1
|
Malloggi E, Menicucci D, Cesari V, Frumento S, Gemignani A, Bertoli A. Lavender aromatherapy: A systematic review from essential oil quality and administration methods to cognitive enhancing effects. Appl Psychol Health Well Being 2021; 14:663-690. [PMID: 34611999 PMCID: PMC9291879 DOI: 10.1111/aphw.12310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
Modern society is reviving the practice of aromatherapy, and lavender is reported being the most worldwide purchased plant for essential oil (EO) extraction. Since recent studies reported cognitive enhancing effects of lavender besides the hypno-inducing effects, a literature review is needed. Considering EO quality and diffusion devices, we conducted a systematic review on the effects of lavender EO inhalation on arousal, attention and memory in healthy subjects. Starting from this new multidisciplinary perspective, cognitive effects were reviewed to link outcomes to effective and reproducible protocols. A systematic search on MEDLINE, ERIC, PsycInfo, Google Scholar, and Scopus databases using Cognitive Atlas and plant-related keywords was conducted. Among the 1,203 articles yielded, 11 met eligibility criteria. Subjects administered with lavender EO displayed arousal decrease and sustained attention increase. Controversial results emerged regarding memory. Lack of EO quality assessment and protocols heterogeneity did not allow assessing whether different EO composition differentially modulates cognition and whether placebo effect can be discerned from EO effect itself. However, GABAergic pathway modulation exerted by linalool, a major lavender EO constituent, might explain cognitive functions empowerment. We speculate aromatherapy could be a burgeoning cognition enhancing tool, although further investigation is required to reach robust conclusions.
Collapse
Affiliation(s)
- Eleonora Malloggi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Valentina Cesari
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Sergio Frumento
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
2
|
Theilmann W, Rosenholm M, Hampel P, Löscher W, Rantamäki T. Lack of antidepressant effects of burst-suppressing isoflurane anesthesia in adult male Wistar outbred rats subjected to chronic mild stress. PLoS One 2020; 15:e0235046. [PMID: 32579566 PMCID: PMC7313995 DOI: 10.1371/journal.pone.0235046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/04/2020] [Indexed: 11/30/2022] Open
Abstract
Post-ictal emergence of slow wave EEG (electroencephalogram) activity and burst-suppression has been associated with the therapeutic effects of the electroconvulsive therapy (ECT), indicating that mere “cerebral silence” may elicit antidepressant actions. Indeed, brief exposures to burst-suppressing anesthesia has been reported to elicit antidepressant effects in a subset of patients, and produce behavioral and molecular alterations, such as increased expression of brain-derived neurotrophic factor (BDNF), connected with antidepressant responses in rodents. Here, we have further tested the cerebral silence hypothesis by determining whether repeated exposures to isoflurane anesthesia reduce depressive-like symptoms or influence BDNF expression in male Wistar outbred rats (Crl:WI(Han)) subjected to chronic mild stress (CMS), a model which is responsive to repeated electroconvulsive shocks (ECS, a model of ECT). Stress-susceptible, stress-resilient, and unstressed rats were exposed to 5 doses of isoflurane over a 15-day time period, with administrations occurring every third day. Isoflurane dosing is known to reliably produce rapid EEG burst-suppression (4% induction, 2% maintenance; 15 min). Antidepressant and anxiolytic effects of isoflurane were assessed after the first, third, and fifth drug exposure by measuring sucrose consumption, as well as performance on the open field and the elevated plus maze tasks. Tissue samples from the medial prefrontal cortex and hippocampus were collected, and levels of BDNF (brain-derived neurotrophic factor) protein were assessed. We find that isoflurane anesthesia had no impact on the behavior of stress-resilient or anhedonic rats in selected tests; findings which were consistent—perhaps inherently related—with unchanged levels of BDNF.
Collapse
Affiliation(s)
- Wiebke Theilmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marko Rosenholm
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Laboratory of Neurotherapeutics, Drug Research Program, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Hampel
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tomi Rantamäki
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Laboratory of Neurotherapeutics, Drug Research Program, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
3
|
Zerimech S, Chever O, Scalmani P, Pizzamiglio L, Duprat F, Mantegazza M. Cholinergic modulation inhibits cortical spreading depression in mouse neocortex through activation of muscarinic receptors and decreased excitatory/inhibitory drive. Neuropharmacology 2020; 166:107951. [PMID: 31945385 DOI: 10.1016/j.neuropharm.2020.107951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
Cortical spreading depression (CSD) is a wave of transient network hyperexcitability leading to long lasting depolarization and block of firing, which initiates focally and slowly propagates in the cerebral cortex. It causes migraine aura and it has been implicated in the generation of migraine headache. Cortical excitability can be modulated by cholinergic actions, leading in neocortical slices to the generation of rhythmic synchronous activities (UP/DOWN states). We investigated the effect of cholinergic activation with the cholinomimetic agonist carbachol on CSD triggered with 130 mM KCl pulse injections in acute mouse neocortical brain slices, hypothesizing that the cholinergic-induced increase of cortical network excitability during UP states could facilitate CSD. We observed instead an inhibitory effect of cholinergic activation on both initiation and propagation of CSD, through the action of muscarinic receptors. In fact, carbachol-induced CSD inhibition was blocked by atropine or by the preferential M1 muscarinic antagonist telenzepine; the preferential M1 muscarinic agonist McN-A-343 inhibited CSD similarly to carbachol, and its effect was blocked by telenzepine. Recordings of spontaneous excitatory and inhibitory post-synaptic currents in pyramidal neurons showed that McN-A-343 induced overall a decrease of the excitatory/inhibitory ratio. This inhibitory action may be targeted for novel pharmacological approaches in the treatment of migraine with muscarinic agonists.
Collapse
Affiliation(s)
- Sarah Zerimech
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Oana Chever
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Paolo Scalmani
- U.O. VII Clinical Epileptology and Experimental Neurophysiology, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Lara Pizzamiglio
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Fabrice Duprat
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France; CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France; Inserm, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
4
|
Ou M, Zhao W, Liu J, Liang P, Huang H, Yu H, Zhu T, Zhou C. The General Anesthetic Isoflurane Bilaterally Modulates Neuronal Excitability. iScience 2019; 23:100760. [PMID: 31926429 PMCID: PMC6956953 DOI: 10.1016/j.isci.2019.100760] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/16/2019] [Accepted: 12/06/2019] [Indexed: 02/05/2023] Open
Abstract
Volatile anesthetics induce hyperactivity during induction while producing anesthesia at higher concentrations. They also bidirectionally modulate many neuronal functions. However, the neuronal mechanism is unclear. The effects of isoflurane on sodium channel currents were analyzed in acute mouse brain slices, including sodium leak (NALCN) currents and voltage-gated sodium channels (Nav) currents. Isoflurane at sub-anesthetic concentrations increased the spontaneous firing rate of CA3 pyramidal neurons, whereas anesthetic concentrations of isoflurane decreased the firing rate. Isoflurane at sub-anesthetic concentrations enhanced NALCN conductance but minimally inhibited Nav currents. Isoflurane at anesthetic concentrations depressed Nav currents and action potential amplitudes. Isoflurane at sub-anesthetic concentrations depolarized resting membrane potential (RMP) of neurons, whereas hyperpolarized the RMP at anesthetic concentrations. Isoflurane at low concentrations induced hyperactivity in vivo, which was diminished in NALCN knockdown mice. In conclusion, enhancement of NALCN by isoflurane contributes to its bidirectional modulation of neuronal excitability and the hyperactivity during induction. Volatile anesthetic isoflurane exerts bidirectional modulation of neuronal excitability Isoflurane enhances NALCN conductance at sub-anesthetic concentration NALCN knockdown diminishes behavioral hyperactivity during isoflurane induction
Collapse
Affiliation(s)
- Mengchan Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Wenling Zhao
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Han Huang
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Hai Yu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China.
| |
Collapse
|
5
|
Meng ID, Barton ST, Goodney I, Russell R, Mecum NE. Progesterone Application to the Rat Forehead Produces Corneal Antinociception. Invest Ophthalmol Vis Sci 2019; 60:1706-1713. [PMID: 31013343 PMCID: PMC6736375 DOI: 10.1167/iovs.18-26049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Ocular pain and discomfort are the most defining symptoms of dry eye disease. We determined the ability of topical progesterone to affect corneal sensitivity and brainstem processing of nociceptive inputs. Methods Progesterone or vehicle gel was applied to the shaved forehead in male Sprague Dawley rats. As a site control, gel also was applied to the cheek on the side contralateral to corneal stimulation. Corneal mechanical thresholds were determined using the Cochet-Bonnet esthesiometer in intact and lacrimal gland excision–induced dry eye animals. Eye wipe behaviors in response to hypertonic saline and capsaicin were examined, and corneal mustard oil-induced c-Fos immunohistochemistry was quantified in the brainstem spinal trigeminal nucleus. Results Progesterone gel application to the forehead, but not the contralateral cheek, increased corneal mechanical thresholds in intact and lacrimal gland excision animals beginning <30 minutes after treatment. Subcutaneous injection of the local anesthetic bupivacaine into the forehead region before application of progesterone prevented the increase in corneal mechanical thresholds. Furthermore, progesterone decreased capsaicin-evoked eye wipe behavior in intact animals and hypertonic saline evoked eye wipe behavior in dry eye animals. The number of Fos-positive neurons located in the caudal region of the spinal trigeminal nucleus after corneal mustard oil application was reduced in progesterone-treated animals. Conclusions Results from this study indicate that progesterone, when applied to the forehead, produces analgesia as indicated by increased corneal mechanical thresholds and decreased nociceptive responses to hypertonic saline and capsaicin.
Collapse
Affiliation(s)
- Ian D Meng
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, United States
| | - Stephen T Barton
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States
| | - Ian Goodney
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States
| | - Rachel Russell
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States
| | - Neal E Mecum
- Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine, United States.,Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States
| |
Collapse
|
6
|
Voss LJ, García PS, Hentschke H, Banks MI. Understanding the Effects of General Anesthetics on Cortical Network Activity Using Ex Vivo Preparations. Anesthesiology 2019; 130:1049-1063. [PMID: 30694851 PMCID: PMC6520142 DOI: 10.1097/aln.0000000000002554] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
General anesthetics have been used to ablate consciousness during surgery for more than 150 yr. Despite significant advances in our understanding of their molecular-level pharmacologic effects, comparatively little is known about how anesthetics alter brain dynamics to cause unconsciousness. Consequently, while anesthesia practice is now routine and safe, there are many vagaries that remain unexplained. In this paper, the authors review the evidence that cortical network activity is particularly sensitive to general anesthetics, and suggest that disruption to communication in, and/or among, cortical brain regions is a common mechanism of anesthesia that ultimately produces loss of consciousness. The authors review data from acute brain slices and organotypic cultures showing that anesthetics with differing molecular mechanisms of action share in common the ability to impair neurophysiologic communication. While many questions remain, together, ex vivo and in vivo investigations suggest that a unified understanding of both clinical anesthesia and the neural basis of consciousness is attainable.
Collapse
Affiliation(s)
- Logan J Voss
- From the Department of Anaesthesia, Waikato District Health Board, Hamilton, New Zealand (L.J.V.) the Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia (P.S.G) Anesthesiology and Research Divisions, Atlanta Veterans Administration Medical Center, Atlanta, Georgia (P.S.G.) the Experimental Anesthesiology Section, Department of Anesthesiology, University Hospital of Tübingen, Tübingen, Germany (H.H.) rthe Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin (M.I.B.)
| | | | | | | |
Collapse
|
7
|
Marquardt N, Feja M, Hünigen H, Plendl J, Menken L, Fink H, Bert B. Euthanasia of laboratory mice: Are isoflurane and sevoflurane real alternatives to carbon dioxide? PLoS One 2018; 13:e0203793. [PMID: 30199551 PMCID: PMC6130864 DOI: 10.1371/journal.pone.0203793] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/28/2018] [Indexed: 01/17/2023] Open
Abstract
In the European Union (EU) millions of laboratory mice are used and killed for experimental and other scientific purposes each year. Although controversially discussed, the use of carbon dioxide (CO2) is still permitted for killing rodents according to the Directive 2010/63/EU. Within the scope of refinement, our aim was to investigate if isoflurane and sevoflurane are an appropriate alternative killing method to CO2 in mice. Different concentrations of CO2 (filling rates of 20%, 60%, 100%; CO2 20, 60, 100), isoflurane (Iso 2%, 5%) and sevoflurane (Sevo 4.8%, 8%) were compared in two mouse strains (NMRI, C57Bl/6J) using a broad spectrum of behavioral parameters, including the approach-avoidance test, and analyzing blood for stress parameters (glucose, adrenaline, noradrenaline). We focused in our study on the period from the beginning of the gas inlet to loss of consciousness, as during this period animals are able to perceive pain and distress. Our results show that only higher concentrations of CO2 (CO2 60, 100) and isoflurane (5%) induced surgical tolerance within 300 s in both strains, with CO2 100 being the fastest acting inhalant anesthetic. The potency of halogenated ethers depended on the mouse strain, with C57Bl/6J being more susceptible than NMRI mice. Behavioral analysis revealed no specific signs of distress, e. g. stress-induced grooming, and pain, i. e. audible vocalizations, for all inhalant gases. However, adrenaline and noradrenaline plasma concentrations were increased, especially in NMRI mice exposed to CO2 in high concentrations, whereas we did not observe such increase in animals exposed to isoflurane or sevoflurane. Escape latencies in the approach-avoidance test using C57Bl/6J mice did not differ between the three inhalant gases, however, some animals became recumbent during isoflurane and sevoflurane but not during CO2 exposure. The rise in catecholamine concentrations suggests that CO2 exposure might be linked to a higher stress response compared to isoflurane and sevoflurane exposure, although we did not observe a behavioral correlate for that. Follow-up studies investigating other fast-acting stress hormones and central anxiety circuits are needed to confirm our findings.
Collapse
Affiliation(s)
- Nicole Marquardt
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Malte Feja
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Hana Hünigen
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Johanna Plendl
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Lena Menken
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Heidrun Fink
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Bettina Bert
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Song C, Moyer JR. Layer- and subregion-specific differences in the neurophysiological properties of rat medial prefrontal cortex pyramidal neurons. J Neurophysiol 2018; 119:177-191. [PMID: 28978762 PMCID: PMC5866461 DOI: 10.1152/jn.00146.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Medial prefrontal cortex (mPFC) is critical for the expression of long-term conditioned fear. However, the neural circuits involving fear memory acquisition and retrieval are still unclear. Two subregions within mPFC that have received a lot of attention are the prelimbic (PL) and infralimbic (IL) cortices (e.g., Santini E, Quirk GJ, Porter JT. J Neurosci 28: 4028-4036, 2008; Song C, Ehlers VL, Moyer JR Jr J Neurosci 35: 13511-13524, 2015). Interestingly, PL and IL may play distinct roles during fear memory acquisition and retrieval but the underlying mechanism is poorly understood. One possibility is that the intrinsic membrane properties differ between these subregions. Thus, the current study was carried out to characterize the basic membrane properties of mPFC neurons in different layers and subregions. We found that pyramidal neurons in L2/3 were more hyperpolarized and less excitable than in L5. This was observed in both IL and PL and was associated with an enhanced h-current in L5 neurons. Within L2/3, IL neurons were more excitable than those in PL, which may be due to a lower spike threshold and higher input resistance in IL neurons. Within L5, the intrinsic excitability was comparable between neurons obtained in IL and PL. Thus, the heterogeneity in physiological properties of mPFC neurons may underlie the observed subregion-specific contribution of mPFC in cognitive function and emotional control, such as fear memory expression. NEW & NOTEWORTHY This is the first study to demonstrate that medial prefrontal cortical (mPFC) neurons are heterogeneous in both a layer- and a subregion-specific manner. Specifically, L5 neurons are more depolarized and more excitable than those neurons in L2/3, which is likely due to variations in h-current. Also, infralimbic neurons are more excitable than those of prelimbic neurons in layer 2/3, which may be due to differences in certain intrinsic properties, including input resistance and spike threshold.
Collapse
Affiliation(s)
- Chenghui Song
- Department of Psychology, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
| | - James R Moyer
- Department of Psychology, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
- Department of Biological Sciences, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
| |
Collapse
|
9
|
Manahan-Vaughan D. Special Considerations When Using Mice for In Vivo Electrophysiology and Long-Term Studies of Hippocampal Synaptic Plasticity During Behavior. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Powell K, Ethun K, Taylor DK. The effect of light level, CO2 flow rate, and anesthesia on the stress response of mice during CO2 euthanasia. Lab Anim (NY) 2017; 45:386-95. [PMID: 27654690 DOI: 10.1038/laban.1117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/01/2016] [Indexed: 11/09/2022]
Abstract
Euthanasia protocols are designed to mitigate the stress experienced by animals, and an environment that induces minimal stress helps achieve that goal. A protocol that is efficient and practical in a typical animal research facility is also important. Light intensity, isoflurane, and CO2 flow rate were studied for their impact on the stress response of mice during CO2 euthanasia. Behavior was observed and scored during euthanasia and serum corticosterone was measured immediately after death. Unsurprisingly, animals euthanized with a high-flow rate of CO2 became unconscious in the least amount of time, while animals euthanized with a low-flow rate required the most time to reach unconsciousness. There was a significant increase in anxious behaviors in animals in the isoflurane group (F1,12 = 6.67, P = 0.024), the high-flow rate CO2 group (F1,12 = 10.24, P = 0.007), and bright chamber group (F1,12 = 7.27, P = 0.019). Serum corticosterone was highest in the isoflurane group (124.72 ± 83.98 ng/ml), however there was no significant difference in corticosterone levels observed for the other study variables of light and flow-rate. A darkened chamber and low CO2 flow rates help to decrease stress experienced during CO2 euthanasia, while the use of isoflurane was observed to increase the stress response during euthanasia.
Collapse
Affiliation(s)
- Karin Powell
- Division of Animal Resources, Emory University, Atlanta, Georgia
| | - Kelly Ethun
- Division of Animal Resources, Emory University, Atlanta, Georgia
| | - Douglas K Taylor
- Division of Animal Resources, Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
Houben T, Loonen IC, Baca SM, Schenke M, Meijer JH, Ferrari MD, Terwindt GM, Voskuyl RA, Charles A, van den Maagdenberg AM, Tolner EA. Optogenetic induction of cortical spreading depression in anesthetized and freely behaving mice. J Cereb Blood Flow Metab 2017; 37:1641-1655. [PMID: 27107026 PMCID: PMC5435281 DOI: 10.1177/0271678x16645113] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cortical spreading depression, which plays an important role in multiple neurological disorders, has been studied primarily with experimental models that use highly invasive methods. We developed a relatively non-invasive optogenetic model to induce cortical spreading depression by transcranial stimulation of channelrhodopsin-2 ion channels expressed in cortical layer 5 neurons. Light-evoked cortical spreading depression in anesthetized and freely behaving mice was studied with intracortical DC-potentials, multi-unit activity and/or non-invasive laser Doppler flowmetry, and optical intrinsic signal imaging. In anesthetized mice, cortical spreading depression induction thresholds and propagation rates were similar for invasive (DC-potential) and non-invasive (laser Doppler flowmetry) recording paradigms. Cortical spreading depression-related vascular and parenchymal optical intrinsic signal changes were similar to those evoked with KCl. In freely behaving mice, DC-potential and multi-unit activity recordings combined with laser Doppler flowmetry revealed cortical spreading depression characteristics comparable to those under anesthesia, except for a shorter cortical spreading depression duration. Cortical spreading depression resulted in a short increase followed by prolonged reduction of spontaneous active behavior. Motor function, as assessed by wire grip tests, was transiently and unilaterally suppressed following a cortical spreading depression. Optogenetic cortical spreading depression induction has significant advantages over current models in that multiple cortical spreading depression events can be elicited in a non-invasive and cell type-selective fashion.
Collapse
Affiliation(s)
- Thijs Houben
- 1 Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Cm Loonen
- 2 Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Serapio M Baca
- 3 Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Maarten Schenke
- 2 Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- 4 Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel D Ferrari
- 1 Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- 1 Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob A Voskuyl
- 2 Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Charles
- 3 Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Arn Mjm van den Maagdenberg
- 1 Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,2 Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Else A Tolner
- 1 Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,2 Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Park TY, Nishida KS, Wilson CM, Jaiswal S, Scott J, Hoy AR, Selwyn RG, Dardzinski BJ, Choi KH. Effects of isoflurane anesthesia and intravenous morphine self-administration on regional glucose metabolism ([ 18 F]FDG-PET) of male Sprague-Dawley rats. Eur J Neurosci 2017; 45:922-931. [PMID: 28196306 DOI: 10.1111/ejn.13542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/22/2023]
Abstract
Although certain drugs of abuse are known to disrupt brain glucose metabolism (BGluM), the effects of opiates on BGluM are not well characterized. Moreover, preclinical positron emission tomography (PET) studies anesthetize animals during the scan, which limits clinical applications. We investigated the effects of (i) isoflurane anesthesia and (ii) intravenous morphine self-administration (MSA) on BGluM in rats. Jugular vein cannulated adult male Sprague-Dawley rats self-administered either saline (SSA) or morphine (0.5 mg/kg/infusion, 4 h/day for 12 days). All animals were scanned twice with [18 F]-fluoro-deoxy-glucose (FDG)-PET/CT at a baseline and at 2-day withdrawal from self-administration. After the IV injection of FDG, one batch of animals (n = 14) was anesthetized with isoflurane and the other batch (n = 16) was kept awake during the FDG uptake (45 min). After FDG uptake, all animals were anesthetized in order to perform a PET/CT scan (30 min). Isoflurane anesthesia, as compared to the awake condition, reduced BGluM in the olfactory, cortex, thalamus, and basal ganglia, while increasing BGluM in the midbrain, hypothalamus, hippocampus, and cerebellum. Morphine self-administered animals exhibited withdrawal signs (piloerection and increased defecation), drug seeking, and locomotor stimulation to morphine (0.5 mg/kg) during the 2 day withdrawal. The BGluM in the striatum was increased in the MSA group as compared to the SSA group; this effect was observed only in the isoflurane anesthesia, not the awake condition. These findings suggest that the choice of the FDG uptake condition may be important in preclinical PET studies and increased BGluM in the striatum may be associated with opiate seeking in withdrawal.
Collapse
Affiliation(s)
- Thomas Y Park
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kevin S Nishida
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Colin M Wilson
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Shalini Jaiswal
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jessica Scott
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrew R Hoy
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Reed G Selwyn
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Radiology, University of New Mexico, Albuquerque, NM, USA.,Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Bernard J Dardzinski
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kwang H Choi
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
13
|
Voss LJ, Harvey MG, Sleigh JW. Inhibition of astrocyte metabolism is not the primary mechanism for anaesthetic hypnosis. SPRINGERPLUS 2016; 5:1041. [PMID: 27462489 PMCID: PMC4940352 DOI: 10.1186/s40064-016-2734-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/30/2016] [Indexed: 11/10/2022]
Abstract
Astrocytes have been promoted as a possible mechanistic target for anaesthetic hypnosis. The aim of this study was to explore this using the neocortical brain slice preparation. The methods were in two parts. Firstly, multiple general anaesthetic compounds demonstrating varying in vivo hypnotic potency were analysed for their effect on "zero-magnesium" seizure-like event (SLE) activity in mouse neocortical slices. Subsequently, the effect of astrocyte metabolic inhibition was investigated in neocortical slices, and compared with that of the anaesthetic drugs. The rationale was that, if suppression of astrocytes was both necessary and sufficient to cause hypnosis in vivo, then inhibition of astrocytic metabolism in slices should mimic the anaesthetic effect. In vivo anaesthetic potency correlated strongly with the magnitude of reduction in SLE frequency in neocortical slices (R(2) 37.7 %, p = 0.002). Conversely, SLE frequency and length were significantly enhanced during exposure to both fluoroacetate (23 and 20 % increase, respectively, p < 0.01) and aminoadipate (12 and 38 % increase, respectively, p < 0.01 and p < 0.05). The capacity of an anaesthetic agent to reduce SLE frequency in the neocortical slice is a good indicator of its in vivo hypnotic potency. The results do not support the hypothesis that astrocytic metabolic inhibition is a mechanism of anaesthetic hypnosis.
Collapse
Affiliation(s)
- Logan J Voss
- Anaesthesia Department, Waikato District Health Board, Pembroke St, Hamilton, 3240 New Zealand
| | - Martyn G Harvey
- Emergency Department, Waikato District Health Board, Hamilton, 3240 New Zealand
| | - James W Sleigh
- University of Auckland Waikato Clinical School, Hamilton, 3240 New Zealand
| |
Collapse
|
14
|
Abstract
The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain's global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states.
Collapse
Affiliation(s)
- Peter Lin
- Neurology and Neurological Sciences, Stanford University
| | - Zhongnan Fang
- Electrical Engineering, Neurology and Neurological Sciences, Stanford University
| | - Jia Liu
- Neurology and Neurological Sciences, Stanford University
| | - Jin Hyung Lee
- Neurology and Neurological Sciences, Stanford University; Electrical Engineering, Neurology and Neurological Sciences, Stanford University;
| |
Collapse
|
15
|
A method for continuous and stable perfusion of tissue and single cell preparations with accurate concentrations of volatile anaesthetics. J Neurosci Methods 2016; 258:87-93. [DOI: 10.1016/j.jneumeth.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 11/30/2022]
|
16
|
Voss LJ, Andersson L, Jadelind A. The general anesthetic propofol induces ictal-like seizure activity in hippocampal mouse brain slices. SPRINGERPLUS 2015; 4:816. [PMID: 26722636 PMCID: PMC4690829 DOI: 10.1186/s40064-015-1623-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 12/15/2015] [Indexed: 11/25/2022]
Abstract
The general anesthetic propofol has been in clinical use for more than 30 years and has become the agent of choice for rapid intravenous induction. While its hypnotic and anti-convulsant properties are well known, the propensity for propofol to promote seizure activity is less well characterised. Electroencephalogram-confirmed reports of propofol-induced seizure activity implicate a predisposition in epileptic subjects. The aim of this study was to investigate the seizure-promoting action of propofol in mouse brain slices—with the goal of establishing an in vitro model of propofol pro-convulsant action for future mechanistic studies. Coronal slices were exposed to either normal artificial cerebrospinal fluid (aCSF) or no-magnesium (no-Mg) aCSF—and extracellular field potential recordings made from the hippocampus, entorhinal cortex and neocortex. Propofol (and etomidate for comparison) were delivered at three stepwise concentrations corresponding to clinically relevant levels. The main finding was that propofol induced ictal-like seizures in seven out of ten hippocampal recordings (p = 0.004 compared to controls) following pre-exposure to no-Mg aCSF—but strongly inhibited seizure-like event (SLE) activity in the neocortex. Propofol did not induce seizure activity in slices exposed to normal aCSF. The results support the contention that propofol has the capacity to promote seizure activity, particularly when there is an underlying seizure predisposition. This study establishes an in vitro model for exploring the mechanisms by which propofol promotes subcortical seizure activity.
Collapse
Affiliation(s)
- Logan J Voss
- Anaesthesia Department, Waikato District Health Board, Pembroke St, Hamilton, 3240 New Zealand
| | - Liisa Andersson
- School of Science and Engineering, University of Waikato, Knighton Road, Hamilton, 3240 New Zealand
| | - Anna Jadelind
- School of Science and Engineering, University of Waikato, Knighton Road, Hamilton, 3240 New Zealand
| |
Collapse
|
17
|
Tung JK, Gutekunst CA, Gross RE. Inhibitory luminopsins: genetically-encoded bioluminescent opsins for versatile, scalable, and hardware-independent optogenetic inhibition. Sci Rep 2015; 5:14366. [PMID: 26399324 PMCID: PMC4585826 DOI: 10.1038/srep14366] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/25/2015] [Indexed: 01/11/2023] Open
Abstract
Optogenetic techniques provide an unprecedented ability to precisely manipulate neural activity in the context of complex neural circuitry. Although the toolbox of optogenetic probes continues to expand at a rapid pace with more efficient and responsive reagents, hardware-based light delivery is still a major hurdle that limits its practical use in vivo. We have bypassed the challenges of external light delivery by directly coupling a bioluminescent light source (a genetically encoded luciferase) to an inhibitory opsin, which we term an inhibitory luminopsin (iLMO). iLMO was shown to suppress action potential firing and synchronous bursting activity in vitro in response to both external light and luciferase substrate. iLMO was further shown to suppress single-unit firing rate and local field potentials in the hippocampus of anesthetized rats. Finally, expression of iLMO was scaled up to multiple structures of the basal ganglia to modulate rotational behavior of freely moving animals in a hardware-independent fashion. This novel class of optogenetic probes demonstrates how non-invasive inhibition of neural activity can be achieved, which adds to the versatility, scalability, and practicality of optogenetic applications in freely behaving animals.
Collapse
Affiliation(s)
- Jack K. Tung
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
- Department of Neurosurgery, Emory University, Atlanta, GA
| | | | - Robert E. Gross
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
- Department of Neurosurgery, Emory University, Atlanta, GA
- Department of Neurology, Emory University, Atlanta, GA
| |
Collapse
|
18
|
Xiao Z, Ren P, Chao Y, Wang Q, Kuai J, Lv M, Chen L, Gao C, Sun X. Protective role of isoflurane pretreatment in rats with focal cerebral ischemia and the underlying molecular mechanism. Mol Med Rep 2015; 12:675-83. [PMID: 25738964 DOI: 10.3892/mmr.2015.3408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Inflammation and immunity are important in the pathogenesis of cerebral ischemia. Toll-like receptor 4 (TLR4) is involved in the inflammatory responses of injured brain tissues. Emerging studies have focused on the effect of isoflurane (ISO) pretreatment on cerebral ischemia, however, the association between ISO pretreatment and TLR4 during cerebral ischemia remains to be elucidated. In the present study, the protective role of ISO pretreatment in rats with focal cerebral ischemia reperfusion was investigated and the molecular mechanism was discussed. Using a middle cerebral artery occlusion (MCAO) model, triphenyltetrazolium chloride staining was utilized to measure the infarct volume and brain edema and immunofluorescence staining was used to detect the MCAO-induced TLR4 expression and localization. Western blot analyses were conducted to quantify the protein expression levels of TLR4, myeloid differentiation primary response 88 (MyD88) and nuclear factor (NF)-κB in ischemic brain tissue at different time points. The results demonstrated that, following ISO pretreatment, the neurological deficits, brain edema and cerebral infarct size caused by ischemia/reperfusion were attenuated. The astrocyte and microglial activation in the brain tissue was decreased. In addition, the expression levels of TLR4, MyD88 and NF-κB were decreased. The present study indicated that ISO pretreatment may protect the brain from ischemic damage by downregulating the expression levels of TLR4, MyD88 and NF-κB.
Collapse
Affiliation(s)
- Zhibin Xiao
- Department of Anesthesiology, Tangdou Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Pengcheng Ren
- Department of Anesthesiology, Tangdou Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Chao
- Department of Stomatology, The 323 Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Qianyun Wang
- Department of Medicine, The 323 Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Jianke Kuai
- Department of Anesthesiology, Tangdou Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Miaomiao Lv
- Department of Anesthesiology, The 323 Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Lei Chen
- Department of Obstetrics and Gynecology, The Navy General Hospital of People's Liberation Army, Beijing 100059, P.R. China
| | - Changjun Gao
- Department of Anesthesiology, Tangdou Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xude Sun
- Department of Anesthesiology, Tangdou Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
19
|
Barz CS, Bessaih T, Abel T, Feldmeyer D, Contreras D. Sensory encoding in Neuregulin 1 mutants. Brain Struct Funct 2014; 221:1067-81. [PMID: 25515311 DOI: 10.1007/s00429-014-0955-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Schizophrenic patients show altered sensory perception as well as changes in electrical and magnetic brain responses to sustained, frequency-modulated sensory stimulation. Both the amplitude and temporal precision of the neural responses differ in patients as compared to control subjects, and these changes are most pronounced for stimulation at gamma frequencies (20-40 Hz). In addition, patients display enhanced spontaneous gamma oscillations, which has been interpreted as 'neural noise' that may interfere with normal stimulus processing. To investigate electrophysiological markers of aberrant sensory processing in a model of schizophrenia, we recorded neuronal activity in primary somatosensory cortex of mice heterozygous for the schizophrenia susceptibility gene Neuregulin 1. Sensory responses to sustained 20-70 Hz whisker stimulation were analyzed with respect to firing rates, spike precision (phase locking) and gamma oscillations, and compared to baseline conditions. The mutants displayed elevated spontaneous firing rates, a reduced gain in sensory-evoked spiking and gamma activity, and reduced spike precision of 20-40 Hz responses. These findings present the first in vivo evidence of the linkage between a genetic marker and altered stimulus encoding, thus suggesting a novel electrophysiological endophenotype of schizophrenia.
Collapse
Affiliation(s)
- Claudia S Barz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany. .,Department of Neuropathology, Medical School, RWTH Aachen University, Aachen, Germany. .,Department of Ophthalmology, Medical School, RWTH Aachen University, Aachen, Germany. .,IZKF Aachen, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Thomas Bessaih
- Sorbonne Universités, UPMC Univ Paris 06, UM 119, Neuroscience Paris Seine (NPS), Paris, 75005, France.,CNRS, UMR 8246, NPS, Paris, 75005, France.,INSERM, U1130, NPS, Paris, 75005, France
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, USA.,Smilow Center for Translational Research, Philadelphia, USA
| | - Dirk Feldmeyer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,Jülich Aachen Research Alliance (JARA) - Translational Brain Medicine, Aachen, Germany
| | - Diego Contreras
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
20
|
Raz A, Grady SM, Krause BM, Uhlrich DJ, Manning KA, Banks MI. Preferential effect of isoflurane on top-down vs. bottom-up pathways in sensory cortex. Front Syst Neurosci 2014; 8:191. [PMID: 25339873 PMCID: PMC4188029 DOI: 10.3389/fnsys.2014.00191] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022] Open
Abstract
The mechanism of loss of consciousness (LOC) under anesthesia is unknown. Because consciousness depends on activity in the cortico-thalamic network, anesthetic actions on this network are likely critical for LOC. Competing theories stress the importance of anesthetic actions on bottom-up “core” thalamo-cortical (TC) vs. top-down cortico-cortical (CC) and matrix TC connections. We tested these models using laminar recordings in rat auditory cortex in vivo and murine brain slices. We selectively activated bottom-up vs. top-down afferent pathways using sensory stimuli in vivo and electrical stimulation in brain slices, and compared effects of isoflurane on responses evoked via the two pathways. Auditory stimuli in vivo and core TC afferent stimulation in brain slices evoked short latency current sinks in middle layers, consistent with activation of core TC afferents. By contrast, visual stimuli in vivo and stimulation of CC and matrix TC afferents in brain slices evoked responses mainly in superficial and deep layers, consistent with projection patterns of top-down afferents that carry visual information to auditory cortex. Responses to auditory stimuli in vivo and core TC afferents in brain slices were significantly less affected by isoflurane compared to responses triggered by visual stimuli in vivo and CC/matrix TC afferents in slices. At a just-hypnotic dose in vivo, auditory responses were enhanced by isoflurane, whereas visual responses were dramatically reduced. At a comparable concentration in slices, isoflurane suppressed both core TC and CC/matrix TC responses, but the effect on the latter responses was far greater than on core TC responses, indicating that at least part of the differential effects observed in vivo were due to local actions of isoflurane in auditory cortex. These data support a model in which disruption of top-down connectivity contributes to anesthesia-induced LOC, and have implications for understanding the neural basis of consciousness.
Collapse
Affiliation(s)
- Aeyal Raz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Anesthesiology, Rabin Medical Center, Petah-Tikva, Israel, Affiliated with Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Sean M Grady
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | - Bryan M Krause
- Neuroscience Training Program, University of Wisconsin Madison, WI, USA
| | - Daniel J Uhlrich
- Department of Neuroscience, University of Wisconsin Madison, WI, USA
| | - Karen A Manning
- Department of Neuroscience, University of Wisconsin Madison, WI, USA
| | - Matthew I Banks
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Neuroscience, University of Wisconsin Madison, WI, USA
| |
Collapse
|
21
|
Mladinic M, Nistri A. Microelectrode arrays in combination with in vitro models of spinal cord injury as tools to investigate pathological changes in network activity: facts and promises. FRONTIERS IN NEUROENGINEERING 2013; 6:2. [PMID: 23459694 PMCID: PMC3586932 DOI: 10.3389/fneng.2013.00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 12/23/2022]
Abstract
Microelectrode arrays (MEAs) represent an important tool to study the basic characteristics of spinal networks that control locomotion in physiological conditions. Fundamental properties of this neuronal rhythmicity like burst origin, propagation, coordination, and resilience can, thus, be investigated at multiple sites within a certain spinal topography and neighboring circuits. A novel challenge will be to apply this technology to unveil the mechanisms underlying pathological processes evoked by spinal cord injury (SCI). To achieve this goal, it is necessary to fully identify spinal networks that make up the locomotor central pattern generator (CPG) and to understand their operational rules. In this review, the use of isolated spinal cord preparations from rodents, or organotypic spinal slice cultures is discussed to study rhythmic activity. In particular, this review surveys our recently developed in vitro models of SCI by evoking excitotoxic (or even hypoxic/dysmetabolic) damage to spinal networks and assessing the impact on rhythmic activity and cell survival. These pathological processes which evolve via different cell death mechanisms are discussed as a paradigm to apply MEA recording for detailed mapping of the functional damage and its time-dependent evolution.
Collapse
Affiliation(s)
- Miranda Mladinic
- Neuroscience Department, International School for Advanced Studies (SISSA) Trieste, Italy ; Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione Udine, Italy ; Department of Biotechnology, University of Rijeka Rijeka, Croatia
| | | |
Collapse
|
22
|
Abstract
Numerous studies from the clinical and preclinical literature indicate that general anesthetic agents have toxic effects on the developing brain, but the mechanism of this toxicity is still unknown. Previous studies have focused on the effects of anesthetics on cell survival, dendrite elaboration, and synapse formation, but little attention has been paid to possible effects of anesthetics on the developing axon. Using dissociated mouse cortical neurons in culture, we found that isoflurane delays the acquisition of neuronal polarity by interfering with axon specification. The magnitude of this effect is dependent on isoflurane concentration and exposure time over clinically relevant ranges, and it is neither a precursor to nor the result of neuronal cell death. Propofol also seems to interfere with the acquisition of neuronal polarity, but the mechanism does not require activity at GABAA receptors. Rather, the delay in axon specification likely results from a slowing of the extension of prepolarized neurites. The effect is not unique to isoflurane as propofol also seems to interfere with the acquisition of neuronal polarity. These findings demonstrate that anesthetics may interfere with brain development through effects on axon growth and specification, thus introducing a new potential target in the search for mechanisms of pediatric anesthetic neurotoxicity.
Collapse
|
23
|
Lecker I, Wang DS, Romaschin AD, Peterson M, Mazer CD, Orser BA. Tranexamic acid concentrations associated with human seizures inhibit glycine receptors. J Clin Invest 2012. [PMID: 23187124 DOI: 10.1172/jci63375] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antifibrinolytic drugs are widely used to reduce blood loss during surgery. One serious adverse effect of these drugs is convulsive seizures; however, the mechanisms underlying such seizures remain poorly understood. The antifibrinolytic drugs tranexamic acid (TXA) and ε-aminocaproic acid (EACA) are structurally similar to the inhibitory neurotransmitter glycine. Since reduced function of glycine receptors causes seizures, we hypothesized that TXA and EACA inhibit the activity of glycine receptors. Here we demonstrate that TXA and EACA are competitive antagonists of glycine receptors in mice. We also showed that the general anesthetic isoflurane, and to a lesser extent propofol, reverses TXA inhibition of glycine receptor-mediated current, suggesting that these drugs could potentially be used to treat TXA-induced seizures. Finally, we measured the concentration of TXA in the cerebrospinal fluid (CSF) of patients undergoing major cardiovascular surgery. Surprisingly, peak TXA concentration in the CSF occurred after termination of drug infusion and in one patient coincided with the onset of seizures. Collectively, these results show that concentrations of TXA equivalent to those measured in the CSF of patients inhibited glycine receptors. Furthermore, isoflurane or propofol may prevent or reverse TXA-induced seizures.
Collapse
Affiliation(s)
- Irene Lecker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|