1
|
Sharma S, Kishen A. Bioarchitectural Design of Bioactive Biopolymers: Structure-Function Paradigm for Diabetic Wound Healing. Biomimetics (Basel) 2024; 9:275. [PMID: 38786486 PMCID: PMC11117869 DOI: 10.3390/biomimetics9050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic wounds such as diabetic ulcers are a major complication in diabetes caused by hyperglycemia, prolonged inflammation, high oxidative stress, and bacterial bioburden. Bioactive biopolymers have been found to have a biological response in wound tissue microenvironments and are used for developing advanced tissue engineering strategies to enhance wound healing. These biopolymers possess innate bioactivity and are biodegradable, with favourable mechanical properties. However, their bioactivity is highly dependent on their structural properties, which need to be carefully considered while developing wound healing strategies. Biopolymers such as alginate, chitosan, hyaluronic acid, and collagen have previously been used in wound healing solutions but the modulation of structural/physico-chemical properties for differential bioactivity have not been the prime focus. Factors such as molecular weight, degree of polymerization, amino acid sequences, and hierarchical structures can have a spectrum of immunomodulatory, anti-bacterial, and anti-oxidant properties that could determine the fate of the wound. The current narrative review addresses the structure-function relationship in bioactive biopolymers for promoting healing in chronic wounds with emphasis on diabetic ulcers. This review highlights the need for characterization of the biopolymers under research while designing biomaterials to maximize the inherent bioactive potency for better tissue regeneration outcomes, especially in the context of diabetic ulcers.
Collapse
Affiliation(s)
- Shivam Sharma
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
2
|
Lin X, Moreno IY, Nguyen L, Gesteira TF, Coulson-Thomas VJ. ROS-Mediated Fragmentation Alters the Effects of Hyaluronan on Corneal Epithelial Wound Healing. Biomolecules 2023; 13:1385. [PMID: 37759785 PMCID: PMC10526416 DOI: 10.3390/biom13091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A buildup of reactive oxygen species (ROS) occurs in virtually all pathological conditions. Hyaluronan (HA) is a major extracellular matrix component and is susceptible to oxidation by reactive oxygen species (ROS), yet the precise chemical structures of oxidized HA products (oxHA) and their physiological properties remain largely unknown. This study characterized the molecular weight (MW), structures, and physiological properties of oxHA. For this, high-molecular-weight HA (HMWHA) was oxidized using increasing molar ratios of hydrogen peroxide (H2O2) or hypochlorous acid (HOCl). ROS lead to the fragmentation of HA, with the oxHA products produced by HOCl exhibiting an altered chemical structure while those produced by H2O2 do not. HMWHA promotes the viability of human corneal epithelial cells (hTCEpi), while low MWHA (LMWHA), ultra-LMWHA (ULMWHA), and most forms of oxHA do not. HMWHA and LMWHA promote hTCEpi proliferation, while ULMWHA and all forms of oxHA do not. LMWHA and some forms of oxHA promote hTCEpi migration, while HMWHA does not. Finally, all native forms of HA and oxHA produced by HOCl promote in vivo corneal wound healing, while oxHA produced by H2O2 does not. Taken together, our results show that HA fragmentation by ROS can alter the physiological activity of HA by altering its MW and structure.
Collapse
Affiliation(s)
| | | | | | | | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA; (X.L.); (I.Y.M.); (L.N.); (T.F.G.)
| |
Collapse
|
3
|
Zheng S, An S, Luo Y, Vithran DTA, Yang S, Lu B, Deng Z, Li Y. HYBID in osteoarthritis: Potential target for disease progression. Biomed Pharmacother 2023; 165:115043. [PMID: 37364478 DOI: 10.1016/j.biopha.2023.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
HYBID is a new hyaluronan-degrading enzyme and exists in various cells of the human body. Recently, HYBID was found to over-express in the osteoarthritic chondrocytes and fibroblast-like synoviocytes. According to these researches, high level of HYBID is significantly correlated with cartilage degeneration in joints and hyaluronic acid degradation in synovial fluid. In addition, HYBID can affect inflammatory cytokine secretion, cartilage and synovium fibrosis, synovial hyperplasia via multiple signaling pathways, thereby exacerbating osteoarthritis. Based on the existing research of HYBID in osteoarthritis, HYBID can break the metabolic balance of HA in joints through the degradation ability independent of HYALs/CD44 system and furthermore affect cartilage structure and mechanotransduction of chondrocytes. In particular, in addition to HYBID itself being able to trigger some signaling pathways, we believe that low-molecular-weight hyaluronan produced by excess degradation can also stimulate some disease-promoting signaling pathways by replacing high-molecular-weight hyaluronan in joints. The specific role of HYBID in osteoarthritis is gradually revealed, and the discovery of HYBID raises the new way to treat osteoarthritis. In this review, the expression and basic functions of HYBID in joints were summarized, and reveal potential role of HYBID as a key target in treatment for osteoarthritis.
Collapse
Affiliation(s)
- Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Senbo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Luo
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Djandan Tadum Arthur Vithran
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shaoqu Yang
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity. Biomolecules 2022; 12:biom12050658. [PMID: 35625586 PMCID: PMC9138743 DOI: 10.3390/biom12050658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix. It is synthesized by hyaluronan synthases (HAS) into high-molecular-weight chains (HMW-HA) that exhibit anti-inflammatory and immunomodulatory functions. In damaged, infected, and/or inflamed tissues, HMW-HA are degraded by hyaluronidases (HYAL) or reactive oxygen species (ROS) to give rise to low-molecular-weight HAs (LMW-HAs) that are potent pro-inflammatory molecules. Therefore, the size of HA regulates the balance of anti- or pro-inflammatory functions. The activities of HA depend also on its interactions with hyaladherins. HA synthesis, degradation, and activities through HA/receptors interactions define the hyaluronasome. In this review, a short overview of the role of high and low-molecular-weight HA polymers in the lungs is provided. The involvement of LMW-HA in pulmonary innate immunity via the activation of neutrophils, macrophages, dendritic cells, and epithelial cells is described to highlight LMW-HA as a therapeutic target in inflammatory respiratory diseases. Finally, the possibilities to counter LMW-HA’s deleterious effects in the lungs are discussed.
Collapse
|
5
|
Sankaran D, Vali P, Chen P, Lesneski AL, Hardie ME, Alhassen Z, Wedgwood S, Wyckoff MH, Lakshminrusimha S. Randomized trial of oxygen weaning strategies following chest compressions during neonatal resuscitation. Pediatr Res 2021; 90:540-548. [PMID: 33941864 PMCID: PMC8530847 DOI: 10.1038/s41390-021-01551-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 04/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The Neonatal Resuscitation Program (NRP) recommends using 100% O2 during chest compressions and adjusting FiO2 based on SpO2 after return of spontaneous circulation (ROSC). The optimal strategy for adjusting FiO2 is not known. METHODS Twenty-five near-term lambs asphyxiated by umbilical cord occlusion to cardiac arrest were resuscitated per NRP. Following ROSC, lambs were randomized to gradual decrease versus abrupt wean to 21% O2 followed by FiO2 titration to achieve NRP SpO2 targets. Carotid blood flow and blood gases were monitored. RESULTS Three minutes after ROSC, PaO2 was 229 ± 32 mmHg in gradual wean group compared to 57 ± 13 following abrupt wean to 21% O2 (p < 0.001). PaO2 remained high in the gradual wean group at 10 min after ROSC (110 ± 10 vs. 67 ± 12, p < 0.01) despite similar FiO2 (~0.3) in both groups. Cerebral O2 delivery (C-DO2) was higher above physiological range following ROSC with gradual wean (p < 0.05). Lower blood oxidized/reduced glutathione ratio (suggesting less oxidative stress) was observed with abrupt wean. CONCLUSION Weaning FiO2 abruptly to 0.21 with adjustment based on SpO2 prevents surge in PaO2 and C-DO2 and minimizes oxidative stress compared to gradual weaning from 100% O2 following ROSC. Clinical trials with neurodevelopmental outcomes comparing post-ROSC FiO2 weaning strategies are warranted. IMPACT In a lamb model of perinatal asphyxial cardiac arrest, abrupt weaning of inspired oxygen to 21% prevents excessive oxygen delivery to the brain and oxidative stress compared to gradual weaning from 100% oxygen following return of spontaneous circulation. Clinical studies assessing neurodevelopmental outcomes comparing abrupt and gradual weaning of inspired oxygen after recovery from neonatal asphyxial arrest are warranted.
Collapse
Affiliation(s)
- Deepika Sankaran
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA.
| | - Payam Vali
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Peggy Chen
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Amy L Lesneski
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Morgan E Hardie
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Ziad Alhassen
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Stephen Wedgwood
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Myra H Wyckoff
- Division of Neonatology, Department of Pediatrics, University of Texas South Western (UTSW), Dallas, TX, USA
| | - Satyan Lakshminrusimha
- Division of Neonatology, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
6
|
Optimizing Oxygenation of the Extremely Premature Infant during the First Few Minutes of Life: Start Low or High? J Pediatr 2020; 227:295-299. [PMID: 32663594 DOI: 10.1016/j.jpeds.2020.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 02/04/2023]
|
7
|
Avenoso A, Bruschetta G, D Ascola A, Scuruchi M, Mandraffino G, Saitta A, Campo S, Campo GM. Hyaluronan Fragmentation During Inflammatory Pathologies: A Signal that Empowers Tissue Damage. Mini Rev Med Chem 2020; 20:54-65. [PMID: 31490750 DOI: 10.2174/1389557519666190906115619] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
The mechanisms that modulate the response to tissue injury are not fully understood. Abnormalities in the repair response are associated with a variety of chronic disease states characterized by inflammation, followed subsequently by excessive ECM deposition. As cell-matrix interactions are able to regulate cellular homeostasis, modification of ECM integrity appears to be an unspecific factor in promoting the onset and progression of inflammatory diseases. Evidence is emerging to show that endogenous ECM molecules supply signals to damage tissues and cells in order to promote further ECM degradation and inflammation progression. Several investigations have been confirmed that HA fragments of different molecular sizes exhibit different biological effects and responses. In fact, the increased deposition of HA into the ECM is a strong hallmark of inflammation processes. In the context of inflammatory pathologies, highly polymerized HA is broken down into small components, which are able to exacerbate the inflammatory response by inducing the release of various detrimental mediators such as reactive oxygen species, cytokines, chemokines and destructive enzymes and by facilitating the recruitment of leukocytes. However, strategies involving the modulation of the HA fragment with specific receptors on cell surface could represent different promising effects for therapeutic scope. This review will focus on the inflammation action of small HA fragments in recent years obtained by in vivo reports.
Collapse
Affiliation(s)
- Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125 - Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Angela D Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 - Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 - Messina, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 - Messina, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 - Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125 - Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125 - Messina, Italy
| |
Collapse
|
8
|
Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol 2019; 78-79:1-10. [PMID: 30802498 DOI: 10.1016/j.matbio.2019.02.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Cell-matrix interactions are fundamental to many developmental, homeostatic, immune and pathologic processes. Hyaluronan (HA), a critical component of the extracellular matrix (ECM) that regulates normal structural integrity and development, also regulates tissue responses during injury, repair, and regeneration. Though simple in its primary structure, HA regulates biological responses in a highly complex manner with balanced contributions from its molecular size and concentration, synthesis versus enzymatic and/or oxidative-nitrative fragmentation, interactions with key HA binding proteins and cell associated receptors, and its cell context-specific signaling. This review highlights the different, but inter-related factors that dictate the biological activity of HA and introduces the overarching themes that weave throughout this special issue of Matrix Biology on hyaluronan.
Collapse
|
9
|
Abstract
Over 50 years after its first description, Bronchopulmonary Dysplasia (BPD) remains a devastating pulmonary complication in preterm infants with respiratory failure and develops in 30-50% of infants less than 1000-gram birth weight. It is thought to involve ventilator- and oxygen-induced damage to an immature lung that results in an inflammatory response and ends in aberrant lung development with dysregulated angiogenesis and alveolarization. Significant morbidity and mortality are associated with this most common chronic lung disease of childhood. Thus, any therapies that decrease the incidence or severity of this condition would have significant impact on morbidity, mortality, human costs, and healthcare expenditure. It is clear that an inflammatory response and the elaboration of growth factors and cytokines are associated with the development of BPD. Numerous approaches to control the inflammatory process leading to the development of BPD have been attempted. This review will examine the anti-inflammatory approaches that are established or hold promise for the prevention or treatment of BPD.
Collapse
Affiliation(s)
- Rashmin C Savani
- Center for Pulmonary & Vascular Biology, Division of Neonatal-Perinatal Medicine, The Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA.
| |
Collapse
|
10
|
Cui Z, Liao J, Cheong N, Longoria C, Cao G, DeLisser HM, Savani RC. The Receptor for Hyaluronan-Mediated Motility (CD168) promotes inflammation and fibrosis after acute lung injury. Matrix Biol 2018; 78-79:255-271. [PMID: 30098420 PMCID: PMC6368477 DOI: 10.1016/j.matbio.2018.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/09/2018] [Accepted: 08/04/2018] [Indexed: 12/15/2022]
Abstract
Acute lung injury results in early inflammation and respiratory distress, and later fibrosis. The glycosaminoglycan hyaluronan (HA) and the Receptor for Hyaluronan-Mediated Motility (RHAMM, CD168) have been implicated in the response to acute lung injury. We hypothesized that, compared to wild type (WT) mice, RHAMM knockout (KO) mice would be protected from, whereas mice with macrophage-specific transgenic overexpression of RHAMM (TG) would have worse inflammation, respiratory distress and fibrosis after intratracheal (IT) bleomycin. Compared to WT mice, 10 days after IT bleomycin, RHAMM KO mice had less weight loss, less increase in respiratory rate, and fewer CD45+ cells in the lung. At day 28, compared to injured WT animals, injured RHAMM KO mice had lower M1 macrophage content, as well as decreased fibrosis as determined by trichrome staining, Ashcroft scores and lung HPO content. Four lines of transgenic mice with selective overexpression of RHAMM in macrophages were generated using the Scavenger Receptor A promoter driving a myc-tagged full length RHAMM cDNA. Baseline expression of RHAMM and CD44 was the same in WT and TG mice. By flow cytometry, TG bone marrow-derived macrophages (BMDM) had increased cell surface RHAMM and myc, but equal CD44 expression. TG BMDM also had 2-fold increases in both chemotaxis to HA and proliferation in fetal bovine serum. In TG mice, increased inflammation after thioglycollate-induced peritonitis was restricted to macrophages and not neutrophils. For lung injury studies, non-transgenic mice given bleomycin had respiratory distress with increased respiratory rates from day 7 to 21. However, TG mice had higher respiratory rates from 4 days after bleomycin and continued to increase respiratory rates up to day 21. At 21 days after IT bleomycin, TG mice had increased lung macrophage accumulation. Lavage HA concentrations were 6-fold higher in injured WT mice, but 30-fold higher in injured TG mice. At 21 days after IT bleomycin, WT mice had developed fibrosis, but TG mice showed exaggerated fibrosis with increased Ashcroft scores and HPO content. We conclude that RHAMM is a critical component of the inflammatory response, respiratory distress and fibrosis after acute lung injury. We speculate that RHAMM is a potential therapeutic target to limit the consequences of acute lung injury.
Collapse
Affiliation(s)
- Zheng Cui
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jie Liao
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naeun Cheong
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher Longoria
- Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaoyuan Cao
- Perelmen Center for Advanced Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Horace M DeLisser
- Perelmen Center for Advanced Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Rashmin C Savani
- Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Center for Pulmonary & Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Hauser-Kawaguchi A, Luyt LG, Turley E. Design of peptide mimetics to block pro-inflammatory functions of HA fragments. Matrix Biol 2018; 78-79:346-356. [PMID: 29408009 DOI: 10.1016/j.matbio.2018.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 12/26/2022]
Abstract
Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach.
Collapse
Affiliation(s)
| | - Leonard G Luyt
- Department of Chemistry, Western University, London, ON, Canada; Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Department of Medical Imaging, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada
| | - Eva Turley
- Department of Oncology, Schulich School of Medicine, Western University, London, ON, Canada; Cancer Research Laboratories, London Regional Cancer Center, Victoria Hospital, London, ON N6A 4L6, Canada; Department of Biochemistry, Schulich School of Medicine, Western University, London, ON, Canada; Department of Surgery, Schulich School of Medicine, Western University, London, ON, Canada.
| |
Collapse
|
12
|
Cerebellum Susceptibility to Neonatal Asphyxia: Possible Protective Effects of N-Acetylcysteine Amide. DISEASE MARKERS 2018; 2018:5046372. [PMID: 29651324 PMCID: PMC5831588 DOI: 10.1155/2018/5046372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022]
Abstract
Background After perinatal asphyxia, the cerebellum presents more damage than previously suggested. Objectives To explore if the antioxidant N-acetylcysteine amide (NACA) could reduce cerebellar injury after hypoxia-reoxygenation in a neonatal pig model. Methods Twenty-four newborn pigs in two intervention groups were exposed to 8% oxygen and hypercapnia, until base excess fell to -20 mmol/l or the mean arterial blood pressure declined to <20 mmHg. After hypoxia, they received either NACA (NACA group, n = 12) or saline (vehicle-treated group, n = 12). One sham-operated group (n = 5) served as a control and was not subjected to hypoxia. Observation time after the end of hypoxia was 9.5 hours. Results The intranuclear proteolytic activity in Purkinje cells of asphyxiated vehicle-treated pigs was significantly higher than that in sham controls (p = 0.03). Treatment with NACA was associated with a trend to decreased intranuclear proteolytic activity (p = 0.08), There were significantly less mutations in the mtDNA of the NACA group compared with the vehicle-treated group, 2.0 × 10-4 (±2.0 × 10-4) versus 4.8 × 10-5(±3.6 × 10-4, p < 0.05). Conclusion We found a trend to lower proteolytic activity in the core of Purkinje cells and significantly reduced mutation rate of mtDNA in the NACA group, which may indicate a positive effect of NACA after neonatal hypoxia. Measuring the proteolytic activity in the nucleus of Purkinje cells could be used to assess the effect of different neuroprotective substances after perinatal asphyxia.
Collapse
|
13
|
Benterud T, Ystgaard MB, Manueldas S, Pankratov L, Alfaro-Cervello C, Florholmen G, Ahmed MS, Sandvik L, Norgren S, Bjørås M, Baumbusch LO, Solberg R, Saugstad OD. N-Acetylcysteine Amide Exerts Possible Neuroprotective Effects in Newborn Pigs after Perinatal Asphyxia. Neonatology 2017; 111:12-21. [PMID: 27497671 DOI: 10.1159/000447255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/29/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Perinatal asphyxia and ensuing reoxygenation change the antioxidant capacity of cells and organs. OBJECTIVES To analyze the neuroprotective effect of the antioxidant N-acetylcysteine amide (NACA) after perinatal hypoxia-reoxygenation with an emphasis on proinflammatory cytokines and the transcription factor NF-κB in the prefrontal cortex of neonatal pigs. METHODS Twenty-nine newborn pigs, aged 12-36 h, were subjected to global hypoxia and hypercapnia. One sham-operated group (n = 5) and 2 experimental groups (n = 12) were exposed to 8% oxygen, until the base excess was -20 mmol/l or the mean arterial blood pressure fell to <20 mm Hg (asphyxia with NACA or saline). The pigs were observed for 9.5 h after hypoxia. Samples of prefrontal cortex and plasma were analyzed. RESULTS Cortex: there was no significant difference in mRNA expression between the intervention groups regarding IL-1β, IL6, TNFα, MMP2, MMP9 or IL18. Pigs exposed to hypoxia-reoxygenation and treatment with NACA (NACA-pigs) had a significantly lower protein concentration of IL-1β than pigs treated with saline (placebo controls), i.e. 8.8 ± 3.9 versus 16.8 ± 10.5 pg/mg protein (p = 0.02). The activation of the transcription factor NF-κB (measured as the fold-change of phosphorylated p65Ser 536), was reduced in the NACA-pigs when compared to the placebo controls (5.2 ± 4.3 vs. 16.0 ± 13.5; p = 0.02). No difference between the intervention groups regarding brain histopathology or in the levels of 8-oxoguanine measured in the prefrontal cortex were observed. Plasma: the NACA-pigs had a stronger reduction of TNFα in the first 30 min following asphyxia compared with the placebo controls, i.e. 36 (30-44) versus 24 (14-32)% (p = 0.01). CONCLUSION The reduced levels of the pivotal inflammatory markers IL-1β and TNFα and the transcription factor NF-κB may indicate that NACA has possible neuroprotective effects after perinatal asphyxia.
Collapse
Affiliation(s)
- Torkil Benterud
- Department of Pediatric Research, University of Oslo, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kong X, Chen L, Ye P, Wang Z, Zhang J, Ye F, Chen S. The role of HYAL2 in LSS-induced glycocalyx impairment and the PKA-mediated decrease in eNOS-Ser-633 phosphorylation and nitric oxide production. Mol Biol Cell 2016; 27:3972-3979. [PMID: 27798230 PMCID: PMC5156538 DOI: 10.1091/mbc.e16-04-0241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/06/2016] [Accepted: 10/18/2016] [Indexed: 11/11/2022] Open
Abstract
Hyaluronan (HA) in the endothelial glycocalyx serves as a mechanotransducer for high-shear-stress-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. Low shear stress (LSS) has been shown to contribute to endothelial inflammation and atherosclerosis by impairing the barrier and mechanotransduction properties of the glycocalyx. Here we focus on the possible role of hyaluronidase 2 (HYAL2) in LSS-induced glycocalyx impairment and the resulting alterations in eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVECs). We show that LSS strongly activates HYAL2 to degrade HA in the glycocalyx. The dephosphorylation of eNOS-Ser-633 under LSS was triggered after HA degradation by hyaluronidase and prevented by repairing the glycocalyx with high-molecular weight hyaluronan. Knocking down HYAL2 in HUVECs protected against HA degradation in the glycocalyx by inhibiting the expression and activity of HYAL2 and further blocked the dephosphorylation of eNOS-Ser-633 and the decrease in NO production in response to LSS. The LSS-induced dephosphorylation of PKA was completely abrogated in HYAL2 siRNA-transfected HUVECs. The LSS-induced dephosphorylation of eNOS-Ser-633 was also reversed by the PKA activator 8-Br-cAMP. We thus suggest that LSS inhibits eNOS-Ser-633 phosphorylation and, at least partially, NO production by activating HYAL2 to degrade HA in the glycocalyx.
Collapse
Affiliation(s)
- Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210001, China.,Department of Emergency Medicine, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210001, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210001, China
| | - Zhimei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210001, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210001, China
| | - Fei Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210001, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210001, China;
| |
Collapse
|
15
|
Wang H, Mu DZ. [17β‑estradiol suppresses hyperoxia‑induced apoptosis of oligodendrocyte precursor cells through paired‑immunoglobulin‑like receptor B]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:650-655. [PMID: 27412551 PMCID: PMC7388988 DOI: 10.7499/j.issn.1008-8830.2016.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To study the effect of hyperoxia and paired immunoglobin-like receptor B (PirB) on rat oligodendrocyte precursor cells (OPCs) in vivo and the neuroprotective effects of 17β-estradiol (E2) on these cells. METHODS Rat OPCs were treated with different concentrations of E2 and the cells were harvested for RT‑qPCR analysis at different time points. PriB was silenced with small interfering siRNA. The effects of E2 treatment and silencing of PriB on OPCs viability and apoptosis under hyperoxic stimulation were detected using 3‑(4,5‑dimethylthi‑azol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis. RESULTS Hyperoxia induced apoptosis in OPCs and decreased their viability. E2 treatment markedly down-regulated the expression of PirB. E2 treatment or PirB silencing markedly decreased hyperoxia-induced apoptosis and increased cell viability in OPCs. CONCLUSIONS E2 can protect OPCs from hyperoxia-induced apoptosis.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | | |
Collapse
|
16
|
WANG HUA, WU JINLIN. 17β-estradiol suppresses hyperoxia-induced apoptosis of oligodendrocytes through paired-immunoglobulin-like receptor B. Mol Med Rep 2016; 13:2892-8. [DOI: 10.3892/mmr.2016.4808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022] Open
|
17
|
Mikolka P, Kopincova J, Mikusiakova LT, Kosutova P, Calkovska A, Mokra D. Antiinflammatory Effect of N-Acetylcysteine Combined with Exogenous Surfactant in Meconium-Induced Lung Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 934:63-75. [DOI: 10.1007/5584_2016_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
18
|
Liao J, Kapadia VS, Brown LS, Cheong N, Longoria C, Mija D, Ramgopal M, Mirpuri J, McCurnin DC, Savani RC. The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nat Commun 2015; 6:8977. [PMID: 26611836 PMCID: PMC6215764 DOI: 10.1038/ncomms9977] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of bronchopulmonary dysplasia (BPD), a devastating lung disease in preterm infants, includes inflammation, the mechanisms of which are not fully characterized. Here we report that the activation of the NLRP3 inflammasome is associated with the development of BPD. Hyperoxia-exposed neonatal mice have increased caspase-1 activation, IL1β and inflammation, and decreased alveolarization. Nlrp3(-/-) mice have no caspase-1 activity, no IL1β, no inflammatory response and undergo normal alveolarization. Treatment of hyperoxia-exposed mice with either IL1 receptor antagonist to block IL1β or glyburide to block the Nlrp3 inflammasome results in decreased inflammation and increased alveolarization. Ventilated preterm baboons show activation of the NLRP3 inflammasome with increased IL1β:IL1ra ratio. The IL1β:IL1ra ratio in tracheal aspirates from preterm infants with respiratory failure is predictive of the development of BPD. We conclude that early activation of the NLRP3 inflammasome is a key mechanism in the development of BPD, and represents a novel therapeutic target for BPD.
Collapse
Affiliation(s)
- Jie Liao
- Department of Pediatrics, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas Texas 75390-9063, USA
| | - Vishal S. Kapadia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas Texas 75390-9063, USA
| | - L. Steven Brown
- Health Systems Research, Parkland Health and Hospital System, 5200 Harry Hines Boulevard, Dallas Texas 75235, USA
| | - Naeun Cheong
- Department of Pediatrics, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas Texas 75390-9063, USA
| | - Christopher Longoria
- Department of Pediatrics, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas Texas 75390-9063, USA
| | - Dan Mija
- Department of Pediatrics, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas Texas 75390-9063, USA
| | - Mrithyunjay Ramgopal
- Department of Pediatrics, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas Texas 75390-9063, USA
| | - Julie Mirpuri
- Department of Pediatrics, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas Texas 75390-9063, USA
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas Texas 75390-9063, USA
| | - Donald C. McCurnin
- Department of Pediatrics, University of Texas Health Sciences Center at San Antonio and The Southwest Foundation for Biomedical Research, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Rashmin C. Savani
- Department of Pediatrics, Center for Pulmonary & Vascular Biology, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas Texas 75390-9063, USA
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard, Dallas Texas 75390-9063, USA
| |
Collapse
|
19
|
Monslow J, Govindaraju P, Puré E. Hyaluronan - a functional and structural sweet spot in the tissue microenvironment. Front Immunol 2015; 6:231. [PMID: 26029216 PMCID: PMC4432798 DOI: 10.3389/fimmu.2015.00231] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022] Open
Abstract
Transition from homeostatic to reactive matrix remodeling is a fundamental adaptive tissue response to injury, inflammatory disease, fibrosis, and cancer. Alterations in architecture, physical properties, and matrix composition result in changes in biomechanical and biochemical cellular signaling. The dynamics of pericellular and extracellular matrices, including matrix protein, proteoglycan, and glycosaminoglycan modification are continually emerging as essential regulatory mechanisms underlying cellular and tissue function. Nevertheless, the impact of matrix organization on inflammation and immunity in particular and the consequent effects on tissue healing and disease outcome are arguably under-studied aspects of adaptive stress responses. Herein, we review how the predominant glycosaminoglycan hyaluronan (HA) contributes to the structure and function of the tissue microenvironment. Specifically, we examine the evidence of HA degradation and the generation of biologically active smaller HA fragments in pathological settings in vivo. We discuss how HA fragments versus nascent HA via alternate receptor-mediated signaling influence inflammatory cell recruitment and differentiation, resident cell activation, as well as tumor growth, survival, and metastasis. Finally, we discuss how HA fragmentation impacts restoration of normal tissue function and pathological outcomes in disease.
Collapse
Affiliation(s)
- James Monslow
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Priya Govindaraju
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Abstract
The fate of both endogenous and transplanted stem cells is dependent on the functional status of the regulatory local microenvironment, which is compromised by disease and therapeutic intervention. The glycosaminoglycan hyaluronan (HA) is a critical component of the hematopoietic microenvironment. We summarize recent advances in our understanding of the role of HA in regulating mesenchymal stem cells, osteoblasts, fibroblasts, macrophages, and endothelium in bone marrow (BM) and their crosstalk within the hematopoietic microenvironment. HA not only determines the volume, hydration, and microfluidics of the BM interstitial space, but also, via interactions with specific receptors, regulates multiple cell functions including differentiation, migration, and production of regulatory factors. The effects of HA are dependent on the polymer size and are influenced by the formation of complexes with other molecules. In healthy BM, HA synthases and hyaluronidases form a molecular network that maintains extracellular HA levels within a discrete physiological window, but HA homeostasis is often perturbed in pathological conditions, including hematological malignancies. Recent studies have suggested that HA synthases may have functions beyond HA production and contribute to the intracellular regulatory machinery. We discuss a possible role for HA synthases, intracellular and extracellular HA in the malignant BM microenvironment, and resistance to therapy.
Collapse
|
21
|
Lazrak A, Creighton J, Yu Z, Komarova S, Doran SF, Aggarwal S, Emala CW, Stober VP, Trempus CS, Garantziotis S, Matalon S. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 308:L891-903. [PMID: 25747964 DOI: 10.1152/ajplung.00377.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/03/2015] [Indexed: 02/07/2023] Open
Abstract
Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca(2+), and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca(2+), blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca(2+) channels of airway smooth muscle cells, increasing their contractility and thus causing AHR.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Judy Creighton
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhihong Yu
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Svetlana Komarova
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen F Doran
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Saurabh Aggarwal
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charles W Emala
- Department of Anesthesiology, Columbia University, New York, New York; and
| | - Vandy P Stober
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Carol S Trempus
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Stavros Garantziotis
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Sadis Matalon
- Department of Anesthesiology and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
22
|
Neuroinflammation after neonatal hypoxia–ischemia is associated with alterations in the purinergic system: adenosine deaminase 1 isoenzyme is the most predominant after insult. Mol Cell Biochem 2015; 403:169-77. [DOI: 10.1007/s11010-015-2347-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/30/2015] [Indexed: 12/19/2022]
|
23
|
Dani C, Poggi C. The role of genetic polymorphisms in antioxidant enzymes and potential antioxidant therapies in neonatal lung disease. Antioxid Redox Signal 2014; 21:1863-80. [PMID: 24382101 PMCID: PMC4203110 DOI: 10.1089/ars.2013.5811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Oxidative stress is involved in the development of newborn lung diseases, such as bronchopulmonary dysplasia and persistent pulmonary hypertension of the newborn. The activity of antioxidant enzymes (AOEs), which is impaired as a result of prematurity and oxidative injury, may be further affected by specific genetic polymorphisms or an unfavorable combination of more of them. RECENT ADVANCES Genetic polymorphisms of superoxide dismutase and catalase were recently demonstrated to be protective or risk factors for the main complications of prematurity. A lot of research focused on the potential of different antioxidant strategies in the prevention and treatment of lung diseases of the newborn, providing promising results in experimental models. CRITICAL ISSUES The effect of different genetic polymorphisms on protein synthesis and activity has been poorly detailed in the newborn, hindering to derive conclusive results from the observed associations with adverse outcomes. Therapeutic strategies that aimed at enhancing the activity of AOEs were poorly studied in clinical settings and partially failed to produce clinical benefits. FUTURE DIRECTIONS The clarification of the effects of genetic polymorphisms on the proteomics of the newborn is mandatory, as well as the assessment of a larger number of polymorphisms with a possible correlation with adverse outcome. Moreover, antioxidant treatments should be carefully translated to clinical settings, after further details on optimal doses, administration techniques, and adverse effects are provided. Finally, the study of genetic polymorphisms could help select a specific high-risk population, who may particularly benefit from targeted antioxidant strategies.
Collapse
Affiliation(s)
- Carlo Dani
- Section of Neonatology, Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University Hospital , Florence, Italy
| | | |
Collapse
|
24
|
Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 2014; 10:1558-70. [PMID: 24361428 PMCID: PMC3960342 DOI: 10.1016/j.actbio.2013.12.019] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 01/24/2023]
Abstract
Hyaluronan (HA) is a linear polysaccharide with disaccharide repeats of d-glucuronic acid and N-acetyl-d-glucosamine. It is evolutionarily conserved and abundantly expressed in the extracellular matrix (ECM), on the cell surface and even inside cells. Being a simple polysaccharide, HA exhibits an astonishing array of biological functions. HA interacts with various proteins or proteoglycans to organize the ECM and to maintain tissue homeostasis. The unique physical and mechanical properties of HA contribute to the maintenance of tissue hydration, the mediation of solute diffusion through the extracellular space and the lubrication of certain tissues. The diverse biological functions of HA are manifested through its complex interactions with matrix components and resident cells. Binding of HA with cell surface receptors activates various signaling pathways, which regulate cell function, tissue development, inflammation, wound healing and tumor progression and metastasis. Taking advantage of the inherent biocompatibility and biodegradability of HA, as well as its susceptibility to chemical modification, researchers have developed various HA-based biomaterials and tissue constructs with promising and broad clinical potential. This paper illustrates the properties of HA from a matrix biology perspective by first introducing the principles underlying the biosynthesis and biodegradation of HA, as well as the interactions of HA with various proteins and proteoglycans. It next highlights the roles of HA in physiological and pathological states, including morphogenesis, wound healing and tumor metastasis. A deeper understanding of the mechanisms underlying the roles of HA in various physiological processes can provide new insights and tools for the engineering of complex tissues and tissue models.
Collapse
Affiliation(s)
- Kevin T Dicker
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| | - Lisa A Gurski
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Swati Pradhan-Bhatt
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health Systems (CCHS), Newark, DE 19713, USA
| | - Robert L Witt
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health Systems (CCHS), Newark, DE 19713, USA; Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA; Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
25
|
Kapadia VS, Chalak LF, Sparks JE, Allen JR, Savani RC, Wyckoff MH. Resuscitation of preterm neonates with limited versus high oxygen strategy. Pediatrics 2013; 132:e1488-96. [PMID: 24218465 PMCID: PMC3838529 DOI: 10.1542/peds.2013-0978] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To determine whether a limited oxygen strategy (LOX) versus a high oxygen strategy (HOX) during delivery room resuscitation decreases oxidative stress in preterm neonates. METHODS A randomized trial of neonates of 24 to 34 weeks' gestational age (GA) who received resuscitation was performed. LOX neonates received room air as the initial resuscitation gas, and fraction of inspired oxygen (Fio2) was adjusted by 10% every 30 seconds to achieve target preductal oxygen saturations (Spo2) as described by the 2010 Neonatal Resuscitation Program guidelines. HOX neonates received 100% O2 as initial resuscitation gas, and Fio2 was adjusted by 10% to keep preductal Spo2 at 85% to 94%. Total hydroperoxide (TH), biological antioxidant potential (BAP), and the oxidative balance ratio (BAP/TH) were analyzed in cord blood and the first hour of life. Secondary outcomes included delivery room interventions, respiratory support on NICU admission, and short-term morbidities. RESULTS Forty-four LOX (GA: 30 ± 3 weeks; birth weight: 1678 ± 634 g) and 44 HOX (GA: 30 ± 3 weeks; birth weight: 1463 ± 606 g) neonates were included. LOX decreased integrated excess oxygen (∑Fio2 × time [min]) in the delivery room compared with HOX (401 ± 151 vs 662 ± 249; P < .01). At 1 hour of life, BAP/TH was 60% higher for LOX versus HOX neonates (13 [9-16] vs 8 [6-9]) µM/U.CARR, P < .01). LOX decreased ventilator days (3 [0-64] vs 8 [0-96]; P < .05) and reduced the incidence of bronchopulmonary dysplasia (7% vs 25%; P < .05). CONCLUSIONS LOX is feasible and results in less oxygen exposure, lower oxidative stress, and decreased respiratory morbidities and thus is a reasonable alternative for resuscitation of preterm neonates in the delivery room.
Collapse
Affiliation(s)
- Vishal S. Kapadia
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Lina F. Chalak
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - John E. Sparks
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - James R. Allen
- Department of Respiratory Care, Parkland Health and Hospital System, Dallas, Texas
| | - Rashmin C. Savani
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Myra H. Wyckoff
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
26
|
Heldin P, Basu K, Olofsson B, Porsch H, Kozlova I, Kahata K. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. J Biochem 2013; 154:395-408. [PMID: 24092768 DOI: 10.1093/jb/mvt085] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Clinical and experimental data indicate that hyaluronan accumulates in breast cancer compared with normal breast epithelium, which correlates to poor prognosis. In this review, we discuss the expression of genes encoding enzymes that synthesize or degrade hyaluronan, i.e. hyaluronan synthases and hyaluronidases or bind hyaluronan, i.e. CD44 and receptor for hyaluronan-mediated motility (RHAMM, also designated as HMMR or CD168), in relation to breast cancer progression. Hyaluronan and hyaluronan receptors have multi-faceted roles in signalling events in breast cancer. A better understanding of the molecular mechanisms underlying these signalling pathways is highly warranted and may lead to improvement of cancer treatment.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, Box 595, SE-75124 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|