1
|
Frontino G, Delvecchio M, Prudente S, Sordi VD, Barboni P, Di Giamberardino A, Rutigliano A, Pellegrini S, Caretto A, Cascavilla ML, Bonfanti R, D'Annunzio G, Lombardo F, Piemonti L. SID/SIEDP expert consensus on optimizing clinical strategies for early detection and management of wolfram syndrome. J Endocrinol Invest 2024:10.1007/s40618-024-02495-z. [PMID: 39527371 DOI: 10.1007/s40618-024-02495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Wolfram Syndrome (WFS) is a rare, multisystemic, degenerative disease leading to premature death. Clinical and genetic heterogeneity makes WFS diagnosis and management challenging. The Italian Society of Diabetes (SID) and the Italian Society for Pediatric Endocrinology and Diabetology (SIEDP) convened an expert panel of professional healthcare practitioners to provide up-to-date knowledge about the pathophysiology, clinical presentation and treatment of WFS, and recommendations for the earlydetection and optimal disease management. The consensus recommends the revision of diagnostic protocols to include genetic testing and comprehensive multidisciplinary evaluations to ensure accurate diagnosis of WFS, advocates for personalized management plans tailored to the unique needs of each patient, with an emphasis on exploring new potential drug therapies. A holistic care model that addresses the medical, psychological, and social challenges faced by patients with WFS and their families is strongly endorsed. The opinion underscores the importance of educating healthcare professionals about WFS to enhance early diagnosis and intervention, aiming to improve outcomes for patients through practical and evidence-based clinical strategies.
Collapse
Affiliation(s)
- Giulio Frontino
- Department of Pediatrics, Pediatric Diabetology Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Milan, Italy.
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valeria Daniela Sordi
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Piero Barboni
- Department of Ophthalmology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Di Giamberardino
- Research Unit of Metabolic and Cardiovascular Diseases, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandra Rutigliano
- Metabolic Disorder and Diabetes Unit, "Giovanni XXIII" Children Hospital, Bari, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Amelia Caretto
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Riccardo Bonfanti
- Department of Pediatrics, Pediatric Diabetology Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Vita Salute San Raffaele University, Milan, Italy
- Università Vita Salute San Raffaele, Milan, Italy
| | - Giuseppe D'Annunzio
- Pediatric Clinic and Endocrinology, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Università Vita Salute San Raffaele, Milan, Italy.
| |
Collapse
|
2
|
Wang G, Li ZA, Chen L, Lugar H, Hershey T. Clinical Trials for Wolfram Syndrome Neurodegeneration: Novel Design, Endpoints, and Analysis Models. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.10.24313426. [PMID: 39314971 PMCID: PMC11419225 DOI: 10.1101/2024.09.10.24313426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objective Wolfram syndrome, an ultra-rare condition, currently lacks effective treatment options. The rarity of this disease presents significant challenges in conducting clinical trials, particularly in achieving sufficient statistical power (e.g., 80%). The objective of this study is to propose a novel clinical trial design based on real-world data to reduce the sample size required for conducting clinical trials for Wolfram syndrome. Methods We propose a novel clinical trial design with three key features aimed at reducing sample size and improve efficiency: (i) Pooling historical/external controls from a longitudinal observational study conducted by the Washington University Wolfram Research Clinic. (ii) Utilizing run-in data to estimate model parameters. (iii) Simultaneously tracking treatment effects in two endpoints using a multivariate proportional linear mixed effects model. Results Comprehensive simulations were conducted based on real-world data obtained through the Wolfram syndrome longitudinal observational study. Our simulations demonstrate that this proposed design can substantially reduce sample size requirements. Specifically, with a bivariate endpoint and the inclusion of run-in data, a sample size of approximately 30 per group can achieve over 80% power, assuming the placebo progression rate remains consistent during both the run-in and randomized periods. In cases where the placebo progression rate varies, the sample size increases to approximately 50 per group. Conclusions For rare diseases like Wolfram syndrome, leveraging existing resources such as historical/external controls and run-in data, along with evaluating comprehensive treatment effects using bivariate/multivariate endpoints, can significantly expedite the development of new drugs.
Collapse
Affiliation(s)
- Guoqiao Wang
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Division of Biostatistics, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Ling Chen
- Division of Biostatistics, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Heather Lugar
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Tamara Hershey
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
3
|
Serangeli I, Diamanti T, De Jaco A, Miranda E. Role of mitochondria-endoplasmic reticulum contacts in neurodegenerative, neurodevelopmental and neuropsychiatric conditions. Eur J Neurosci 2024; 60:5040-5068. [PMID: 39099373 DOI: 10.1111/ejn.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.
Collapse
Affiliation(s)
- Ilaria Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Ahuja K, Vandenabeele M, Nami F, Lefevere E, Van Hoecke J, Bergmans S, Claes M, Vervliet T, Neyrinck K, Burg T, De Herdt D, Bhaskar P, Zhu Y, Looser ZJ, Loncke J, Gsell W, Plaas M, Agostinis P, Swinnen JV, Van Den Bosch L, Bultynck G, Saab AS, Wolfs E, Chai YC, Himmelreich U, Verfaillie C, Moons L, De Groef L. A deep phenotyping study in mouse and iPSC models to understand the role of oligodendroglia in optic neuropathy in Wolfram syndrome. Acta Neuropathol Commun 2024; 12:140. [PMID: 39198924 PMCID: PMC11351506 DOI: 10.1186/s40478-024-01851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Wolfram syndrome (WS) is a rare childhood disease characterized by diabetes mellitus, diabetes insipidus, blindness, deafness, neurodegeneration and eventually early death, due to autosomal recessive mutations in the WFS1 (and WFS2) gene. While it is categorized as a neurodegenerative disease, it is increasingly becoming clear that other cell types besides neurons may be affected and contribute to the pathogenesis. MRI studies in patients and phenotyping studies in WS rodent models indicate white matter/myelin loss, implicating a role for oligodendroglia in WS-associated neurodegeneration. In this study, we sought to determine if oligodendroglia are affected in WS and whether their dysfunction may be the primary cause of the observed optic neuropathy and brain neurodegeneration. We demonstrate that 7.5-month-old Wfs1∆exon8 mice display signs of abnormal myelination and a reduced number of oligodendrocyte precursor cells (OPCs) as well as abnormal axonal conduction in the optic nerve. An MRI study of the brain furthermore revealed grey and white matter loss in the cerebellum, brainstem, and superior colliculus, as is seen in WS patients. To further dissect the role of oligodendroglia in WS, we performed a transcriptomics study of WS patient iPSC-derived OPCs and pre-myelinating oligodendrocytes. Transcriptional changes compared to isogenic control cells were found for genes with a role in ER function. However, a deep phenotyping study of these WS patient iPSC-derived oligodendroglia unveiled normal differentiation, mitochondria-associated endoplasmic reticulum (ER) membrane interactions and mitochondrial function, and no overt signs of ER stress. Overall, the current study indicates that oligodendroglia functions are largely preserved in the WS mouse and patient iPSC-derived models used in this study. These findings do not support a major defect in oligodendroglia function as the primary cause of WS, and warrant further investigation of neurons and neuron-oligodendroglia interactions as a target for future neuroprotective or -restorative treatments for WS.
Collapse
Affiliation(s)
- K Ahuja
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - M Vandenabeele
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - F Nami
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - E Lefevere
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - J Van Hoecke
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - S Bergmans
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - M Claes
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - T Vervliet
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - K Neyrinck
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - T Burg
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, VIB-KU Leuven, Leuven, Belgium
| | - D De Herdt
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - P Bhaskar
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Y Zhu
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Z J Looser
- Institute of Pharmacology and Toxicology, Neuroscience Center Zurich, University of Zurich, University and ETH Zurich, Zurich, Switzerland
| | - J Loncke
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - W Gsell
- Biomedical MRI Group/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - M Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - P Agostinis
- Laboratory for Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, Leuven Center for Cancer Biology, VIB-KU, Leuven Cancer Institute, VIB-KU Leuven, Leuven, Belgium
| | - J V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - L Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Laboratory of Neurobiology, VIB-KU Leuven, Leuven, Belgium
| | - G Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - A S Saab
- Institute of Pharmacology and Toxicology, Neuroscience Center Zurich, University of Zurich, University and ETH Zurich, Zurich, Switzerland
| | - E Wolfs
- Laboratory for Functional Imaging and Research on Stem Cells, BIOMED, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Y C Chai
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - U Himmelreich
- Biomedical MRI Group/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - C Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - L Moons
- Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - L De Groef
- Cellular Communication and Neurodegeneration Research Group, Animal Physiology and Neurobiology Division, Department of Biology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Caruso V, Raia A, Rigoli L. Wolfram Syndrome 1: A Neuropsychiatric Perspective on a Rare Disease. Genes (Basel) 2024; 15:984. [PMID: 39202345 PMCID: PMC11353439 DOI: 10.3390/genes15080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Wolfram syndrome 1 (WS1) is an uncommon autosomal recessive neurological disorder that is characterized by diabetes insipidus, early-onset non-autoimmune diabetes mellitus, optic atrophy, and deafness (DIDMOAD). Other clinical manifestations are neuropsychiatric symptoms, urinary tract alterations, and endocrinological disorders. The rapid clinical course of WS1 results in death by the age of 30. Severe brain atrophy leads to central respiratory failure, which is the main cause of death in WS1 patients. Mutations in the WFS1 gene, located on chromosome 4p16, account for approximately 90% of WS1 cases. The gene produces wolframin, a transmembrane glycoprotein widely distributed and highly expressed in retinal, neural, and muscular tissues. Wolframin plays a crucial role in the regulation of apoptosis, insulin signaling, and ER calcium homeostasis, as well as the ER stress response. WS1 has been designated as a neurodegenerative and neurodevelopmental disorder due to the numerous abnormalities in the ER stress-mediated system. WS1 is a devastating neurodegenerative disease that affects patients and their families. Early diagnosis and recognition of the initial clinical signs may slow the disease's progression and improve symptomatology. Moreover, genetic counseling should be provided to the patient's relatives to extend multidisciplinary care to their first-degree family members. Regrettably, there are currently no specific drugs for the therapy of this fatal disease. A better understanding of the etiology of WS1 will make possible the development of new therapeutic approaches that may enhance the life expectancy of patients. This review will examine the pathogenetic mechanisms, development, and progression of neuropsychiatric symptoms commonly associated with WS1. A thorough understanding of WS1's neurophysiopathology is critical for achieving the goal of improving patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Valerio Caruso
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (A.U.O.P.), 56126 Pisa, Italy;
| | - Accursio Raia
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (A.U.O.P.), 56126 Pisa, Italy;
| | - Luciana Rigoli
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy
| |
Collapse
|
6
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
7
|
Ravindren RK, Veettil RT, Athimannil S, Balaram N, Veedu PT, Veetil SA, Ayoor AK, Mathew S, Padinharath K, Balan S. Sequential Presentation of Obsessive-Compulsive Disorder and Narcolepsy in a 10-Year-Old Girl With Wolfram Syndrome 1. J Nerv Ment Dis 2024; 212:403-405. [PMID: 38949661 DOI: 10.1097/nmd.0000000000001784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
ABSTRACT Wolfram syndrome 1 (WS1) is a rare, autosomal recessive neurodegenerative disorder characterized by diabetes insipidus, insulin-dependent diabetes mellitus, optic atrophy, and deafness resulting from loss-of-function genetic variants in the WFS1 gene. Individuals with WS1 manifest a spectrum of neuropsychiatric disorders. Here, we report a pediatric case of WS1, which stemmed from a novel biallelic WFS1 loss-of-function genetic variant. The individual initially presented with obsessive-compulsive disorder, which was successfully managed by fluvoxamine. After 2 months, the child manifested excessive daytime sleepiness. Clinical evaluation and sleep recordings revealed a diagnosis of narcolepsy type 2. Excessive daytime sleepiness was improved with methylphenidate. To the best of our knowledge, this is the first report of narcolepsy in WS1, which possibly arose during a progressive neurodegenerative process. We emphasize the need for in-depth screening for neuropsychiatric phenotypes and sleep-related disorders in WS1, for clinical management, which significantly improves the quality of life.
Collapse
Affiliation(s)
| | - Rajesh Thaliyil Veettil
- Department of Paediatrics, Institute of Maternal and Child Health (IMCH), Government Medical College Kozhikode
| | - Shibila Athimannil
- Neuroscience Research Laboratory, Center for Interdisciplinary Brain Sciences, Institute of Mental Health and Neurosciences (IMHANS), Kozhikode
| | - Neetha Balaram
- Department of Neurology, Government Medical College Kozhikode
| | | | | | - Arun Kumar Ayoor
- Department of Ophthalmology, Government Medical College Kozhikode
| | | | | | - Shabeesh Balan
- Neuroscience Research Laboratory, Center for Interdisciplinary Brain Sciences, Institute of Mental Health and Neurosciences (IMHANS), Kozhikode
| |
Collapse
|
8
|
Dange NS, Shah N, Oza C, Sharma J, Singhal J, Yewale S, Mondkar S, Ambike S, Khadilkar V, Khadilkar AV. Long term clinical follow up of four patients with Wolfram syndrome and urodynamic abnormalities. J Pediatr Endocrinol Metab 2024; 37:434-440. [PMID: 38465704 DOI: 10.1515/jpem-2023-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVES Wolfram syndrome is characterised by insulin-dependent diabetes (IDDM), diabetes insipidus (DI), optic atrophy, sensorineural deafness and neurocognitive disorders. The DIDMOAD acronym has been recently modified to DIDMOAUD suggesting the rising awareness of the prevalence of urinary tract dysfunction (UD). End stage renal disease is the commonest cause of mortality in Wolfram syndrome. We present a case series with main objective of long term follow up in four children having Wolfram syndrome with evaluation of their urodynamic profile. METHODS A prospective follow up of four genetically proven children with Wolfram syndrome presenting to a tertiary care pediatric diabetes clinic in Pune, India was conducted. Their clinical, and urodynamic parameters were reviewed. RESULTS IDDM, in the first decade, was the initial presentation in all the four children (three male and one female). Three children had persistent polyuria and polydipsia despite having optimum glycemic control; hence were diagnosed to have DI and treated with desmopressin. All four patients entered spontaneous puberty. All patients had homozygous mutation in WFS1 gene; three with exon 8 and one with exon 6 novel mutations. These children with symptoms of lower urinary tract malfunction were further evaluated with urodynamic studies; two of them had hypocontractile detrusor and another had sphincter-detrusor dyssynergia. Patients with hypocontractile bladder were taught clean intermittent catheterization and the use of overnight drain. CONCLUSIONS We report a novel homozygous deletion in exon 6 of WFS-1 gene. The importance of evaluation of lower urinary tract malfunction is highlighted by our case series. The final bladder outcome in our cases was a poorly contractile bladder in three patients.
Collapse
Affiliation(s)
- Nimisha S Dange
- Department of Growth and Pediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
| | - Nikhil Shah
- Department of Growth and Pediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
- Division of Pediatric Endocrinology, Department of Pediatrics, Surya Children's Hospital, Chembur, Mumbai, Maharashtra, India
| | - Chirantap Oza
- Department of Growth and Pediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
| | - Jyoti Sharma
- Pediatric Nephrology Service, Renal Unit, KEM Hospital, Pune, Maharashtra, India
| | - Jyoti Singhal
- Pediatric Nephrology Service, Renal Unit, KEM Hospital, Pune, Maharashtra, India
| | - Sushil Yewale
- Department of Growth and Pediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
| | - Shruti Mondkar
- Department of Growth and Pediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
| | | | - Vaman Khadilkar
- Department of Growth and Pediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
- Interdisciplinary School of Health Sciences, Savitribai Phule University, Pune, Maharashtra, India
| | - Anuradha V Khadilkar
- Department of Growth and Pediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
- Interdisciplinary School of Health Sciences, Savitribai Phule University, Pune, Maharashtra, India
| |
Collapse
|
9
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. A Review of Brain and Pituitary Gland MRI Findings in Patients with Ataxia and Hypogonadism. CEREBELLUM (LONDON, ENGLAND) 2024; 23:757-774. [PMID: 37155088 DOI: 10.1007/s12311-023-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076, Tubingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
10
|
Morikawa S, Tanabe K, Kaneko N, Hishimura N, Nakamura A. Comprehensive overview of disease models for Wolfram syndrome: toward effective treatments. Mamm Genome 2024; 35:1-12. [PMID: 38351344 DOI: 10.1007/s00335-023-10028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024]
Abstract
Wolfram syndrome (OMIM 222300) is a rare autosomal recessive disease with a devastating array of symptoms, including diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss, and neurological dysfunction. The discovery of the causative gene, WFS1, has propelled research on this disease. However, a comprehensive understanding of the function of WFS1 remains unknown, making the development of effective treatment a pressing challenge. To bridge these knowledge gaps, disease models for Wolfram syndrome are indispensable, and understanding the characteristics of each model is critical. This review will provide a summary of the current knowledge regarding WFS1 function and offer a comprehensive overview of established disease models for Wolfram syndrome, covering animal models such as mice, rats, flies, and zebrafish, along with induced pluripotent stem cell (iPSC)-derived human cellular models. These models replicate key aspects of Wolfram syndrome, contributing to a deeper understanding of its pathogenesis and providing a platform for discovering potential therapeutic approaches.
Collapse
Affiliation(s)
- Shuntaro Morikawa
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan.
| | - Katsuya Tanabe
- Division of Endocrinology, Metabolism, Haematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoya Kaneko
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| | - Nozomi Hishimura
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| | - Akie Nakamura
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
11
|
Dolatshahi M, Sanjari Moghaddam H, Saberi P, Mohammadi S, Aarabi MH. Central nervous system microstructural alterations in Type 1 diabetes mellitus: A systematic review of diffusion Tensor imaging studies. Diabetes Res Clin Pract 2023; 205:110645. [PMID: 37004976 DOI: 10.1016/j.diabres.2023.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 02/18/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
AIMS Type 1 diabetes mellitus (T1DM) is a chronic childhood disease with potentially persistent CNS disruptions. In this study, we aimed to systematically review diffusion tensor imaging studies in patients with T1DM to understand the microstructural effects of this entity on individuals' brains METHODS: We performed a systematic search and reviewed the studies to include the DTI studies in individuals with T1DM. The data for the relevant studies were extracted and a qualitative synthesis was performed. RESULTS A total of 19 studies were included, most of which showed reduced FA widespread in optic radiation, corona radiate, and corpus callosum, as well as other frontal, parietal, and temporal regions in the adult population, while most of the studies in the juvenile patients showed non-significant differences or a non-persistent pattern of changes. Also, reduced AD and MD in individuals with T1DM compared to controls and non-significant differences in RD were noted in the majority of studies. Microstructural alterations were associated with clinical profile, including age, hyperglycemia, diabetic ketoacidosis and cognitive performance. CONCLUSION T1DM is associated with microstructural brain alterations including reduced FA, MD, and AD in widespread brain regions, especially in association with glycemic fluctuations and in adult age.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- NeuroImaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, United States; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Parastoo Saberi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soheil Mohammadi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Aarabi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
12
|
Punapart M, Reimets R, Seppa K, Kirillov S, Gaur N, Eskla KL, Jagomäe T, Vasar E, Plaas M. Chronic Stress Alters Hippocampal Renin-Angiotensin-Aldosterone System Component Expression in an Aged Rat Model of Wolfram Syndrome. Genes (Basel) 2023; 14:genes14040827. [PMID: 37107585 PMCID: PMC10137641 DOI: 10.3390/genes14040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Biallelic mutations in the gene encoding WFS1 underlie the development of Wolfram syndrome (WS), a rare neurodegenerative disorder with no available cure. We have previously shown that Wfs1 deficiency can impair the functioning of the renin-angiotensin-aldosterone system (RAAS). The expression of two key receptors, angiotensin II receptor type 2 (Agtr2) and bradykinin receptor B1 (Bdkrb1), was downregulated both in vitro and in vivo across multiple organs in a rat model of WS. Here, we show that the expression of key RAAS components is also dysregulated in neural tissue from aged WS rats and that these alterations are not normalized by pharmacological treatments (liraglutide (LIR), 7,8-dihydroxyflavone (7,8-DHF) or their combination). We found that the expression of angiotensin II receptor type 1a (Agtr1a), angiotensin II receptor type 1b (Agtr1b), Agtr2 and Bdkrb1 was significantly downregulated in the hippocampus of WS animals that experienced chronic experimental stress. Treatment-naïve WS rats displayed different gene expression patterns, underscoring the effect of prolonged experiment-induced stress. Altogether, we posit that Wfs1 deficiency disturbs RAAS functioning under chronic stressful conditions, thereby exacerbating neurodegeneration in WS.
Collapse
Affiliation(s)
- Marite Punapart
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Riin Reimets
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Kadri Seppa
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Silvia Kirillov
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Nayana Gaur
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Toomas Jagomäe
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Mario Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Correspondence:
| |
Collapse
|
13
|
Yuan F, Li Y, Hu R, Gong M, Chai M, Ma X, Cha J, Guo P, Yang K, Li M, Xu M, Ma Q, Su Q, Zhang C, Sheng Z, Wu H, Wang Y, Yuan W, Bian S, Shao L, Zhang R, Li K, Shao Z, Zhang ZN, Li W. Modeling disrupted synapse formation in wolfram syndrome using hESCs-derived neural cells and cerebral organoids identifies Riluzole as a therapeutic molecule. Mol Psychiatry 2023; 28:1557-1570. [PMID: 36750736 DOI: 10.1038/s41380-023-01987-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Dysregulated neurite outgrowth and synapse formation underlie many psychiatric disorders, which are also manifested by wolfram syndrome (WS). Whether and how the causative gene WFS1 deficiency affects synapse formation remain elusive. By mirroring human brain development with cerebral organoids, WFS1-deficient cerebral organoids not only recapitulate the neuronal loss in WS patients, but also exhibit significantly impaired synapse formation and function associated with reduced astrocytes. WFS1 deficiency in neurons autonomously delays neuronal differentiation with altered expressions of genes associated with psychiatric disorders, and impairs neurite outgrowth and synapse formation with elevated cytosolic calcium. Intriguingly, WFS1 deficiency in astrocytes decreases the expression of glutamate transporter EAAT2 by NF-κB activation and induces excessive glutamate. When co-cultured with wildtype neurons, WFS1-deficient astrocytes lead to impaired neurite outgrowth and increased cytosolic calcium in neurons. Importantly, disrupted synapse formation and function in WFS1-deficient cerebral organoids and impaired neurite outgrowth affected by WFS1-deficient astrocytes are efficiently reversed with Riluzole treatment, by restoring EAAT2 expression in astrocytes. Furthermore, Riluzole rescues the depressive-like behavior in the forced swimming test and the impaired recognition and spatial memory in the novel object test and water maze test in Wfs1 conditional knockout mice. Altogether, our study provides novel insights into how WFS1 deficiency affects synapse formation and function, and offers a strategy to treat this disease.
Collapse
Affiliation(s)
- Fei Yuan
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Yana Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Hu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Mengting Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Mengyao Chai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Xuefei Ma
- QuietD Biotechnology, Ltd., Shanghai, 201210, China
| | - Jiaxue Cha
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Pan Guo
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kaijiang Yang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Minglu Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Qing Ma
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Qiang Su
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Chuan Zhang
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhejin Sheng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Heng Wu
- Department of Psychosomatic Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yuan Wang
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Wen Yuan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Shan Bian
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Li Shao
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kaicheng Li
- QuietD Biotechnology, Ltd., Shanghai, 201210, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China. .,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China.
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China. .,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China. .,Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai, 200120, China.
| |
Collapse
|
14
|
Chen Y, Zhang M, Zhou Y, Li P. Case Report: A novel mutation in WFS1 gene (c.1756G>A p.A586T) is responsible for early clinical features of cognitive impairment and recurrent ischemic stroke. Front Genet 2023; 14:1072978. [PMID: 36816038 PMCID: PMC9932685 DOI: 10.3389/fgene.2023.1072978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Wolfram syndrome 1 (WFS1) gene mutations can be dominantly or recessively inherited, and the onset of the clinical picture is highly heterogeneity in both appearance and degree of severity. Different types of WFS1 mutations have been identified. Autosomal recessive mutations in the WFS1 gene will underlie Wolfram syndrome 1 (WS1), a rare and severe neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, deafness, and other neurological, urological and psychiatric abnormalities. Other WFS1-related disorders such as low-frequency sensorineural hearing impairment (LFSNHI) and Wolfram syndrome-like disease with autosomal dominant transmission have been described. It is difficult to establish genotype-phenotype correlations because of the molecular complexity of wolframin protein. In this report, we presented a case of WSF1 gene mutation-related disease with cognitive impairment as the initial symptom and recurrent cerebral infarction in the course of the disease. Brain structural imaging results suggested decreased intracranial volume, dramatically reduced in cerebral cortex and cerebellum regions. Multimodal molecular imaging results suggested Tau protein deposition in the corresponding brain regions without Aβ pathology changes. These pathological changes may indicate a role of WFS1 in neuronal vulnerability to tau pathology associated with neurodegeneration and ischemia-induced damage.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Miao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Pan Li
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China,*Correspondence: Pan Li,
| |
Collapse
|
15
|
Psychiatric Diagnoses and Medications in Wolfram Syndrome. Scand J Child Adolesc Psychiatr Psychol 2022; 10:163-174. [PMID: 36687263 PMCID: PMC9828213 DOI: 10.2478/sjcapp-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Wolfram Syndrome is a rare genetic disorder usually resulting from pathogenic variation in the WFS1 gene, which leads to an exaggerated endoplasmic reticulum (ER) stress response. The disorder is typically characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy, hearing loss, and neurodegenerative features. Existing literature suggests it may also have psychiatric manifestations. Objective To examine lifetime psychiatric diagnoses and medication history in Wolfram Syndrome. Method Child, adolescent, and young adult Wolfram Syndrome participants (n=39) were assessed by a child & adolescent psychiatrist to determine best estimate DSM-5 lifetime psychiatric diagnoses as well as psychoactive medication history. In addition, the Child & Adolescent Symptom Inventory-5 (CASI-5) Parent Checklist was used to determine likely psychiatric diagnoses based on symptom counts in Wolfram Syndrome patients (n=33), type 1 diabetes (n=15), and healthy comparison (n=18) groups. Results Study participants with Wolfram Syndrome had high lifetime rates of anxiety disorders (77%). Also, 31% had an obsessive-compulsive spectrum disorder, 33% had a mood disorder, 31% had a neurodevelopmental or disruptive behavior disorder, and 31% had a sleep-wake disorder. More than half of Wolfram Syndrome participants had taken at least one psychoactive medication, and one third had taken at least one selective serotonin reuptake inhibitor (SSRI). Some individuals reported poor response to sertraline but better response after switching to another SSRI (fluoxetine or citalopram). In general, people with Wolfram Syndrome often reported benefit from psychotherapy and/or commonly used psychoactive medications appropriate for their psychiatric diagnoses. Conclusions Wolfram Syndrome may be associated with elevated risk for anxiety and obsessive-compulsive spectrum disorders, which seem generally responsive to usual treatments for these disorders.
Collapse
|
16
|
The Role of ER Stress in Diabetes: Exploring Pathological Mechanisms Using Wolfram Syndrome. Int J Mol Sci 2022; 24:ijms24010230. [PMID: 36613674 PMCID: PMC9820298 DOI: 10.3390/ijms24010230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The endoplasmic reticulum (ER) is a cytosolic organelle that plays an essential role in the folding and processing of new secretory proteins, including insulin. The pathogenesis of diabetes, a group of metabolic disorders caused by dysfunctional insulin secretion (Type 1 diabetes, T1DM) or insulin sensitivity (Type 2 diabetes, T2DM), is known to involve the excess accumulation of "poorly folded proteins", namely, the induction of pathogenic ER stress in pancreatic β-cells. ER stress is known to contribute to the dysfunction of the insulin-producing pancreatic β-cells. T1DM and T2DM are multifactorial diseases, especially T2DM; both environmental and genetic factors are involved in their pathogenesis, making it difficult to create experimental disease models. In recent years, however, the development of induced pluripotent stem cells (iPSCs) and other regenerative technologies has greatly expanded research capabilities, leading to the development of new candidate therapies. In this review, we will discuss the mechanism by which dysregulated ER stress responses contribute to T2DM pathogenesis. Moreover, we describe new treatment methods targeting protein folding and ER stress pathways with a particular focus on pivotal studies of Wolfram syndrome, a monogenic form of syndromic diabetes caused by pathogenic variants in the WFS1 gene, which also leads to ER dysfunction.
Collapse
|
17
|
Wang Z, Wang X, Shi L, Cai Y, Hu B. Wolfram syndrome 1b mutation suppresses Mauthner-cell axon regeneration via ER stress signal pathway. Acta Neuropathol Commun 2022; 10:184. [PMID: 36527091 PMCID: PMC9758940 DOI: 10.1186/s40478-022-01484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Wolfram Syndrome (WS) is a fatal human inherited disease with symptoms of diabetes, vision decreasing, and neurodegeneration caused by mutations in the endoplasmic reticulum (ER)-resident protein WFS1. WFS1 has been reported to play an important role in glucose metabolism. However, the role of WFS1 in axonal regeneration in the central nervous system has so far remained elusive. Herein, we established a model of the wfs1b globally deficient zebrafish line. wfs1b deficiency severely impeded the Mauthner-cell (M-cell) axon regeneration, which was partly dependent on the ER stress response. The administration of ER stress inhibitor 4-Phenylbutyric acid (4-PBA) promoted M-cell axon regeneration in wfs1b-/- zebrafish larvae, while the ER stress activator Tunicamycin (TM) inhibited M-cell axon regeneration in wfs1b+/+ zebrafish larvae. Moreover, complementation of wfs1b at the single-cell level stimulated M-cell axon regeneration in the wfs1b-/- zebrafish larvae. Altogether, our results revealed that wfs1b promotes M-cell axon regeneration through the ER stress signal pathway and provide new evidence for a therapeutic target for WS and axon degeneration.
Collapse
Affiliation(s)
- Zongyi Wang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China
| | - Xinliang Wang
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China
| | - Lingyu Shi
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China
| | - Yuan Cai
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China ,grid.59053.3a0000000121679639First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China
| | - Bing Hu
- grid.59053.3a0000000121679639Hefei National Research Center for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China ,grid.59053.3a0000000121679639Research Institute of Frontier Cross Science and Biomedical Sciences, Hefei Comprehensive National Science Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
18
|
Alías L, López de Heredia M, Luna S, Clivillé N, González-Quereda L, Gallano P, de Juan J, Pujol A, Diez S, Boronat S, Orús C, Lasa A, Venegas MDP. Case report: De novo pathogenic variant in WFS1 causes Wolfram-like syndrome debuting with congenital bilateral deafness. Front Genet 2022; 13:998898. [PMID: 36330437 PMCID: PMC9623256 DOI: 10.3389/fgene.2022.998898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Congenital deafness could be the first manifestation of a syndrome such as in Usher, Pendred, and Wolfram syndromes. Therefore, a genetic study is crucial in this deficiency to significantly improve its diagnostic efficiency, to predict the prognosis, to select the most adequate treatment required, and to anticipate the development of other associated clinical manifestations. Case presentation: We describe a young girl with bilateral congenital profound deafness, who initially received a single cochlear implant. The genetic study of her DNA using a custom-designed next-generation sequencing (NGS) panel detected a de novo pathogenic heterozygous variant in the WFS1 gene related to Wolfram-like syndrome, which is characterized by the presence of other symptoms such as optic atrophy. Due to this diagnosis, a second implant was placed after the optic atrophy onset. The speech audiometric results obtained with both implants indicate that this work successfully allows the patient to develop normal speech. Deterioration of the auditory nerves has not been observed. Conclusion: The next-generation sequencing technique allows a precise molecular diagnosis of diseases with high genetic heterogeneity, such as hereditary deafness, while this was the only symptom presented by the patient at the time of analysis. The NGS panel, in which genes responsible for both syndromic and non-syndromic hereditary deafness were included, was essential to reach the diagnosis in such a young patient. Early detection of the pathogenic variant in the WFS1 gene allowed us to anticipate the natural evolution of the disease and offer the most appropriate management to the patient.
Collapse
Affiliation(s)
- Laura Alías
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- U705—Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Laura Alías,
| | - Miguel López de Heredia
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Sabina Luna
- Ophthalmology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Núria Clivillé
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Lídia González-Quereda
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- U705—Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pía Gallano
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- U705—Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Júlia de Juan
- Otorhinolaringologyst Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Albert Pujol
- Otorhinolaringologyst Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Santiago Diez
- Otorhinolaringology Department, Hospital Esperit Sant, Santa Coloma de Gramenet, Spain
| | - Susana Boronat
- Child Neurology Unit, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - César Orús
- Otorhinolaringologyst Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Adriana Lasa
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- U705—Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
19
|
Longitudinal Changes in Vision and Retinal Morphological in Wolfram Syndrome. Am J Ophthalmol 2022; 243:10-18. [PMID: 35850251 DOI: 10.1016/j.ajo.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE To report long-term ophthalmic findings in Wolfram syndrome, including rates of visual decline, macular thinning, retinal nerve fiber layer (RNFL) thinning and outer plexiform lamination (OPL). DESIGN Single-center, cohort study METHODS: : Thirty-eight participants were recruited and underwent a complete ophthalmic examination as well as optical coherence tomography imaging of the macula and nerve on an annual basis. Linear mixed-effects models for longitudinal data were used to examine both fixed and random effects related to visual acuity and optic nerve quadrants of RNFL and macula thickness. RESULTS Participants completed a mean of 6.44 years of follow-up (range 2-10 years). Visual acuity declined over time in all participants with a mean slope of 0.059 logMar/year (95% CI: 0.07 to 0.05 logMar/year), although nearly 25% of subjects experienced more rapid visual decline. RNFL thickness decreased in superior, inferior, and nasal quadrants (β = -0.5 μm/year, -0.98 μm/year, -0.28 μm/year, respectively). OPL lamination was noted in three study participants, two of which had autosomal dominant mutations. CONCLUSIONS Our study describes the longest and largest natural history study of visual acuity decline and retinal morphometry in Wolfram syndrome to date. Results suggest that there are slower and faster progressing subgroups and that OPL lamination is present in some individuals with this disease.
Collapse
|
20
|
Two Cases of Wolfram Syndrome Who Were Initially Diagnosed With Type 1 Diabetes. AACE Clin Case Rep 2022; 8:128-130. [PMID: 35602877 PMCID: PMC9123558 DOI: 10.1016/j.aace.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Objective Early diagnosis of syndromic monogenic diabetes allows for proper management and can lead to improved quality of life in the long term. This report aimed to describe 2 genetically confirmed cases of Wolfram syndrome, a rare endoplasmic reticulum disorder characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration. Case Report A 16-year-old Caucasian male patient and a 25-year-old Caucasian female patient with a history of diabetes mellitus and optic nerve atrophy presented at our medical center. Both patients were initially diagnosed with type 1 diabetes but negative for islet autoantibodies. Their body mass indexes were under 25 at the diagnosis. Their history and presentation were highly suspicious for Wolfram syndrome. Discussion The genetic tests revealed a known Wolfram syndrome 1 (WFS1) pathogenic variant (homozygous) in the 16-year-old male patient and 2 known WFS1 pathogenic variants (compound heterozygous) in the 25-year-old female patient with diabetes mellitus and optic nerve atrophy, confirming the diagnosis of Wolfram syndrome. The first patient had a moderate form, and the second patient had a milder form of Wolfram syndrome. Conclusion Providers should consider monogenic diabetes genetic testing, including WFS1 gene, for patients with early-onset diabetes who are negative for islet autoantibodies and lean. Two patients described in this article could have been diagnosed with Wolfram syndrome before they developed optic nerve atrophy. Genetic testing is a valuable tool for the early detection of Wolfram syndrome, which leads to proper management and improved quality of life in patients with this rare medical condition.
Collapse
|
21
|
Barboni P, Amore G, Cascavilla ML, Battista M, Frontino G, Romagnoli M, Caporali L, Baldoli C, Gramegna LL, Sessagesimi E, Bonfanti R, Romagnoli A, Scotti R, Brambati M, Carbonelli M, Starace V, Fiorini C, Panebianco R, Parisi V, Tonon C, Bandello F, Carelli V, La Morgia C. The pattern of retinal ganglion cell loss in Wolfram syndrome is distinct from mitochondrial optic neuropathies. Am J Ophthalmol 2022; 241:206-216. [PMID: 35452662 DOI: 10.1016/j.ajo.2022.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To describe the clinical phenotype of a cohort of Wolfram syndrome (WS) patients, focusing on the pattern of optic atrophy correlated with brain MRI measurements, as compared to OPA1-associated mitochondrial optic neuropathy. DESIGN Retrospective, comparative cohort study METHODS: 25 WS patients and 33 age-matched patients affected by OPA1-related Dominant Optic Atrophy (DOA). Ophthalmological, neurological, endocrinological and MRI data from WS patients were retrospectively retrieved. Ophthalmological data were compared to OPA1-related DOA and further analyzed for age dependency dividing patients in age quartiles. In a subgroup of WS patients, we correlated the structural damage assessed by optical coherence tomography (OCT) with brain MRI morphological measurements. Visual acuity (VA), visual field mean defect (MD), retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thickness assessed by OCT, MRI morphological measurements of anterior and posterior visual pathways. RESULTS In our cohort optic atrophy was present in 100% of WS patients. VA, MD and RNFL thickness loss were worse in WS patients with a faster decline since early age as compared to DOA patients, who displayed a more stable visual function over the years. Conversely, GCL sectors were overall thinner in DOA patients since early age compared to WS, in which GCL thickness started to decline later in life. The neuroradiological sub-analysis on 11 WS patients exhibited bilateral thinning of the anterior optic pathway, especially prechiasmatic optic nerves and optic tracts. Optic tract thinning was significantly correlated with the GCL thickness but not with RNFL parameters. CONCLUSIONS Our results showed a generally more severe and diffuse degeneration of both anterior and posterior visual pathways in WS, with fast deterioration of visual function and structural OCT parameters since early age. The pattern observed at OCT suggests that retinal ganglion cells axonal degeneration (i.e. RNFL) precedes of about a decade the cellular body atrophy (i.e. GCL). This differs substantially from DOA, in which a more stable visual function is evident with predominant early loss of GCL, indirectly supporting the lack of a primary mitochondrial dysfunction in WS.
Collapse
Affiliation(s)
- Piero Barboni
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy; Studio Oculistico d'Azeglio (P.B.), Bologna, Italy.
| | - Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy
| | - Maria Lucia Cascavilla
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Battista
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulio Frontino
- Department of Pediatrics (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy; Diabetes Research Institute (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Cristina Baldoli
- Neuroradiology Unit (C.B., R.S.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Ludovica Gramegna
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (L.L.G., E.S., C.T.), Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Elisa Sessagesimi
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (L.L.G., E.S., C.T.), Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Riccardo Bonfanti
- Department of Pediatrics (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy; Diabetes Research Institute (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy
| | - Andrea Romagnoli
- Department of Pediatrics (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy; Diabetes Research Institute (G.F., R.B., A.R.), IRCCS San Raffaele Hospital, Milan, Italy
| | - Roberta Scotti
- Neuroradiology Unit (C.B., R.S.), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Michele Carbonelli
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy
| | - Vincenzo Starace
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Roberta Panebianco
- Department of Ophthalmology (R.P.), University of Catania, Catania, Italy
| | | | - Caterina Tonon
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (L.L.G., E.S., C.T.), Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Francesco Bandello
- From the Department of Ophthalmology (P.B., M.L.C., M.Ba., M.Br., V.S., F.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie (G.A., L.L.G., E.S., M.C., C.T., V.C.), Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., L.C., C.F., V.C., C.L.M.), Programma di Neurogenetica, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M.), UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
22
|
Eisenstein SA, Boodram RS, Sutphen CL, Lugar HM, Gordon BA, Marshall BA, Urano F, Fagan AM, Hershey T. Plasma Neurofilament Light Chain Levels Are Elevated in Children and Young Adults With Wolfram Syndrome. Front Neurosci 2022; 16:795317. [PMID: 35495027 PMCID: PMC9039397 DOI: 10.3389/fnins.2022.795317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Wolfram syndrome is a rare disease caused by pathogenic variants in the WFS1 gene with progressive neurodegeneration. As an easily accessible biomarker of progression of neurodegeneration has not yet been found, accurate tracking of the neurodegenerative process over time requires assessment by costly and time-consuming clinical measures and brain magnetic resonance imaging (MRI). A blood-based measure of neurodegeneration, neurofilament light chain (NfL), is relatively inexpensive and can be repeatedly measured at remote sites, standardized, and measured in individuals with MRI contraindications. To determine whether NfL levels may be of use in disease monitoring and reflect disease activity in Wolfram syndrome, plasma NfL levels were compared between children and young adults with Wolfram syndrome (n = 38) and controls composed of their siblings and parents (n = 35) and related to clinical severity and selected brain region volumes within the Wolfram group. NfL levels were higher in the Wolfram group [median (interquartile range) NfL = 11.3 (7.8-13.9) pg/mL] relative to controls [5.6 (4.5-7.4) pg/mL]. Within the Wolfram group, higher NfL levels related to worse visual acuity, color vision and smell identification, smaller brainstem and thalamic volumes, and faster annual rate of decrease in thalamic volume over time. Our findings suggest that plasma NfL levels can be a powerful tool to non-invasively assess underlying neurodegenerative processes in children, adolescents and young adults with Wolfram syndrome.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Raveena S. Boodram
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Courtney L. Sutphen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Heather M. Lugar
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian A. Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Bess A. Marshall
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Fumihiko Urano
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
23
|
Kabanovski A, Donaldson L, Margolin E. Neuro-ophthalmological manifestations of Wolfram syndrome: Case series and review of the literature. J Neurol Sci 2022; 437:120267. [DOI: 10.1016/j.jns.2022.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
|
24
|
Ray MK, Chen L, White NH, Ni R, Hershey T, Marshall BA. Longitudinal progression of diabetes mellitus in Wolfram syndrome: The Washington University Wolfram Research Clinic experience. Pediatr Diabetes 2022; 23:212-218. [PMID: 34792267 PMCID: PMC8844189 DOI: 10.1111/pedi.13291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE (1) Describe the progression of diabetes mellitus over time in an observational study of Wolfram syndrome, a rare, genetic, neurodegenerative disorder, which often includes diabetes mellitus and is typically diagnosed during childhood or adolescence. (2) Determine whether C-peptide could be used as a marker of diabetes progression in interventional trials for Wolfram syndrome. METHODS N = 44 (25F/19M) participants with genetically confirmed Wolfram syndrome attended the Washington University Wolfram Research Clinic annually from 2010 to 2019. Medical history, physical examinations, blood sampling, and questionnaires were used to collect data about diabetes mellitus and other components of Wolfram syndrome. Beta-cell function was assessed by determination of C-peptide during a mixed meal tolerance test. Random coefficients models evaluated the rate of progression of C-peptide over time, and power analyses were used to estimate the number of subjects needed to detect a change in C-peptide decline during an intervention trial. RESULTS 93.2% of patients had diabetes mellitus. Mean HbA1c across all study visits was 7.9%. C-peptide significantly decreased with increasing duration of diabetes mellitus (p < 0.0001); an optimal break point in C-peptide decline was identified to occur between 0.1 and 2.3 years after diabetes mellitus diagnosis. Twenty patients per group (active vs. control) were estimated to be needed to detect a 60% slowing of C-peptide decline during the first 2.3 years following diabetes diagnosis. CONCLUSION C-peptide declines over time in Wolfram syndrome and could potentially be used as a marker of diabetes progression in interventional studies for Wolfram syndrome, especially within the first 2 years after diabetes diagnosis.
Collapse
Affiliation(s)
- Mary Katherine Ray
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Corresponding Author: Department of Psychiatry, Washington University in St. Louis, 4525 Scott Ave, East Bldg, St. Louis, MO, 63110, United States, Phone: 1 314 362 5041,
| | - Ling Chen
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Neil H White
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.,Saint Louis Children’s Hospital, One Children’s Place, St. Louis, MO, 63110, USA
| | - Richard Ni
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bess A Marshall
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.,Saint Louis Children’s Hospital, One Children’s Place, St. Louis, MO, 63110, USA,,Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
25
|
Zmyslowska A, Kuljanin M, Malachowska B, Stanczak M, Michalek D, Wlodarczyk A, Grot D, Taha J, Pawlik B, Lebiedzińska-Arciszewska M, Nieznanska H, Wieckowski MR, Rieske P, Mancias JD, Borowiec M, Mlynarski W, Fendler W. Multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function. Cell Commun Signal 2021; 19:116. [PMID: 34801048 PMCID: PMC8605533 DOI: 10.1186/s12964-021-00791-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Wolfram syndrome (WFS) is a rare autosomal recessive syndrome in which diabetes mellitus and neurodegenerative disorders occur as a result of Wolframin deficiency and increased ER stress. In addition, WFS1 deficiency leads to calcium homeostasis disturbances and can change mitochondrial dynamics. The aim of this study was to evaluate protein levels and changes in gene transcription on human WFS cell model under experimental ER stress. METHODS We performed transcriptomic and proteomic analysis on WFS human cell model-skin fibroblasts reprogrammed into induced pluripotent stem (iPS) cells and then into neural stem cells (NSC) with subsequent ER stress induction using tunicamycin (TM). Results were cross-referenced with publicly available RNA sequencing data in hippocampi and hypothalami of mice with WFS1 deficiency. RESULTS Proteomic analysis identified specific signal pathways that differ in NSC WFS cells from healthy ones. Next, detailed analysis of the proteins involved in the mitochondrial function showed the down-regulation of subunits of the respiratory chain complexes in NSC WFS cells, as well as the up-regulation of proteins involved in Krebs cycle and glycolysis when compared to the control cells. Based on pathway enrichment analysis we concluded that in samples from mice hippocampi the mitochondrial protein import machinery and OXPHOS were significantly down-regulated. CONCLUSIONS Our results show the functional and morphological secondary mitochondrial damage in patients with WFS. Video Abstract.
Collapse
Affiliation(s)
- Agnieszka Zmyslowska
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland
| | - Miljan Kuljanin
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Beata Malachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Einstein College of Medicine, Bronx, NY USA
| | - Marcin Stanczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominika Michalek
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Aneta Wlodarczyk
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Dagmara Grot
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Joanna Taha
- Central Laboratory for Genetic Research in Pediatric Oncology “Oncolab”, Medical University of Lodz, Lodz, Poland
| | - Bartłomiej Pawlik
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Hanna Nieznanska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Lodz, Poland
| | - Joseph D. Mancias
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
26
|
Urinary Tract Involvement in Wolfram Syndrome: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211994. [PMID: 34831749 PMCID: PMC8624443 DOI: 10.3390/ijerph182211994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
Wolfram Syndrome (WS) is a rare neurodegenerative disease with autosomal recessive inheritance and characterized by juvenile onset, non-autoimmune diabetes mellitus and later followed by optic atrophy leading to blindness, diabetes insipidus, hearing loss, and other neurological and endocrine dysfunctions. A wide spectrum of neurodegenerative abnormalities affecting the central nervous system has been described. Among these complications, neurogenic bladder and urodynamic abnormalities also deserve attention. Urinary tract dysfunctions (UTD) up to end stage renal disease are a life-threatening complication of WS patients. Notably, end stage renal disease is reported as one of the most common causes of death among WS patients. UTD have been also reported in affected adolescents. Involvement of the urinary tract occurs in about 90% of affected patients, at a median age of 20 years and with peaks at 13, 21 and 33 years. The aim of our narrative review was to provide an overview of the most important papers regarding urological impairment in Wolfram Syndrome. A comprehensive search on PubMed including Wolfram Syndrome and one or more of the following terms: chronic renal failure, bladder dysfunction, urological aspects, and urinary tract dysfunction, was done. The exclusion criteria were studies not written in English and not including urinary tract dysfunction deep evaluation and description. Studies mentioning general urologic abnormalities without deep description and/or follow-up were not considered. Due to the rarity of the condition, we considered not only papers including pediatric patients, but also papers with pediatric and adult case reports
Collapse
|
27
|
Pourtoy-Brasselet S, Sciauvaud A, Boza-Moran MG, Cailleret M, Jarrige M, Polvèche H, Polentes J, Chevet E, Martinat C, Peschanski M, Aubry L. Human iPSC-derived neurons reveal early developmental alteration of neurite outgrowth in the late-occurring neurodegenerative Wolfram syndrome. Am J Hum Genet 2021; 108:2171-2185. [PMID: 34699745 DOI: 10.1016/j.ajhg.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
Recent studies indicate that neurodegenerative processes that appear during childhood and adolescence in individuals with Wolfram syndrome (WS) occur in addition to early brain development alteration, which is clinically silent. Underlying pathological mechanisms are still unknown. We have used induced pluripotent stem cell-derived neural cells from individuals affected by WS in order to reveal their phenotypic and molecular correlates. We have observed that a subpopulation of Wolfram neurons displayed aberrant neurite outgrowth associated with altered expression of axon guidance genes. Selective inhibition of the ATF6α arm of the unfolded protein response prevented the altered phenotype, although acute endoplasmic reticulum stress response-which is activated in late Wolfram degenerative processes-was not detected. Among the drugs currently tried in individuals with WS, valproic acid was the one that prevented the pathological phenotypes. These results suggest that early defects in axon guidance may contribute to the loss of neurons in individuals with WS.
Collapse
Affiliation(s)
| | - Axel Sciauvaud
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Maria-Gabriela Boza-Moran
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Michel Cailleret
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Margot Jarrige
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France; CECS/AFM, I-STEM, Corbeil-Essonnes 91100, France
| | | | | | - Eric Chevet
- INSERM U1242, Université Rennes 1, Rennes 35000, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes 35000, France
| | - Cécile Martinat
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France
| | - Marc Peschanski
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France; CECS/AFM, I-STEM, Corbeil-Essonnes 91100, France
| | - Laetitia Aubry
- INSERM UMR 861, I-STEM, AFM, Corbeil-Essonnes 91100, France; Université Paris-Saclay, INSERM, Univ Evry, Institut des Cellules Souches pour le Traitement et l'Étude des Maladies Monogéniques, Corbeil-Essonnes 91100, France.
| |
Collapse
|
28
|
Cairns G, Burté F, Price R, O'Connor E, Toms M, Mishra R, Moosajee M, Pyle A, Sayer JA, Yu-Wai-Man P. A mutant wfs1 zebrafish model of Wolfram syndrome manifesting visual dysfunction and developmental delay. Sci Rep 2021; 11:20491. [PMID: 34650143 PMCID: PMC8516871 DOI: 10.1038/s41598-021-99781-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Wolfram syndrome (WS) is an ultra-rare progressive neurodegenerative disorder defined by early-onset diabetes mellitus and optic atrophy. The majority of patients harbour recessive mutations in the WFS1 gene, which encodes for Wolframin, a transmembrane endoplasmic reticulum protein. There is limited availability of human ocular and brain tissues, and there are few animal models for WS that replicate the neuropathology and clinical phenotype seen in this disorder. We, therefore, characterised two wfs1 zebrafish knockout models harbouring nonsense wfs1a and wfs1b mutations. Both homozygous mutant wfs1a-/- and wfs1b-/- embryos showed significant morphological abnormalities in early development. The wfs1b-/- zebrafish exhibited a more pronounced neurodegenerative phenotype with delayed neuronal development, progressive loss of retinal ganglion cells and clear evidence of visual dysfunction on functional testing. At 12 months of age, wfs1b-/- zebrafish had a significantly lower RGC density per 100 μm2 (mean ± standard deviation; 19 ± 1.7) compared with wild-type (WT) zebrafish (25 ± 2.3, p < 0.001). The optokinetic response for wfs1b-/- zebrafish was significantly reduced at 8 and 16 rpm testing speeds at both 4 and 12 months of age compared with WT zebrafish. An upregulation of the unfolded protein response was observed in mutant zebrafish indicative of increased endoplasmic reticulum stress. Mutant wfs1b-/- zebrafish exhibit some of the key features seen in patients with WS, providing a versatile and cost-effective in vivo model that can be used to further investigate the underlying pathophysiology of WS and potential therapeutic interventions.
Collapse
Affiliation(s)
- G Cairns
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Interdisciplinary School of Health Science, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - F Burté
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - R Price
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - E O'Connor
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - M Toms
- UCL Institute of Ophthalmology, University College London, London, UK
| | - R Mishra
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - M Moosajee
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Great Ormond Street Hospital for Children NHS Foundation, Trust, London, UK
| | - A Pyle
- The Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - J A Sayer
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Renal Medicine, Freeman Hospital, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - P Yu-Wai-Man
- UCL Institute of Ophthalmology, University College London, London, UK.
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
29
|
Loncke J, Vervliet T, Parys JB, Kaasik A, Bultynck G. Uniting the divergent Wolfram syndrome-linked proteins WFS1 and CISD2 as modulators of Ca 2+ signaling. Sci Signal 2021; 14:eabc6165. [PMID: 34582248 DOI: 10.1126/scisignal.abc6165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Allen Kaasik
- University of Tartu, Institute of Biomedicine and Translational Medicine, Department of Pharmacology, Tartu, Estonia
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| |
Collapse
|
30
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
31
|
Liraglutide, 7,8-DHF and their co-treatment prevents loss of vision and cognitive decline in a Wolfram syndrome rat model. Sci Rep 2021; 11:2275. [PMID: 33500541 PMCID: PMC7838169 DOI: 10.1038/s41598-021-81768-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Wolfram syndrome (WS) is a monogenic progressive neurodegenerative disease and is characterized by various neurological symptoms, such as optic nerve atrophy, loss of vision, cognitive decline, memory impairment, and learning difficulties. GLP1 receptor agonist liraglutide and BDNF mimetic 7,8-dihydroxyflavone (7,8-DHF) have had protective effect to visual pathway and to learning and memory in different rat models of neurodegenerative disorders. Although synergistic co-treatment effect has not been reported before and therefore the aim of the current study was to investigate liraglutide, 7,8-DHF and most importantly for the first time their co-treatment effect on degenerative processes in WS rat model. We took 9 months old WS rats and their wild-type (WT) control animals and treated them daily with liraglutide, 7,8-DHF or with the combination of liraglutide and 7,8-DHF up to the age of 12.5 months (n = 47, 5-8 per group). We found that liraglutide, 7,8-DHF and their co-treatment all prevented lateral ventricle enlargement, improved learning in Morris Water maze, reduced neuronal inflammation, delayed the progression of optic nerve atrophy, had remyelinating effect on optic nerve and thereby improved visual acuity in WS rats compared to WT controls. Thus, the use of the liraglutide, 7,8-DHF and their co-treatment could potentially be used as a therapeutic intervention to induce neuroprotection or even neuronal regeneration.
Collapse
|
32
|
Stone SI, Abreu D, McGill JB, Urano F. Monogenic and syndromic diabetes due to endoplasmic reticulum stress. J Diabetes Complications 2021; 35:107618. [PMID: 32518033 PMCID: PMC7648725 DOI: 10.1016/j.jdiacomp.2020.107618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) lies at the crossroads of protein folding, calcium storage, lipid metabolism, and the regulation of autophagy and apoptosis. Accordingly, dysregulation of ER homeostasis leads to β-cell dysfunction in type 1 and type 2 diabetes that ultimately culminates in cell death. The ER is therefore an emerging target for understanding the mechanisms of diabetes mellitus that captures the complex etiologies of this multifactorial class of metabolic disorders. Our strategy for developing ER-targeted diagnostics and therapeutics is to focus on monogenic forms of diabetes related to ER dysregulation in an effort to understand the exact contribution of ER stress to β-cell death. In this manner, we can develop personalized genetic medicine for ERstress-related diabetic disorders, such as Wolfram syndrome. In this article, we describe the phenotypes and molecular pathogenesis of ERstress-related monogenic forms of diabetes.
Collapse
Affiliation(s)
- Stephen I Stone
- Department of Pediatrics, Division of Endocrinology and Diabetes, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Damien Abreu
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janet B McGill
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Zmyslowska A, Stanczak M, Nowicka Z, Waszczykowska A, Baranska D, Fendler W, Borowiec M, Młynarski W. Serum microRNA as indicators of Wolfram syndrome's progression in neuroimaging studies. BMJ Open Diabetes Res Care 2020; 8:8/2/e001379. [PMID: 33132210 PMCID: PMC7607591 DOI: 10.1136/bmjdrc-2020-001379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Patients with the ultra-rare Wolfram syndrome (WFS) develop insulin-dependent diabetes and progressive neurodegeneration. The aim of the study was to quantify microRNAs (miRNAs) in sera from patients with WFS, correlate their expression with neurological imaging over time and compare miRNA levels with those observed in patients with type 1 diabetes mellitus (T1DM). RESEARCH DESIGN AND METHODS We quantified miRNA expression (Qiagen, Germany) in two groups of patients: with WFS at study entry (n=14) and after 2 years of follow-up and in 15 glycated hemoglobin-matched (p=0.72) patients with T1DM. RESULTS We observed dynamic changes in the expression of multiple miRNAs in patients with WFS parallel to disease progression and in comparison to the T1DM patients group. Among miRNAs that differed between baseline and follow-up WFS samples, the level of 5 increased over time (miR-375, miR-30d-5p, miR-30e-30, miR-145-5p and miR-193a-5p) and was inversely correlated with macular average thickness, while the expression of 2 (let-7g-5p and miR-22-3p) decreased and was directly correlated with neuroimaging indicators of neurodegeneration. CONCLUSIONS Our findings show for the first time that serum miRNAs can be used as easily accessible indicators of disease progression in patients with WFS, potentially facilitating clinical trials on mitigating neurodegeneration.
Collapse
Affiliation(s)
| | - Marcin Stanczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Arleta Waszczykowska
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Lodz, Lodz, Poland
| | - Dobromila Baranska
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
34
|
Samara A, Lugar HM, Hershey T, Shimony JS. Longitudinal Assessment of Neuroradiologic Features in Wolfram Syndrome. AJNR Am J Neuroradiol 2020; 41:2364-2369. [PMID: 33122205 DOI: 10.3174/ajnr.a6831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Wolfram syndrome is a rare genetic disease with characteristic brain involvement. We reviewed the brain MR images of patients with Wolfram syndrome to determine the frequency and characteristics of common neuroradiologic findings. MATERIALS AND METHODS We retrospectively reviewed the imaging data of patients with genetically-confirmed Wolfram syndrome who had been recruited to the Washington University Wolfram Syndrome Research Clinic. These patients were evaluated between 2010 and 2019 with annual MRIs, along with other measures. MR images were assessed for clinical neuroradiologic signs at each individual's first and last follow-up visits to characterize the frequency, rate of progression, and clinical correlations of these signs. RESULTS We included 30 patients (13 males/17 females; average age at first visit, 14 years; average age at last visit, 19 years). The median duration of follow-up was 5 years (range, 2-9 years). The most common findings were an absent or diminished posterior pituitary bright spot (first, 53%; last, 70%), T1/T2 pons signal abnormalities (first, 53%; last, 67%), optic nerve atrophy (first, 30%; last, 80%), white matter T2 hyperintensities (first, 27%; last, 35%), and cerebellar atrophy (first, 23%; last, 70%). CONCLUSIONS Patients with Wolfram syndrome present characteristic neuroradiologic findings that involve the posterior pituitary gland, optic nerves, white matter, brain stem, and cerebellum. These abnormal findings appear at an early age and tend to increase in frequency with time. However, the neurologic significance and neuropathologic mechanisms of each sign require more investigation. Neuroradiologists should be aware of the pattern of these features in Wolfram syndrome.
Collapse
Affiliation(s)
- A Samara
- From the Department of Psychiatry (A.S., H.M.L.)
| | - H M Lugar
- From the Department of Psychiatry (A.S., H.M.L.)
| | - T Hershey
- From the Department of Psychiatry (A.S., H.M.L.) .,Neurology (T.H.).,Mallinckrodt Institute of Radiology (T.H., J.S.S.), Washington University School of Medicine, St. Louis, Missouri
| | - J S Shimony
- Mallinckrodt Institute of Radiology (T.H., J.S.S.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
35
|
Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome. Sci Rep 2020; 10:4785. [PMID: 32179840 PMCID: PMC7075867 DOI: 10.1038/s41598-020-61735-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Wolfram syndrome (WS) is a recessive multisystem disorder defined by the association of diabetes mellitus and optic atrophy, reminiscent of mitochondrial diseases. The role played by mitochondria remains elusive, with contradictory results on the occurrence of mitochondrial dysfunction. We evaluated 13 recessive WS patients by deep clinical phenotyping, including optical coherence tomography (OCT), serum lactic acid at rest and after standardized exercise, brain Magnetic Resonance Imaging, and brain and muscle Magnetic Resonance Spectroscopy (MRS). Finally, we investigated mitochondrial bioenergetics, network morphology, and calcium handling in patient-derived fibroblasts. Our results do not support a primary mitochondrial dysfunction in WS patients, as suggested by MRS studies, OCT pattern of retinal nerve fiber layer loss, and, in fibroblasts, by mitochondrial bioenergetics and network morphology results. However, we clearly found calcium mishandling between endoplasmic reticulum (ER) and mitochondria, which, under specific metabolic conditions of increased energy requirements and in selected tissue or cell types, may turn into a secondary mitochondrial dysfunction. Critically, we showed that Wolframin (WFS1) protein is enriched at mitochondrial-associated ER membranes and that in patient-derived fibroblasts WFS1 protein is completely absent. These findings support a loss-of-function pathogenic mechanism for missense mutations in WFS1, ultimately leading to defective calcium influx within mitochondria.
Collapse
|
36
|
Alfaro R, Doty T, Narayanan A, Lugar H, Hershey T, Pepino MY. Taste and smell function in Wolfram syndrome. Orphanet J Rare Dis 2020; 15:57. [PMID: 32087739 PMCID: PMC7036249 DOI: 10.1186/s13023-020-1335-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Wolfram syndrome is a rare genetic disease characterized by insulin-dependent diabetes, optic nerve atrophy, sensorineural hearing loss and neurodegeneration. Although olfactory dysfunction, a classical clinical marker of neurodegenerative processes, has been reported in Wolfram syndrome, its use as a clinical marker in Wolfram is limited due to data scarcity. In addition, it is unknown whether Wolfram syndrome affects the sense of taste. METHODS Smell and taste perception were assessed in participants with Wolfram syndrome (n = 40) who were 15.1 ± 6.0 years of age (range: 5.1-28.7 years) and two sex- and age-matched control groups: one group with type 1 diabetes mellitus (T1D; n = 25) and a healthy control group (HC; n = 29). Smell sensitivity was assessed by measuring n-butanol detection thresholds and smell identification by using the University of Pennsylvania Smell Identification Test (UPSIT). Taste function was assessed using NIH Toolbox, which includes the assessment of sucrose (sweet) taste preference, and perceived intensity of sucrose, sodium chloride (salty), and quinine hydrochloride (bitter) both in the tip of the tongue (regional test) and the whole mouth. RESULTS Smell sensitivity was not significantly different among groups; however, smell identification was impaired in Wolfram syndrome, as reflected by significantly lower UPSIT scores in Wolfram syndrome compared to HC and T1D (P < 0.001). Compared to participants in the control groups, participants with Wolfram syndrome had a blunted perception of sweetness and saltiness when taste stimuli were applied regionally (P < 0.05), but differences in perceived intensity were no longer significant among groups when taste stimuli were tasted with the whole mouth. Groups preferred similar sucrose concentrations. CONCLUSION Wolfram syndrome was associated with olfactory dysfunction. However, the olfactory dysfunction was qualitative (related to smell identification) and not secondary to olfactory insensitivity or diabetes, suggesting is arising from dysfunction in central olfactory brain regions. In contrast to olfaction, and despite decreased perception of taste intensity in the anterior tongue, the sense of taste was overall well-conserved in individuals with Wolfram syndrome. Future longitudinal studies of taste and smell perception in Wolfram syndrome will be important to determine the use of the chemical senses as clinical markers of disease progression.
Collapse
Affiliation(s)
- Raul Alfaro
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Tasha Doty
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO, USA
| | - Anagha Narayanan
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO, USA
| | - Heather Lugar
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO, USA
| | - Tamara Hershey
- Department of Psychiatry, School of Medicine, Washington University, St. Louis, MO, USA.,Department of Radiology, School of Medicine, Washington University, St. Louis, MO, USA
| | - M Yanina Pepino
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL, USA. .,Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| |
Collapse
|
37
|
Khacho M, Harris R, Slack RS. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 2019; 20:34-48. [PMID: 30464208 DOI: 10.1038/s41583-018-0091-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence now indicates that mitochondria are central regulators of neural stem cell (NSC) fate decisions and are crucial for both neurodevelopment and adult neurogenesis, which in turn contribute to cognitive processes in the mature brain. Inherited mutations and accumulated damage to mitochondria over the course of ageing serve as key factors underlying cognitive defects in neurodevelopmental disorders and neurodegenerative diseases, respectively. In this Review, we explore the recent findings that implicate mitochondria as crucial regulators of NSC function and cognition. In this respect, mitochondria may serve as targets for stem-cell-based therapies and interventions for cognitive defects.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Harris
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
38
|
Samara A, Rahn R, Neyman O, Park KY, Samara A, Marshall B, Dougherty J, Hershey T. Developmental hypomyelination in Wolfram syndrome: new insights from neuroimaging and gene expression analyses. Orphanet J Rare Dis 2019; 14:279. [PMID: 31796109 PMCID: PMC6889680 DOI: 10.1186/s13023-019-1260-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Wolfram syndrome is a rare multisystem disorder caused by mutations in WFS1 or CISD2 genes leading to brain structural abnormalities and neurological symptoms. These abnormalities appear in early stages of the disease. The pathogenesis of Wolfram syndrome involves abnormalities in the endoplasmic reticulum (ER) and mitochondrial dynamics, which are common features in several other neurodegenerative disorders. Mutations in WFS1 are responsible for the majority of Wolfram syndrome cases. WFS1 encodes for an endoplasmic reticulum (ER) protein, wolframin. It is proposed that wolframin deficiency triggers the unfolded protein response (UPR) pathway resulting in an increased ER stress-mediated neuronal loss. Recent neuroimaging studies showed marked alteration in early brain development, primarily characterized by abnormal white matter myelination. Interestingly, ER stress and the UPR pathway are implicated in the pathogenesis of some inherited myelin disorders like Pelizaeus-Merzbacher disease, and Vanishing White Matter disease. In addition, exploratory gene-expression network-based analyses suggest that WFS1 expression occurs preferentially in oligodendrocytes during early brain development. Therefore, we propose that Wolfram syndrome could belong to a category of neurodevelopmental disorders characterized by ER stress-mediated myelination impairment. Further studies of myelination and oligodendrocyte function in Wolfram syndrome could provide new insights into the underlying mechanisms of the Wolfram syndrome-associated brain changes and identify potential connections between neurodevelopmental disorders and neurodegeneration.
Collapse
Affiliation(s)
- Amjad Samara
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Rachel Rahn
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Olga Neyman
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Ki Yun Park
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA
| | - Ahmad Samara
- Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Bess Marshall
- Department of Pediatrics, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Joseph Dougherty
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA.,Department of Genetics, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO, 63110, USA. .,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
39
|
Sobhani M, Amin Tabatabaiefar M, Ghafouri-Fard S, Rajab A, Mozafarpour S, Nasrniya S, Kajbafzadeh AM, Noori-Daloii MR. Clinical and molecular assessment of 13 Iranian families with Wolfram syndrome. Endocrine 2019; 66:185-191. [PMID: 31313226 DOI: 10.1007/s12020-019-02004-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/04/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE Wolfram syndrome (WS) is a rare genetic disorder described by a pattern of clinical manifestations such as diabetes mellitus, diabetes insipidus, optic nerve atrophy, sensorineural hearing loss, urinary tract abnormalities, and psychiatric disorders. WFS1 and WFS2 loci are the main genetic loci associated with this disorder. METHODS In the current study, we investigated associations between these loci and WS via STR markers and homozygosity mapping in 13 Iranian families with WS. All families were linked to WFS1 locus. RESULTS Mutation analysis revealed four novel mutations (Q215X, E89X, S168Del, and E391Sfs*51) in the assessed families. Bioinformatics tools confirmed the pathogenicity of the novel mutations. Other identified mutations were previously reported in other populations for their pathogenicity. CONCLUSIONS The current study adds to the mutation repository of WS and shows a panel of mutations in Iranian population. Such panel would facilitate genetic counseling and prenatal diagnosis in families with WS cases.
Collapse
Affiliation(s)
- Maryam Sobhani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sarah Mozafarpour
- Department of Urology, Massachusetts General Hospital Harvard Medical School, Boston, MA, 02114, USA
| | - Samaneh Nasrniya
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Reza Noori-Daloii
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Poursina Ave, 16 Azar St. Keshavarz BLVD, Tehran, 1417613151, Iran.
| |
Collapse
|
40
|
Abreu D, Urano F. Current Landscape of Treatments for Wolfram Syndrome. Trends Pharmacol Sci 2019; 40:711-714. [PMID: 31420094 DOI: 10.1016/j.tips.2019.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/14/2023]
Abstract
Wolfram syndrome is a rare genetic spectrum disorder characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, and progressive neurodegeneration, and ranges from mild to severe clinical symptoms. There is currently no treatment to delay, halt, or reverse the progression of Wolfram syndrome, raising the urgency for innovative therapeutics for this disease. Here, we summarize our vision for developing novel treatment strategies and achieving a cure for Wolfram-syndrome-spectrum disorder.
Collapse
Affiliation(s)
- Damien Abreu
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Abstract
Background Wolfram syndrome is a rare disorder associated with diabetes mellitus, diabetes insipidus, optic nerve atrophy, hearing and vision loss, and neurodegeneration. Sleep complaints are common but have not been studied with objective measures. Our goal was to assess rates of sleep apnea and objective and self-reported measures of sleep quality, and to determine the relationship of sleep pathology to other clinical variables in Wolfram syndrome patients. Methods Genetically confirmed Wolfram syndrome patients were evaluated at the 2015 and 2016 Washington University Wolfram Syndrome Research Clinics. Patients wore an actigraphy device and a type III ambulatory sleep study device and completed the Epworth Sleepiness Scale (ESS), the Pittsburgh Sleep Quality Index (PSQI) and/or the Pediatric Sleep Questionnaire (PSQ). PSQI and PSQ questionnaire data were compared to a previously collected group of controls. Patients were characterized clinically with the Wolfram Unified Rating Scale (WURS) and a subset underwent magnetic resonance imaging (MRI) for brain volume measurements. Results Twenty-one patients were evaluated ranging from age 8.9–29.7 years. Five of 17 (29%) adult patients fit the criteria for obstructive sleep apnea (OSA; apnea-hypopnea index [AHI] ≥ 5) and all 4 of 4 (100%) children aged 12 years or younger fit the criteria for obstructive sleep apnea (AHI’s ≥ 1). Higher AHI was related to greater disease severity (higher WURS Physical scores). Higher mixed apnea scores were related to lower brainstem and cerebellar volumes. Patients’ scores on the PSQ were higher than those of controls, indicating greater severity of childhood obstructive sleep-related breathing disorders. Conclusions Wolfram syndrome patients had a high rate of OSA. Further study would be needed to assess how these symptoms change over time. Addressing sleep disorders in Wolfram syndrome patients would likely improve their overall health and quality of life.
Collapse
|
42
|
Evidence for altered neurodevelopment and neurodegeneration in Wolfram syndrome using longitudinal morphometry. Sci Rep 2019; 9:6010. [PMID: 30979932 PMCID: PMC6461605 DOI: 10.1038/s41598-019-42447-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Wolfram syndrome is a rare disease caused by mutations in the WFS1 gene leading to symptoms in early to mid-childhood. Brain structural abnormalities are present even in young children, but it is not known when these abnormalities arise. Such information is critical in determining optimal outcome measures for clinical trials and in understanding the aberrant neurobiological processes in Wolfram syndrome. Using voxel-wise and regional longitudinal analyses, we compared brain volumes in Wolfram patients (n = 29; ages 5–25 at baseline; mean follow-up = 3.6 years), to age and sex-equivalent controls (n = 52; ages 6–26 at baseline; mean follow-up = 2.0 years). Between groups, white and gray matter volumes were affected differentially during development. Controls had uniformly increasing volume in white matter, whereas the Wolfram group had stable (optic radiations) or decreasing (brainstem, ventral pons) white matter volumes. In gray matter, controls had stable (thalamus, cerebellar cortex) or decreasing volumes (cortex), whereas the Wolfram group had decreased volume in thalamus and cerebellar cortex. These patterns suggest that there may be early, stalled white matter development in Wolfram syndrome, with additional degenerative processes in both white and gray matter. Ideally, animal models could be used to identify the underlying mechanisms and develop specific interventions.
Collapse
|
43
|
Geisler JG. 2,4 Dinitrophenol as Medicine. Cells 2019; 8:cells8030280. [PMID: 30909602 PMCID: PMC6468406 DOI: 10.3390/cells8030280] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
In the sanctity of pure drug discovery, objective reasoning can become clouded when pursuing ideas that appear unorthodox, but are spot on physiologically. To put this into historical perspective, it was an unorthodox idea in the 1950’s to suggest that warfarin, a rat poison, could be repositioned into a breakthrough drug in humans to protect against strokes as a blood thinner. Yet it was approved in 1954 as Coumadin® and has been prescribed to billions of patients as a standard of care. Similarly, no one can forget the horrific effects of thalidomide, prescribed or available without a prescription, as both a sleeping pill and “morning sickness” anti-nausea medication targeting pregnant women in the 1950’s. The “thalidomide babies” became the case-in-point for the need of strict guidelines by the U.S. Food & Drug Administration (FDA) or full multi-species teratogenicity testing before drug approval. More recently it was found that thalidomide is useful in graft versus host disease, leprosy and resistant tuberculosis treatment, and as an anti-angiogenesis agent as a breakthrough drug for multiple myeloma (except for pregnant female patients). Decades of diabetes drug discovery research has historically focused on every possible angle, except, the energy-out side of the equation, namely, raising mitochondrial energy expenditure with chemical uncouplers. The idea of “social responsibility” allowed energy-in agents to be explored and the portfolio is robust with medicines of insulin sensitizers, insulin analogues, secretagogues, SGLT2 inhibitors, etc., but not energy-out medicines. The primary reason? It appeared unorthodox, to return to exploring a drug platform used in the 1930s in over 100,000 obese patients used for weight loss. This is over 80-years ago and prior to Dr Peter Mitchell explaining the mechanism of how mitochondrial uncouplers, like 2,4-dinitrophenol (DNP) even worked by three decades later in 1961. Although there is a clear application for metabolic disease, it was not until recently that this platform was explored for its merit at very low, weight-neutral doses, for treating insidious human illnesses and completely unrelated to weight reduction. It is known that mitochondrial uncouplers specifically target the entire organelle’s physiology non-genomically. It has been known for years that many neuromuscular and neurodegenerative diseases are associated with overt production of reactive oxygen species (ROSs), a rise in isoprostanes (biomarker of mitochondrial ROSs in urine or blood) and poor calcium (Ca2+) handing. It has also been known that mitochondrial uncouplers lower ROS production and Ca2+ overload. There is evidence that elevation of isoprostanes precedes disease onset, in Alzheimer’s Disease (AD). It is also curious, why so many neurodegenerative diseases of known and unknown etiology start at mid-life or later, such as Multiple Sclerosis (MS), Huntington Disease (HD), AD, Parkinson Disease, and Amyotrophic Lateral Sclerosis (ALS). Is there a relationship to a buildup of mutations that are sequestered over time due to ROSs exceeding the rate of repair? If ROS production were managed, could disease onset due to aging be delayed or prevented? Is it possible that most, if not all neurodegenerative diseases are manifested through mitochondrial dysfunction? Although DNP, a historic mitochondrial uncoupler, was used in the 1930s at high doses for obesity in well over 100,000 humans, and so far, it has never been an FDA-approved drug. This review will focus on the application of using DNP, but now, repositioned as a potential disease-modifying drug for a legion of insidious diseases at much lower and paradoxically, weight neutral doses. DNP will be addressed as a treatment for “metabesity”, an emerging term related to the global comorbidities associated with the over-nutritional phenotype; obesity, diabetes, nonalcoholic steatohepatitis (NASH), metabolic syndrome, cardiovascular disease, but including neurodegenerative disorders and accelerated aging. Some unexpected drug findings will be discussed, such as DNP’s induction of neurotrophic growth factors involved in neuronal heath, learning and cognition. For the first time in 80’s years, the FDA has granted (to Mitochon Pharmaceutical, Inc., Blue Bell, PA, USA) an open Investigational New Drug (IND) approval to begin rigorous clinical testing of DNP for safety and tolerability, including for the first ever, pharmacokinetic profiling in humans. Successful completion of Phase I clinical trial will open the door to explore the merits of DNP as a possible treatment of people with many truly unmet medical needs, including those suffering from HD, MS, PD, AD, ALS, Duchenne Muscular Dystrophy (DMD), and Traumatic Brain Injury (TBI).
Collapse
Affiliation(s)
- John G Geisler
- Mitochon Pharmaceuticals, Inc., 970 Cross Lane, Blue Bell, PA 19422, USA.
| |
Collapse
|
44
|
Zmyslowska A, Waszczykowska A, Baranska D, Stawiski K, Borowiec M, Jurowski P, Fendler W, Mlynarski W. Optical coherence tomography and magnetic resonance imaging visual pathway evaluation in Wolfram syndrome. Dev Med Child Neurol 2019; 61:359-365. [PMID: 30246501 DOI: 10.1111/dmcn.14040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to assess parameters of retinal morphology by using high-definition optical coherence tomography (OCT) in patients with Wolfram syndrome (WFS) and their relation to optic tract atrophy in magnetic resonance imaging (MRI). METHOD High-definition OCT and MRI parameters were evaluated in 12 patients with WFS (three males, nine females; median age at examination 12y 8mo, range 10y 2mo-15y 11mo) and referred to 30 individuals with type 1 diabetes (T1D) (12 males, 18 females; median age at examination 20y 5mo, range 16y 8mo-21y 4mo) and 33 typically developing comparison participants (10 males, 23 females; median age at examination 20y 7mo, range 13y-22y 4mo). RESULTS Total thickness and quadrant thickness of the retinal nerve fibre layer (RNFL), macular full-thickness parameters and macular ganglion cell layer/inner plexiform layer, intraorbital and intracranial thickness of the optical nerve, as well as the optic chiasm and visual tracts were significantly reduced in patients with WFS compared with those having T1D and the typically developing comparison participants. Optic chiasm thickness correlated negatively in patients with WFS with both age (r=-0.79; p=0.002) and duration of diabetes (r=-0.62; p=0.032). Thickness of the intraorbital parts of the optic nerves in patients with WFS correlated positively with thickness of the superior RNFL (r=0.73; p=0.006). INTERPRETATION High-definition OCT in combination with MRI could become an important tool for evaluating the effectiveness of therapeutic trials in patients with WFS. WHAT THIS PAPER ADDS Provides evidence of significant reduction of retinal parameters and optic nerves in patients with Wolfram syndrome (WFS). Shows correlations between magnetic resonance imaging parameters and retinal morphology parameters in patients with WFS.
Collapse
Affiliation(s)
- Agnieszka Zmyslowska
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Łódź, Łódź, Poland
| | - Arleta Waszczykowska
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Łódź, Łódź, Poland
| | - Dobromila Baranska
- Department of Diagnostic Imaging, Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | - Piotr Jurowski
- Department of Ophthalmology and Vision Rehabilitation, Medical University of Łódź, Łódź, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
45
|
Pontillo G, Cocozza S, Brunetti A, Brescia Morra V, Riccio E, Russo C, Saccà F, Tedeschi E, Pisani A, Quarantelli M. Reduced Intracranial Volume in Fabry Disease: Evidence of Abnormal Neurodevelopment? Front Neurol 2018; 9:672. [PMID: 30174644 PMCID: PMC6107697 DOI: 10.3389/fneur.2018.00672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/26/2018] [Indexed: 11/22/2022] Open
Abstract
Introduction: Lysosomal storage disorders (LSD) are often characterized by abnormal brain development, reflected by a reduction of intracranial volume (ICV). The aim of our study was to perform a volumetric analysis of intracranial tissues in Fabry Disease (FD), investigating possible reductions of ICV as a potential expression of abnormal brain development in this condition. Materials and Methods: Forty-two FD patients (15 males, mean age 43.3 ± 13.0 years) were enrolled along with 38 healthy controls (HC) of comparable age and sex. Volumetric MRI data were segmented using SPM12 to obtain intracranial tissue volumes, from which ICV values were derived. Results: Mean ICV of FD patients was 8.1% smaller compared to the control group (p < 5·10−5). Unlike what typically happens in neurodegenerative disorders, no significant differences emerged when comparing between the two groups the fractional volumes of gray matter, white matter and CSF (i.e., normalized by ICV), consistent with a harmonious volumetric reduction of intracranial structures. Discussion: The present results suggest that in FD patients an abnormality of brain development is present, expanding the current knowledge about central nervous system involvement in FD, further emphasizing the importance of an early diagnosis.
Collapse
Affiliation(s)
- Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Eleonora Riccio
- Nephrology Unit, Department of Public Health, University "Federico II", Naples, Italy
| | - Camilla Russo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Antonio Pisani
- Nephrology Unit, Department of Public Health, University "Federico II", Naples, Italy
| | - Mario Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| |
Collapse
|
46
|
Finsterer J, Zarrouk-Mahjoub S. Cerebellar atrophy is common among mitochondrial disorders. Metab Brain Dis 2018; 33:987-988. [PMID: 29717375 DOI: 10.1007/s11011-018-0238-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Postfach 20, 1180, Vienna, Austria.
| | - Sinda Zarrouk-Mahjoub
- Pasteur Institute of Tunis, University of Tunis El Manar and Genomics Platform, Tunis, Tunisia
| |
Collapse
|
47
|
Rove KO, Vricella GJ, Hershey T, Thu MH, Lugar HM, Vetter J, Marshall BA, Austin PF. Lower Urinary Tract Dysfunction and Associated Pons Volume in Patients with Wolfram Syndrome. J Urol 2018; 200:1107-1113. [PMID: 29883657 DOI: 10.1016/j.juro.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE Wolfram syndrome is a neurodegenerative disorder characterized by childhood onset diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing impairment, and commonly bladder and bowel dysfunction. We hypothesized that there is an association between a smaller pons, which contains the pontine micturition center, and abnormal lower urinary tract function. MATERIALS AND METHODS Patients with genetically confirmed Wolfram syndrome attended an annual multidisciplinary research clinic. Subjects underwent noninvasive urodynamic testing and brain magnetic resonance imaging, and completed validated patient reported outcome measures. Bowel and bladder diaries were completed before visits. Age and gender corrected linear and logistic mixed effects models were used to correlate pons volume, corrected for whole brain size, to urodynamic and patient reported outcomes. RESULTS A total of 36 patients attended 142 visits between 2010 and 2016. Mean age was 16.9 years (range 7 to 30) and 64% of patients were female. Functional bladder capacity was decreased in 31% of the patients, normal in 54% and increased in 14%. Of the patients 44% and 54% had abnormal uroflowmetry and post-void residual, respectively, on at least 1 occasion. There was no increase through time in incidence of lower urinary tract dysfunction. Decreased pons volume was associated with increased post-void residual (p = 0.048) and higher PinQ (Pediatric Incontinence Questionnaire) score (p = 0.011), indicating lower quality of life and higher levels of dysfunction. CONCLUSIONS A significant number of children, adolescents and young adults with Wolfram syndrome have objective evidence of lower urinary tract dysfunction. Decreased pons volume is associated with more abnormal urinary function and lower quality of life in patients with Wolfram syndrome.
Collapse
Affiliation(s)
- Kyle O Rove
- Division of Pediatric Urology, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri.
| | - Gino J Vricella
- Division of Pediatric Urology, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Tamara Hershey
- Department of Neurology and Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Muang H Thu
- Division of Pediatric Urology, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Heather M Lugar
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Joel Vetter
- Division of Pediatric Urology, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Bess A Marshall
- Departments of Pediatrics and Cell Biology, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Paul F Austin
- Scott Department of Urology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
48
|
Bumpus E, Hershey T, Doty T, Ranck S, Gronski M, Urano F, Foster ER. Understanding activity participation among individuals with Wolfram Syndrome. Br J Occup Ther 2018; 81:348-357. [PMID: 29861534 PMCID: PMC5983031 DOI: 10.1177/0308022618757182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Wolfram Syndrome (WFS) is a rare genetic disease associated with a variety of progressive metabolic and neurologic impairments. Previous research has focused on WFS-related impairments and biomarkers for disease progression; however, information about how WFS impacts participation in daily activities is lacking. METHODS WFS (n=45; 20 children, 25 adults) participants completed an online questionnaire about activity participation. Thirty-six non-WFS comparison participants (11 children; 25 adults) completed a portion of the questionnaire. Symptom data from a subset of WFS participants (n=20) were also examined in relation to participation data. RESULTS WFS children and adults had lower participation than non-WFS children and adults in almost all activity domains, and social and exercise-related activities were the most problematic. In the subset of WFS adults with symptom data, poorer vision, balance, gait, hearing, and overall symptom severity related to lower participation. CONCLUSIONS WFS appears to negatively impact participation in a variety of activities, and this effect may increase as people age and/or WFS progresses. The most functionally-pertinent WFS symptoms are those associated with neurodegeneration especially vision loss and walking and balance problems. This study revealed symptoms and activity domains that are most relevant for people with WFS and, thus, can inform current practice and treatment development research.
Collapse
Affiliation(s)
- Emily Bumpus
- Occupational Therapy Doctoral Student, Program in Occupational Therapy at Washington University School of Medicine, USA
| | - Tamara Hershey
- Associate Professor, Departments of Neurology, Psychiatry, and Radiology at Washington University School of Medicine, USA
| | - Tasha Doty
- Professional Rater III, Program in Occupational Therapy and Department of Psychiatry at Washington University School of Medicine, USA
| | - Samantha Ranck
- Professional Rater III, Department of Psychiatry at Washington University School of Medicine, USA
| | - Meredith Gronski
- Director, Department of Occupational Therapy at Methodist University, USA
| | - Fumihko Urano
- Professor, Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, and Department of Pathology and Immunology at Washington University School of Medicine, USA
| | - Erin R Foster
- Assistant Professor, Program in Occupational Therapy and Departments of Neurology and Psychiatry at Washington University School of Medicine, USA
| |
Collapse
|
49
|
Genetic and clinical aspects of Wolfram syndrome 1, a severe neurodegenerative disease. Pediatr Res 2018; 83:921-929. [PMID: 29774890 DOI: 10.1038/pr.2018.17] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022]
Abstract
Wolfram syndrome 1 (WS1) is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, deafness, and other abnormalities. WS1 usually results in death before the age of 50 years. The pathogenesis of WS1 is ascribed to mutations of human WFS1 gene on chromosome 4p encoding a transmembrane protein called wolframin, which has physiological functions in membrane trafficking, secretion, processing, and/or regulation of ER calcium homeostasis. Different types of WFS1 mutations have been identified, and some of these have been associated with a dominant, severe type of WS. Mutations of CISD2 gene cause autosomal recessive Wolfram syndrome 2 (WS2) characterized by the absence of diabetes insipidus and psychiatric disorders, and by bleeding upper intestinal ulcer and defective platelet aggregation. Other WFS1-related disorders such as DFNA6/14/38 nonsyndromic low-frequency sensorineural hearing loss and Wolfram syndrome-like disease with autosomal dominant transmission have been described. WS1 is a devastating disease for the patients and their families. Thus, early diagnosis is imperative to enable proper prognostication, prevent complications, and reduce the transmission to further progeny. Although there is currently no effective therapy, potential new drugs have been introduced, attempting to improve the progression of this fatal disease.
Collapse
|
50
|
La Spada A, Ntai A, Genovese S, Rondinelli M, De Blasio P, Biunno I. Generation of Human-Induced Pluripotent Stem Cells from Wolfram Syndrome Type 2 Patients Bearing the c.103 + 1G>A CISD2 Mutation for Disease Modeling. Stem Cells Dev 2018; 27:287-295. [PMID: 29239282 DOI: 10.1089/scd.2017.0158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wolfram syndrome (WFS) is a rare autosomal premature aging syndrome that shows signs of diabetes mellitus, optic atrophy, and deafness in addition to central nervous system and endocrine complications. The frequent form of WFS type 1 (WFS1) harbors causative mutations in the WFS1 gene, whereas the rare form or WFS type 2 (WFS2) involves CISD2. Mutations in these two genes are recognized by a subset of variable clinical symptoms and a set of overlapping features. In this study, we report on the generation of stable human-induced pluripotent stem cells (hiPSCs) derived from primary fibroblasts of a previously reported Italian family with CISD2 mutation (c.103 + 1G>A), occurring in the consensus intron 1 splicing site in two sisters, deleting the first exon of the transcript. The generated hiPSCs provide a cell model system to study the mutation's role in the multisystemic clinical disorders previously described and test eventual drug effects on the specific and associated clinical phenotype.
Collapse
Affiliation(s)
- Alberto La Spada
- 1 Institute of Genetic and Biomedical Research , National Research Council (IRGB-CNR), Department of Biomedicine, Milan, Italy
| | - Aikaterini Ntai
- 2 Integrated Systems Engineering S.r.l. (ISENET) , Milan, Italy
| | - Stefano Genovese
- 3 Diabetes Endocrine and Metabolic Diseases Unit, IRCCS MultiMedica , Milan, Italy
| | - Maurizio Rondinelli
- 3 Diabetes Endocrine and Metabolic Diseases Unit, IRCCS MultiMedica , Milan, Italy
| | | | - Ida Biunno
- 1 Institute of Genetic and Biomedical Research , National Research Council (IRGB-CNR), Department of Biomedicine, Milan, Italy .,4 IRCCS MultiMedica, Department of Stem Cell Research, Milan, Italy
| |
Collapse
|