mellifera) and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV) in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB) probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.
Collapse
Affiliation(s)
- Ma Mingxiao
- Department of Laboratory Animal Center, Liaoning Medical University, Jinzhou, China.
| | | | | | | | | |
Collapse
|
42
|
Single-tube multiplexed molecular detection of endemic porcine viruses in combination with background screening for transboundary diseases. J Clin Microbiol 2013; 51:938-44. [PMID: 23303496 DOI: 10.1128/jcm.02947-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance.
Collapse
|
43
|
A SYBR Green-based real-time RT-PCR assay for simple and rapid detection and differentiation of highly pathogenic and classical type 2 porcine reproductive and respiratory syndrome virus circulating in China. Arch Virol 2012; 158:407-15. [DOI: 10.1007/s00705-012-1504-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/31/2012] [Indexed: 12/28/2022]
|