1
|
Reinicke M, Braun SD, Diezel C, Lemuth O, Engelmann I, Liebe T, Ehricht R. From Shadows to Spotlight: Enhancing Bacterial DNA Detection in Blood Samples through Cutting-Edge Molecular Pre-Amplification. Antibiotics (Basel) 2024; 13:161. [PMID: 38391548 PMCID: PMC10886392 DOI: 10.3390/antibiotics13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
One of the greatest challenges to the use of molecular methods for diagnostic purposes is the detection of target DNA that is present only in low concentrations. One major factor that negatively impacts accuracy, diagnostic sensitivity, and specificity is the sample matrix, which hinders the attainment of the required detection limit due to the presence of residual background DNA. To address this issue, various methods have been developed to enhance sensitivity through targeted pre-amplification of marker sequences. Diagnostic sensitivity to the single molecular level is critical, particularly when identifying bloodstream infections. In cases of clinically manifest sepsis, the concentration of bacteria in the blood may reach as low as one bacterial cell/CFU per mL of blood. Therefore, it is crucial to achieve the highest level of sensitivity for accurate detection. In the present study, we have established a method that fills the analytical gap between low concentrations of molecular markers and the minimum requirements for molecular testing. For this purpose, a sample preparation of whole blood samples with a directly downstream pre-amplification was developed, which amplifies specific species and resistance markers in a multiplex procedure. When applying pre-amplification techniques, the sensitivity of the pathogen detection in whole blood samples was up to 100 times higher than in non-pre-amplified samples. The method was tested with blood samples that were spiked with several Gram-positive and Gram-negative bacterial pathogens. By applying this method to artificial spiked blood samples, it was possible to demonstrate a sensitivity of 1 colony-forming unit (CFU) per millilitre of blood for S. aureus and E. faecium. A detection limit of 28 and 383 CFU per ml of blood was achieved for E. coli and K. pneumoniae, respectively. If the sensitivity is also confirmed for real clinical blood samples from septic patients, the novel technique can be used for pathogen detection without cultivation, which might help to accelerate diagnostics and, thus, to decrease sepsis mortality rates.
Collapse
Affiliation(s)
- Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha Daniel Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Oliver Lemuth
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Ines Engelmann
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Theresa Liebe
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
2
|
Grosso S, Pagani L, Tosoni N, Crapis M, Turrini E, Mannu F, Carta F, Rosa RD, Turrini F, Avolio M. A new molecular method for rapid etiological diagnosis of sepsis with improved performance. Future Microbiol 2021; 16:741-751. [PMID: 34082567 DOI: 10.2217/fmb-2020-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The value of blood cultures for confirming the clinical diagnosis of sepsis is suboptimal. There is growing interest in the potential of real-time PCR technology by detection of minute amounts of pathogen DNA in patient blood samples with results available within 4-6 h. Adopting a two-step approach, we evaluated the compliance of two versions of the MicrobScan assay on a total of 748 patients with suspected bloodstream infections. The results obtained with a second version of the MicrobScan assay are characterized by increased specificity (from 95.1 to 98.2%) and sensitivity (from 76.7 to 85.1), increased throughput and the possibility of simultaneously testing different kinds of samples collected from the potential sites of infection and utilizing different syndromic panels.
Collapse
Affiliation(s)
- Shamanta Grosso
- Microbiology & Virology Department, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| | - Lucia Pagani
- Microbiology & Virology Department, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| | - Nilla Tosoni
- Microbiology & Virology Department, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| | - Massimo Crapis
- Infectious Diseases Unit, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| | - Enrico Turrini
- Research Unit, Nurex Srl, Strada 3, Sassari, 07100, Italy
| | - Franca Mannu
- Research Unit, Nurex Srl, Strada 3, Sassari, 07100, Italy
| | - Franco Carta
- Research Unit, Nurex Srl, Strada 3, Sassari, 07100, Italy
| | - Rita De Rosa
- Microbiology & Virology Department, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| | - Francesco Turrini
- Department of Oncology, University of Torino, Via Santena 5, Torino, 10126, Italy
| | - Manuela Avolio
- Microbiology & Virology Department, Azienda per l'Assistenza Sanitaria n 5 Friuli Occidentale, Via Montereale 24, Pordenone, 33170, Italy
| |
Collapse
|
3
|
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS APPLIED BIO MATERIALS 2021; 4:3962-3984. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.
Collapse
Affiliation(s)
- Chaitali Singhal
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - John G Bruno
- Nanohmics, Inc., Austin, Texas 78741, United States
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram, Haryana 122413, India
| | - Tarun K Sharma
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
4
|
Rub DM, Dhudasia MB, Healy T, Mukhopadhyay S. Role of microbiological tests and biomarkers in antibiotic stewardship. Semin Perinatol 2020; 44:151328. [PMID: 33158600 DOI: 10.1016/j.semperi.2020.151328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Laboratory tests are critical in the detection and timely treatment of infection. Two categories of tests are commonly used in neonatal sepsis management: those that identify the pathogen and those that detect host response to a potential pathogen. Decision-making around antibiotic choice is related to the performance of tests that directly identify pathogens. Advances in these tests hold the key to progress in antibiotic stewardship. Tests measuring host response, on the other hand, are an indirect marker of potential infection. While an important measure of the patient's clinical state, in the absence of pathogen detection these tests cannot confirm the appropriateness of antibiotic selection. The overall impact these tests then have on antibiotic utilization depends the test's specificity for bacterial infection, clinical scenario where it is being used and the decision-rule it is being integrated into for use. In this review we discuss common and emerging laboratory tests available for assisting management of neonatal infection and specifically focus on the role they play in optimizing antibiotic utilization.
Collapse
Affiliation(s)
- David M Rub
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miren B Dhudasia
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tracy Healy
- Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, USA
| | - Sagori Mukhopadhyay
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Emerging Microbiology Diagnostics for Transplant Infections: On the Cusp of a Paradigm Shift. Transplantation 2020; 104:1358-1384. [PMID: 31972701 DOI: 10.1097/tp.0000000000003123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In light of the heightened risk for infection associated with solid organ and hematopoietic stem cell transplantation, rapid and accurate microbiology diagnostics are essential to the practice of transplant clinicians, including infectious diseases specialists. In the last decade, diagnostic microbiology has seen a shift toward culture-independent techniques including single-target and multiplexed molecular testing, mass-spectrometry, and magnetic resonance-based methods which have together greatly expanded the array of pathogens identified, increased processing speed and throughput, allowed for detection of resistance determinants, and ultimately improved the outcomes of infected transplant recipients. More recently, a newer generation of diagnostics with immense potential has emerged, including multiplexed molecular panels directly applicable to blood and blood culture specimens, next-generation metagenomics, and gas chromatography mass spectrometry. Though these methods have some recognized drawbacks, many have already demonstrated improved sensitivity and a positive impact on clinical outcomes in transplant and immunocompromised patients.
Collapse
|
6
|
McKean AR, Batten G, Macneal P, Rahman SM, Moore LSP, Horwitz MD. Utilising multiplex PCR technology for rapid microbial diagnosis in hand and upper limb infections. J Plast Reconstr Aesthet Surg 2020; 74:223-243. [PMID: 32527667 PMCID: PMC7247460 DOI: 10.1016/j.bjps.2020.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Andrew R McKean
- Chelsea and Westminster Hospital NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK.
| | - Gemma Batten
- Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| | - Peter Macneal
- Chelsea and Westminster Hospital NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| | - Shakeel M Rahman
- Chelsea and Westminster Hospital NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| | - Luke S P Moore
- Chelsea and Westminster Hospital NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK; North West London Pathology, Imperial College Healthcare NHS Trust, Fulham Palace Road, London, W6 8RF, UK; National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Maxim D Horwitz
- Chelsea and Westminster Hospital NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK
| |
Collapse
|
7
|
Cavaillon J, Singer M, Skirecki T. Sepsis therapies: learning from 30 years of failure of translational research to propose new leads. EMBO Mol Med 2020; 12:e10128. [PMID: 32176432 PMCID: PMC7136965 DOI: 10.15252/emmm.201810128] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Sepsis has been identified by the World Health Organization (WHO) as a global health priority. There has been a tremendous effort to decipher underlying mechanisms responsible for organ failure and death, and to develop new treatments. Despite saving thousands of animals over the last three decades in multiple preclinical studies, no new effective drug has emerged that has clearly improved patient outcomes. In the present review, we analyze the reasons for this failure, focusing on the inclusion of inappropriate patients and the use of irrelevant animal models. We advocate against repeating the same mistakes and propose changes to the research paradigm. We discuss the long-term consequences of surviving sepsis and, finally, list some putative approaches-both old and new-that could help save lives and improve survivorship.
Collapse
Affiliation(s)
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care MedicineUniversity College LondonLondonUK
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care MedicineCentre of Postgraduate Medical EducationWarsawPoland
| |
Collapse
|
8
|
Rapid microbiological tests for bloodstream infections due to multidrug resistant Gram-negative bacteria: therapeutic implications. Clin Microbiol Infect 2019; 26:713-722. [PMID: 31610299 DOI: 10.1016/j.cmi.2019.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Treating severe infections due to multidrug-resistant Gram-negative bacteria (MDR-GNB) is one of the most important challenges for clinicians worldwide, partly because resistance may remain unrecognized until identification of the causative agent and/or antimicrobial susceptibility testing (AST). Recently, some novel rapid test for identification and/or AST of MDR-GNB from positive blood cultures or the blood of patients with bloodstream infections (BSIs) have become available. OBJECTIVES The objective of this narrative review is to discuss the advantages and limitations of different rapid tests for identification and/or AST of MDR-GNB from positive blood cultures or the blood of patients with BSI, as well as the available evidence on their possible role to improve therapeutic decisions and antimicrobial stewardship. SOURCES Inductive PubMed search for publications relevant to the topic. CONTENT The present review is structured in the following way: (a) rapid tests on positive blood cultures; (b) rapid tests directly on whole blood; (c) therapeutic implications. IMPLICATIONS Novel molecular and phenotypic rapid tests for identification and AST show the potential for favourably influencing patients' outcomes and results of antimicrobial stewardship interventions by reducing both the time to effective treatment and the misuse of antibiotics, although the interpretation about their impact on actual therapeutic decisions and patients' outcomes is still complex. Factors such as feasibility and personnel availability, as well as the detailed knowledge of the local microbiological epidemiology, need to be considered very carefully when implementing novel rapid tests in laboratory workflows and algorithms. Providing high-level, comparable evidence on the clinical impact of rapid identification and AST is becoming of paramount importance for MDR-GNB infections, since in the near future rapid identification of specific resistance mechanisms could be crucial for guiding rapid, effective, and targeted therapy against specific resistance mechanisms.
Collapse
|
9
|
Skirecki T, Cavaillon JM. Inner sensors of endotoxin - implications for sepsis research and therapy. FEMS Microbiol Rev 2019; 43:239-256. [PMID: 30844058 DOI: 10.1093/femsre/fuz004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/24/2019] [Indexed: 01/05/2025] Open
Abstract
Despite great efforts and numerous clinical trials, there is still a major need for effective therapies for sepsis. Neutralization or elimination of bacterial toxins remains a promising approach. The understanding of the interaction of the endotoxin (lipopolysaccharide, LPS) of Gram-negative bacteria with its cellular receptor, namely the CD14/TLR4/MD2 complex, was a major breakthrough. Unfortunately, clinical trials for sepsis on the neutralization of LPS or on the inhibition of TLR4 signaling failed whereas those on LPS removal remain controversial. Recent discoveries of another class of LPS receptors localized within the cytoplasm, namely caspase-11 in mice and caspases-4/5 in humans, have renewed interest in the field. These provide new potential targets for intervention in sepsis pathogenesis. Since cytoplasmic recognition of LPS induces non-canonical inflammasome pathway, a potentially harmful host response, it is conceivable to therapeutically target this mechanism. However, a great deal of care should be used in the translation of research on the non-canonical inflammasome inhibition due to multiple inter-species differences. In this review, we summarize the knowledge on endotoxin sensing in sepsis with special focus on the intracellular sensing. We also highlight the murine versus human differences and discuss potential therapeutic approaches addressing the newly discovered pathways.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care Medicine, Centre of Postgraduate Medical Education, Marymoncka 99/103 Street, 01-813 Warsaw, Poland
| | - Jean-Marc Cavaillon
- Experimental Neuropathology Unit, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France
| |
Collapse
|
10
|
De Angelis G, Posteraro B, De Carolis E, Menchinelli G, Franceschi F, Tumbarello M, De Pascale G, Spanu T, Sanguinetti M. T2Bacteria magnetic resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood. J Antimicrob Chemother 2019; 73:iv20-iv26. [PMID: 29608753 DOI: 10.1093/jac/dky049] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objectives To evaluate the magnetic resonance-based T2Bacteria Panel assay for direct detection of ESKAPEc (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli) pathogens in blood samples of patients with suspected bloodstream infection (BSI). Patients and methods Adult patients admitted to the Emergency Medicine Department, Infectious Diseases Unit and ICU of a large tertiary-care hospital were included if they had a blood culture (BC) ordered concomitantly with a whole-blood sample for T2Bacteria testing. Results were compared with those of BC and other clinically relevant information. Results A total of 140 samples from 129 BSI patients were studied. Single bacteria were detected in 15.7% (22/140) and 12.1% (17/140), and multiple bacteria in 2.9% (4/140) and 1.4% (2/140), of samples tested by T2Bacteria and BC, respectively. With respect to the six target (ESKAPEc) species, overall sensitivity and specificity of T2Bacteria across all detection channels in comparison with BC were 83.3% and 97.6%, respectively; these values increased to 89.5% and 98.4%, respectively, when a true-infection criterion (i.e. the same microorganism detected only by T2Bacteria was cultured from another sample type reflecting the source of infection) was used as the comparator. There were 808 T2Bacteria detection results across 112 samples, with concordant negative results, yielding a negative predictive value of 99.8%. The mean time to negative result was 6.1 ± 1.5 h, whereas the mean time to detection/species identification was 5.5 ± 1.4 h. Conclusions The T2Bacteria Panel assay has the potential to provide accurate and timely diagnosis of ESKAPEc bacteraemia, which might support the direct therapeutic management of BSI patients.
Collapse
Affiliation(s)
- Giulia De Angelis
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Elena De Carolis
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Giulia Menchinelli
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Mario Tumbarello
- Institute of Infectious Diseases, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Gennaro De Pascale
- Department of Anaesthesiology and Intensive Care, Università Cattolica del Sacro Cuore, Fondazione Policlinico Agostino Gemelli, Rome, Italy
| | - Teresa Spanu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Maurizio Sanguinetti
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| |
Collapse
|
11
|
Zboromyrska Y, Cillóniz C, Cobos-Trigueros N, Almela M, Hurtado JC, Vergara A, Mata C, Soriano A, Mensa J, Marco F, Vila J. Evaluation of the Magicplex™ Sepsis Real-Time Test for the Rapid Diagnosis of Bloodstream Infections in Adults. Front Cell Infect Microbiol 2019; 9:56. [PMID: 30931259 PMCID: PMC6423426 DOI: 10.3389/fcimb.2019.00056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a serious health condition worldwide, affecting more than 30 million people globally each year. Blood culture (BC) is generally used to diagnose sepsis because of the low quantity of microbes occurring in the blood during such infections. However, ~50% of bloodstream infections (BSI) give negative BC, this figure being higher for sepsis, which delays the start of appropriate antimicrobial therapy. This prospective study evaluated a multiplex real-time polymerase chain reaction, the MagicplexTM Sepsis test (MP), for the detection of pathogens from whole blood, comparing it to routine BC. We analyzed 809 blood samples from 636 adult patients, with 132/809 (16.3%) of the samples positive for one or more relevant microorganism according to BC and/or MP. The sensitivity and specificity of MP were 29 and 95%, respectively, while the level of agreement between BC and MP was 87%. The rate of contaminated samples was higher for BC (10%) than MP (4.8%) (P < 0.001). Patients with only MP-positive samples were more likely to be on antimicrobial treatment (47%) than those with only BC-positive samples (18%) (P = 0.002). In summary, the MP test could be useful in some clinical setting, such as among patients on antibiotic therapy. Nevertheless, a low sensitivity demonstrated impairs its use as a part of a routine diagnostic algorithm.
Collapse
Affiliation(s)
- Yuliya Zboromyrska
- The Consortium of the Intercomarcal Laboratory of the Alt Penedès, Department of Microbiology, Vilafranca del Penedès, Spain
| | - Catia Cillóniz
- Department of Pneumology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Networked Biomedical Research Center for Respiratory Diseases (CIBERES), University of Barcelona, Barcelona, Spain
| | - Nazaret Cobos-Trigueros
- Department of Infectious Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Manel Almela
- The Consortium of the Intercomarcal Laboratory of the Alt Penedès, Department of Microbiology, Vilafranca del Penedès, Spain
| | - Juan Carlos Hurtado
- Department of Microbiology, ISGlobal, Barcelona Centre for International Health Research, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Andrea Vergara
- Department of Microbiology, ISGlobal, Barcelona Centre for International Health Research, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Caterina Mata
- Sample Preparation Team, Centre Nacional d'Anàlisi Genòmica, Parc Científic de Barcelona – Torre I, Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Josep Mensa
- Department of Infectious Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francesc Marco
- Department of Microbiology, ISGlobal, Barcelona Centre for International Health Research, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Microbiology, ISGlobal, Barcelona Centre for International Health Research, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Mussil B, Suspène R, Caval V, Durandy A, Wain-Hobson S, Vartanian JP. Genotoxic stress increases cytoplasmic mitochondrial DNA editing by human APOBEC3 mutator enzymes at a single cell level. Sci Rep 2019; 9:3109. [PMID: 30816165 PMCID: PMC6395610 DOI: 10.1038/s41598-019-39245-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/23/2018] [Indexed: 01/23/2023] Open
Abstract
Human cells are stressed by numerous mechanisms that can lead to leakage of mitochondrial DNA (mtDNA) to the cytoplasm and ultimately apoptosis. This agonist DNA constitutes a danger to the cell and is counteracted by cytoplasmic DNases and APOBEC3 cytidine deamination of DNA. To investigate APOBEC3 editing of leaked mtDNA to the cytoplasm, we performed a PCR analysis of APOBEC3 edited cytoplasmic mtDNA (cymtDNA) at the single cell level for primary CD4+ T cells and the established P2 EBV blast cell line. Up to 17% of primary CD4+ T cells showed signs of APOBEC3 edited cymtDNA with ~50% of all mtDNA sequences showing signs of APOBEC3 editing - between 1500-5000 molecules. Although the P2 cell line showed a much lower frequency of stressed cells, the number of edited mtDNA molecules in such cells was of the same order. Addition of the genotoxic molecules, etoposide or actinomycin D increased the number of cells showing APOBEC3 edited cymtDNA to around 40%. These findings reveal a very dynamic image of the mitochondrial network, which changes considerably under stress. APOBEC3 deaminases are involved in the catabolism of mitochondrial DNA to circumvent chronic immune stimulation triggered by released mitochondrial DNA from damaged cells.
Collapse
Affiliation(s)
- Bianka Mussil
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, 28 rue du Dr. Roux, F-75724, Paris cedex 15, France
- Unit of Infection Models, German Primate Centre, Kellnerweg 4, D-37077, Goettingen, Germany
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, 28 rue du Dr. Roux, F-75724, Paris cedex 15, France
| | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, 28 rue du Dr. Roux, F-75724, Paris cedex 15, France
| | - Anne Durandy
- INSERM UMR 1163, The Human Lymphohematopoiesis Laboratory, Institut Imagine, 24 boulevard du Montparnasse, F-75015, Paris, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, 28 rue du Dr. Roux, F-75724, Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, 28 rue du Dr. Roux, F-75724, Paris cedex 15, France.
| |
Collapse
|
13
|
Gupta S, Jaswani P, Sharma RK, Agrawal S, Prasad N, Sahu C, Gupta A, Prasad KN. Procalcitonin as a diagnostic biomarker of sepsis: A tertiary care centre experience. J Infect Public Health 2018; 12:323-329. [PMID: 30497960 DOI: 10.1016/j.jiph.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Despite the advancement in diagnostic modalities of sepsis, it is still a leading cause of morbidity and mortality. Differentiation between sepsis and non-infectious disease states remains a diagnostic challenge. Procalcitonin (PCT) is useful for the diagnosis of sepsis but it varies in cut-off ranges at different clinical settings. The aim of this study was to correlate serum PCT levels with cultures and to evaluate the best cut-off values with high sensitivity and specificity for PCT. METHODOLOGY This prospective study included 305 patients from different medical wards; the patients were classified into group I: controls (n=46), group II: culture-negative sepsis (n=76) and group III: culture-positive sepsis (n=196). Mean p value <0.05 was considered significant. RESULTS PCT levels were significantly higher in group II and group III as compared with group I. In group II, the best cut-off point for PCT was 1.3ng/ml with 87.30% sensitivity and 78.26% specificity (area under curve 0.86). In group III, the best cut-off value of 2.20ng/ml with 98.47% sensitivity and 89.13% specificity was found (AUC 0.96). CONCLUSION Procalcitonin can accurately differentiate culture-negative and culture-positive sepsis from non-infectious diseases, thus making it a promising biomarker in diagnosis of bacterial sepsis.
Collapse
Affiliation(s)
- Shefali Gupta
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Pradeep Jaswani
- Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Raj K Sharma
- Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Suraksha Agrawal
- Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Narayan Prasad
- Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Amit Gupta
- Department of Nephrology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Kashi N Prasad
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
14
|
Otašević S, Momčilović S, Stojanović NM, Skvarč M, Rajković K, Arsić-Arsenijević V. Non-culture based assays for the detection of fungal pathogens. J Mycol Med 2018; 28:236-248. [PMID: 29605542 PMCID: PMC7110445 DOI: 10.1016/j.mycmed.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 01/05/2023]
Abstract
Traditional, culture based methods for the diagnosis of fungal infections are still considered as gold standard, but they are time consuming and low sensitive. Therefore, in order to overcome the limitations, many researchers have focused on the development of new immunological and molecular based rapid assays that could enable early diagnosis of infection and accurate identification of fungal pathogens causing superficial and invasive infection. In this brief review, we highlighted the advantages and disadvantages of conventional diagnostic methods and possibility of non-culture based assays in diagnosis of superficial fungal infections and presented the overview on currently available immunochromatographic assays as well as availability of biomarkers detection by immunodiagnostic procedures in prompt and accurate diagnosis of invasive fungal infections. In addition, we presented diagnostic efficiency of currently available molecular panels and researches in this area.
Collapse
Affiliation(s)
- S Otašević
- Center of Microbiology and Parasitology, Public Health Institute Niš, Serbia, boulevard Zorana Djindjica 50, 18000 Niš, Serbia; Department of Microbiology and Immunology, Faculty of Medicine, University of Niš, Serbia, boulevard Zorana Djindjica 81, 18000 Niš, Serbia.
| | - S Momčilović
- Department of Microbiology and Immunology, Faculty of Medicine, University of Niš, Serbia, boulevard Zorana Djindjica 81, 18000 Niš, Serbia
| | - N M Stojanović
- Faculty of Medicine, University of Niš, Serbia, boulevard Zorana Djindjica 81, 18000 Niš, Serbia
| | - M Skvarč
- University of Ljubljana, Faculty of Medicine, Institute of Microbiology and Immunology, Zaloska 4, Ljubljana, Slovenia
| | - K Rajković
- High Chemical and Technological School for Professional Studies, Kosančićeva 36, 37000 Kruševac, Serbia
| | - V Arsić-Arsenijević
- Department for Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotića 1, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Maubon D, Dard C, Garnaud C, Cornet M. Profile of GenMark's ePlex® blood culture identification fungal pathogen panel. Expert Rev Mol Diagn 2017; 18:119-132. [PMID: 29284316 DOI: 10.1080/14737159.2018.1420476] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Fungemia presents high morbi-mortality and thus rapid microbiological diagnosis may contribute to appropriate patient management. In the last decade, kits based on molecular technologies have become available and health care institutes are increasingly facing critical investment choices. Although all these tools aim to achieve rapid fungal detection and species identification, they display different inherent characteristics. Areas covered: Considering technologies allowing detection and identification of fungal species in a sepsis context, the market proposes either tests on positive blood culture or tests on patient's whole blood. In this review, the authors describe and compare the ePlex® Blood Culture Identification Fungal Pathogen (BCID-FP) test, a fully automated one-step single-use cartridge assay that has been designed to detect identify frequent or rare but emerging, fungal species, from positive blood culture. A comparison with the competing kits is provided. Expert commentaries: The ePlex BCID-FP test provides a diversified and rather relevant panel. Its easy-to-use cartridges allow flexible use around the clock. Nevertheless, prospective clinical studies assessing the time-to-result benefit on antifungal stewardship and on hospital length of stay are not available yet. New tools aim to benefit clinicians and patients, but they should be accompanied by supervision of result interpretation and adaptation of antifungal stewardship.
Collapse
Affiliation(s)
- Danièle Maubon
- a Univsité Grenoble Alpes, CNRS, Grenoble INP*, TIMC-IMAG , Grenoble , France.,b Parasitology-Mycology Laboratory, Infectious Agents Department , CHU Grenoble-Alpes , Grenoble , France
| | - Céline Dard
- b Parasitology-Mycology Laboratory, Infectious Agents Department , CHU Grenoble-Alpes , Grenoble , France
| | - Cécile Garnaud
- a Univsité Grenoble Alpes, CNRS, Grenoble INP*, TIMC-IMAG , Grenoble , France.,b Parasitology-Mycology Laboratory, Infectious Agents Department , CHU Grenoble-Alpes , Grenoble , France
| | - Muriel Cornet
- a Univsité Grenoble Alpes, CNRS, Grenoble INP*, TIMC-IMAG , Grenoble , France.,b Parasitology-Mycology Laboratory, Infectious Agents Department , CHU Grenoble-Alpes , Grenoble , France
| |
Collapse
|
16
|
Pan X, Wang J, Zhang Y, Dong P, Li C, Liang X. Detection of trace amounts of target DNA from massive background of nucleic acids by using the LM-PCR-based preamplification method. Biotechnol Appl Biochem 2017; 64:879-887. [DOI: 10.1002/bab.1545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/02/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoming Pan
- College of Food Science and Engineering; Ocean University of China; Qingdao Peoples’ Republic of China
| | - Jing Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao Peoples’ Republic of China
| | - Yanfang Zhang
- College of Food Science and Engineering; Ocean University of China; Qingdao Peoples’ Republic of China
| | - Ping Dong
- College of Food Science and Engineering; Ocean University of China; Qingdao Peoples’ Republic of China
| | - Chunchuan Li
- College of Food Science and Engineering; Ocean University of China; Qingdao Peoples’ Republic of China
| | - Xingguo Liang
- College of Food Science and Engineering; Ocean University of China; Qingdao Peoples’ Republic of China
| |
Collapse
|
17
|
Markota A, Sinkovič A. Mortality, intensive care treatment, and cost evaluation: Role of a polymerase chain reaction assay in patients with sepsis. J Int Med Res 2017; 46:79-88. [PMID: 28730906 PMCID: PMC6011302 DOI: 10.1177/0300060517719768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective We examined whether patients with a positive SeptiFast (SF) assay (LightCycler SeptiFast; Roche Diagnostics, Basel, Switzerland) developed higher long-term mortality, a more difficult course of treatment, and a higher antimicrobial treatment cost than patients with a negative SF assay. Methods We performed a post-hoc analysis of data collected in a 1-year prospective interventional study of adults with severe sepsis and septic shock. In addition to the standard treatment, an additional 5 ml of blood was obtained for an SF assay, and the antimicrobial treatment was changed according to the SF results. Results We included 57 patients, and the SF assay was positive (SF+) in 10 (17.5%) and negative (SF−) in 47 (82.5%) patients. A trend toward a higher 6-month, 1-year, and 2-year mortality rate was observed in the SF+ group. In the SF+ group, we observed a significantly greater need for second-line vasopressor therapy, a higher initial procalcitonin concentration, and higher maximum C-reactive protein and lactate concentrations. We found no significant differences in cost of antimicrobial treatment between the SF+ and SF− groups. Conclusions We observed a trend toward higher long-term mortality and a more difficult course of treatment but no difference in the cost of antimicrobial treatment.
Collapse
Affiliation(s)
- Andrej Markota
- Medical Intensive Care Unit, University Medical Centre Maribor, Ljubljanska 5, Maribor, Slovenia
| | - Andreja Sinkovič
- Medical Intensive Care Unit, University Medical Centre Maribor, Ljubljanska 5, Maribor, Slovenia
| |
Collapse
|
18
|
Marco F. Molecular methods for septicemia diagnosis. Enferm Infecc Microbiol Clin 2017; 35:586-592. [PMID: 28427796 DOI: 10.1016/j.eimc.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
Abstract
Septicemia remains a major cause of hospital mortality. Blood culture remains the best approach to identify the etiological microorganisms when a bloodstream infection is suspected but it takes long time because it relies on bacterial or fungal growth. The introduction in clinical microbiology laboratories of the matrix-assisted laser desorption ionization time-of-flight mass spectrometry technology, DNA hybridization, microarrays or rapid PCR-based test significantly reduce the time to results. Tests for direct detection in whole blood samples are highly desirable because of their potential to identify bloodstream pathogens without waiting for blood cultures to become positive. Nonetheless, limitations of current molecular diagnostic methods are substantial. This article reviews these new molecular approaches (LightCycler SeptiFast, Magicplex sepsis real time, Septitest, VYOO, PCR/ESI-MS analysis, T2Candida).
Collapse
Affiliation(s)
- Francesc Marco
- Servicio de Microbiología, Centro de Diagnóstico Biomédico, Hospital Clínic, Barcelona, España; ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, España.
| |
Collapse
|
19
|
Rödel J, Bohnert JA, Stoll S, Wassill L, Edel B, Karrasch M, Löffler B, Pfister W. Evaluation of loop-mediated isothermal amplification for the rapid identification of bacteria and resistance determinants in positive blood cultures. Eur J Clin Microbiol Infect Dis 2017; 36:1033-1040. [PMID: 28063000 DOI: 10.1007/s10096-016-2888-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/22/2016] [Indexed: 11/30/2022]
Abstract
The use of molecular assays to rapidly identify pathogens and resistance genes directly from positive blood cultures (BCs) contribute to shortening the time required for the diagnosis of bloodstream infections. In this work, loop-mediated isothermal amplification (LAMP) assays have been examined for their potential use in BC diagnosis. Three different assays were applied. The commercially available eazyplex® MRSA test detects Staphylococcus aureus, S. epidermidis, mecA, and mecC. Two in-house assays [Gram-positive (GP) and Gram-negative (GN)] have been developed for the detection of streptococci, enterococci, vanA, vanB, Pseudomonas spp., Enterobacteriaceae, and the bla CTX-M family. A total of 370 positive BCs were analyzed. LAMP test results were obtained within 30 min, including sample preparation. Amplification was measured by real-time fluorescence detection. The threshold time for fluorescence intensity values ranged from 6.25 to 13.75 min. The specificity and sensitivity of the assays varied depending on the target. Overall, from 87.7% of BCs, true-positive results were obtained, compared to routine standard diagnosis. Twenty-one tests were true-negative because of the lack of an appropriate target (5.7%). The concordance of positive test results for resistance genes with subsequent antibiotic susceptibility testing was 100%. From 15 BC bottles with mixed cultures, eazyplex® assays produced correct results in 73% of the cases. This study shows that LAMP assays are fast and cost-saving tools for rapid BC testing in order to expedite the diagnostic report and improve the antibiotic stewardship for sepsis patients.
Collapse
Affiliation(s)
- J Rödel
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.
| | - J A Bohnert
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - S Stoll
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - L Wassill
- AmplexDiagnostics GmbH, Gars Bahnhof, Germany
| | - B Edel
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - M Karrasch
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - B Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - W Pfister
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
20
|
Mou XB, Ali Z, Li B, Li TT, Yi H, Dong HM, He NY, Deng Y, Zeng X. Multiple genotyping based on multiplex PCR and microarray. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Gosiewski T, Ludwig-Galezowska AH, Huminska K, Sroka-Oleksiak A, Radkowski P, Salamon D, Wojciechowicz J, Kus-Slowinska M, Bulanda M, Wolkow PP. Comprehensive detection and identification of bacterial DNA in the blood of patients with sepsis and healthy volunteers using next-generation sequencing method - the observation of DNAemia. Eur J Clin Microbiol Infect Dis 2016; 36:329-336. [PMID: 27771780 PMCID: PMC5253159 DOI: 10.1007/s10096-016-2805-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 12/17/2022]
Abstract
Blood is considered to be a sterile microenvironment, in which bacteria appear only periodically. Previously used methods allowed only for the detection of either viable bacteria with low sensitivity or selected species of bacteria. The Next-Generation Sequencing method (NGS) enables the identification of all bacteria in the sample with their taxonomic classification. We used NGS for the analysis of blood samples from healthy volunteers (n = 23) and patients with sepsis (n = 62) to check whether any bacterial DNA exists in the blood of healthy people and to identify bacterial taxonomic profile in the blood of septic patients. The presence of bacterial DNA was found both in septic and healthy subjects; however, bacterial diversity was significantly different (P = 0.002) between the studied groups. Among healthy volunteers, a significant predominance of anaerobic bacteria (76.2 %), of which most were bacteria of the order Bifidobacteriales (73.0 %), was observed. In sepsis, the majority of detected taxa belonged to aerobic or microaerophilic microorganisms (75.1 %). The most striking difference was seen in the case of Actinobacteria phyla, the abundance of which was decreased in sepsis (P < 0.001) and Proteobacteria phyla which was decreased in the healthy volunteers (P < 0.001). Our research shows that bacterial DNA can be detected in the blood of healthy people and that its taxonomic composition is different from the one seen in septic patients. Detection of bacterial DNA in the blood of healthy people may suggest that bacteria continuously translocate into the blood, but not always cause sepsis; this observation can be called DNAemia.
Collapse
Affiliation(s)
- T Gosiewski
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - A H Ludwig-Galezowska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 7C Kopernika Str., 31-034, Krakow, Poland
| | - K Huminska
- Genomic Laboratory, DNA Research Center, Poznan, Poland.,Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - A Sroka-Oleksiak
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - P Radkowski
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 7C Kopernika Str., 31-034, Krakow, Poland
| | - D Salamon
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | | | | | - M Bulanda
- Department of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - P P Wolkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 7C Kopernika Str., 31-034, Krakow, Poland.
| |
Collapse
|
22
|
Bruns T, Reuken PA, Stengel S, Gerber L, Appenrodt B, Schade JH, Lammert F, Zeuzem S, Stallmach A. The prognostic significance of bacterial DNA in patients with decompensated cirrhosis and suspected infection. Liver Int 2016; 36:1133-42. [PMID: 26901072 DOI: 10.1111/liv.13095] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/11/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Circulating and peritoneal fragments of microbial DNA (bactDNA) are evidence for bacterial translocation in decompensated cirrhosis and may serve as a rational approach for antibiotic therapy when infection is suspected. METHODS Prospective multicenter study to investigate whether identification of bactDNA from blood or ascitic fluid (AF) by multiplex polymerase chain reaction (PCR) is associated with increased 90-day mortality in 218 patients with cirrhosis and signs of infection. RESULTS BactDNA in either compartment was detected in 134 (61%) patients, comprising 54 with bactDNA in blood and AF, 48 with AF bactDNA only, and 32 with blood bactDNA only. BactDNA was associated with spontaneous bacterial peritonitis and blood stream infections (SBP/BSI), acute-on-chronic liver failure (ACLF), encephalopathy and markers of inflammation. The prevalence of bactDNA in patients with proven SBP/BSI (36/49; 73%) was similar to that in patients with sterile ACLF (37/52; 71%). Actuarial 90-day survival was 56 ± 5% in the absence of bactDNA in both compartments and did not differ if bactDNA was detected in blood only (63 ± 9%), AF only (63 ± 7%), or in blood and AF (52 ± 7%). Predictors of 90-day mortality were SBP (HR = 3.10; 95% CI: 1.90-5.06), BSI (HR = 4.94; 95% CI: 2.71-9.02), and ACLF (HR = 2.20; 95% CI: 1.44-3.35). The detection of resistance genes in blood or AF in the absence of SBP/BSI (n = 11) was associated with poor 1-year survival (HR = 2.35; 95% CI: 1.03-5.35). CONCLUSIONS BactDNA in sterile body fluids did not indicate increased mortality in cirrhotic patients with suspected infection. Using multiplex PCR for risk stratification cannot be recommended in these patients.
Collapse
Affiliation(s)
- Tony Bruns
- The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Philipp A Reuken
- The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Sven Stengel
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Ludmila Gerber
- Department of Internal Medicine I, Frankfurt University Hospital, Frankfurt, Germany
| | - Beate Appenrodt
- Department of Internal Medicine II, Saarland University Hospital, Homburg, Germany
| | - Johannes H Schade
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Frank Lammert
- Department of Internal Medicine II, Saarland University Hospital, Homburg, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, Frankfurt University Hospital, Frankfurt, Germany
| | - Andreas Stallmach
- The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| |
Collapse
|
23
|
Metzgar D, Frinder MW, Rothman RE, Peterson S, Carroll KC, Zhang SX, Avornu GD, Rounds MA, Carolan HE, Toleno DM, Moore D, Hall TA, Massire C, Richmond GS, Gutierrez JR, Sampath R, Ecker DJ, Blyn LB. The IRIDICA BAC BSI Assay: Rapid, Sensitive and Culture-Independent Identification of Bacteria and Candida in Blood. PLoS One 2016; 11:e0158186. [PMID: 27384540 PMCID: PMC4934770 DOI: 10.1371/journal.pone.0158186] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022] Open
Abstract
Bloodstream infection (BSI) and sepsis are rising in incidence throughout the developed world. The spread of multi-drug resistant organisms presents increasing challenges to treatment. Surviving BSI is dependent on rapid and accurate identification of causal organisms, and timely application of appropriate antibiotics. Current culture-based methods used to detect and identify agents of BSI are often too slow to impact early therapy and may fail to detect relevant organisms in many positive cases. Existing methods for direct molecular detection of microbial DNA in blood are limited in either sensitivity (likely the result of small sample volumes) or in breadth of coverage, often because the PCR primers and probes used target only a few specific pathogens. There is a clear unmet need for a sensitive molecular assay capable of identifying the diverse bacteria and yeast associated with BSI directly from uncultured whole blood samples. We have developed a method of extracting DNA from larger volumes of whole blood (5 ml per sample), amplifying multiple widely conserved bacterial and fungal genes using a mismatch- and background-tolerant PCR chemistry, and identifying hundreds of diverse organisms from the amplified fragments on the basis of species-specific genetic signatures using electrospray ionization mass spectrometry (PCR/ESI-MS). We describe the analytical characteristics of the IRIDICA BAC BSI Assay and compare its pre-clinical performance to current standard-of-care methods in a collection of prospectively collected blood specimens from patients with symptoms of sepsis. The assay generated matching results in 80% of culture-positive cases (86% when common contaminants were excluded from the analysis), and twice the total number of positive detections. The described method is capable of providing organism identifications directly from uncultured blood in less than 8 hours. Disclaimer: The IRIDICA BAC BSI Assay is not available in the United States.
Collapse
Affiliation(s)
- David Metzgar
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
- * E-mail:
| | - Mark W. Frinder
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Richard E. Rothman
- Department of Emergency Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stephen Peterson
- Department of Emergency Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Karen C. Carroll
- The Johns Hopkins Hospital Clinical Microbiology Laboratory, Baltimore, Maryland, United States of America
| | - Sean X. Zhang
- The Johns Hopkins Hospital Clinical Microbiology Laboratory, Baltimore, Maryland, United States of America
| | - Gideon D. Avornu
- Department of Emergency Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Megan A. Rounds
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Heather E. Carolan
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Donna M. Toleno
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - David Moore
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Thomas A. Hall
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Christian Massire
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Gregory S. Richmond
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Jose R. Gutierrez
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Rangarajan Sampath
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - David J. Ecker
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| | - Lawrence B. Blyn
- Ibis Biosciences, an Abbott Company, Carlsbad, California, United States of America
| |
Collapse
|
24
|
Rasid O, Cavaillon JM. Recent developments in severe sepsis research: from bench to bedside and back. Future Microbiol 2016; 11:293-314. [PMID: 26849633 DOI: 10.2217/fmb.15.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Severe sepsis remains a worldwide threat, not only in industrialized countries, due to their aging population, but also in developing countries where there still are numerous cases of neonatal and puerperal sepsis. Tools for early diagnosis, a prerequisite for rapid and appropriate antibiotic therapy, are still required. In this review, we highlight some recent developments in our understanding of the associated systemic inflammatory response that help deciphering pathophysiology (e.g., epigenetic, miRNA, regulatory loops, compartmentalization, apoptosis and synergy) and discuss some of the consequences of sepsis (e.g., immune status, neurological and muscular alterations). We also emphasize the challenge to better define animal models and discuss past failures in clinical investigations in order to define new efficient therapies.
Collapse
Affiliation(s)
- Orhan Rasid
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| | - Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| |
Collapse
|
25
|
Warhurst G, Dunn G, Chadwick P, Blackwood B, McAuley D, Perkins GD, McMullan R, Gates S, Bentley A, Young D, Carlson GL, Dark P. Rapid detection of health-care-associated bloodstream infection in critical care using multipathogen real-time polymerase chain reaction technology: a diagnostic accuracy study and systematic review. Health Technol Assess 2016; 19:1-142. [PMID: 25961752 DOI: 10.3310/hta19350] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias. OBJECTIVE Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture. DESIGN Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria. SETTING Critical care departments within NHS hospitals in the north-west of England. PARTICIPANTS Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation. MAIN OUTCOME MEASURES SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard. RESULTS Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4-16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy. CONCLUSION SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error. STUDY REGISTRATION The systematic review is registered as PROSPERO CRD42011001289. FUNDING The National Institute for Health Research Health Technology Assessment programme. Professor Daniel McAuley and Professor Gavin D Perkins contributed to the systematic review through their funded roles as codirectors of the Intensive Care Foundation (UK).
Collapse
Affiliation(s)
- Geoffrey Warhurst
- Infection, Injury and Inflammation Research Group, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| | - Graham Dunn
- Centre for Biostatistics, Institute of Population Health, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| | - Paul Chadwick
- Microbiology Department, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| | - Bronagh Blackwood
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Daniel McAuley
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Gavin D Perkins
- Clinical Trials Unit, Medical School, Warwick University, Coventry, UK
| | - Ronan McMullan
- Medical Microbiology, Royal Victoria Hospital, Belfast, UK
| | - Simon Gates
- Clinical Trials Unit, Medical School, Warwick University, Coventry, UK
| | - Andrew Bentley
- Institue of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| | - Duncan Young
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Gordon L Carlson
- Infection, Injury and Inflammation Research Group, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| | - Paul Dark
- Infection, Injury and Inflammation Research Group, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| |
Collapse
|
26
|
Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Bacterial Infections. MOLECULAR PATHOLOGY IN CLINICAL PRACTICE 2016. [PMCID: PMC7123846 DOI: 10.1007/978-3-319-19674-9_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular techniques have revolutionized the detection and identification of microorganisms. Real-time PCR has allowed for the rapid and accurate detection of MRSA, VRE, and group B Streptococcus. The identification of difficult and slow-growing organisms has been expedited by sequence-based methods such as 16S rRNA gene sequencing. Rapid identification of organisms and detection of resistance markers directly from positive blood culture bottles has become a reality. Finally, a transformation is taking place with the introduction of MALDI-TOF into clinical laboratories that promises to improve the accuracy and speed of bacterial and fungal identifications by days. The advantages of these methodologies and their associated clinical applications, along with their inherent pitfalls and problems, are elucidated in this chapter.
Collapse
|
28
|
Rödel J, Karrasch M, Edel B, Stoll S, Bohnert J, Löffler B, Saupe A, Pfister W. Antibiotic treatment algorithm development based on a microarray nucleic acid assay for rapid bacterial identification and resistance determination from positive blood cultures. Diagn Microbiol Infect Dis 2015; 84:252-7. [PMID: 26712265 DOI: 10.1016/j.diagmicrobio.2015.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 01/04/2023]
Abstract
Rapid diagnosis of bloodstream infections remains a challenge for the early targeting of an antibiotic therapy in sepsis patients. In recent studies, the reliability of the Nanosphere Verigene Gram-positive and Gram-negative blood culture (BC-GP and BC-GN) assays for the rapid identification of bacteria and resistance genes directly from positive BCs has been demonstrated. In this work, we have developed a model to define treatment recommendations by combining Verigene test results with knowledge on local antibiotic resistance patterns of bacterial pathogens. The data of 275 positive BCs were analyzed. Two hundred sixty-three isolates (95.6%) were included in the Verigene assay panels, and 257 isolates (93.5%) were correctly identified. The agreement of the detection of resistance genes with subsequent phenotypic susceptibility testing was 100%. The hospital antibiogram was used to develop a treatment algorithm on the basis of Verigene results that may contribute to a faster patient management.
Collapse
Affiliation(s)
- Jürgen Rödel
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, D-07747 Jena, Germany.
| | - Matthias Karrasch
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | - Birgit Edel
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | - Sylvia Stoll
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | - Jürgen Bohnert
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | - Angela Saupe
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | - Wolfgang Pfister
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, D-07747 Jena, Germany
| |
Collapse
|
29
|
Dubourg G, Raoult D. Emerging methodologies for pathogen identification in positive blood culture testing. Expert Rev Mol Diagn 2015; 16:97-111. [PMID: 26559655 DOI: 10.1586/14737159.2016.1112274] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bloodstream infections (BSIs) represent a major cause of death in developed countries and are associated with long-term loss of functions. Blood culture remains the gold standard for BSI diagnosis, as it is easy to perform and displays a good analytical sensitivity. However, its major drawback remains the long turnaround time, which can result in inappropriate therapy, fall of survival rate, emergence of antibiotic resistance and increase of medical costs. Over the last 10 years, molecular tools have been the alternative to blood cultures, allowing early identification of pathogens involved in sepsis, as well detection of critical antibiotic resistance genes. Besides, the advent of MALDI-TOF revolutionized practice in routine microbiology significantly reduced the time to result. Reviewed here are recent improvements in early BSI diagnosis and these authors' view for the future is presented, including innovative high-throughput technologies.
Collapse
Affiliation(s)
- Grégory Dubourg
- a Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille , Marseille , France.,b Université Aix-Marseille, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Didier Raoult
- a Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille , Marseille , France.,b Université Aix-Marseille, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie , Marseille , France
| |
Collapse
|
30
|
Becze Z, Molnár Z, Fazakas J. Can procalcitonin levels indicate the need for adjunctive therapies in sepsis? Int J Antimicrob Agents 2015; 46 Suppl 1:S13-8. [PMID: 26621136 DOI: 10.1016/j.ijantimicag.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
After decades of extensive experimental and clinical research, septic shock and the related multiple organ dysfunction still remain the leading cause of mortality in intensive care units (ICUs) worldwide. Defining sepsis is a difficult task, but what is even more challenging is differentiating infection-induced from non-infection-induced systemic inflammatory response-related multiple organ dysfunction. As conventional signs of infection are often unreliable in intensive care, biomarkers are used, of which one of the most frequently investigated is procalcitonin. Early stabilisation of vital functions via adequate supportive therapy and antibiotic treatment has resulted in substantial improvements in outcome over the last decades. However, there are certain patients who may need extra help, hence modulation of the immune system and the host's response may also be an important therapeutic approach in these situations. Polyclonal intravenous immunoglobulins have been used in critical care for decades. A relatively new potential approach could be attenuation of the overwhelming cytokine storm by specific cytokine adsorbents. Both interventions have been applied in daily practice on a large scale, with firm pathophysiological rationale but weak evidence supported by clinical trials. The purpose of this review is to give an overview on the pathophysiology of sepsis as well as the role and interpretation of biomarkers and their potential use in assisting adjunctive therapies in sepsis in the future.
Collapse
Affiliation(s)
- Zsolt Becze
- Department of ENT, Siófok District Hospital, Siófok, Hungary.
| | - Zsolt Molnár
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - János Fazakas
- Department of Transplantation and Surgery, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
Sircar M, Ranjan P, Gupta R, Jha OK, Gupta A, Kaur R, Chavhan N, Singh M, Singh SK. Impact of bronchoalveolar lavage multiplex polymerase chain reaction on microbiological yield and therapeutic decisions in severe pneumonia in intensive care unit. J Crit Care 2015; 31:227-32. [PMID: 26611381 DOI: 10.1016/j.jcrc.2015.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/23/2015] [Accepted: 10/11/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of the study is to evaluate the impact of adding bronchoalveolar lavage multiplex polymerase chain reaction (M-PCR) to conventional cultures (CC) on microbiological yield and therapeutic decisions in adult intensive care unit patients with pneumonia and severe sepsis or septic shock. MATERIAL AND METHODS In this retrospective case-control study, bronchoalveolar lavage cultures were taken for control (58 patients, 58 admissions) and study arms (57 patients, 58 admissions). Bronchoalveolar lavage M-PCR was sent simultaneously for the latter. RESULTS A total of 267 microorganisms were identified (M-PCR alone, 211; CC alone, 15; both, 41) in the study arm vs 64 in controls. Concordance between M-PCR and culture was complete in 32 (55.17%), partial in 4 (6.9%), and discordant in 22 (37.93%) including 17 with positive M-PCR but negative CC. Time to antibiotic therapy modification was significantly less (P < .001) in M-PCR group compared to controls (32.40 ± 14.41 vs 41.74 ± 45.61 hours). There was no significant difference in index episode resolution (48.3% vs 50%; P = 1), intensive care unit mortality (57.4% vs 51.2%; P = .67), and hospital mortality (59.6% vs 61.5%; P = 1) in study and control arms, respectively, despite more septic shock patients in the study arm (89.7% vs 75.9%; P = .05). CONCLUSION Bronchoalveolar lavage M-PCR with culture leads to higher microbiological yield and earlier modification of antibiotics compared to conventional culture.
Collapse
Affiliation(s)
- Mrinal Sircar
- Department of Pulmonology and Critical Care Medicine, Fortis Hospital, Noida, Uttar Pradesh, India.
| | - Prashant Ranjan
- Department of Pulmonology and Critical Care Medicine, Fortis Hospital, Noida, Uttar Pradesh, India.
| | - Rajesh Gupta
- Department of Pulmonology and Critical Care Medicine, Fortis Hospital, Noida, Uttar Pradesh, India.
| | - Onkar Kumar Jha
- Department of Pulmonology and Critical Care Medicine, Fortis Hospital, Noida, Uttar Pradesh, India
| | - Amit Gupta
- Department of Pulmonology and Critical Care Medicine, Fortis Hospital, Noida, Uttar Pradesh, India.
| | | | - Neela Chavhan
- Department of Pulmonology and Critical Care Medicine, Fortis Hospital, Noida, Uttar Pradesh, India.
| | - Mukta Singh
- Department of Pulmonology and Critical Care Medicine, Fortis Hospital, Noida, Uttar Pradesh, India.
| | - Sujeet Kumar Singh
- Department of Pulmonology and Critical Care Medicine, Fortis Hospital, Noida, Uttar Pradesh, India.
| |
Collapse
|
32
|
Pfaller MA, Castanheira M. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis. Med Mycol 2015; 54:1-22. [PMID: 26385381 DOI: 10.1093/mmy/myv076] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 01/12/2023] Open
Abstract
Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis.
Collapse
Affiliation(s)
- Michael A Pfaller
- T2Biosystems, Lexington, Massachusetts JMI Laboratories, North Liberty, Iowa University of Iowa College of Medicine College of Public Health, Iowa City, Iowa
| | | |
Collapse
|
33
|
Application of Culture-Independent Rapid Diagnostic Tests in the Management of Invasive Candidiasis and Cryptococcosis. J Fungi (Basel) 2015; 1:217-251. [PMID: 29376910 PMCID: PMC5753112 DOI: 10.3390/jof1020217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022] Open
Abstract
The diagnosis of invasive candidiasis (IC) and cryptococcosis is often complicated by slow and insensitive culture-based methods. Such delay results in poor outcomes due to the lack of timely therapeutic interventions. Advances in serological, biochemical, molecular and proteomic approaches have made a favorable impact on this process, improving the timeliness and accuracy of diagnosis with resultant improvements in outcome. This paper will serve as an overview of recent developments in the diagnostic approaches to infections due to these important yeast-fungi.
Collapse
|
34
|
Sepsis: From Pathophysiology to Individualized Patient Care. J Immunol Res 2015; 2015:510436. [PMID: 26258150 PMCID: PMC4518174 DOI: 10.1155/2015/510436] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/24/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022] Open
Abstract
Sepsis has become a major health economic issue, with more patients dying in hospitals due to sepsis related complications compared to breast and colorectal cancer together. Despite extensive research in order to improve outcome in sepsis over the last few decades, results of large multicenter studies were by-and-large very disappointing. This fiasco can be explained by several factors, but one of the most important reasons is the uncertain definition of sepsis resulting in very heterogeneous patient populations, and the lack of understanding of pathophysiology, which is mainly based on the imbalance in the host-immune response. However, this heroic research work has not been in vain. Putting the results of positive and negative studies into context, we can now approach sepsis in a different concept, which may lead us to new perspectives in diagnostics and treatment. While decision making based on conventional sepsis definitions can inevitably lead to false judgment due to the heterogeneity of patients, new concepts based on currently gained knowledge in immunology may help to tailor assessment and treatment of these patients to their actual needs. Summarizing where we stand at present and what the future may hold are the purpose of this review.
Collapse
|
35
|
Parlato M, Cavaillon JM. Host response biomarkers in the diagnosis of sepsis: a general overview. Methods Mol Biol 2015; 1237:149-211. [PMID: 25319788 DOI: 10.1007/978-1-4939-1776-1_15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Critically ill patients who display a systemic inflammatory response syndrome (SIRS) are prone to develop nosocomial infections. The challenge remains to distinguish as early as possible among SIRS patients those who are developing sepsis. Following a sterile insult, damage-associated molecular patterns (DAMPs) released by damaged tissues and necrotic cells initiate an inflammatory response close to that observed during sepsis. During sepsis, pathogen-associated molecular patterns (PAMPs) trigger the release of host mediators involved in innate immunity and inflammation through identical receptors as DAMPs. In both clinical settings, a compensatory anti-inflammatory response syndrome (CARS) is concomitantly initiated. The exacerbated production of pro- or anti-inflammatory mediators allows their detection in biological fluids and particularly within the bloodstream. Some of these mediators can be used as biomarkers to decipher among the patients those who developed sepsis, and eventually they can be used as prognosis markers. In addition to plasma biomarkers, the analysis of some surface markers on circulating leukocytes or the study of mRNA and miRNA can be helpful. While there is no magic marker, a combination of few biomarkers might offer a high accuracy for diagnosis.
Collapse
Affiliation(s)
- Marianna Parlato
- Unit of Cytokines and Inflammation, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France
| | | |
Collapse
|
36
|
Pais de Barros JP, Gautier T, Sali W, Adrie C, Choubley H, Charron E, Lalande C, Le Guern N, Deckert V, Monchi M, Quenot JP, Lagrost L. Quantitative lipopolysaccharide analysis using HPLC/MS/MS and its combination with the limulus amebocyte lysate assay. J Lipid Res 2015; 56:1363-9. [PMID: 26023073 DOI: 10.1194/jlr.d059725] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 01/22/2023] Open
Abstract
Quantitation of plasma lipopolysaccharides (LPSs) might be used to document Gram-negative bacterial infection. In the present work, LPS-derived 3-hydroxymyristate was extracted from plasma samples with an organic solvent, separated by reversed phase HPLC, and quantitated by MS/MS. This mass assay was combined with the limulus amebocyte lysate (LAL) bioassay to monitor neutralization of LPS activity in biological samples. The described HPLC/MS/MS method is a reliable, practical, accurate, and sensitive tool to quantitate LPS. The combination of the LAL and HPLC/MS/MS analyses provided new evidence for the intrinsic capacity of plasma lipoproteins and phospholipid transfer protein to neutralize the activity of LPS. In a subset of patients with systemic inflammatory response syndrome, with documented infection but with a negative plasma LAL test, significant amounts of LPS were measured by the HPLC/MS/MS method. Patients with the highest plasma LPS concentration were more severely ill. HPLC/MS/MS is a relevant method to quantitate endotoxin in a sample, to assess the efficacy of LPS neutralization, and to evaluate the proinflammatory potential of LPS in vivo.
Collapse
Affiliation(s)
- Jean-Paul Pais de Barros
- INSERM, LNC UMR866, F-21000 Dijon, France LNC UMR866, University Bourgogne Franche-Comté, F-21000 Dijon, France LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Thomas Gautier
- INSERM, LNC UMR866, F-21000 Dijon, France LNC UMR866, University Bourgogne Franche-Comté, F-21000 Dijon, France LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Wahib Sali
- INSERM, LNC UMR866, F-21000 Dijon, France LNC UMR866, University Bourgogne Franche-Comté, F-21000 Dijon, France LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Christophe Adrie
- Physiology Department, Cochin Hospital, Paris University, Paris, France
| | - Hélène Choubley
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Emilie Charron
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Caroline Lalande
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Naig Le Guern
- INSERM, LNC UMR866, F-21000 Dijon, France LNC UMR866, University Bourgogne Franche-Comté, F-21000 Dijon, France LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Valérie Deckert
- INSERM, LNC UMR866, F-21000 Dijon, France LNC UMR866, University Bourgogne Franche-Comté, F-21000 Dijon, France LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Mehran Monchi
- Intensive Care Unit, Melun General Hospital, Melun, France
| | - Jean-Pierre Quenot
- INSERM, LNC UMR866, F-21000 Dijon, France LNC UMR866, University Bourgogne Franche-Comté, F-21000 Dijon, France LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France Intensive Care Unit University Hospital of Dijon, F-21000 Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR866, F-21000 Dijon, France LNC UMR866, University Bourgogne Franche-Comté, F-21000 Dijon, France LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France Clinical Research Department, University Hospital of Dijon, F-21000 Dijon, France
| |
Collapse
|
37
|
Clinical evaluation of commercial nucleic acid amplification tests in patients with suspected sepsis. BMC Infect Dis 2015; 15:199. [PMID: 25928122 PMCID: PMC4419503 DOI: 10.1186/s12879-015-0938-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/22/2015] [Indexed: 12/15/2022] Open
Abstract
Background Sepsis is a serious medical condition requiring timely administered, appropriate antibiotic therapy. Blood culture is regarded as the gold standard for aetiological diagnosis of sepsis, but it suffers from low sensitivity and long turnaround time. Thus, nucleic acid amplification tests (NAATs) have emerged to shorten the time to identification of causative microbes. The aim of the present study was to evaluate the clinical utility in everyday practice in the emergency department of two commercial NAATs in patients suspected with sepsis. Methods During a six-week period, blood samples were collected consecutively from all adult patients admitted to the general emergency department for suspicion of a community-onset sepsis and treated with intravenous antibiotics. Along with conventional blood cultures, multiplex PCR (Magicplex™) was performed on whole blood specimens whereas portions from blood culture bottles were used for analysis by microarray-based assay (Prove-it™). The aetiological significance of identified organisms was determined by two infectious disease physicians based on clinical presentation and expected pathogenicity. Results Among 382 episodes of suspected sepsis, clinically relevant microbes were detected by blood culture in 42 episodes (11%), by multiplex PCR in 37 episodes (9.7%), and by microarray in 32 episodes (8.4%). Although moderate agreement with blood culture (kappa 0.50), the multiplex PCR added diagnostic value by timely detection of 15 clinically relevant findings in blood culture-negative specimens. Results of the microarray corresponded very well to those of blood culture (kappa 0.90), but were available just marginally prior to blood culture results. Conclusions The use of NAATs on whole blood specimens in adjunct to current culture-based methods provides a clinical add-on value by allowing for detection of organisms missed by blood culture. However, the aetiological significance of findings detected by NAATs should be interpreted with caution as the high analytical sensitivity may add findings that do not necessarily corroborate with the clinical diagnosis. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-0938-4) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Mwaigwisya S, Assiri RAM, O'Grady J. Emerging commercial molecular tests for the diagnosis of bloodstream infection. Expert Rev Mol Diagn 2015; 15:681-92. [PMID: 25866124 DOI: 10.1586/14737159.2015.1029459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bloodstream infection (BSI) by microorganisms can lead to sepsis. This condition has a high mortality rate, which rises significantly with delays in initiation of appropriate antimicrobial treatment. Current culture methods for diagnosing BSI have long turnaround times and poor clinical sensitivity. While clinicians wait for culture diagnosis, patients are treated empirically, which can result in inappropriate treatment, undesirable side effects and contribute to drug resistance development. Molecular diagnostics assays that target pathogen DNA can identify pathogens and resistance markers within hours. Early diagnosis improves antibiotic stewardship and is associated with favorable clinical outcomes. Nonetheless, limitations of current molecular diagnostic methods are substantial. This article reviews recent commercially available molecular methods that use pathogen DNA to diagnose BSI, either by testing positive blood cultures or directly testing patient blood. We critically assess these tests and their application in clinical microbiology. A view of future directions in BSI diagnosis is also provided.
Collapse
|
39
|
Direct molecular detection of pathogens in blood as specific rule-in diagnostic biomarker in patients with presumed sepsis: our experience on a heterogeneous cohort of patients with signs of infective systemic inflammatory response syndrome. Shock 2015; 42:86-92. [PMID: 24727869 DOI: 10.1097/shk.0000000000000191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The practical value of blood cultures in the diagnosis of sepsis is impaired by a delay in the turnaround time to result and by the fact that blood culture positive can be found for only about 30% of these patients. Conventional laboratory signs of sepsis and acute phase protein biomarkers are sensitive and easy to use, but often also very nonspecific. Molecular diagnostic reflects currently the most promising avenue to decrease time to result and to influence decision making for antibiotic therapy in the septic host. In this study, we wish to highlight the impact of the LightCycler SeptiFast, a multipathogen probe-based real-time polymerase chain reaction, in the rapid etiological diagnosis of sepsis in patients with clinical and laboratory signs of bloodstream infections. We have evaluated prospectively 830 adult patients with suspected bloodstream infection and at least two criteria of systemic inflammatory response syndrome. In more than 50% of critically ill patients strongly suspected of having sepsis, we arrived to an etiological diagnosis only by the molecular method in a median time of 15 h, with specificity and predictive positive values of 96% and 94%, respectively. We highlight the role of DNAemia as time-critical, high-specificity, etiological, non-culture-based rule-in diagnostic biomarker in patients with presumed sepsis.
Collapse
|
40
|
Opota O, Jaton K, Greub G. Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin Microbiol Infect 2015; 21:323-31. [PMID: 25686695 DOI: 10.1016/j.cmi.2015.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/01/2015] [Accepted: 02/04/2015] [Indexed: 11/19/2022]
Abstract
When a bloodstream infection (BSI) is suspected, most of the laboratory results-biochemical and haematologic-are available within the first hours after hospital admission of the patient. This is not the case for diagnostic microbiology, which generally takes a longer time because blood culture, which is to date the reference standard for the documentation of the BSI microbial agents, relies on bacterial or fungal growth. The microbial diagnosis of BSI directly from blood has been proposed to speed the determination of the etiological agent but was limited by the very low number of circulating microbes during these paucibacterial infections. Thanks to recent advances in molecular biology, including the improvement of nucleic acid extraction and amplification, several PCR-based methods for the diagnosis of BSI directly from whole blood have emerged. In the present review, we discuss the advantages and limitations of these new molecular approaches, which at best complement the culture-based diagnosis of BSI.
Collapse
Affiliation(s)
- O Opota
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - K Jaton
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - G Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland; Infectious Diseases Service, University of Lausanne and University Hospital Center, Lausanne, Switzerland.
| |
Collapse
|
41
|
Chun K, Syndergaard C, Damas C, Trubey R, Mukindaraj A, Qian S, Jin X, Breslow S, Niemz A. Sepsis Pathogen Identification. ACTA ACUST UNITED AC 2015; 20:539-61. [PMID: 25631157 DOI: 10.1177/2211068214567345] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Indexed: 12/29/2022]
Abstract
Sepsis is a rapidly progressing, severe inflammatory response to infection, causing more than 200,000 deaths per year. Rapid, specific pathogen identification is important to guide sepsis treatment. In this review, we describe and compare currently available commercial products for sepsis diagnosis and pathogen identification, based on microbiological, molecular, and mass spectrometric technologies. Microbiological techniques, the current "gold standard" in sepsis pathogen identification, include blood culture followed by subculturing and pathogen identification via biochemical or microscopic means. These methods have been automated but nevertheless require several days to generate results. Alternative technologies, including highly multiplexed PCR-based methods and mass spectrometric approaches, can decrease the required turnaround time. Matrix-assisted laser-desorption ionization time-of-flight-based systems have recently become an attractive option to rapidly identify a broad spectrum of sepsis pathogens with good sensitivity and specificity. Effectively integrating rapid sepsis pathogen identification into the hospital workflow can improve patient outcomes and can reduce the length of hospitalization and cost per patient.
Collapse
Affiliation(s)
- Katy Chun
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Chas Syndergaard
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Carlos Damas
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Richard Trubey
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | | | - Shenyu Qian
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Xin Jin
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Scott Breslow
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Angelika Niemz
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| |
Collapse
|
42
|
Bacterial Translocation and Plasma Cytokines During Transcatheter and Open-Heart Aortic Valve Implantation. Shock 2015; 43:62-7. [DOI: 10.1097/shk.0000000000000262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Fernández-Romero N, Quiles I, Jiménez C, Oliva MOL, Rivas B, Mingorance J, Romero-Gómez MP. Use of multiplex PCR in diagnosis of bloodstream infections in kidney patients. Diagn Microbiol Infect Dis 2014; 80:93-6. [PMID: 25107361 DOI: 10.1016/j.diagmicrobio.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 06/05/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
The LightCycler® SeptiFast Test (Roche Diagnostics GmbH, Mannheim, Germany) was prospectively compared with the standard blood culture technique in a series of 86 kidney patients. The sensitivity of the PCR compared with the culture was 71%, and the specificity was 88%. All the species identified by culture in these patients were in the SeptiFast panel. The median time to results was 1 day for the PCR, 3 days for positive cultures, and 5 days for negative cultures.
Collapse
Affiliation(s)
- Natalia Fernández-Romero
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Inmaculada Quiles
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Carlos Jiménez
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - María Ovidea Lopez Oliva
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Begoña Rivas
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain
| | - María Pilar Romero-Gómez
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana, 261, 28046, Madrid, Spain.
| |
Collapse
|
44
|
Loonen AJM, Wolffs PFG, Bruggeman CA, van den Brule AJC. Developments for improved diagnosis of bacterial bloodstream infections. Eur J Clin Microbiol Infect Dis 2014; 33:1687-702. [PMID: 24848132 DOI: 10.1007/s10096-014-2153-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/30/2014] [Indexed: 12/26/2022]
Abstract
Bloodstream infections (BSIs) are associated with high mortality and increased healthcare costs. Optimal management of BSI depends on several factors including recognition of the disease, laboratory tests and treatment. Rapid and accurate identification of the etiologic agent is crucial to be able to initiate pathogen specific antibiotic therapy and decrease mortality rates. Furthermore, appropriate treatment might slow down the emergence of antibiotic resistant strains. Culture-based methods are still considered to be the "gold standard" for the detection and identification of pathogens causing BSI. Positive blood cultures are used for Gram-staining. Subsequently, positive blood culture material is subcultured on solid media, and (semi-automated) biochemical testing is performed for species identification. Finally, a complete antibiotic susceptibility profile can be provided based on cultured colonies, which allows the start of pathogen-tailored antibiotic therapy. This conventional workflow is extremely time-consuming and can take up to several days. Furthermore, fastidious and slow-growing microorganisms, as well as antibiotic pre-treated samples can lead to false-negative results. The main aim of this review is to present different strategies to improve the conventional laboratory diagnostic steps for BSI. These approaches include protein-based (MALDI-TOF mass spectrometry) and nucleic acid-based (polymerase chain reaction [PCR]) identification from subculture, blood cultures, and whole blood to decrease time to results. Pathogen enrichment and DNA isolation methods, to enable optimal pathogen DNA recovery from whole blood, are described. In addition, the use of biomarkers as patient pre-selection tools for molecular assays are discussed.
Collapse
Affiliation(s)
- A J M Loonen
- Laboratory for Molecular Diagnostics, Department of Medical Microbiology and Pathology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | | | | | | |
Collapse
|
45
|
Improving the diagnosis of bloodstream infections: PCR coupled with mass spectrometry. BIOMED RESEARCH INTERNATIONAL 2014; 2014:501214. [PMID: 24818144 PMCID: PMC4000954 DOI: 10.1155/2014/501214] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
The reference method for the diagnosis of bloodstream infections is blood culture followed by biochemical identification and antibiotic susceptibility testing of the isolated pathogen. This process requires 48 to 72 hours. The rapid administration of the most appropriate antimicrobial treatment is crucial for the survival of septic patients; therefore, a rapid method that enables diagnosis directly from analysis of a blood sample without culture is needed. A recently developed platform that couples broad-range PCR amplification of pathogen DNA with electrospray ionization mass spectrometry (PCR/ESI-MS) has the ability to identify virtually any microorganism from direct clinical specimens. To date, two clinical evaluations of the PCR/ESI-MS technology for the diagnosis of bloodstream infections from whole blood have been published. Here we discuss them and describe recent improvements that result in an enhanced sensitivity. Other commercially available assays for the molecular diagnosis of bloodstream infections from whole blood are also reviewed. The use of highly sensitive molecular diagnostic methods in combination with conventional procedures could substantially improve the management of septic patients.
Collapse
|
46
|
Abstract
Sepsis, severe sepsis, and septic shock cause significant morbidity and mortality worldwide. Rapid diagnosis and therapeutic interventions are desirable to improve the overall mortality in patients with sepsis. However, gold standard laboratory diagnostic methods for sepsis, pose a significant challenge to rapid diagnosis of sepsis by physicians and laboratories. This article discusses the usefulness and potential of biomarkers and molecular test methods for a more rapid clinical and laboratory diagnosis of sepsis. Because new technologies are quickly emerging, physicians and laboratories must appreciate the key factors and characteristics that affect the clinical usefulness and diagnostic accuracy of these test methodologies.
Collapse
Affiliation(s)
- Stefan Riedel
- Division of Microbiology, Department of Pathology, School of Medicine, The Johns Hopkins University, and Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, A Building, Room 102-B, Baltimore, MD 21224, USA.
| | | |
Collapse
|
47
|
Liesenfeld O, Lehman L, Hunfeld KP, Kost G. Molecular diagnosis of sepsis: New aspects and recent developments. Eur J Microbiol Immunol (Bp) 2014; 4:1-25. [PMID: 24678402 DOI: 10.1556/eujmi.4.2014.1.1] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/13/2013] [Indexed: 12/29/2022] Open
Abstract
By shortening the time to pathogen identification and allowing for detection of organisms missed by blood culture, new molecular methods may provide clinical benefits for the management of patients with sepsis. While a number of reviews on the diagnosis of sepsis have recently been published we here present up-to-date new developments including multiplex PCR, mass spectrometry and array techniques. We focus on those techniques that are commercially available and for which clinical studies have been performed and published.
Collapse
|
48
|
Loonen AJM, de Jager CPC, Tosserams J, Kusters R, Hilbink M, Wever PC, van den Brule AJC. Biomarkers and molecular analysis to improve bloodstream infection diagnostics in an emergency care unit. PLoS One 2014; 9:e87315. [PMID: 24475269 PMCID: PMC3903623 DOI: 10.1371/journal.pone.0087315] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/19/2013] [Indexed: 01/22/2023] Open
Abstract
Molecular pathogen detection from blood is still expensive and the exact clinical value remains to be determined. The use of biomarkers may assist in preselecting patients for immediate molecular testing besides blood culture. In this study, 140 patients with ≥ 2 SIRS criteria and clinical signs of infection presenting at the emergency department of our hospital were included. C-reactive protein (CRP), neutrophil-lymphocyte count ratio (NLCR), procalcitonin (PCT) and soluble urokinase plasminogen activator receptor (suPAR) levels were determined. One ml EDTA blood was obtained and selective pathogen DNA isolation was performed with MolYsis (Molzym). DNA samples were analysed for the presence of pathogens, using both the MagicPlex Sepsis Test (Seegene) and SepsiTest (Molzym), and results were compared to blood cultures. Fifteen patients had to be excluded from the study, leaving 125 patients for further analysis. Of the 125 patient samples analysed, 27 presented with positive blood cultures of which 7 were considered to be contaminants. suPAR, PCT, and NLCR values were significantly higher in patients with positive blood cultures compared to patients without (p < 0.001). Receiver operating characteristic curves of the 4 biomarkers for differentiating bacteremia from non-bacteremia showed the highest area under the curve (AUC) for PCT (0.806 (95% confidence interval 0.699–0.913)). NLCR, suPAR and CRP resulted in an AUC of 0.770, 0.793, and 0.485, respectively. When compared to blood cultures, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for SepsiTest and MagicPlex Sepsis Test were 11%, 96%, 43%, 80%, and 37%, 77%, 30%, 82%, respectively. In conclusion, both molecular assays perform poorly when one ml whole blood is used from emergency care unit patients. NLCR is a cheap, fast, easy to determine, and rapidly available biomarker, and therefore seems most promising in differentiating BSI from non-BSI patients for subsequent pathogen identification using molecular diagnostics.
Collapse
Affiliation(s)
- Anne J. M. Loonen
- Jeroen Bosch Hospital, Laboratory of Molecular Diagnostics, 's-Hertogenbosch, The Netherlands
- Fontys University of Applied Sciences, Department of Medical Molecular Diagnostics, Eindhoven, The Netherlands
| | - Cornelis P. C. de Jager
- Jeroen Bosch Hospital, Department of Intensive Care and Emergency Medicine, 's-Hertogenbosch, The Netherlands
| | - Janna Tosserams
- Jeroen Bosch Hospital, Department of Intensive Care and Emergency Medicine, 's-Hertogenbosch, The Netherlands
| | - Ron Kusters
- Jeroen Bosch Hospital, Department of Clinical Chemistry and Haematology, 's-Hertogenbosch, The Netherlands
| | - Mirrian Hilbink
- Jeroen Bosch Hospital, Jeroen Bosch Academy, 's-Hertogenbosch, The Netherlands
| | - Peter C. Wever
- Jeroen Bosch Hospital, Department of Medical Microbiology and Infection Control, 's-Hertogenbosch, The Netherlands
| | - Adriaan J. C. van den Brule
- Jeroen Bosch Hospital, Laboratory of Molecular Diagnostics, 's-Hertogenbosch, The Netherlands
- Fontys University of Applied Sciences, Department of Medical Molecular Diagnostics, Eindhoven, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
The changing culture of the microbiology laboratory. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2014; 24:125-8. [PMID: 24421822 DOI: 10.1155/2013/101630] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Abstract
There is much enthusiasm and interest in sepsis biomarkers, particularly because sepsis is a highly lethal condition, its diagnosis is challenging, and even simple treatment with antibiotics has led to serious adverse consequences such as emergence of resistant pathogens. Yet development of a sepsis biomarker requires many more steps than simply finding an association between a particular molecule and a clinical state or outcome. Demonstration of improvement of therapeutic practice using receiver-operating characteristic and other analyses is important. Validation in independent, prospective and, preferably, multicenter trials is essential. Many promising candidate sepsis biomarkers have recently been proposed. While procalcitonin (PCT) is currently the most studied sepsis biomarker, evidence of potential value has been found for a wide array of blood biomarkers including proteins, mRNA expression in whole blood or leukocytes, micro-RNAs (miRNA), pathogen and host DNA, pathogen and host genetic variants and metabolomic panels, and even in the novel use of currently available clinical data. While the most common early reports link putative sepsis biomarker levels to severity of illness and outcome (prognostic), this is not anticipated to be their primary use. More important is the distinction between infection and noninfectious inflammatory responses (diagnostic) and the use of sepsis biomarkers to direct therapy (predictive).
Collapse
|