1
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Mane RS, Prasad BD, Sahni S, Quaiyum Z, Sharma VK. Biotechnological studies towards improvement of finger millet using multi-omics approaches. Funct Integr Genomics 2024; 24:148. [PMID: 39218842 DOI: 10.1007/s10142-024-01438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
A plethora of studies have uncovered numerous important genes with agricultural significance in staple crops. However, when it comes to orphan crops like minor millet, genomic research lags significantly behind that of major crops. This situation has promoted a focus on exploring research opportunities in minor millets, particularly in finger millet, using cutting-edge methods. Finger millet, a coarse cereal known for its exceptional nutritional content and ability to withstand environmental stresses represents a promising climate-smart and nutritional crop in the battle against escalating environmental challenges. The existing traditional improvement programs for finger millet are insufficient to address global hunger effectively. The lack of utilization of high-throughput platforms, genome editing, haplotype breeding, and advanced breeding approaches hinders the systematic multi-omics studies on finger millet, which are essential for pinpointing crucial genes related to agronomically important and various stress responses. The growing environmental uncertainties have widened the gap between the anticipated and real progress in crop improvement. To overcome these challenges a combination of cutting-edge multi-omics techniques such as high-throughput sequencing, speed breeding, mutational breeding, haplotype-based breeding, genomic selection, high-throughput phenotyping, pangenomics, genome editing, and more along with integration of deep learning and artificial intelligence technologies are essential to accelerate research efforts in finger millet. The scarcity of multi-omics approaches in finger millet leaves breeders with limited modern tools for crop enhancement. Therefore, leveraging datasets from previous studies could prove effective in implementing the necessary multi-omics interventions to enrich the genetic resource in finger millet.
Collapse
Affiliation(s)
- Rushikesh Sanjay Mane
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Bishun Deo Prasad
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| | - Sangita Sahni
- Department of Plant Pathology, TCA Dholi, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Zeba Quaiyum
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - V K Sharma
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| |
Collapse
|
3
|
Prusty A, Panchal A, Singh RK, Prasad M. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. PLANTA 2024; 259:118. [PMID: 38592589 DOI: 10.1007/s00425-024-04394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.
Collapse
Affiliation(s)
- Ankita Prusty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal, 721628, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
4
|
Kurowska M, Daszkowska-Golec A. Molecular mechanisms of SNAC1 (Stress-responsive NAC1) in conferring the abiotic stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111894. [PMID: 37813193 DOI: 10.1016/j.plantsci.2023.111894] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
NAC family gene - SNAC1 (Stress-responsive NAC1) is responsive to drought, salt, cold stress, and ABA. It acts as a regulator in mediating tolerance to abiotic stress through different pathways. Abiotic stress, among them drought and salinity, are adverse factors for plant growth and crop productivity. SNAC1 was an object of high interest according to the effect of improved drought and salt tolerance when overexpressed in different plant species such as rice, wheat, barley, cotton, maize, banana, or oat. SNAC1 functions by regulating the expression of genes that contain the NAC Recognized Sequence (NACRS) within their promoter region. This gene is induced by drought, specifically in guard cells. Its downstream targets have been identified. The role of SNAC1 in molecular and physiological responses during abiotic stress has been proposed, but this knowledge still needs to be expanded. Here, we describe recent advances in understanding the action of SNAC1 in adapting plants to abiotic stress.
Collapse
Affiliation(s)
- Marzena Kurowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
5
|
Baoxiang W, Zhiguang S, Yan L, Bo X, Jingfang L, Ming C, Yungao X, Bo Y, Jian L, Jinbo L, Tingmu C, Zhaowei F, Baiguan L, Dayong X, Bello BK. A pervasive phosphorylation cascade modulation of plant transcription factors in response to abiotic stress. PLANTA 2023; 258:73. [PMID: 37668677 DOI: 10.1007/s00425-023-04232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
MAIN CONCLUSION Transcriptional regulation of stress-responsive genes is a crucial step in establishing the mechanisms behind plant abiotic stress tolerance. A sensitive method of regulating transcription factors activity, stability, protein interaction, and subcellular localization is through phosphorylation. This review highlights a widespread regulation mechanism that involves phosphorylation of plant TFs in response to abiotic stress. Abiotic stress is one of the main components limiting crop yield and sustainability on a global scale. It greatly reduces the land area that is planted and lowers crop production globally. In all living organisms, transcription factors (TFs) play a crucial role in regulating gene expression. They participate in cell signaling, cell cycle, development, and plant stress response. Plant resilience to diverse abiotic stressors is largely influenced by TFs. Transcription factors modulate gene expression by binding to their target gene's cis-elements, which are impacted by genomic characteristics, DNA structure, and TF interconnections. In this review, we focus on the six major TFs implicated in abiotic stress tolerance, namely, DREB, bZIP, WRKY, ABF, MYB, and NAC, and the cruciality of phosphorylation of these transcription factors in abiotic stress signaling, as protein phosphorylation has emerged as one of the key post-translational modifications, playing a critical role in cell signaling, DNA amplification, gene expression and differentiation, and modification of other biological configurations. These TFs have been discovered after extensive study as stress-responsive transcription factors which may be major targets for crop development and important contributors to stress tolerance and crop production.
Collapse
Grants
- CARS-01-61 the earmarked funds for China Agricultural Research System
- 2015BAD01B01 National Science and Technology Support Program of China
- BE2016370-3 Science and Technology Support Program of Jiangsu Province, China
- BE2017323 Science and Technology Support Program of Jiangsu Province, China
- BK20201214 Natural Science Foundation of Jiangsu Province of China
- BK20161299 the Natural Science Foundation of Jiangsu Province, China
- QNJJ1704 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2102 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2107 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2211 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
Collapse
Affiliation(s)
- Wang Baoxiang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Sun Zhiguang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Yan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jingfang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chi Ming
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xing Yungao
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Yang Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jian
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Jinbo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chen Tingmu
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Fang Zhaowei
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Lu Baiguan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Dayong
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| | - Babatunde Kazeem Bello
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| |
Collapse
|
6
|
Choudhary P, Shukla P, Muthamilarasan M. Genetic enhancement of climate-resilient traits in small millets: A review. Heliyon 2023; 9:e14502. [PMID: 37064482 PMCID: PMC10102230 DOI: 10.1016/j.heliyon.2023.e14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/28/2023] Open
Abstract
Agriculture is facing the challenge of feeding the ever-growing population that is projected to reach ten billion by 2050. While improving crop yield and productivity can address this challenge, the increasing effects of global warming and climate change seriously threaten agricultural productivity. Thus, genomics and genome modification technologies are crucial to improving climate-resilient traits to enable sustained yield and productivity; however, significant research focuses on staple crops such as rice, wheat, and maize. Crops that are naturally climate-resilient and nutritionally superior to staple cereals, such as small millets, remain neglected and underutilized by mainstream research. The ability of small millets to grow in marginal regions having limited irrigation and poor soil fertility makes these crops a better choice for cultivation in arid and semi-arid areas. Hence, mainstreaming small millets for cultivation and using omics technologies to dissect the climate-resilient traits to identify the molecular determinants underlying these traits are imperative for addressing food and nutritional security. In this context, the review discusses the genomics and genome modification approaches for dissecting key traits in small millets and their application for improving these traits in cultivated germplasm. The review also discusses biofortification for nutritional security and machine-learning approaches for trait improvement in small millets. Altogether, the review provides a roadmap for the effective use of next-generation approaches for trait improvement in small millets. This will lead to the development of improved varieties for addressing multiple insecurities prevailing in the present climate change scenario.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
7
|
Basu S, Huynh L, Zhang S, Rabara R, Nguyen H, Velásquez Guzmán J, Hao G, Miles G, Shi Q, Stover E, Gupta G. Two Liberibacter Proteins Combine to Suppress Critical Innate Immune Defenses in Citrus. FRONTIERS IN PLANT SCIENCE 2022; 13:869178. [PMID: 35586217 PMCID: PMC9108871 DOI: 10.3389/fpls.2022.869178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
We adopted a systems-based approach to determine the role of two Candidatus Liberibacter asiaticus (CLas) proteins, LasP 235 and Effector 3, in Huanglongbing (HLB) pathogenesis. While a published work suggests the involvement of these CLas proteins HLB pathogenesis, the exact structure-based mechanism of their action has not been elucidated. We conducted the following experiments to determine the structure-based mechanisms of action. First, we immunoprecipitated the interacting citrus protein partners of LasP 235 and Effector 3 from the healthy and CLas-infected Hamlin extracts and identified them by Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Second, we performed a split green fluorescent protein (GFP) assay in tobacco to validate that the interactions observed in vitro are also retained in planta. The notable in planta citrus targets of LasP 235 and Effector 3 include citrus innate immune proteins. Third, in vitro and in planta studies were performed to show that LasP 235 and Effector 3 interact with and inhibit the functions of multiple citrus proteins belonging to the innate immune pathways. These inhibitory interactions led to a high level of reactive oxygen species, blocking of bactericidal lipid transfer protein (LTP), and induction of premature programed cell death (PCD), all of which are beneficial to CLas lifecycle and HLB pathogenesis. Finally, we performed molecular dynamics simulations to visualize the interactions of LasP 235 and Effector 3, respectively, with LTP and Kunitz protease inhibitor. This led to the design of an LTP mimic, which sequestered and blocked LasP 235 and rescued the bactericidal activity of LTP thereby proving that LasP 235 , indeed, participates in HLB pathogenesis.
Collapse
Affiliation(s)
- Supratim Basu
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Loan Huynh
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Shujian Zhang
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Roel Rabara
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | - Hau Nguyen
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| | | | - Guixia Hao
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Godfrey Miles
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Qingchun Shi
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Ed Stover
- Horticulture and Breeding, U. S. Horticultural Research Laboratory, Fort Pierce, FL, United States
| | - Goutam Gupta
- Biolab, New Mexico Consortium, Los Alamos, NM, United States
| |
Collapse
|
8
|
Singh S, Chopperla R, Shingote P, Chhapekar SS, Deshmukh R, Khan S, Padaria JC, Sharma TR, Solanke AU. Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging. J Biotechnol 2021; 336:10-24. [PMID: 34116128 DOI: 10.1016/j.jbiotec.2021.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/04/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023]
Abstract
An extreme temperature regime beyond desired level imposes significant stress in crop plants. The low and high temperature stresses are one of the primary constraints for plant development and yield. Finger millet, being a climate resilient crop, is a potential source of novel stress tolerant genes. In this study, functional characterization of finger millet DREB2A gene in different abiotic stress conditions was done. This novel EcDREB2A transcription factor isolated from finger millet is a truncated version of DREB2A gene compared to previously reported DREB genes from other plant species. The overexpression of EcDREB2A in transgenic tobacco exhibits improved tolerance against heat stress 42 °C for up to 7 days, by altering physiology and biochemical means. However, same transgenic lines were unable to provide tolerance to 200 mM NaCl and 200 mM Mannitol stress. Under heat stress conditions, increased seed germination with improved lateral roots, fresh and dry weight relative to wild type (WT) was observed. The EcDREB2A transgenics exposed to heat stress showed improved rate of stomatal conductance, chlorophyll and carotenoids contents, and other photosynthesis parameters compared to WT plants. EcDREB2A overexpression also resulted in increased antioxidant enzyme activity (SOD, CAT, GR, POD and, APX) with decreased electrolyte leakage (EL), H2O2, and malondialdehyde (MDA) content than WT plants under heat stress. Quantitative real time expression analysis demonstrated that all eight downstream genes were significantly upregulated in transgenic plants only after heat stress. Our data provide a clear demonstration of the positive impact of overexpression of EcDREB2A providing heat stress tolerance to plants.
Collapse
Affiliation(s)
- Sonam Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | | | - Prashant Shingote
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | | | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Suphiya Khan
- Banasthali University, Banasthali, 304022, India
| | - Jasdeep C Padaria
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India; Indian Council of Agricultural Research, New Delhi, 110001, India
| | | |
Collapse
|
9
|
Singh S, Koyama H, Bhati KK, Alok A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. JOURNAL OF PLANT RESEARCH 2021; 134:475-495. [PMID: 33616799 PMCID: PMC8106581 DOI: 10.1007/s10265-021-01270-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/13/2021] [Indexed: 05/02/2023]
Abstract
Climate change, malnutrition, and food insecurity are the inevitable challenges being faced by the agriculture sector today. Plants are susceptible to extreme temperatures during the crucial phases of flowering and seed development, and elevated carbon levels also lead to yield losses. Productivity is also affected by floods and droughts. Therefore, increasing plant yield and stress tolerance are the priorities to be met through novel biotechnological interventions. The contributions of NAC genes towards enhancing plant survivability under stress is well known. Here we focus on the potential of NAC genes in the regulation of abiotic stress tolerance, secondary cell wall synthesis, lateral root development, yield potential, seed size and biomass, ROS signaling, leaf senescence, and programmed cell death. Once naturally tolerant candidate NAC genes have been identified, and the nature of their association with growth and fitness against multi-environmental stresses has been determined, they can be exploited for building inherent tolerance in future crops via transgenic technologies. An update on the latest developments is provided in this review, which summarizes the current understanding of the roles of NAC in the establishment of various stress-adaptive mechanisms in model and food crop plants.
Collapse
Affiliation(s)
- Sadhana Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Hiroyuki Koyama
- Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kaushal K Bhati
- Louvain Institute of Biomolecular Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Anshu Alok
- Department of Biotechnology, UIET, Punjab University, Chandigarh, India
| |
Collapse
|
10
|
Chen K, Guo Y, Song M, Liu L, Xue H, Dai H, Zhang Z. Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple. HORTICULTURE RESEARCH 2020; 7:204. [PMID: 33328445 PMCID: PMC7705020 DOI: 10.1038/s41438-020-00433-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/08/2020] [Accepted: 10/17/2020] [Indexed: 05/15/2023]
Abstract
Clarifying the stress signal transduction pathway would be helpful for understanding the abiotic stress resistance mechanism in apple (Malus × domestica Borkh.) and could assist in the development of new varieties with high stress tolerance by genetic engineering. The key NAC transcription factor SND1, which is involved in the lignin biosynthesis process in apple, was functionally analyzed. The results of the stress treatments indicated that MdSND1 could be induced by salt, mannitol and ABA. Compared with wild-type GL-3 plants, MdSND1-overexpressing apple plants with greater antioxidant capacity and lignin were more resistant to salt and simulated osmotic stress, while RNAi plants were more vulnerable. Additionally, molecular experiments confirmed that MdSND1 could regulate the biosynthesis of lignin by activating the transcription of MdMYB46/83. Moreover, genes known to be involved in the stress signal transduction pathway (MdAREB1A, MdAREB1B, MdDREB2A, MdRD29A, and MdRD22) were screened for their close correlations with the expression of MdSND1 and the response to salt and osmotic stress. Multiple verification tests further demonstrated that MdSND1 could directly bind to these gene promoters and activate their transcription. The above results revealed that MdSND1 is directly involved in the regulation of lignin biosynthesis and the signal transduction pathway involved in the response to both salt and osmotic stress in apple.
Collapse
Affiliation(s)
- Keqin Chen
- Group of Molecular Biology of Fruit Trees, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Yunna Guo
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Mengru Song
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Lifu Liu
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hao Xue
- Group of Molecular Biology of Fruit Trees, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China
| | - Hongyan Dai
- Group of Fruit Germplasm Evaluation & Utilization, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China.
| | - Zhihong Zhang
- Group of Molecular Biology of Fruit Trees, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
11
|
Nadarajah KK. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E5208. [PMID: 32717820 PMCID: PMC7432042 DOI: 10.3390/ijms21155208] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change-induced abiotic stress results in crop yield and production losses. These stresses result in changes at the physiological and molecular level that affect the development and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to cells while the same molecule can function as a signal transducer that activates a local and systemic plant defense response against stress. The effects, perception, signaling, and activation of ROS and their antioxidative responses are elaborated in this review. This review aims to provide a purview of processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways in understanding the mechanism of resistance in plants and the importance of this information in breeding and genetically developing crops for resistance against abiotic stress in plants.
Collapse
Affiliation(s)
- Kalaivani K Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM BANGI, Malaysia
| |
Collapse
|
12
|
Shingote PR, Kawar PG, Pagariya MC, Muley AB, Babu KH. Isolation and functional validation of stress tolerant EaMYB18 gene and its comparative physio-biochemical analysis with transgenic tobacco plants overexpressing SoMYB18 and SsMYB18. 3 Biotech 2020; 10:225. [PMID: 32373417 PMCID: PMC7196118 DOI: 10.1007/s13205-020-02197-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023] Open
Abstract
MYB transcription factors are one of the most important mediators for the survival of plants under multiple stress responses. In the present study, EaMYB18, encoding a single R3 repeat MYB DNA binding domain was isolated from stress-tolerant wild relative species of sugarcane Erianthus arundinaceus. In silico analysis of 948 bp coding mRNA sequence of EaMYB18 exhibited the presence of four exons and three introns. Further, the EaMYB18 gene was transformed in tobacco and its stable inheritance was confirmed through antibiotic resistance screening, PCR amplification and Southern hybridization blotting. Results of the estimation of MDA, proline, total chlorophyll and antioxidant activities of EaMYB18 transgenic tobacco lines exhibited least oxidative damage under drought and cold stress over the untransformed ones, the over-expression of EaMYB18 has improved drought and cold stress tolerance ability in tobacco. The comparative physiological and biochemical analysis of transgenic tobacco plants overexpressing SoMYB18, SsMYB18 and EaMYB18, revealed that the EaMYB18 and SsMYB18 transgenic plants demonstrated effective tolerance to drought and cold stresses, while SoMYB18 showed improved tolerance to salt stress alone. Amongst these three genes, EaMYB18 displayed the highest potential for drought and cold stress tolerances as compared to SoMYB18 and SsMYB18 genes.
Collapse
Affiliation(s)
- Prashant Raghunath Shingote
- Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, Pune, Maharashtra 412307 India
- Vasantrao Naik College of Agricultural Biotechnology, Waghapur Road, Yavatmal, Maharashtra 445001 India
- Department of Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Prashant Govindrao Kawar
- Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, Pune, Maharashtra 412307 India
- ICAR-Directorate of Floriculture Research, College of Agricultural Campus, Shivaji Nagar, Pune, Maharashtra 411005 India
- Department of Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Madhuri Chandrakant Pagariya
- Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, Pune, Maharashtra 412307 India
- Department of Botany, BJS Arts, Science and Commerce College, Bakori Phata, Wagholi, Pune, Maharashtra 412207 India
| | - Abhijeet Bhimrao Muley
- Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, Pune, Maharashtra 412307 India
| | - K. H. Babu
- Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, Pune, Maharashtra 412307 India
| |
Collapse
|
13
|
Parvathi MS, Nataraja KN, Nanja Reddy YA, Naika MBN, Channabyre Gowda MV. Transcriptome analysis of finger millet ( Eleusine coracana (L.) Gaertn.) reveals unique drought responsive genes. J Genet 2019; 98:46. [PMID: 31204698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Finger millet (Eleusine coracana (L.) Gaertn.), an important C4 species is known for its stress hardiness and nutritional significance. To identify novel drought responsive mechanisms, we generated transcriptome data from leaf tissue of finger millet, variety GPU-28, exposed to gravimetrically imposed drought stress so as to simulate field stress conditions. De novo assembly based approach yielded 80,777 and 90,830 transcripts from well-irrigated (control) and drought-stressed samples, respectively. A total of 1790 transcripts were differentially expressed between the control and drought-stress treatments. Functional annotation and pathway analysis indicated activation of diverse drought-stress signalling cascade genes such as serine threonine protein phosphatase 2A (PP2A), calcineurin B-like interacting protein kinase31 (CIPK31), farnesyl pyrophosphate synthase (FPS), signal recognition particle receptor α (SRPR α) etc. The basal regulatory genes such as TATA-binding protein (TBP)-associated factors (TAFs) werefound to be drought responsive, indicating that genes associated with housekeeping or basal regulatory processes are activated underdrought in finger millet. A significant portion of the expressed genes was uncharacterized, belonging to the category of proteins of unknown functions (PUFs). Among the differentially expressed PUFs, we attempted to assign putative function for a few, using anovel annotation tool, Proteins of Unknown Function Annotation Server. Analysis of PUFs led to the discovery of novel drought responsive genes such as pentatricopeptide repeat proteins and tetratricopeptide repeat proteins that serve as interaction modules in multiprotein interactions. The transcriptome data generated can be utilized for comparative analysis, and functional validation of the genes identified would be useful to understand the drought adaptive mechanisms operating under field conditions in finger millet, as has been already attempted for a few candidates such as CIPK31 and TAF6. Such an attempt is needed to enhance the productivity of finger millet under water-limited conditions, and/or to adopt the implicated mechanisms in other related crops.
Collapse
Affiliation(s)
- M S Parvathi
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India.
| | | | | | | | | |
Collapse
|
14
|
Parvathi MS, Nataraja KN, Reddy YAN, Naika MBN, Gowda MVC. Transcriptome analysis of finger millet (Eleusine coracana (L.) Gaertn.) reveals unique drought responsive genes. J Genet 2019. [DOI: 10.1007/s12041-019-1087-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Tang W, Luo C. Overexpression of Zinc Finger Transcription Factor ZAT6 Enhances Salt Tolerance. Open Life Sci 2018; 13:431-445. [PMID: 33817112 PMCID: PMC7874681 DOI: 10.1515/biol-2018-0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
The purpose of the present investigation is to examine the function of the C2H2-type zinc finger transcription factor of Arabidopsis thaliana 6 (ZAT6) in salt stress tolerance in cells of rice (Oryza sativa L.), cotton (Gossypium hirsutum L.) and slash pine (Pinus elliottii Engelm.). Cells of O. sativa, G. hirsutum, and P. elliottii overexpressing ZAT6 were generated using Agrobacterium-mediated genetic transformation. Molecular and functional analysis of transgenic cell lines demonstrate that overexpression of ZAT6 increased tolerance to salt stress by decreasing lipid peroxidation and increasing the content of abscisic acid (ABA) and GA8, as well as enhancing the activities of antioxidant enzymes such as ascorbate peroxidise (APOX), catalase (CAT), glutathione reductase (GR), and superoxide dismutase (SOD). In rice cells, ZAT6 also increased expression of Ca2+-dependent protein kinase genes OsCPK9 and OsCPK25 by 5–7 fold under NaCl stress. Altogether, our results suggest that overexpression of ZAT6 enhanced salt stress tolerance by increasing antioxidant enzyme activity, hormone content and expression of Ca2+-dependent protein kinase in transgenic cell lines of different plant species.
Collapse
Affiliation(s)
- Wei Tang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
| | - Caroline Luo
- Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Sudhakar Reddy P, Dhaware MG, Srinivas Reddy D, Pradeep Reddy B, Divya K, Sharma KK, Bhatnagar-Mathur P. Comprehensive evaluation of candidate reference genes for real-time quantitative PCR (RT-qPCR) data normalization in nutri-cereal finger millet [Eleusine Coracana (L.)]. PLoS One 2018; 13:e0205668. [PMID: 30321245 PMCID: PMC6188778 DOI: 10.1371/journal.pone.0205668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/30/2018] [Indexed: 11/19/2022] Open
Abstract
Finger millet (Eleusine coracana L.) is an annual herbaceous self-pollinating C4 cereal crop of the arid and semi-arid regions of the world. Finger millet is a food security crop proven to have resilience to changing climate and scores very high in nutrition. In the current study, we have assessed sixteen candidate reference genes for their appropriateness for the normalization studies in finger millet subjected to experimental regimes and treatments. Ten candidate reference genes (GAPDH, β-TUB, CYP, EIF4α, TIP41, UBC, G6PD, S24, MACP and MDH) were cloned and six (ACT, ELF1α, PP2A, PT, S21 and TFIID) were mined from the NCBI database as well as from the literature. Expression stability ranking of the finger millet reference genes was validated using four different statistical tools i.e., geNorm, NormFinder, BestKeeper, ΔCt and RefFinder. From the study, we endorse MACP, CYP, EIF4α to be most stable candidate reference genes in all 'tissues', whereas PT, TFIID, MACP ranked high across genotypes, β-TUB, CYP, ELF1α were found to be best under abiotic stresses and 'all samples set'. The study recommends using minimum of two reference genes for RT-qPCR data normalizations in finger millet. All in all, CYP, β-TUB, and EF1α, in combination were found to be best for robust normalizations under most experimental conditions. The best and the least stable genes were validated for confirmation by assessing their appropriateness for normalization studies using EcNAC1 gene. The report provides the first comprehensive list of suitable stable candidate reference genes for nutritional rich cereal finger millet that will be advantageous to gene expression studies in this crop.
Collapse
Affiliation(s)
- Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
- * E-mail:
| | - Mahamaya G. Dhaware
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Dumbala Srinivas Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Bommineni Pradeep Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Kummari Divya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Kiran K. Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| |
Collapse
|
17
|
The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses. Sci Rep 2018; 8:2148. [PMID: 29391403 PMCID: PMC5794737 DOI: 10.1038/s41598-018-19766-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/22/2017] [Indexed: 11/08/2022] Open
Abstract
The occurrence of various stresses, as the outcome of global climate change, results in the yield losses of crop plants. Prospecting of genes in stress tolerant plant species may help to protect and improve their agronomic performance. Finger millet (Eleusine coracana L.) is a valuable source of superior genes and alleles for stress tolerance. In this study, we isolated a novel endoplasmic reticulum (ER) membrane tethered bZIP transcription factor from finger millet, EcbZIP17. Transgenic tobacco plants overexpressing this gene showed better vegetative growth and seed yield compared with wild type (WT) plants under optimal growth conditions and confirmed upregulation of brassinosteroid signalling genes. Under various abiotic stresses, such as 250 mM NaCl, 10% PEG6000, 400 mM mannitol, water withdrawal, and heat stress, the transgenic plants showed higher germination rate, biomass, primary and secondary root formation, and recovery rate, compared with WT plants. The transgenic plants exposed to an ER stress inducer resulted in greater leaf diameter and plant height as well as higher expression of the ER stress-responsive genes BiP, PDIL, and CRT1. Overall, our results indicated that EcbZIP17 improves plant growth at optimal conditions through brassinosteroid signalling and provide tolerance to various environmental stresses via ER signalling pathways.
Collapse
|
18
|
Antony Ceasar S, Maharajan T, Ajeesh Krishna TP, Ramakrishnan M, Victor Roch G, Satish L, Ignacimuthu S. Finger Millet [ Eleusine coracana (L.) Gaertn.] Improvement: Current Status and Future Interventions of Whole Genome Sequence. FRONTIERS IN PLANT SCIENCE 2018; 9:1054. [PMID: 30083176 PMCID: PMC6064933 DOI: 10.3389/fpls.2018.01054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 05/05/2023]
Abstract
The whole genome sequence (WGS) of the much awaited, nutrient rich and climate resilient crop, finger millet (Eleusine coracana (L.) Gaertn.) has been released recently. While possessing superior mineral nutrients and excellent shelf life as compared to other major cereals, multiploidy nature of the genome and relatively small plantation acreage in less developed countries hampered the genome sequencing of finger millet, disposing it as one of the lastly sequenced genomes in cereals. The genomic information available for this crop is very little when compared to other major cereals like rice, maize and barley. As a result, only a limited number of genetic and genomic studies has been undertaken for the improvement of this crop. Finger millet is known especially for its superior calcium content, but the high-throughput studies are yet to be performed to understand the mechanisms behind calcium transport and grain filling. The WGS of finger millet is expected to help to understand this and other important molecular mechanisms in finger millet, which may be harnessed for the nutrient fortification of other cereals. In this review, we discuss various efforts made so far on the improvement of finger millet including genetic improvement, transcriptome analysis, mapping of quantitative trait loci (QTLs) for traits, etc. We also discuss the pitfalls of modern genetic studies and provide insights for accelerating the finger millet improvement with the interventions of WGS in near future. Advanced genetic and genomic studies aided by WGS may help to improve the finger millet, which will be helpful to strengthen the nutritional security in addition to food security in the developing countries of Asia and Africa.
Collapse
Affiliation(s)
- S. Antony Ceasar
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
- Functional Genomics and Plant Molecular Imaging Lab, University of Liege, Liege, Belgium
- *Correspondence: S. Antony Ceasar, Savarimuthu Ignacimuthu,
| | - T. Maharajan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - T. P. Ajeesh Krishna
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - M. Ramakrishnan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - G. Victor Roch
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
| | - Lakkakula Satish
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Savarimuthu Ignacimuthu
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College Chennai, India
- *Correspondence: S. Antony Ceasar, Savarimuthu Ignacimuthu,
| |
Collapse
|
19
|
Leaf wax trait in crops for drought and biotic stress tolerance: regulators of epicuticular wax synthesis and role of small RNAs. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40502-017-0333-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Hatakeyama M, Aluri S, Balachadran MT, Sivarajan SR, Patrignani A, Grüter S, Poveda L, Shimizu-Inatsugi R, Baeten J, Francoijs KJ, Nataraja KN, Reddy YAN, Phadnis S, Ravikumar RL, Schlapbach R, Sreeman SM, Shimizu KK. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res 2017; 25:39-47. [PMID: 28985356 PMCID: PMC5824816 DOI: 10.1093/dnares/dsx036] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023] Open
Abstract
Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes.
Collapse
Affiliation(s)
- Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland.,Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Genopode, 1015 Lausanne, Switzerland
| | - Sirisha Aluri
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Mathi Thumilan Balachadran
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland.,Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland.,Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Sajeevan Radha Sivarajan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland.,Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland.,Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Andrea Patrignani
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Simon Grüter
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Lucy Poveda
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland
| | | | | | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | | | - Shamprasad Phadnis
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Ramapura L Ravikumar
- Department of Plant Biotechnology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, 8057 Zurich, Switzerland
| | - Sheshshayee M Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse. 190, 8057 Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
21
|
Marques DN, Reis SPD, de Souza CR. Plant NAC transcription factors responsive to abiotic stresses. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Basu S, Rabara R. Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Ramegowda V, Gill US, Sivalingam PN, Gupta A, Gupta C, Govind G, Nataraja KN, Pereira A, Udayakumar M, Mysore KS, Senthil-Kumar M. GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana. Sci Rep 2017; 7:9148. [PMID: 28831141 PMCID: PMC5567290 DOI: 10.1038/s41598-017-09542-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/24/2017] [Indexed: 11/24/2022] Open
Abstract
Drought transcriptome analysis of finger millet (Eleusine coracana) by cDNA subtraction identified drought responsive genes that have a potential role in drought tolerance. Through virus-induced gene silencing (VIGS) in a related crop species, maize (Zea mays), several genes, including a G-BOX BINDING FACTOR 3 (GBF3) were identified as candidate drought stress response genes and the role of GBF3 in drought tolerance was studied in Arabidopsis thaliana. Overexpression of both EcGBF3 and AtGBF3 in A. thaliana resulted in improved tolerance to osmotic stress, salinity and drought stress in addition to conferring insensitivity to ABA. Conversely, loss of function of this gene increased the sensitivity of A. thaliana plants to drought stress. EcGBF3 transgenic A. thaliana results also suggest that drought tolerance of sensitive plants can be improved by transferring genes from far related crops like finger millet. Our results demonstrate the role of GBF3 in imparting drought tolerance in A. thaliana and indicate the conserved role of this gene in drought and other abiotic stress tolerance in several plant species.
Collapse
Affiliation(s)
- Venkategowda Ramegowda
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, 560065, India.,Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, USA
| | - Upinder Singh Gill
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Palaiyur Nanjappan Sivalingam
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.,ICAR-Central Institute for Arid Horticulture, Indian Council of Agricultural Research, Bikaner, 334006, India.,ICAR-National Institute of Biotic Stress Management, Indian Council of Agricultural Research, Raipur, 493225, India
| | - Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Chirag Gupta
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, USA
| | - Geetha Govind
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, 560065, India
| | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, 560065, India
| | - Andy Pereira
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, USA
| | - Makarla Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, 560065, India
| | | | - Muthappa Senthil-Kumar
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, 560065, India. .,Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA. .,National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India.
| |
Collapse
|
24
|
Hittalmani S, Mahesh HB, Shirke MD, Biradar H, Uday G, Aruna YR, Lohithaswa HC, Mohanrao A. Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 2017; 18:465. [PMID: 28619070 PMCID: PMC5472924 DOI: 10.1186/s12864-017-3850-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background Finger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has high amount of calcium, methionine, tryptophan, fiber, and sulphur containing amino acids. In addition, it has C4 photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield. Therefore, development and utilization of genomic resources for genetic improvement of this crop is immensely useful. Results Experimental results from whole genome sequencing and assembling process of ML-365 finger millet cultivar yielded 1196 Mb covering approximately 82% of total estimated genome size. Genome analysis showed the presence of 85,243 genes and one half of the genome is repetitive in nature. The finger millet genome was found to have higher colinearity with foxtail millet and rice as compared to other Poaceae species. Mining of simple sequence repeats (SSRs) yielded abundance of SSRs within the finger millet genome. Functional annotation and mining of transcription factors revealed finger millet genome harbors large number of drought tolerance related genes. Transcriptome analysis of low moisture stress and non-stress samples revealed the identification of several drought-induced candidate genes, which could be used in drought tolerance breeding. Conclusions This genome sequencing effort will strengthen plant breeders for allele discovery, genetic mapping, and identification of candidate genes for agronomically important traits. Availability of genomic resources of finger millet will enhance the novel breeding possibilities to address potential challenges of finger millet improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3850-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shailaja Hittalmani
- Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bengaluru, 560065, India.
| | - H B Mahesh
- Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bengaluru, 560065, India.
| | | | - Hanamareddy Biradar
- Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bengaluru, 560065, India
| | - Govindareddy Uday
- Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bengaluru, 560065, India
| | - Y R Aruna
- Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bengaluru, 560065, India
| | - H C Lohithaswa
- Department of Genetics and Plant Breeding, College of Agriculture, V. C. Farm, University of Agricultural Sciences, Mandya, 571405, India
| | - A Mohanrao
- Marker Assisted Selection Laboratory, Department of Genetics and Plant Breeding, University of Agricultural Sciences, Bengaluru, 560065, India
| |
Collapse
|
25
|
Pruthvi V, Rama N, Parvathi MS, Nataraja KN. Transgenic tobacco plants constitutively expressing peanut BTF3 exhibit increased growth and tolerance to abiotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:377-385. [PMID: 27981726 DOI: 10.1111/plb.12533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Abiotic stresses limit crop growth and productivity worldwide. Cellular tolerance, an important abiotic stress adaptive trait, involves coordinated activities of multiple proteins linked to signalling cascades, transcriptional regulation and other diverse processes. Basal transcriptional machinery is considered to be critical for maintaining transcription under stressful conditions. From this context, discovery of novel basal transcription regulators from stress adapted crops like peanut would be useful for improving tolerance of sensitive plant types. In this study, we prospected a basal transcription factor, BTF3 from peanut (Arachis hypogaea L) and studied its relevance in stress acclimation by over expression in tobacco. AhBTF3 was induced under PEG-, NaCl-, and methyl viologen-induced stresses in peanut. The constitutive expression of AhBTF3 in tobacco increased plant growth under non stress condition. The transgenic plants exhibited superior phenotype compared to wild type under mannitol- and NaCl-induced stresses at seedling level. The enhanced cellular tolerance of transgenic plants was evidenced by higher cell membrane stability, reactive oxygen species (ROS) scavenging activity, seedling survival and vigour than wild type. The transgenic lines showed better in vitro regeneration capacity on growth media supplemented with NaCl than wild type. Superior phenotype of transgenic plants under osmotic and salinity stresses seems to be due to constitutive activation of genes of multiple pathways linked to growth and stress adaptation. The study demonstrated that AhBTF3 is a positive regulator of growth and stress acclimation and hence can be considered as a potential candidate gene for crop improvement towards stress adaptation.
Collapse
Affiliation(s)
- V Pruthvi
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - N Rama
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - M S Parvathi
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - K N Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
26
|
Genome wide analysis of NAC gene family ‘sequences’ in sugarcane and its comparative phylogenetic relationship with rice, sorghum, maize and Arabidopsis for prediction of stress associated NAC genes. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Bandyopadhyay T, Muthamilarasan M, Prasad M. Millets for Next Generation Climate-Smart Agriculture. FRONTIERS IN PLANT SCIENCE 2017; 8:1266. [PMID: 28769966 PMCID: PMC5513978 DOI: 10.3389/fpls.2017.01266] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/05/2017] [Indexed: 05/04/2023]
|
28
|
Gupta SM, Arora S, Mirza N, Pande A, Lata C, Puranik S, Kumar J, Kumar A. Finger Millet: A "Certain" Crop for an "Uncertain" Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments. FRONTIERS IN PLANT SCIENCE 2017; 8:643. [PMID: 28487720 PMCID: PMC5404511 DOI: 10.3389/fpls.2017.00643] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/10/2017] [Indexed: 05/05/2023]
Abstract
Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [Eleusine coracana (L.) Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement. Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops.
Collapse
Affiliation(s)
- Sanjay Mohan Gupta
- Molecular Biology and Genetic Engineering Laboratory, Defence Institute of Bio-Energy Research, Defence Research and Development OrganisationHaldwani, India
| | - Sandeep Arora
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
| | - Neelofar Mirza
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
| | - Anjali Pande
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
| | - Charu Lata
- Council of Scientific and Industrial Research-National Botanical Research InstituteLucknow, India
| | - Swati Puranik
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - J. Kumar
- Department of Plant Pathology, College of Agriculture, G. B. Pant University of Agriculture and TechnologyPantnagar, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
- *Correspondence: Anil Kumar,
| |
Collapse
|
29
|
Kumari J, Udawat P, Dubey AK, Haque MI, Rathore MS, Jha B. Overexpression of SbSI-1, A Nuclear Protein from Salicornia brachiata Confers Drought and Salt Stress Tolerance and Maintains Photosynthetic Efficiency in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2017; 8:1215. [PMID: 28751902 PMCID: PMC5508026 DOI: 10.3389/fpls.2017.01215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/27/2017] [Indexed: 05/14/2023]
Abstract
A novel Salicornia brachiata Salt Inducible (SbSI-1) gene was isolated and overexpressed in tobacco for in planta functional validation subjected to drought and salt stress. SbSI-1 is a nuclear protein. The transgenic tobacco overexpressing SbSI-1 gene exhibited better seed germination, growth performances, pigment contents, cell viability, starch accumulation, and tolerance index under drought and salt stress. Overexpression of SbSI-1 gene alleviated the build-up of reactive oxygen species (ROS) and curtailed the ROS-induced oxidative damages thus improved the physiological health of transgenic tobacco under stressed conditions. The higher activities of antioxidant enzymes, lower accumulation of ROS, higher membrane stability, relative water content, and polyphenol contents indicated the better survival of the transgenic tobacco than wild-type (WT) tobacco under stressed conditions. Transgenic tobacco had a higher net photosynthetic rate, PSII operating efficiency, and performance index under drought and salt stress. Higher accumulation of compatible solutes and K+/Na+ ratio in transgenic tobacco than WT showed the better osmotic and redox homeostasis under stressed conditions. The up-regulation of genes encoding antioxidant enzymes (NtSOD, NtAPX, and NtCAT) and transcription factors (NtDREB2 and NtAP2) in transgenic tobacco under stressed conditions showed the role of SbSI-1 in ROS alleviation and involvement of this gene in abiotic stress tolerance. Multivariate data analysis exhibited statistical distinction among growth responses, physiological health, osmotic adjustment, and photosynthetic responses of WT and transgenic tobacco under stressed conditions. The overexpression of SbSI-1 gene curtailed the ROS-induced oxidative damages and maintained the osmotic homeostasis under stress conditions thus improved physiological health and photosynthetic efficiencies of the transgenic tobacco overexpressing SbSI-1 gene.
Collapse
Affiliation(s)
- Jyoti Kumari
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Pushpika Udawat
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
| | - Ashish K. Dubey
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Md Intesaful Haque
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
| | - Mangal S. Rathore
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
- *Correspondence: Mangal S. Rathore ;
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial ResearchBhavnagar, India
- Academy of Scientific and Innovative Research, Council of Scientific and Industrial ResearchNew Delhi, India
- Bhavanath Jha
| |
Collapse
|
30
|
Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms. PLoS One 2016; 11:e0157522. [PMID: 27314499 PMCID: PMC4912118 DOI: 10.1371/journal.pone.0157522] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 06/01/2016] [Indexed: 12/05/2022] Open
Abstract
In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.
Collapse
|
31
|
Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 2016; 16 Suppl 1:35. [PMID: 27213684 PMCID: PMC4896240 DOI: 10.1186/s12896-016-0261-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background NAC proteins (NAM (No apical meristem), ATAF (Arabidopsis transcription activation factor) and CUC (cup-shaped cotyledon)) are plant-specific transcription factors reported to be involved in regulating growth, development and stress responses. Salinity responsive transcriptome profiling in a set of contrasting finger millet genotypes through RNA-sequencing resulted in the identification of a NAC homolog (EcNAC 67) exhibiting differential salinity responsive expression pattern. Methods Full length cDNA of EcNAC67 was isolated, characterized and validated for its role in abiotic stress tolerance through agrobacterium mediated genetic transformation in a rice cultivar ASD16. Results Bioinformatics analysis of putative NAC transcription factor (TF) isolated from a salinity tolerant finger millet showed its genetic relatedness to NAC67 family TFs in related cereals. Putative transgenic lines of rice over-expressing EcNAC67 were generated through Agrobacterium mediated transformation and presence/integration of transgene was confirmed through PCR and southern hybridization analysis. Transgenic rice plants harboring EcNAC67 showed enhanced tolerance against drought and salinity under greenhouse conditions. Transgenic rice plants were found to possess higher root and shoot biomass during stress and showed better revival ability upon relief from salinity stress. Upon drought stress, transgenic lines were found to maintain higher relative water content and lesser reduction in grain yield when compared to non-transgenic ASD16 plants. Drought induced spikelet sterility was found to be much lower in the transgenic lines than the non-transgenic ASD16. Conclusion Results revealed the significant role of EcNAC67 in modulating responses against dehydration stress in rice. No detectable abnormalities in the phenotypic traits were observed in the transgenic plants under normal growth conditions. Results indicate that EcNAC67 can be used as a novel source for engineering tolerance against drought and salinity stress in rice and other crop plants. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0261-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hifzur Rahman
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Valarmathi Ramanathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Jagedeeshselvam Nallathambi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Sudhakar Duraialagaraja
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| |
Collapse
|
32
|
Sood S, Kumar A, Babu BK, Gaur VS, Pandey D, Kant L, Pattnayak A. Gene Discovery and Advances in Finger Millet [ Eleusine coracana (L.) Gaertn.] Genomics-An Important Nutri-Cereal of Future. FRONTIERS IN PLANT SCIENCE 2016; 7:1634. [PMID: 27881984 PMCID: PMC5101212 DOI: 10.3389/fpls.2016.01634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/17/2016] [Indexed: 05/22/2023]
Abstract
The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2-4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet.
Collapse
Affiliation(s)
- Salej Sood
- Indian Council of Agricultural Research, Vivekananda Institute of Hill AgricultureAlmora, India
- *Correspondence: Salej Sood ;
| | - Anil Kumar
- Molecular Biology and Genetic Engineering, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
- Anil Kumar
| | - B. Kalyana Babu
- Indian Council of Agricultural Research, Indian Institute of Oil Palm ResearchPedavegi, India
| | | | - Dinesh Pandey
- Molecular Biology and Genetic Engineering, Govind Ballabh Pant University of Agriculture and TechnologyPantnagar, India
| | - Lakshmi Kant
- Indian Council of Agricultural Research, Vivekananda Institute of Hill AgricultureAlmora, India
| | - Arunava Pattnayak
- Indian Council of Agricultural Research, Vivekananda Institute of Hill AgricultureAlmora, India
| |
Collapse
|
33
|
Shao H, Wang H, Tang X. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. FRONTIERS IN PLANT SCIENCE 2015; 6:902. [PMID: 26579152 PMCID: PMC4625045 DOI: 10.3389/fpls.2015.00902] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 05/18/2023]
Abstract
Abiotic stresses adversely affect plant growth and agricultural productivity. According to the current climate prediction models, crop plants will face a greater number of environmental stresses, which are likely to occur simultaneously in the future. So it is very urgent to breed broad-spectrum tolerant crops in order to meet an increasing demand for food productivity due to global population increase. As one of the largest families of transcription factors (TFs) in plants, NAC TFs play vital roles in regulating plant growth and development processes including abiotic stress responses. Lots of studies indicated that many stress-responsive NAC TFs had been used to improve stress tolerance in crop plants by genetic engineering. In this review, the recent progress in NAC TFs was summarized, and the potential utilization of NAC TFs in breeding abiotic stress tolerant transgenic crops was also be discussed. In view of the complexity of field conditions and the specificity in multiple stress responses, we suggest that the NAC TFs commonly induced by multiple stresses should be promising candidates to produce plants with enhanced multiple stress tolerance. Furthermore, the field evaluation of transgenic crops harboring NAC genes, as well as the suitable promoters for minimizing the negative effects caused by over-expressing some NAC genes, should be considered.
Collapse
Affiliation(s)
- Hongbo Shao
- Jiangsu Key Laboratory for Bioresources of Saline Soils; Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences Nanjing, China ; Key Laboratory of Coastal Biology and Bioresources, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) Yantai, China
| | - Hongyan Wang
- Key Laboratory of Coastal Biology and Bioresources, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) Yantai, China ; Institute of Technology, Yantai Academy of China Agriculture University Yantai, China
| | - Xiaoli Tang
- Key Laboratory of Coastal Biology and Bioresources, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) Yantai, China
| |
Collapse
|
34
|
Babitha KC, Vemanna RS, Nataraja KN, Udayakumar M. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress. PLoS One 2015; 10:e0137098. [PMID: 26366726 PMCID: PMC4569372 DOI: 10.1371/journal.pone.0137098] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/12/2015] [Indexed: 02/01/2023] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV) treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses.
Collapse
Affiliation(s)
- K. C. Babitha
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Ramu S. Vemanna
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - M. Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| |
Collapse
|
35
|
Ruiz JL. Descripción de una nueva especie de <em>Tropinota</em> Mulsant, 1842 del subgénero <em>Epicometis</em> Burmeister, 1842 del norte de Marruecos (Coleoptera: Scarabaeidae, Cetoniinae). GRAELLSIA 2015. [DOI: 10.3989/graellsia.2015.v71.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. FRONTIERS IN PLANT SCIENCE 2015; 6:157. [PMID: 25852710 PMCID: PMC4371761 DOI: 10.3389/fpls.2015.00157] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/27/2015] [Indexed: 05/20/2023]
Abstract
Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
37
|
Goron TL, Raizada MN. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 25852710 DOI: 10.3389/fpl.2015.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.
Collapse
Affiliation(s)
- Travis L Goron
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| | - Manish N Raizada
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada
| |
Collapse
|
38
|
You J, Chan Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1092. [PMID: 26697045 PMCID: PMC4672674 DOI: 10.3389/fpls.2015.01092] [Citation(s) in RCA: 507] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/20/2015] [Indexed: 05/18/2023]
Abstract
Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2 (•-)), hydroxyl radical (OH•) and singlet oxygen ((1)O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed.
Collapse
|
39
|
Tamirisa S, Vudem DR, Khareedu VR. Overexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4769-81. [PMID: 24868035 PMCID: PMC4144763 DOI: 10.1093/jxb/eru224] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A potent cold and drought regulatory protein-encoding gene (CcCDR) was isolated from the subtractive cDNA library of pigeonpea plants subjected to drought stress. CcCDR was induced by different abiotic stress conditions in pigeonpea. Overexpression of CcCDR in Arabidopsis thaliana imparted enhanced tolerance against major abiotic stresses, namely drought, salinity, and low temperature, as evidenced by increased biomass, root length, and chlorophyll content. Transgenic plants also showed increased levels of antioxidant enzymes, proline, and reducing sugars under stress conditions. Furthermore, CcCDR-transgenic plants showed enhanced relative water content, osmotic potential, and cell membrane stability, as well as hypersensitivity to abscisic acid (ABA) as compared with control plants. Localization studies confirmed that CcCDR could enter the nucleus, as revealed by intense fluorescence, indicating its possible interaction with various nuclear proteins. Microarray analysis revealed that 1780 genes were up-regulated in CcCDR-transgenics compared with wild-type plants. Real-time PCR analysis on selected stress-responsive genes, involved in ABA-dependent and -independent signalling networks, revealed higher expression levels in transgenic plants, suggesting that CcCDR acts upstream of these genes. The overall results demonstrate the explicit role of CcCDR in conferring multiple abiotic stress tolerance at the whole-plant level. The multifunctional CcCDR seems promising as a prime candidate gene for enhancing abiotic stress tolerance in diverse plants.
Collapse
Affiliation(s)
- Srinath Tamirisa
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, 500 007, India
| | | | | |
Collapse
|
40
|
Rabara RC, Tripathi P, Rushton PJ. The potential of transcription factor-based genetic engineering in improving crop tolerance to drought. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:601-14. [PMID: 25118806 DOI: 10.1089/omi.2013.0177] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Drought is one of the major constraints in crop production and has an effect on a global scale. In order to improve crop production, it is necessary to understand how plants respond to stress. A good understanding of regulatory mechanisms involved in plant responses during drought will enable researchers to explore and manipulate key regulatory points in order to enhance stress tolerance in crops. Transcription factors (TFs) have played an important role in crop improvement from the dawn of agriculture. TFs are therefore good candidates for genetic engineering to improve crop tolerance to drought because of their role as master regulators of clusters of genes. Many families of TFs, such as CCAAT, homeodomain, bHLH, NAC, AP2/ERF, bZIP, and WRKY have members that may have the potential to be tools for improving crop tolerance to drought. In this review, the roles of TFs as tools to improve drought tolerance in crops are discussed. The review also focuses on current strategies in the use of TFs, with emphasis on several major TF families in improving drought tolerance of major crops. Finally, many promising transgenic lines that may have improved drought responses have been poorly characterized and consequently their usefulness in the field is uncertain. New advances in high-throughput phenotyping, both greenhouse and field based, should facilitate improved phenomics of transgenic lines. Systems biology approaches should then define the underlying changes that result in higher yields under water stress conditions. These new technologies should help show whether manipulating TFs can have effects on yield under field conditions.
Collapse
Affiliation(s)
- Roel C Rabara
- 1 Texas A&M AgriLife Research and Extension Center , Dallas, Texas
| | | | | |
Collapse
|
41
|
Identification and expression analysis of salt-responsive genes using a comparative microarray approach in Salix matsudana. Mol Biol Rep 2014; 41:6555-68. [DOI: 10.1007/s11033-014-3539-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
42
|
Rahman H, Jagadeeshselvam N, Valarmathi R, Sachin B, Sasikala R, Senthil N, Sudhakar D, Robin S, Muthurajan R. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. PLANT MOLECULAR BIOLOGY 2014; 85:485-503. [PMID: 24838653 DOI: 10.1007/s11103-014-0199-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/10/2014] [Indexed: 05/20/2023]
Abstract
Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.
Collapse
Affiliation(s)
- Hifzur Rahman
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Senthil-Kumar M, Udayakumar M. Stable expression of mtlD gene imparts multiple stress tolerance in finger millet. PLoS One 2014; 9:e99110. [PMID: 24922513 PMCID: PMC4055669 DOI: 10.1371/journal.pone.0099110] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD), were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet.
Collapse
Affiliation(s)
- Ramanna Hema
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Ramu S. Vemanna
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | - Shivakumar Sreeramulu
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| | | | - Muthappa Senthil-Kumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| | - Makarla Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, India
| |
Collapse
|
44
|
Jiang X, Zhang C, Lü P, Jiang G, Liu X, Dai F, Gao J. RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:38-48. [PMID: 24011328 DOI: 10.1111/pbi.12114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 05/03/2023]
Abstract
Petal cell expansion depends on cell wall metabolism, changes in cell turgor pressure and restructuring of the cytoskeleton, and recovery ability of petal cell expansion is defined as an indicator of dehydration tolerance in flowers. We previously reported that RhNAC2, a development-related NAC domain transcription factor, confers dehydration tolerance through regulating cell wall-related genes in rose petals. Here, we identify RhNAC3, a novel rose SNAC gene, and its expression in petals induced by dehydration, wounding, exogenous ethylene and abscisic acid (ABA). Expression studies in Arabidopsis protoplasts and yeast show that RhNAC3 has transactivation activity along its full length and in the carboxyl-terminal domain. Silencing RhNAC3 in rose petals by virus-induced gene silencing (VIGS) significantly decreased the cell expansion of rose petals under rehydration conditions. In total, 24 of 27 osmotic stress-related genes were down-regulated in RhNAC3-silenced rose petals, while only 4 of 22 cell expansion-related genes were down-regulated. Overexpression of RhNAC3 in Arabidopsis gave improved drought tolerance, with lower water loss of leaves in transgenic plants. Arabidopsis ATH1 microarray analysis showed that RhNAC3 regulated the expression of stress-responsive genes in overexpressing lines, and further analysis revealed that most of the RhNAC3-up-regulated genes were involved in the response to osmotic stress. Comparative analysis revealed that different transcription regulation existed between RhNAC3 and RhNAC2. Taken together, these data indicate that RhNAC3, as a positive regulator, confers dehydration tolerance of rose petals mainly through regulating osmotic adjustment-associated genes.
Collapse
Affiliation(s)
- Xinqiang Jiang
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Ramegowda V, Senthil-kumar M, Udayakumar M, Mysore KS. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC PLANT BIOLOGY 2013; 13:193. [PMID: 24289810 PMCID: PMC3879149 DOI: 10.1186/1471-2229-13-193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/21/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Understanding the function of a particular gene under various stresses is important for engineering plants for broad-spectrum stress tolerance. Although virus-induced gene silencing (VIGS) has been used to characterize genes involved in abiotic stress tolerance, currently available gene silencing and stress imposition methodology at the whole plant level is not suitable for high-throughput functional analyses of genes. This demands a robust and reliable methodology for characterizing genes involved in abiotic and multi-stress tolerance. RESULTS Our methodology employs VIGS-based gene silencing in leaf disks combined with simple stress imposition and effect quantification methodologies for easy and faster characterization of genes involved in abiotic and multi-stress tolerance. By subjecting leaf disks from gene-silenced plants to various abiotic stresses and inoculating silenced plants with various pathogens, we show the involvement of several genes for multi-stress tolerance. In addition, we demonstrate that VIGS can be used to characterize genes involved in thermotolerance. Our results also showed the functional relevance of NtEDS1 in abiotic stress, NbRBX1 and NbCTR1 in oxidative stress; NtRAR1 and NtNPR1 in salinity stress; NbSOS1 and NbHSP101 in biotic stress; and NtEDS1, NbETR1, NbWRKY2 and NbMYC2 in thermotolerance. CONCLUSIONS In addition to widening the application of VIGS, we developed a robust, easy and high-throughput methodology for functional characterization of genes involved in multi-stress tolerance.
Collapse
Affiliation(s)
- Venkategowda Ramegowda
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK 73402, USA
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560 065Karnataka, India
- Present address: VR: Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 USA; MS: National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Muthappa Senthil-kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK 73402, USA
- Present address: VR: Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 USA; MS: National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Makarla Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560 065Karnataka, India
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK 73402, USA
| |
Collapse
|
46
|
Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 2013; 4:248. [PMID: 24058359 PMCID: PMC3759801 DOI: 10.3389/fmicb.2013.00248] [Citation(s) in RCA: 447] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/05/2013] [Indexed: 12/25/2022] Open
Abstract
NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the NAC gene family have been suggested to play important roles in the regulation of the transcriptional reprogramming associated with plant stress responses. A phylogenetic analysis of NAC genes, with a focus on rice and Arabidopsis, was performed. Herein, we present an overview of the regulation of the stress responsive NAC SNAC/(IX) group of genes that are implicated in the resistance to different stresses. SNAC factors have important roles for the control of biotic and abiotic stresses tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. We also review the recent progress in elucidating the roles of NAC transcription factors in plant biotic and abiotic stresses. Modification of the expression pattern of transcription factor genes and/or changes in their activity contribute to the elaboration of various signaling pathways and regulatory networks. However, a single NAC gene often responds to several stress factors, and their protein products may participate in the regulation of several seemingly disparate processes as negative or positive regulators. Additionally, the NAC proteins function via auto-regulation or cross-regulation is extensively found among NAC genes. These observations assist in the understanding of the complex mechanisms of signaling and transcriptional reprogramming controlled by NAC proteins.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, Agrogenomics Research Center, National Institute of Agrobiological Sciences Tsukuba, Japan ; Graduate School of Science and Engineering, Institute for Environmental Science and Technology, Saitama University Saitama, Japan
| | | | | |
Collapse
|
47
|
Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore KS. Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. Int J Mol Sci 2013; 14:9497-513. [PMID: 23644883 PMCID: PMC3676796 DOI: 10.3390/ijms14059497] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/13/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022] Open
Abstract
Acclimation of plants with an abiotic stress can impart tolerance to some biotic stresses. Such a priming response has not been widely studied. In particular, little is known about enhanced defense capacity of drought stress acclimated plants to fungal and bacterial pathogens. Here we show that prior drought acclimation in Nicotiana benthamiana plants imparts tolerance to necrotrophic fungus, Sclerotinia sclerotiorum, and also to hemi-biotrophic bacterial pathogen, Pseudomonas syringae pv. tabaci. S. sclerotiorum inoculation on N. benthamiana plants acclimated with drought stress lead to less disease-induced cell death compared to non-acclimated plants. Furthermore, inoculation of P. syringae pv. tabaci on N. benthamiana plants acclimated to moderate drought stress showed reduced disease symptoms. The levels of reactive oxygen species (ROS) in drought acclimated plants were highly correlated with disease resistance. Further, in planta growth of GFPuv expressing P. syringae pv. tabaci on plants pre-treated with methyl viologen showed complete inhibition of bacterial growth. Taken together, these experimental results suggested a role for ROS generated during drought acclimation in imparting tolerance against S. sclerotiorum and P. syringae pv. tabaci. We speculate that the generation of ROS during drought acclimation primed a defense response in plants that subsequently caused the tolerance against the pathogens tested.
Collapse
Affiliation(s)
- Venkategowda Ramegowda
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (M.S.-K.); (Y.I.); (A.K.)
- Department of Crop Physiology, University of Agricultural Science, GKVK, Bangalore 560065, India; E-Mail:
| | - Muthappa Senthil-Kumar
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (M.S.-K.); (Y.I.); (A.K.)
| | - Yasuhiro Ishiga
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (M.S.-K.); (Y.I.); (A.K.)
| | - Amita Kaundal
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (M.S.-K.); (Y.I.); (A.K.)
| | - Makarla Udayakumar
- Department of Crop Physiology, University of Agricultural Science, GKVK, Bangalore 560065, India; E-Mail:
| | - Kirankumar S. Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (M.S.-K.); (Y.I.); (A.K.)
| |
Collapse
|