1
|
Inostroza PA, Jessen GL, Li F, Zhang X, Brack W, Backhaus T. Multi-compartment impact of micropollutants and particularly antibiotics on bacterial communities using environmental DNA at river basin-level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125487. [PMID: 39644953 DOI: 10.1016/j.envpol.2024.125487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Bacterial communities respond to environmental conditions with diverse structural and functional changes depending on their compartment (water, biofilm or sediment), type of environmental stress, and type of pollution to which they are exposed. In this study, we combined amplicon sequencing of bacterial 16S rRNA genes from water, biofilm, and sediment samples collected in the anthropogenically impacted River Aconcagua basin (Central Chile, South America), in order to evaluate whether micropollutants alter bacterial community structure and functioning based on the type and degree of chemical pollution. Furthermore, we evaluated the potential of bacterial communities from differently polluted sites to degrade contaminants. Our results show a lower diversity at sites impacted by agriculture and urban areas, featuring high loads of micropollution with pesticides, pharmaceuticals and personal care products as well as industrial chemicals. Nutrients, antibiotic stress, and micropollutant loads explain most of the variability in the sediment and biofilm bacterial community, showing a significant increase of bacterial groups known for their capabilities to degrade various organic pollutants, such as Nitrospira and also selecting for taxa known for antibiotic resistance such as Exiguobacterium and Planomicrobium. Moreover, potential ecological functions linked to the biodegradation of toxic chemicals at the basin level revealed significant reductions in ecosystem-related services in sites affected by agriculture and wastewater treatment plant (WWTP) discharges across all investigated environmental compartments. Finally, we suggest transitioning from simple concentration-based assessments of environmental pollution to more meaningful toxic pressure values, measured environmental concentrations normalised by effect information, in order to comprehensively evaluate the role of micropollutants at the ecological (biodiversity) level.
Collapse
Affiliation(s)
- Pedro A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden; Institute for Environmental Research, RWTH Aachen University, Germany.
| | - Gerdhard L Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Chile; Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Chile
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, China
| | - Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Department Exposome Science, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Germany
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden; Institute for Environmental Research, RWTH Aachen University, Germany
| |
Collapse
|
2
|
Harnpicharnchai P, Siriarchawatana P, Mayteeworakoon S, Ingsrisawang L, Likhitrattanapisal S, Eurwilaichitr L, Ingsriswang S. Interplay of xenobiotic-degrading and antibiotic-resistant microorganisms among the microbiome found in the air, handrail, and floor of the subway station. ENVIRONMENTAL RESEARCH 2024; 247:118269. [PMID: 38246293 DOI: 10.1016/j.envres.2024.118269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Investigating the quality of the subway environment, especially regarding antibiotic resistance genes (ARGs) and xenobiotics, conveys ecological and health impacts. In this study, compositions and relations of microorganisms harboring ARGs and xenobiotic degradation and metabolism genes (XDGs) in the Sukhumvit subway station (MRT-SKV) in Bangkok was assessed by analyzing the taxonomic and genetic diversity of the microbiome in the air and on the surfaces of floor and handrail. The major bacteria in the MRT-SKV (including Moraxella, which was abundant in the bioaerosol and handrail samples, and Staphylococcus, which was abundant in the bioaerosol samples) were found to contain both ARGs and XDGs. The co-abundance correlation network revealed notable relationships among bacteria harboring antibiotic resistance genes (ARGs) and xenobiotic degradation genes (XDGs). Significant associations were observed between ARGs linked to glycopeptide and fluoroquinolone resistance and genes associated with benzoate, styrene, and atrazine degradation pathways, as well as between ARGs related to cephamycin, cephalosporin, and MLS resistance and XDGs associated with the cytochrome P450-dependent drug metabolism pathway. These correlations suggested that selective pressure exerted by certain xenobiotics and antibiotics can simultaneously affect both ARGs and XDGs in the environment and should favor correlations and co-survival among ARG- and XDG-containing bacteria in the environments. The correlations may occur via shared mechanisms of resistance to both xenobiotics and antibiotics. Finally, different correlation pairs were seen in different niches (air, handrail, floor) of the subway environment or different geolocations. Thus, the relationship between ARG and XDG pairs most likely depends on the unique characteristics of the niches and on the prominent types of xenobiotics and antibiotics in the subway environment. The results indicated that interactions and connections between microbial communities can impact how they function. These microorganisms can have profound effects on accumulation of xenobiotics and ARGs in the MRT-SKV.
Collapse
Affiliation(s)
- Piyanun Harnpicharnchai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Paopit Siriarchawatana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Sermsiri Mayteeworakoon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Lily Ingsrisawang
- Department of Statistics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Somsak Likhitrattanapisal
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Lily Eurwilaichitr
- National Energy Technology Center, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand.
| |
Collapse
|
3
|
Kuo J, Liu D, Wen WH, Chiu CY, Chen W, Wu YW, Lai FT, Lin CH. Different microbial communities in paddy soils under organic and nonorganic farming. Braz J Microbiol 2024; 55:777-788. [PMID: 38147271 PMCID: PMC10920611 DOI: 10.1007/s42770-023-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023] Open
Abstract
Organic agriculture is a farming method that provides healthy food and is friendly to the environment, and it is developing rapidly worldwide. This study compared microbial communities in organic farming (Or) paddy fields to those in nonorganic farming (Nr) paddy fields based on 16S rDNA sequencing and analysis. The predominant microorganisms in both soils were Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, and Nitrospirota. The alpha diversity of the paddy soil microbial communities was not different between the nonorganic and organic farming systems. The beta diversity of nonmetric multidimensional scaling (NMDS) revealed that the two groups were significantly separated. Distance-based redundancy analysis (db-RDA) suggested that soil pH and electrical conductivity (EC) had a positive relationship with the microbes in organic paddy soils. There were 23 amplicon sequence variants (ASVs) that showed differential abundance. Among them, g_B1-7BS (Proteobacteria), s_Sulfuricaulis limicola (Proteobacteria), g_GAL15 (p_GAL15), c_Thermodesulfovibrionia (Nitrospirota), two of f_Anaerolineaceae (Chloroflexi), and two of g_S085 (Chloroflexi) showed that they were more abundant in organic soils, whereas g_11-24 (Acidobacteriota), g__Subgroup_7 (Acidobacteriota), and g_Bacillus (Firmicutes) showed differential abundance in nonorganic paddy soils. Functional prediction of microbial communities in paddy soils showed that functions related to carbohydrate metabolism could be the major metabolic activities. Our work indicates that organic farming differs from nonorganic farming in terms of microbial composition in paddy soils and provides specific microbes that might be helpful for understanding soil fertility.
Collapse
Affiliation(s)
- Jimmy Kuo
- Department of Planning and Research, National Museum of Marine Biology and Aquarium, Pingtung, 94450, Taiwan
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 94450, Taiwan
| | - Daniel Liu
- Department of Biomedical Sciences, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Wei Hao Wen
- Department of Biomedical Sciences, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Ching Yuan Chiu
- Department of Bioresources, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Wanyu Chen
- Department of Bioresources, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Yun Wen Wu
- Department of Bioresources, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Fang-Ting Lai
- Department of Medicinal Botanicals and Foods On Health Applications, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan
| | - Chorng-Horng Lin
- Department of Biomedical Sciences, Da-Yeh University, 168 University Road, Dacun, Changhua, 51591, Taiwan.
| |
Collapse
|
4
|
Xu Y, Teng Y, Wang X, Ren W, Zhao L, Luo Y, Christie P, Greening C. Endogenous biohydrogen from a rhizobium-legume association drives microbial biodegradation of polychlorinated biphenyl in contaminated soil. ENVIRONMENT INTERNATIONAL 2023; 176:107962. [PMID: 37196568 DOI: 10.1016/j.envint.2023.107962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Endogenous hydrogen (H2) is produced through rhizobium-legume associations in terrestrial ecosystems worldwide through dinitrogen fixation. In turn, this gas may alter rhizosphere microbial community structure and modulate biogeochemical cycles. However, very little is understood about the role that this H2 leaking to the rhizosphere plays in shaping the persistent organic pollutants degrading microbes in contaminated soils. Here, we combined DNA-stable isotope probing (DNA-SIP) with metagenomics to explore how endogenous H2 from the symbiotic rhizobium-alfalfa association drives the microbial biodegradation of tetrachlorobiphenyl PCB 77 in a contaminated soil. The results showed that PCB77 biodegradation efficiency increased significantly in soils treated with endogenous H2. Based on metagenomes of 13C-enriched DNA fractions, endogenous H2 selected bacteria harboring PCB degradation genes. Functional gene annotation allowed the reconstruction of several complete pathways for PCB catabolism, with different taxa conducting successive metabolic steps of PCB metabolism. The enrichment through endogenous H2 of hydrogenotrophic Pseudomonas and Magnetospirillum encoding biphenyl oxidation genes drove PCB biodegradation. This study proves that endogenous H2 is a significant energy source for active PCB-degrading communities and suggests that elevated H2 can influence the microbial ecology and biogeochemistry of the legume rhizosphere.
Collapse
Affiliation(s)
- Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Dmitrieva ED, Grinevich VI, Gertsen MM. Degradation of Oil and Petroleum Products by Biocompositions Based on Humic Acids of Peats and Oil-Degrading Microorganisms. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
DNA stable isotope probing on soil treated by plant biostimulation and flooding revealed the bacterial communities involved in PCB degradation. Sci Rep 2022; 12:19232. [PMID: 36357494 PMCID: PMC9649793 DOI: 10.1038/s41598-022-23728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Polychlorinated biphenyl (PCB)-contaminated soils represent a major treat for ecosystems health. Plant biostimulation of autochthonous microbial PCB degraders is a way to restore polluted sites where traditional remediation techniques are not sustainable, though its success requires the understanding of site-specific plant-microbe interactions. In an historical PCB contaminated soil, we applied DNA stable isotope probing (SIP) using 13C-labeled 4-chlorobiphenyl (4-CB) and 16S rRNA MiSeq amplicon sequencing to determine how the structure of total and PCB-degrading bacterial populations were affected by different treatments: biostimulation with Phalaris arundinacea subjected (PhalRed) or not (Phal) to a redox cycle and the non-planted controls (Bulk and BulkRed). Phal soils hosted the most diverse community and plant biostimulation induced an enrichment of Actinobacteria. Mineralization of 4-CB in SIP microcosms varied between 10% in Bulk and 39% in PhalRed soil. The most abundant taxa deriving carbon from PCB were Betaproteobacteria and Actinobacteria. Comamonadaceae was the family most represented in Phal soils, Rhodocyclaceae and Nocardiaceae in non-planted soils. Planted soils subjected to redox cycle enriched PCB degraders affiliated to Pseudonocardiaceae, Micromonosporaceae and Nocardioidaceae. Overall, we demonstrated different responses of soil bacterial taxa to specific rhizoremediation treatments and we provided new insights into the populations active in PCB biodegradation.
Collapse
|
7
|
Rejiniemon TS, R L, Alodaini HA, Hatamleh AA, Sathya R, Kuppusamy P, Al-Dosary MA, Kalaiyarasi M. Biodegradation of naphthalene by biocatalysts isolated from the contaminated environment under optimal conditions. CHEMOSPHERE 2022; 305:135274. [PMID: 35690172 DOI: 10.1016/j.chemosphere.2022.135274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pollution occurs in freshwater and marine environment by anthropogenic activities. Moreover, analysis of the PAHs-degradation by the indigenous bacterial strains is limited, compared with other degraders. In this study, naphthalene (NAP) biodegrading bacteria were screened by enrichment culture method. Three bacterial strains were obtained for NAP degradation and identified as Bacillus cereus CK1, Pseudomonas aeruginosa KD4 and Enterobacter aerogenes SR6. The amount of hydrogen, carbon, sulphur and nitrogen of wastewater were analyzed. Total bacterial count increased at increasing incubation time (6-60 days) and moderately decreased at higher NAP concentrations. The bacterial population increased after 48 days at 250 ppm NAP (519 ± 15.3 MPM/mL) concentration and this level increased at 500 ppm NAP concentration (541 ± 12.5 MPM/mL). NAP was degraded by bacterial consortium within 36 h-99% at 30 °C. PAHs degrading bacteria were grown optimally at 4% inoculum concentrations. Bacterial consortium was able to degrade 98% NAP at pH 7.0 after 36 h incubation and degradation potential was improved (100%) after 34 h (pH 8.0). Also at pH 9.0, 100% biodegradation was registered after 36 h incubation. When the agitation speed enhanced from 50 ppm to 150 ppm, increased bacteria growth and increased NAP degradation within 42 h incubation. Among the nutrient sources, beef extract, peptone and glucose supplemented medium supported complete degradation of PAHs within 30 h, whereas peptone supported 94.3% degradation at this time. Glucose supplemented medium showed only 2.8% NAP degradation after 6 h incubation and reached maximum (100%) within 42 h incubation. Bacterial consortium can be used to reduce NAP under optimal process conditions and this method can be used for the removal of various hydrocarbon-compounds.
Collapse
Affiliation(s)
- T S Rejiniemon
- Department of Botany and Biotechnology, AJ College of Science and Technology, Thonnakal, Trivandrum, India
| | - Lekshmi R
- Department of Botany and Biotechnology, Milad-E-Sherif Memorial (MSM) College, Kayamkulam, Kerala, India
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rengasamy Sathya
- Department of Microbiology, Centre for Research and Development, PRIST University, Tamil Nadu, 613 403, India
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M Kalaiyarasi
- Vyasa Arts and Science College for Women, Tirunelveli, Tamilnadu, India.
| |
Collapse
|
8
|
Li A, Chen K, Li B, Liang P, Shen C. Biphenyl-degrading Bacteria Isolation with Laser Induced Visualized Ejection Separation Technology and Traditional Colony Sorting. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:571-576. [PMID: 35841406 DOI: 10.1007/s00128-022-03574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In this work, biphenyl was used as carbon source to enrich microorganisms from polychlorinated biphenyls (PCBs)-contaminated paddy soil samples, and the taxonomic structures in both of the soil samples and the fourth-generation enrichments were examined with high-throughput sequencing. Single cells were isolated from the enrichments via single cell sorting technology named Laser Induced Visualized Ejection Separation Technology (LIVEST) and also traditional single colony sorting, and the genera of the isolates were identified using 16S rRNA sequencing. The results from high-throughput sequencing present that enrichment from generation to generation can considerably change the microbial community. Comparing the two sorting methods, the LIVEST is more time-saving and cell-targeted for microbial resource exploration. Based on the further verification of biphenyl degradation, it was found that some strains belonging to genera Macrococcus, Aerococcus and Metabacillus are capable in degrading biphenyl, which have not been reported yet.
Collapse
Affiliation(s)
- Aili Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- China Coal Aerial Photogrammetry and Remote Sensing Group Co., Ltd., 710199, Xi'an, China
| | - Kezhen Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Bei Li
- The State Key Lab of Applied Optics, Fine Mechanics and Physics, Changchun Institute of Optics, CAS, 130033, Changchun, China
| | - Peng Liang
- The State Key Lab of Applied Optics, Fine Mechanics and Physics, Changchun Institute of Optics, CAS, 130033, Changchun, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Tartaglia M, Sciarrillo R, Zuzolo D, Postiglione A, Prigioniero A, Scarano P, Ruggieri V, Guarino C. Exploring an enhanced rhizospheric phenomenon for pluricontaminated soil remediation: Insights from tripartite metatranscriptome analyses. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128246. [PMID: 35030484 DOI: 10.1016/j.jhazmat.2022.128246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 05/20/2023]
Abstract
Phytoremediation involving the use of microorganisms with tolerant plant species represents a new frontier for on-site remediation of pluricontaminated soils. In this study, the effectiveness of a biotechnological strategy, involving the use of Festuca arundinacea and a pool of microorganisms, was assessed by a mesocosm experiment and an in-depth rhizospheric metatranscriptomic analysis. The chemical profile of mesocosm soil at the end of the experiment (240 days) showed that the decrease of trace elements such as Cd, Hg, Pb, Sn, Tl, V and Zn in the soil was enhanced by our biological combination. Additionally, also the organic pollutants (PAHs and PCBs) were strongly reduced up to 40.5%. About two million transcripts were identified and used for taxonomic and functional profiling. Transcripts read counts, tripartite among plant, bacteria and fungi were identified and quantified to provide an overview of the complex soil community composition. We observed that Actinobacteria and fungi abundance might be involved in remediation success. Functional analyses showed that Trehalose Biosynthesis and the antioxidant activity might have played a key-role in metaorganism effective interactions. The biotechnological approach remodeled the transcriptional profile toward organic pollutant degradation and heavy metal stress response.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Alessia Postiglione
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | | | - Pierpaolo Scarano
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | | | - Carmine Guarino
- Department of Science and Technologies, University of Sannio, Benevento, Italy.
| |
Collapse
|
10
|
Kracmarova M, Uhlik O, Strejcek M, Szakova J, Cerny J, Balik J, Tlustos P, Kohout P, Demnerova K, Stiborova H. Soil microbial communities following 20 years of fertilization and crop rotation practices in the Czech Republic. ENVIRONMENTAL MICROBIOME 2022; 17:13. [PMID: 35346385 PMCID: PMC8962459 DOI: 10.1186/s40793-022-00406-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/08/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Although fertilization and crop rotation practices are commonly used worldwide in agriculture to maximize crop yields, their long-term effect on the structures of soil microorganisms is still poorly understood. This study investigated the long-term impact of fertilization and crop rotation on soil microbial diversity and the microbial community structure in four different locations with three soil types. Since 1996, manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and NPK (NPK; 330 kg N/ha) fertilizers were periodically applied to the soils classified as chernozem, luvisol and cambisol, which are among the most abundant or fertile soils used for agricultural purposes in the world. In these soils, potato (Solanum tuberosum L.), winter wheat (Triticum aestivum L.), and spring barley (Hordeum vulgare L.) were rotated every three years. RESULTS Soil chemistry, which was significantly associated with location, fertilization, crop rotation, and the interaction of fertilization and location, was the dominant driver of soil microbial communities, both prokaryotic and fungal. A direct effect of long-term crop rotation and fertilization on the structure of their communities was confirmed, although there was no evidence of their influence on microbial diversity. Fungal and bacterial communities responded differently to fertilization treatments; prokaryotic communities were only significantly different from the control soil (CF) in soils treated with MF and SF3x, while fungal communities differed across all treatments. Indicator genera were identified for different treatments. These taxa were either specific for their decomposition activities or fungal plant pathogens. Sequential rotation of the three crops restricted the growth of several of the indicator plant pathogens. CONCLUSIONS Long-term fertilization and crop rotation significantly altered microbial community structure in the soil. While fertilization affected soil microorganisms mainly through changes in nutrient profile, crop rotations lead to the attraction and repulsion of specific plant pathogens. Such changes in soil microbial communities need to be considered when planning soil management.
Collapse
Affiliation(s)
- Martina Kracmarova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Jirina Szakova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Jindrich Cerny
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Jiri Balik
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Videnska 1083, 142 20, Praha 4, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Praha 2, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
11
|
Chaudhary DK, Bajagain R, Jeong SW, Kim J. Insights into the biodegradation of diesel oil and changes in bacterial communities in diesel-contaminated soil as a consequence of various soil amendments. CHEMOSPHERE 2021; 285:131416. [PMID: 34242986 DOI: 10.1016/j.chemosphere.2021.131416] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Soil amendment is a promising strategy to enhance biodegradation capacity of indigenous bacteria. To assess the consequences of various soil amendments before large-scale implementation, a microcosm study was employed to investigate the effects of nutrients (TN), surfactants (TS), oxidants (TO), biochar (TB), and zero-valent iron nanoparticles (nZVI; TNP) on diesel degradation, bacterial communities, and community-level physiological profiles (CLPPs) of legacy field contaminated soil. The results showed that the TN, TB, TNP, TS, and TO, reduced 75.8%, 63.9%, 62.8%, 49.3%, and 40.1% of total petroleum hydrocarbons (TPH), respectively, within 120 days, while control (TW) reduced only 33.8%. In all soil amendments, TPH reduction was positively correlated with oxidation-reduction potential and heterotrophic and TPH-degrading bacteria, while negatively correlated with total nitrogen and available phosphate. Furthermore, in TW, TB, and TNP microcosms, TPH reduction showed positive association with pH, whereas in TN, TS, and TO, TPH reduction was negatively associated with pH. The bacterial diversity was reduced in all treatments as a function of the soil amendment and remediation time: the enriched potential TPH-degrading bacteria were Dyella, Paraburkholderia, Clavibacter, Arthrobacter, Rhodanobacter, Methylobacterium, and Pandoraea. The average well colour development (AWCD) values in CLPPs were higher in TB, sustained and improved in TN, and markedly lower in TNP, TS, and TO microcosms. Overall, these data demonstrate that nutrients and biochar amendments may be helpful in boosting biodegradation, increasing diesel-degrading bacteria, and improving soil physiological functions. In conclusion, diesel degradation efficiency and bacterial communities are widely affected by both type and duration of soil amendments.
Collapse
Affiliation(s)
| | - Rishikesh Bajagain
- Department of Environmental Engineering, Kunsan National University, Kunsan, 54150, South Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan National University, Kunsan, 54150, South Korea.
| | - Jaisoo Kim
- Department of Life Science, Kyonggi University, Suwon, 16227, South Korea.
| |
Collapse
|
12
|
Cai X, Luo X, Yuan Y, Li J, Yu Z, Zhou S. Stimulation of phenanthrene and biphenyl degradation by biochar-conducted long distance electron transfer in soil bioelectrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149124. [PMID: 34303229 DOI: 10.1016/j.scitotenv.2021.149124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The bioelectrochemical degradation of organic pollutants has attracted considerable attention owing to its remarkable sustainability and low cost. However, the application of bioelectrochemical system (BES) for the degradation of pollutants in soils is hindered by limitations in the effective distance in the soil matrix. In this study, a biochar-amended BES was constructed to evaluate the degradation of organic pollutants. This system was expected to extend the electron transfer distance via conductive biochar in soils. The results showed that biochar pyrolyzed at 900 °C facilitated the degradation of phenanthrene (PHE) and biphenyl (BP) in the soil BES (SBES), reaching 86.4%-95.1% and 88.8%-95.3% in 27 days, respectively. The effective distance of SBESs was estimated to be 154-271 cm away from the electrode, which increased 1.9-3 fold after the addition of biochar. Microbial community and functional gene analysis confirmed that biochar enriched functional degrading bacteria. These findings demonstrate that the promotion of long-distance electron transfer and the formation of soil conductive networks can be achieved by biochar amendment. Thus, this study provides a basis for the effective degradation of for persistent organic pollutants in petroleum-contaminated soils using bioelectrochemical strategy.
Collapse
Affiliation(s)
- Xixi Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Luo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Suman J, Strejcek M, Zubrova A, Capek J, Wald J, Michalikova K, Hradilova M, Sredlova K, Semerad J, Cajthaml T, Uhlik O. Predominant Biphenyl Dioxygenase From Legacy Polychlorinated Biphenyl (PCB)-Contaminated Soil Is a Part of Unusual Gene Cluster and Transforms Flavone and Flavanone. Front Microbiol 2021; 12:644708. [PMID: 34721309 PMCID: PMC8552027 DOI: 10.3389/fmicb.2021.644708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, the diversity of bphA genes was assessed in a 13C-enriched metagenome upon stable isotope probing (SIP) of microbial populations in legacy PCB-contaminated soil with 13C-biphenyl (BP). In total, 13 bphA sequence variants (SVs) were identified in the final amplicon dataset. Of these, one SV comprised 59% of all sequences, and when it was translated into a protein sequence, it exhibited 87, 77.4, and 76.7% identity to its homologs from Pseudomonas furukawaii KF707, Cupriavidus sp. WS, and Pseudomonas alcaliphila B-367, respectively. This same BphA sequence also contained unusual amino acid residues, Alanine, Valine, and Serine in region III, which had been reported to be crucial for the substrate specificity of the corresponding biphenyl dioxygenase (BPDO), and was accordingly designated BphA_AVS. The DNA locus of 18 kbp containing the BphA_AVS-coding sequence retrieved from the metagenome was comprised of 16 ORFs and was most likely borne by Paraburkholderia sp. The BPDO corresponding to bphAE_AVS was cloned and heterologously expressed in E. coli, and its substrate specificity toward PCBs and a spectrum of flavonoids was assessed. Although depleting a rather narrow spectrum of PCB congeners, the efficient transformation of flavone and flavanone was demonstrated through dihydroxylation of the B-ring of the molecules. The homology-based functional assignment of the putative proteins encoded by the rest of ORFs in the AVS region suggests their potential involvement in the transformation of aromatic compounds, such as flavonoids. In conclusion, this study contributes to the body of information on the involvement of soil-borne BPDOs in the metabolism of flavonoid compounds, and our paper provides a more advanced context for understanding the interactions between plants, microbes and anthropogenic compounds in the soil.
Collapse
Affiliation(s)
- Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Jan Capek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Jiri Wald
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Klara Michalikova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Miluse Hradilova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Kamila Sredlova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
14
|
Najafpour B, Pinto PIS, Moutou KA, Canario AVM, Power DM. Factors Driving Bacterial Microbiota of Eggs from Commercial Hatcheries of European Seabass and Gilthead Seabream. Microorganisms 2021; 9:2275. [PMID: 34835401 PMCID: PMC8619918 DOI: 10.3390/microorganisms9112275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of how bacterial community abundance changes in fishes during their lifecycle and the role of the microbiota on health and production is still lacking. From this perspective, the egg bacterial communities of two commercially farmed species, the European seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata), from different aquaculture sites were compared, and the potential effect of broodstock water microbiota and disinfectants on the egg microbiota was evaluated. Moreover, 16S ribosomal RNA gene sequencing was used to profile the bacterial communities of the eggs and broodstock water from three commercial hatcheries. Proteobacteria were the most common and dominant phyla across the samples (49.7% on average). Vibrio sp. was the most highly represented genus (7.1%), followed by Glaciecola (4.8%), Pseudoalteromonas (4.4%), and Colwellia (4.2%), in eggs and water across the sites. Routinely used iodine-based disinfectants slightly reduced the eggs' bacterial load but did not significantly change their composition. Site, species, and type of sample (eggs or water) drove the microbial community structure and influenced microbiome functional profiles. The egg and seawater microbiome composition differed in abundance but shared similar functional profiles. The strong impact of site and species on egg bacterial communities indicates that disease management needs to be site-specific and highlights the need for species- and site-specific optimization of disinfection protocols.
Collapse
Affiliation(s)
- Babak Najafpour
- Centro de Ciências do Mar (CCMAR/CIIMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (B.N.); (P.I.S.P.); (A.V.M.C.)
| | - Patricia I. S. Pinto
- Centro de Ciências do Mar (CCMAR/CIIMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (B.N.); (P.I.S.P.); (A.V.M.C.)
| | - Katerina A. Moutou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41221 Larissa, Greece;
| | - Adelino V. M. Canario
- Centro de Ciências do Mar (CCMAR/CIIMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (B.N.); (P.I.S.P.); (A.V.M.C.)
| | - Deborah M. Power
- Centro de Ciências do Mar (CCMAR/CIIMAR), Universidade do Algarve, 8005-139 Faro, Portugal; (B.N.); (P.I.S.P.); (A.V.M.C.)
| |
Collapse
|
15
|
Soil microbiota and microarthropod communities in oil contaminated sites in the European Subarctic. Sci Rep 2021; 11:19620. [PMID: 34608182 PMCID: PMC8490368 DOI: 10.1038/s41598-021-98680-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The present comprehensive study aimed to estimate the aftermath of oil contamination and the efficacy of removing the upper level of polluted soil under the conditions of the extreme northern taiga of northeastern European Russia. Soil samples from three sites were studied. Two sites were contaminated with the contents of a nearby sludge collector five years prior to sampling. The highly contaminated upper soil level was removed from one of them. The other was left for self-restoration. A chemical analysis of the soils was conducted, and changes in the composition of the soil zoocoenosis and bacterial and fungal microbiota were investigated. At both contaminated sites, a decrease in the abundance and taxonomic diversity of indicator groups of soil fauna, oribatid mites and collembolans compared to the background site were found. The pioneer eurytopic species Oppiella nova, Proisotoma minima and Xenyllodes armatus formed the basis of the microarthropod populations in the contaminated soil. A complete change in the composition of dominant taxonomic units was observed in the microbiota, both the bacterial and fungal communities. There was an increase in the proportion of representatives of Proteobacteria and Actinobacteria in polluted soils compared to the background community. Hydrocarbon-degrading bacteria-Alcanivorax, Rhodanobacter ginsengisoli, Acidobacterium capsulatum, and Acidocella-and fungi-Amorphotheca resinae abundances greatly increased in oil-contaminated soil. Moreover, among both bacteria and fungi, a sharp increase in the abundance of uncultivated organisms that deserve additional attention as potential oil degraders or organisms with a high resistance to oil contamination were observed. The removal of the upper soil level was partly effective in terms of decreasing the oil product concentration (from approximately 21 to 2.6 g/kg of soil) and preventing a decrease in taxonomic richness but did not prevent alterations in the composition of the microbiota or zoocoenosis.
Collapse
|
16
|
Xu T, Liu T, Jiang D, Yuan Z, Jia X. Attainment and characterization of a microbial consortium that efficiently degrades biphenyl and related substances. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Becarelli S, Chicca I, La China S, Siracusa G, Bardi A, Gullo M, Petroni G, Levin DB, Di Gregorio S. A New Ciboria sp. for Soil Mycoremediation and the Bacterial Contribution to the Depletion of Total Petroleum Hydrocarbons. Front Microbiol 2021; 12:647373. [PMID: 34177829 PMCID: PMC8221241 DOI: 10.3389/fmicb.2021.647373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
A Ciboria sp. strain (Phylum Ascomycota) was isolated from hydrocarbon-polluted soil of an abandoned oil refinery in Italy. The strain was able to utilize diesel oil as a sole carbon source for growth. Laboratory-scale experiments were designed to evaluate the use of this fungal strain for treatment of the polluted soil. The concentration of total petroleum hydrocarbons (TPH) in the soil was 8,538 mg/kg. Mesocosms containing the contaminated soil were inoculated with the fungal strain at 1 or 7%, on a fresh weight base ratio. After 90 days of incubation, the depletion of TPH contamination was of 78% with the 1% inoculant, and 99% with the 7% inoculant. 16S rDNA and ITS metabarcoding of the bacterial and fungal communities was performed in order to evaluate the potential synergism between fungi and bacteria in the bioremediation process. The functional metagenomic prediction indicated Arthrobacter, Dietzia, Brachybacerium, Brevibacterium, Gordonia, Leucobacter, Lysobacter, and Agrobacterium spp. as generalist saprophytes, essential for the onset of hydrocarbonoclastic specialist bacterial species, identified as Streptomyces, Nocardoides, Pseudonocardia, Solirubrobacter, Parvibaculum, Rhodanobacter, Luteiomonas, Planomicrobium, and Bacillus spp., involved in the TPH depletion. The fungal metabolism accelerated the onset of specialist over generalist bacteria. The capacity of the Ciboria sp. to deplete TPH in the soil in treatment was also ascertained.
Collapse
Affiliation(s)
- Simone Becarelli
- Department of Biology, University of Pisa, Pisa, Italy.,BD Biodigressioni, Pisa, Italy
| | - Ilaria Chicca
- Department of Biology, University of Pisa, Pisa, Italy.,Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio-Emilia, Reggio Emilia, Italy
| | | | - Alessandra Bardi
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
| | - Maria Gullo
- Department of Life Sciences, University of Modena and Reggio-Emilia, Reggio Emilia, Italy
| | | | - David Bernard Levin
- BD Biodigressioni, Pisa, Italy.,Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
18
|
Zubrova A, Michalikova K, Semerad J, Strejcek M, Cajthaml T, Suman J, Uhlik O. Biphenyl 2,3-Dioxygenase in Pseudomonas alcaliphila JAB1 Is Both Induced by Phenolics and Monoterpenes and Involved in Their Transformation. Front Microbiol 2021; 12:657311. [PMID: 33995321 PMCID: PMC8119895 DOI: 10.3389/fmicb.2021.657311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
The involvement of bacterial aromatic ring-hydroxylating dioxygenases (ARHDs) in the degradation of aromatic pollutants, such as polychlorinated biphenyls (PCBs), has been well studied. However, there is considerable speculation as to the origin of this ability. One hypothesis is centered on a connection between the ability to degrade aromatic pollutants and the necessity of soil bacteria to cope with and/or utilize secondary plant metabolites (SPMs). To investigate this connection, we researched the involvement of biphenyl 2,3-dioxygenase (BPDO), an ARHD essential for the degradation of PCBs, in the metabolism of SPMs in the soil bacterium Pseudomonas alcaliphila JAB1, a versatile degrader of PCBs. We demonstrated the ability of the strain JAB1 to transform a variety of SPMs, namely the flavonoids apigenin, flavone, flavanone, naringenin, fisetin, quercetin, morin, and catechin, caffeic acid, trans-cinnamic acid, and the monoterpenes (S)-limonene and (R)-carvone. Of those, the transformation of flavone, flavanone, and (S)-limonene was conditioned by the activity of JAB1-borne BPDO and thus was researched in more detail, and we found evidence for the limonene monooxygenase activity of the BPDO. Furthermore, the bphA gene in the strain JAB1 was demonstrated to be induced by a wide range of SPMs, with monoterpenes being the strongest inducers of the SPMs tested. Thus, our findings contribute to the growing body of evidence that ARHDs not only play a role in the catabolism of aromatic pollutants, but also of natural plant-derived aromatics, and this study supports the hypothesis that ARHDs participate in ecological processes mediated by SPMs.
Collapse
Affiliation(s)
- Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Klara Michalikova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
19
|
Fan J, Jia Y, Xu D, Ye Z, Zhou J, Huang J, Fu Y, Shen C. Anaerobic condition induces a viable but nonculturable state of the PCB-degrading Bacteria Rhodococcus biphenylivorans TG9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142849. [PMID: 33757234 DOI: 10.1016/j.scitotenv.2020.142849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
Significant microbial removal of highly chlorinated polychlorinated biphenyls (PCBs) requires the cooperation of anaerobic and aerobic bacteria. During the sequencing process of anaerobic dechlorination and aerobic degradation of PCBs, aerobic degrading bacteria have to undergo anaerobic stress. However, the survival strategy of aerobic degrading bacteria under anaerobic condition is not well-understood. In this study, the culturable cells of Rhodococcus biphenylivorans TG9 decreased from 108 CFU/mL to values below the detection limit after 60 days of anaerobic stress while the viable cells remained 105-106 cells/mL, indicating that anaerobic condition induced TG9 entering into the viable but nonculturable (VBNC) state. Cell resuscitation was observed when oxygen was supplied further confirming the VBNC state of TG9. The results of single-cell Raman spectroscopy combined with heavy water indicated the significant decrease of metabolic activity after TG9 entering into the VBNC state. Additionally, the degradation ability of TG9 in the VBNC state was also significantly reduced, while it recovered after resuscitation. Our research proved that entering into the VBNC state is a survival strategy of TG9 under anaerobic conditions, and the limited culturability and degrading capacity could be overcome by resuscitation. The present study provides new insights for improving the remediation efficiency of PCBs contamination.
Collapse
Affiliation(s)
- Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Dongdong Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Zhe Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Jiahang Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Jionghao Huang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
20
|
Gran-Scheuch A, Ramos-Zuñiga J, Fuentes E, Bravo D, Pérez-Donoso JM. Effect of Co-contamination by PAHs and Heavy Metals on Bacterial Communities of Diesel Contaminated Soils of South Shetland Islands, Antarctica. Microorganisms 2020; 8:microorganisms8111749. [PMID: 33171767 PMCID: PMC7695015 DOI: 10.3390/microorganisms8111749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/04/2023] Open
Abstract
Diesel oil is the main source of energy used in Antarctica. Since diesel is composed of toxic compounds such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals, it represents a constant threat to the organisms inhabiting this continent. In the present study, we characterized the chemical and biological parameters of diesel-exposed soils obtained from King George Island in Antarctica. Contaminated soils present PAH concentrations 1000 times higher than non-exposed soils. Some contaminated soil samples also exhibited high concentrations of cadmium and lead. A 16S metagenome analysis revealed the effect of co-contamination on bacterial communities. An increase in the relative abundance of bacteria known as PAH degraders or metal resistant was determined in co-contaminated soils. Accordingly, the soil containing higher amounts of PAHs exhibited increased dehydrogenase activity than control soils, suggesting that the microorganisms present can metabolize diesel. The inhibitory effect on soil metabolism produced by cadmium was lower in diesel-contaminated soils. Moreover, diesel-contaminated soils contain higher amounts of cultivable heterotrophic, cadmium-tolerant, and PAH-degrading bacteria than control soils. Obtained results indicate that diesel contamination at King George island has affected microbial communities, favoring the presence of microorganisms capable of utilizing PAHs as a carbon source, even in the presence of heavy metals.
Collapse
Affiliation(s)
- Alejandro Gran-Scheuch
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer # 1007, Santiago 8380000, Chile;
| | - Javiera Ramos-Zuñiga
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
| | - Edwar Fuentes
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer # 1007, Santiago 8380000, Chile;
| | - Denisse Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Sergio Livingstone Pohlhammer # 943, Santiago 8380453, Chile;
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica # 330, Santiago 8370146, Chile; (A.G.-S.); (J.R.-Z.)
- Correspondence:
| |
Collapse
|
21
|
González-Penagos CE, Zamora-Briseño JA, Cerqueda-García D, Améndola-Pimenta M, Pérez-Vega JA, Hernández-Nuñez E, Rodríguez-Canul R. Alterations in the Gut Microbiota of Zebrafish ( Danio rerio) in Response to Water-Soluble Crude Oil Components and Its Mixture With a Chemical Dispersant. Front Public Health 2020; 8:584953. [PMID: 33194990 PMCID: PMC7649143 DOI: 10.3389/fpubh.2020.584953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Crude oil spills have caused substantial impacts to aquatic ecosystems. Chemical dispersants are used to palliate the impact of oil spillages, but their use is polemic due to their additional potential toxic effect when mixed with oil-derived components. In this work, we used a 16S-based metagenomic approach to analyze the changes of the gut microbiota of adult zebrafish (Danio rerio) exposed to the water accommodated fraction (WAF) of a light crude oil (35° API gravity), and the chemically enhanced WAF (CEWAF), prepared with Nokomis 3-F4® dispersant. After 96 h of exposure, WAF induced an increase in the alpha and beta diversity, altering the relative abundance of Vibrio, Flavobacterium, and Novosphingobium. In contrast, CEWAF only caused an increase in the beta diversity, and an enrichment of the genus Pseudomona. Both treatments diminished the abundances of Aeromonas, Cetobacterium, Coxiella, Dinghuibacter, and Paucibacter. Moreover, the co-occurrence network among genera was more complex in WAF than in CEWAF, indicating a greater bacterial interaction in response to WAF. Our results indicate that short-term exposure to WAF and CEWAF can induce a dysbiosis in the gut microbiota of D. rerio, but these changes are specific in each treatment.
Collapse
Affiliation(s)
- Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| | - Daniel Cerqueda-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| | - Monica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| | - Juan Antonio Pérez-Vega
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| | - Emanuel Hernández-Nuñez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico.,CONACYT - Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Mexico
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Mérida, Mexico
| |
Collapse
|
22
|
Alves WS, Santos NS, Baroca FF, Alves BPD, Nunes RO, Abrahão GCD, Manoel EA, Soares MR. The influence of polycyclic aromatic hydrocarbons in protein profile of Medicago sativa L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:426-435. [PMID: 33070622 DOI: 10.1080/15226514.2020.1825324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medicago sativa L. (alfalfa) are studied as potential phytoremediation agents of priority pollutants like polycyclic aromatic hydrocarbons (PAH). However, elucidation of the biochemical mechanisms involved in phytoremediation is a topic to be explored with knowledge gaps. This study aims to identify and classify proteins expressed in the aerial parts of laboratory-cultivated alfalfa in the presence and absence of pyrene, anthracene, and phenanthrene. Soil samples were amended with 100 mg.kg-1 of each PAH (total concentration of 300 ppm) and cultivated with alfalfa plants for 20 days. After this, aerial parts of cultivated plants from each condition were collected for qualitative proteomic analysis (ESI-Q/TOF). The results showed a significant increase (Student's t-test p < 0.05) of 41.7% in the concentration of proteins from plants grown in PAH-amended substrates, changes in the protein profile, with intense protein bands observed at 40-55, 34, 28, and 15 kDa when compared to the control. A total of 504 proteins were identified and classified into 12 functional categories, highlighting the identification of 11 phytoremediation-related proteins candidates in plants grown in the presence of PAH, with biological functions related to diverse metabolisms involved in the xenobiotics biodegradation (included PAH), glutathione and response to stress.
Collapse
Affiliation(s)
- Wilber S Alves
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
- Programa Químico de Petróleo e Biocombustíveis PRH-01, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
- Departamento de Ensino Médio e Técnico - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, CEFET/RJ - Campus Maracanã, Rio de Janeiro, Brazil
| | - Noemi S Santos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Felipe F Baroca
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Bruna P D Alves
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Rosane O Nunes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Giselli C D Abrahão
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Evelin A Manoel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | - Marcia R Soares
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Sivaram AK, Subashchandrabose SR, Logeshwaran P, Lockington R, Naidu R, Megharaj M. Rhizodegradation of PAHs differentially altered by C3 and C4 plants. Sci Rep 2020; 10:16109. [PMID: 32999304 PMCID: PMC7527560 DOI: 10.1038/s41598-020-72844-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
Pyrosequencing of 16S ribosomal RNA (rRNA) was employed to characterize bacterial communities colonizing the rhizosphere of plants with C3 and C4 photosynthetic pathways grown in soil contaminated with polycyclic aromatic hydrocarbons (PAHs) after 60 and 120 days. The results of this study exhibited a clear difference in bacterial diversity between the rhizosphere and non-rhizosphere samples and between the rhizospheres of the C3 and C4 plants after 120 days. In both C3 and C4 rhizospheres, an incremental change in PAHs degrading bacterial genera was observed in the 120th day samples compared to the 60th day ones. Among the PAHs degrading bacterial genera, Pseudomonas showed good resistance to PAHs in the 120th day rhizosphere of both C3 and C4 plants. Conversely, the genus Sphingomonas showed sensitivity to PAHs in the 120th day rhizosphere soils of C3 plants only. Also, a significant increase in the PAHs degrading genera was observed at 120th day in the C4 rhizosphere in comparison to the C3 rhizosphere, which was reflected in a reduced PAHs concentration measured in the soil remediated with C4 plants rather than C3 plants. These results suggest that the rhizoremediation of PAHs was primarily governed by the plant photosystems, which led to differences in root secretions that caused the variation in bacterial diversity seen in the rhizospheres. This study is the first report to demonstrate the greater effectiveness of C4 plants in enhancing the PAHs degrading bacterial community than C3 plants.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Centre for Environmental Risk Assessment and Remediation, University of South Australia, Adelaide, SA, Australia
| | - Suresh Ramraj Subashchandrabose
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Centre for Environmental Risk Assessment and Remediation, University of South Australia, Adelaide, SA, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Centre for Environmental Risk Assessment and Remediation, University of South Australia, Adelaide, SA, Australia
| | - Robin Lockington
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Centre for Environmental Risk Assessment and Remediation, University of South Australia, Adelaide, SA, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Centre for Environmental Risk Assessment and Remediation, University of South Australia, Adelaide, SA, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia. .,Cooperative Research Centre for Contamination Assessment and Remediation of Environment, Advanced Technology Centre, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia. .,Centre for Environmental Risk Assessment and Remediation, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
24
|
Barra Caracciolo A, Grenni P, Garbini GL, Rolando L, Campanale C, Aimola G, Fernandez-Lopez M, Fernandez-Gonzalez AJ, Villadas PJ, Ancona V. Characterization of the Belowground Microbial Community in a Poplar-Phytoremediation Strategy of a Multi-Contaminated Soil. Front Microbiol 2020; 11:2073. [PMID: 32983051 PMCID: PMC7477336 DOI: 10.3389/fmicb.2020.02073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
Due to their widespread use in industrial applications in recent decades, Polychlorobiphenyls (PCBs) and heavy metals (HMs) are the most common soil contaminants worldwide, posing a risk for both ecosystems and human health. In this study, a poplar-assisted bioremediation strategy has been applied for more than 4 years to a historically contaminated area (PCBs and HMs) in Southern Italy using the Monviso poplar clone. This clone was effective in promoting a decrease in all contaminants and an increase in soil quality in terms of organic carbon and microbial abundance. Moreover, a significant shift in the structure and predicted function of the belowground microbial community was also observed when analyzing both DNA and cDNA sequencing data. In fact, an increase in bacterial genera belonging to Proteobacteria able to degrade PCBs and resist HMs was observed. Moreover, the functional profiling of the microbial community predicted by PICRUSt2 made it possible to identify several genes associated with PCB transformation (e.g., bphAa, bphAb, bphB, bphC), response to HM oxidative stress (e.g., catalase, superoxide reductase, peroxidase) and HM uptake and expulsion (e.g., ABC transporters). This work demonstrated the effectiveness of the poplar clone Monviso in stimulating the natural belowground microbial community to remove contaminants and improve the overall soil quality. It is a practical example of a nature based solution involving synergic interactions between plants and the belowground microbial community.
Collapse
Affiliation(s)
| | - Paola Grenni
- National Research Council, Water Research Institute, Montelibretti (Rome), Italy
| | - Gian Luigi Garbini
- National Research Council, Water Research Institute, Montelibretti (Rome), Italy
| | - Ludovica Rolando
- National Research Council, Water Research Institute, Montelibretti (Rome), Italy.,Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | | | - Giorgia Aimola
- National Research Council, Water Research Institute, Bari, Italy
| | - Manuel Fernandez-Lopez
- Consejo Superior de Investigaciones Científicas (CSIC), Zaidin Experimental Station, Granada, Spain
| | | | - Pablo José Villadas
- Consejo Superior de Investigaciones Científicas (CSIC), Zaidin Experimental Station, Granada, Spain
| | - Valeria Ancona
- National Research Council, Water Research Institute, Bari, Italy
| |
Collapse
|
25
|
Time Series Resolution of the Fish Necrobiome Reveals a Decomposer Succession Involving Toxigenic Bacterial Pathogens. mSystems 2020; 5:5/2/e00145-20. [PMID: 32345738 PMCID: PMC7190384 DOI: 10.1128/msystems.00145-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The microbial decomposition of animal tissues is an important ecological process that impacts nutrient cycling in natural environments. We studied the microbial decomposition of a common North American fish (rainbow darters) over four time points, combining 16S rRNA gene and shotgun metagenomic sequence data to obtain both taxonomic and functional perspectives. Our data revealed a strong community succession that was reproduced across different fish and environments. Decomposition time point was the main driver of community composition and functional potential; fish environmental origin (upstream or downstream of a wastewater treatment plant) had a secondary effect. We also identified strains related to the putative pathogen Aeromonas veronii as dominant members of the decomposition community. These bacteria peaked early in decomposition and coincided with the metagenomic abundance of hemolytic toxin genes. Our work reveals a strong decomposer succession in wild-caught fish, providing functional and taxonomic insights into the vertebrate necrobiome. Despite progress understanding microbial communities involved in terrestrial vertebrate decomposition, little is known about the microbial decomposition of aquatic vertebrates from a functional and environmental context. Here, we analyzed temporal changes in the “necrobiome” of rainbow darters, which are common North American fish that are sensitive indicators of water quality. By combining 16S rRNA gene and shotgun metagenomic sequence data from four time points, we studied the progression of decomposers from both taxonomic and functional perspectives. The 16S rRNA gene profiles revealed strong community succession, with early decomposition stages associated with Aeromonas and Clostridium taxa and later stages dominated by members of the Rikenellaceae (i.e., Alistipes/Acetobacteroides genera). These results were reproducible and independent of environmental perturbation, given that exposure to wastewater treatment plant effluent did not substantially influence the necrobiome composition of fish or the associated water sample microbiota. Metagenomic analysis revealed significant changes throughout decomposition in degradation pathways for amino acids, carbohydrates/glycans, and other compounds, in addition to putrefaction pathways for production of putrescine, cadaverine, and indole. Binning of contigs confirmed a predominance of Aeromonas genome assemblies, including those from novel strains related to the pathogen Aeromonas veronii. These bins of Aeromonas genes also encoded known hemolysin toxins (e.g., aerolysin) that were particularly abundant early in the process, potentially contributing to host cell lysis during decomposition. Overall, our results demonstrate that wild-caught fish have a reproducible decomposer succession and that the fish necrobiome serves as a potential source of putative pathogens and toxigenic bacteria. IMPORTANCE The microbial decomposition of animal tissues is an important ecological process that impacts nutrient cycling in natural environments. We studied the microbial decomposition of a common North American fish (rainbow darters) over four time points, combining 16S rRNA gene and shotgun metagenomic sequence data to obtain both taxonomic and functional perspectives. Our data revealed a strong community succession that was reproduced across different fish and environments. Decomposition time point was the main driver of community composition and functional potential; fish environmental origin (upstream or downstream of a wastewater treatment plant) had a secondary effect. We also identified strains related to the putative pathogen Aeromonas veronii as dominant members of the decomposition community. These bacteria peaked early in decomposition and coincided with the metagenomic abundance of hemolytic toxin genes. Our work reveals a strong decomposer succession in wild-caught fish, providing functional and taxonomic insights into the vertebrate necrobiome.
Collapse
|
26
|
Liu W, Li Y, Feng Y, Qiao J, Zhao H, Xie J, Fang Y, Shen S, Liang S. The effectiveness of nanobiochar for reducing phytotoxicity and improving soil remediation in cadmium-contaminated soil. Sci Rep 2020; 10:858. [PMID: 31965039 PMCID: PMC6972654 DOI: 10.1038/s41598-020-57954-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/08/2020] [Indexed: 11/12/2022] Open
Abstract
There is growing concern that Cd in soils can be transferred to plants, resulting in phytotoxicity and threats to human health via the food chain. Biochar has been reported to be a soil amendment capable of reducing the bioavailability of metals in soil by electrostatic interactions, ionic exchange and the specific binding of metal ions by surface ligands. To determine the effects of Cd contamination and nanobiochar on the growth characteristics of plants, the dynamics of Cd in soil were explored in Petri dish and pot experiments (0%, 0.2%, 0.5% and 1% nanobiochar), respectively. The diversity, distribution and composition of the bacterial community in treated soil were monitored by high-throughput sequencing. The results showed that the germination potential and height and weight of plants were significantly decreased in Cd-treated soil samples (P < 0.05). The Cd content of Brassica chinensis L. in the treated soil groups was lower than that in the untreated soil groups (P < 0.05) after nanobiochar application. The application of biochar significantly improved the microbial biomass, microorganism abundance and diversity of Actinobacteria and Bacteroidetes in Cd-contaminated soil and reduced the diversity of Proteobacteria, which was relatively more persistent than in the contaminated sites without biochar application. The results of this study provide theoretical and technical support for understanding the environmental behavior of nanopassivators, thus enhancing the role of biochar in the remediation of soil pollution.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Yulong Li
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Ya Feng
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Jianchen Qiao
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Huiwei Zhao
- National Semi-Arid Agricultural Technology Research Center, Shijiazhuang, 050051, China
| | - Jixing Xie
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Yanyan Fang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Shigang Shen
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| | - Shuxuan Liang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
| |
Collapse
|
27
|
Peeters C, De Canck E, Cnockaert M, De Brandt E, Snauwaert C, Verheyde B, Depoorter E, Spilker T, LiPuma JJ, Vandamme P. Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism. Front Microbiol 2019; 10:2556. [PMID: 31781066 PMCID: PMC6851202 DOI: 10.3389/fmicb.2019.02556] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/23/2019] [Indexed: 01/31/2023] Open
Abstract
Comparative analysis of partial gyrB, recA, and gltB gene sequences of 84 Pandoraea reference strains and field isolates revealed several clusters that included no taxonomic reference strains. The gyrB, recA, and gltB phylogenetic trees were used to select 27 strains for whole-genome sequence analysis and for a comparative genomics study that also included 41 publicly available Pandoraea genome sequences. The phylogenomic analyses included a Genome BLAST Distance Phylogeny approach to calculate pairwise digital DNA–DNA hybridization values and their confidence intervals, average nucleotide identity analyses using the OrthoANIu algorithm, and a whole-genome phylogeny reconstruction based on 107 single-copy core genes using bcgTree. These analyses, along with subsequent chemotaxonomic and traditional phenotypic analyses, revealed the presence of 17 novel Pandoraea species among the strains analyzed, and allowed the identification of several unclassified Pandoraea strains reported in the literature. The genus Pandoraea has an open pan genome that includes many orthogroups in the ‘Xenobiotics biodegradation and metabolism’ KEGG pathway, which likely explains the enrichment of these species in polluted soils and participation in the biodegradation of complex organic substances. We propose to formally classify the 17 novel Pandoraea species as P. anapnoica sp. nov. (type strain LMG 31117T = CCUG 73385T), P. anhela sp. nov. (type strain LMG 31108T = CCUG 73386T), P. aquatica sp. nov. (type strain LMG 31011T = CCUG 73384T), P. bronchicola sp. nov. (type strain LMG 20603T = ATCC BAA-110T), P. capi sp. nov. (type strain LMG 20602T = ATCC BAA-109T), P. captiosa sp. nov. (type strain LMG 31118T = CCUG 73387T), P. cepalis sp. nov. (type strain LMG 31106T = CCUG 39680T), P. commovens sp. nov. (type strain LMG 31010T = CCUG 73378T), P. communis sp. nov. (type strain LMG 31110T = CCUG 73383T), P. eparura sp. nov. (type strain LMG 31012T = CCUG 73380T), P. horticolens sp. nov. (type strain LMG 31112T = CCUG 73379T), P. iniqua sp. nov. (type strain LMG 31009T = CCUG 73377T), P. morbifera sp. nov. (type strain LMG 31116T = CCUG 73389T), P. nosoerga sp. nov. (type strain LMG 31109T = CCUG 73390T), P. pneumonica sp. nov. (type strain LMG 31114T = CCUG 73388T), P. soli sp. nov. (type strain LMG 31014T = CCUG 73382T), and P. terrigena sp. nov. (type strain LMG 31013T = CCUG 73381T).
Collapse
Affiliation(s)
- Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evelien De Canck
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evie De Brandt
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Cindy Snauwaert
- BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Bart Verheyde
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Eliza Depoorter
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Theodore Spilker
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.,BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Park J, Kim EB. Differences in microbiome and virome between cattle and horses in the same farm. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1042-1055. [PMID: 32054207 PMCID: PMC7206377 DOI: 10.5713/ajas.19.0267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
Objective The ecosystem of an animal farm is composed of various elements, such as animals, farmers, plants, feed, soil, and microorganisms. A domesticated animal’s health is largely connected with the reservoir of bacteria and viruses in animal farms. Although a few studies have focused on exploring the gut microbiome of animals, communities of microbiota and viruses in feedlots have not been thoroughly investigated. Methods Here, we collected feces and dust samples (4 groups: cattle feces, C_F; horse feces, H_F; cattle dust, C_D; and horse dust, H_D) from cattle and horse farms sharing the same housing and investigated their microbiome/virome communities by Illumina sequencing. Results Dust groups (C_D and H_D) showed higher microbial diversity than feces groups (C_F and H_F) regardless of animal species. From the microbial community analysis, all the samples from the four groups have major phyla such as Proteobacteria (min 37.1% to max 42.8%), Firmicutes (19.1% to 24.9%), Bacteroidetes (10.6% to 22.1%), and Actinobacteria (6.1% to 20.5%). The abundance of Streptococcus, which commonly recognized as equine pathogens, was significantly higher in the horse group (H_D and H_F). Over 99% among the classified virome reads were classified as Caudovirales, a group of tailed bacteriophages, in all four groups. Foot-and-mouth disease virus and equine adenovirus, which cause deadly diseases in cattle and horse, respectively, were not detected. Conclusion Our results will provide baseline information to understand different gut and environmental microbial ecology between two livestock species.
Collapse
Affiliation(s)
- Jongbin Park
- Department of Animal Life Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eun Bae Kim
- Department of Animal Life Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea.,Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
29
|
Moore JP, Li H, Engmann ML, Bischof KM, Kunka KS, Harris ME, Tancredi AC, Ditmars FS, Basting PJ, George NS, Bhagwat AA, Slonczewski JL. Inverted Regulation of Multidrug Efflux Pumps, Acid Resistance, and Porins in Benzoate-Evolved Escherichia coli K-12. Appl Environ Microbiol 2019; 85:e00966-19. [PMID: 31175192 PMCID: PMC6677852 DOI: 10.1128/aem.00966-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/30/2019] [Indexed: 01/23/2023] Open
Abstract
Benzoic acid, a partial uncoupler of the proton motive force (PMF), selects for sensitivity to chloramphenicol and tetracycline during the experimental evolution of Escherichia coli K-12. Transcriptomes of E. coli isolates evolved with benzoate showed the reversal of benzoate-dependent regulation, including the downregulation of multidrug efflux pump genes, the gene for the Gad acid resistance regulon, the nitrate reductase genes narHJ, and the gene for the acid-consuming hydrogenase Hyd-3. However, the benzoate-evolved strains had increased expression of OmpF and other large-hole porins that admit fermentable substrates and antibiotics. Candidate genes identified from benzoate-evolved strains were tested for their roles in benzoate tolerance and in chloramphenicol sensitivity. Benzoate or salicylate tolerance was increased by deletion of the Gad activator ariR or of the acid fitness island from slp to the end of the gadX gene encoding Gad regulators and the multidrug pump genes mdtEF Benzoate tolerance was also increased by deletion of multidrug component gene emrA, RpoS posttranscriptional regulator gene cspC, adenosine deaminase gene add, hydrogenase gene hyc (Hyd-3), and the RNA chaperone/DNA-binding regulator gene hfq Chloramphenicol resistance was decreased by mutations in genes for global regulators, such as RNA polymerase alpha subunit gene rpoA, the Mar activator gene rob, and hfq Deletion of lipopolysaccharide biosynthetic kinase gene rfaY decreased the rate of growth in chloramphenicol. Isolates from experimental evolution with benzoate had many mutations affecting aromatic biosynthesis and catabolism, such as aroF (encoding tyrosine biosynthesis) and apt (encoding adenine phosphoribosyltransferase). Overall, benzoate or salicylate exposure selects for the loss of multidrug efflux pumps and of hydrogenases that generate a futile cycle of PMF and upregulates porins that admit fermentable nutrients and antibiotics.IMPORTANCE Benzoic acid is a common food preservative, and salicylic acid (2-hydroxybenzoic acid) is the active form of aspirin. At high concentrations, benzoic acid conducts a proton across the membrane, depleting the proton motive force. In the absence of antibiotics, benzoate exposure selects against proton-driven multidrug efflux pumps and upregulates porins that admit fermentable substrates but that also allow the entry of antibiotics. Thus, evolution with benzoate and related molecules, such as salicylates, requires a trade-off for antibiotic sensitivity, a trade-off that could help define a stable gut microbiome. Benzoate and salicylate are naturally occurring plant signal molecules that may modulate the microbiomes of plants and animal digestive tracts so as to favor fermenters and exclude drug-resistant pathogens.
Collapse
Affiliation(s)
- Jeremy P Moore
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Haofan Li
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Karina S Kunka
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Mary E Harris
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | - Nadja S George
- Environmental Microbiology and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | - Arvind A Bhagwat
- Environmental Microbiology and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | | |
Collapse
|
30
|
Thomas F, Corre E, Cébron A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. THE ISME JOURNAL 2019; 13:1814-1830. [PMID: 30872807 PMCID: PMC6775975 DOI: 10.1038/s41396-019-0394-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil pollutants. The discovery that plants can stimulate microbial degradation of PAHs has promoted research on rhizoremediation strategies. We combined DNA-SIP with metagenomics to assess the influence of plants on the identity and metabolic functions of active PAH-degrading bacteria in contaminated soil, using phenanthrene (PHE) as a model hydrocarbon. 13C-PHE dissipation was 2.5-fold lower in ryegrass-planted conditions than in bare soil. Metabarcoding of 16S rDNA revealed significantly enriched OTUs in 13C-SIP incubations compared to 12C-controls, namely 130 OTUs from bare soil and 73 OTUs from planted soil. Active PHE-degraders were taxonomically diverse (Proteobacteria, Actinobacteria and Firmicutes), with Sphingomonas and Sphingobium dominating in bare and planted soil, respectively. Plant root exudates favored the development of PHE-degraders having specific functional traits at the genome level. Indeed, metagenomes of 13C-enriched DNA fractions contained more genes involved in aromatic compound metabolism in bare soil, whereas carbohydrate catabolism genes were more abundant in planted soil. Functional gene annotation allowed reconstruction of complete pathways with several routes for PHE catabolism. Sphingomonadales were the major taxa performing the first steps of PHE degradation in both conditions, suggesting their critical role to initiate in situ PAH remediation. Active PHE-degraders act in a consortium, whereby complete PHE mineralization is achieved through the combined activity of taxonomically diverse co-occurring bacteria performing successive metabolic steps. Our study reveals hitherto underestimated functional interactions for full microbial detoxification in contaminated soils.
Collapse
Affiliation(s)
- François Thomas
- Université de Lorraine, CNRS, LIEC, 54500, Nancy, France
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, 54500, Nancy, France.
| |
Collapse
|
31
|
Uribe‐Flores M, Cerqueda‐García D, Hernández‐Nuñez E, Cadena S, García‐Cruz N, Trejo‐Hernández M, Aguirre‐Macedo M, García‐Maldonado J. Bacterial succession and co‐occurrence patterns of an enriched marine microbial community during light crude oil degradation in a batch reactor. J Appl Microbiol 2019; 127:495-507. [DOI: 10.1111/jam.14307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- M.M. Uribe‐Flores
- Departamento de Recursos del Mar Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Mérida Mérida Mexico
| | - D. Cerqueda‐García
- Consorcio de Investigación del Golfo de México (CIGoM) Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Mérida Mérida Mexico
| | - E. Hernández‐Nuñez
- CONACYT – Departamento de Recursos del Mar Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Mérida Mérida Mexico
| | - S. Cadena
- Departamento de Recursos del Mar Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Mérida Mérida Mexico
| | - N.U. García‐Cruz
- Consorcio de Investigación del Golfo de México (CIGoM) Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Mérida Mérida Mexico
| | - M.R. Trejo‐Hernández
- Centro de Investigación en Biotecnología Universidad Autónoma del Estado de Morelos Cuernavaca, Morelos Mexico
| | - M.L. Aguirre‐Macedo
- Departamento de Recursos del Mar Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Mérida Mérida Mexico
| | - J.Q. García‐Maldonado
- CONACYT – Departamento de Recursos del Mar Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Mérida Mérida Mexico
| |
Collapse
|
32
|
Lee Y, Lee Y, Jeon CO. Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep 2019; 9:860. [PMID: 30696831 PMCID: PMC6351602 DOI: 10.1038/s41598-018-36165-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/16/2018] [Indexed: 11/09/2022] Open
Abstract
To isolate bacteria responsible for the biodegradation of naphthalene, BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene), and aliphatic hydrocarbons in petroleum-contaminated soil, three enrichment cultures were established using soil extract as the medium supplemented with naphthalene, BTEX, or n-hexadecane. Community analyses showed that Paraburkholderia species were predominant in naphthalene and BTEX, but relatively minor in n-hexadecane. Paraburkholderia aromaticivorans BN5 was able to degrade naphthalene and all BTEX compounds, but not n-hexadecane. The genome of strain BN5 harbors genes encoding 29 monooxygenases including two alkane 1-monooxygenases and 54 dioxygenases, indicating that strain BN5 has versatile metabolic capabilities, for diverse organic compounds: the ability of strain BN5 to degrade short chain aliphatic hydrocarbons was verified experimentally. The biodegradation pathways of naphthalene and BTEX compounds were bioinformatically predicted and verified experimentally through the analysis of their metabolic intermediates. Some genomic features including the encoding of the biodegradation genes on a plasmid and the low sequence homologies of biodegradation-related genes suggest that biodegradation potentials of strain BN5 may have been acquired via horizontal gene transfers and/or gene duplication, resulting in enhanced ecological fitness by enabling strain BN5 to degrade all compounds including naphthalene, BTEX, and short aliphatic hydrocarbons in contaminated soil.
Collapse
Affiliation(s)
- Yunho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yunhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
33
|
Reyes-Sosa MB, Apodaca-Hernández JE, Arena-Ortiz ML. Bioprospecting for microbes with potential hydrocarbon remediation activity on the northwest coast of the Yucatan Peninsula, Mexico, using DNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1060-1074. [PMID: 30045488 DOI: 10.1016/j.scitotenv.2018.06.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 05/16/2023]
Abstract
Coastal environments harbor diverse microbial communities, which can contain genera with potential bioremediation activity. Next-generation DNA sequencing was used to identify bacteria to the genus level in water and sediment samples collected from the open ocean, shoreline, wetlands and freshwater upwellings on the northwest coast of the Yucatan Peninsula. Supported by an extensive literature review, a phylogenetic investigation of the communities was done using reconstruction of unobserved states software (PICRUSt) to predict metagenome functional content from the sequenced 16S gene in all the samples. Bacterial genera were identified for their potential hydrocarbon bioremediation activity. These included generalist genera commonly reported in hydrocarbon-polluted areas and petroleum reservoirs, as well as specialists such as Alcanivorax and Cycloclasticus. The highest readings for bacteria with potential hydrocarbon bioremediation activity were for the genera Vibrio, Alteromonas, Pseudomonas, Acinetobacter, Burkholderia, Acidovorax and Pseudoalteromonas from different environments in the study area. Some genera were identified only in specific sites; for example, Aquabacterium and Polaromonas were found only in freshwater upwellings. Variation in genera distribution was probably due to differences in environmental conditions in the sampled zones. Bacterial diversity was high in the study area and included numerous genera with known bioremediation activity. Functional prediction of the metagenome indicated that the studied bacterial communities would most probably degrade toluene, naphthalene, chloroalkane and chloroalkene, with lower degradation proportions for aromatic hydrocarbons, fluorobenzoate and xylene. Differences in predicted degradation existed between sediments and water, and between different locations.
Collapse
Affiliation(s)
| | | | - María Leticia Arena-Ortiz
- Posgrado en Ciencias del Mar y Limnología UNAM, Mérida, Yucatán, Mexico; Laboratorio de Ecogenonomica Universidad Nacional Autonoma de Mexico.
| |
Collapse
|
34
|
Crampon M, Bodilis J, Portet-Koltalo F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:500-509. [PMID: 30086520 DOI: 10.1016/j.jhazmat.2018.07.088] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/02/2018] [Accepted: 07/23/2018] [Indexed: 05/26/2023]
Abstract
The aim of this study was to understand the role of indigenous soil microbial communities on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) and to determine whether PAHs degradation potential in soils may be evaluated by analysis of bacterial diversity and potential metabolisms using a metagenomics approach. Five different soils were artificially contaminated with seven selected PAHs and the most abundant bacterial taxa were assessed by sequencing the 16S rRNA gene, and linking them to PAH biodegradation efficiencies. A PICRUSt approach was then led to estimate the degradation potentials by metagenomics inference. Although the role of bacteria in PAHs degradation is not directly established here, the presence of a large number of bacteria belonging to the Betaproteobacteria class correlated to a higher degradation of LMW PAHs. A link with specific bacterial taxa was more difficult to establish concerning HMW PAHs, which seemed to require more complex mechanisms as shown by PICRUSt.
Collapse
Affiliation(s)
- M Crampon
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France; LMSM, EA 4312, Université de Rouen-Normandie, Place Emile Blondel, 76821 Mont Saint Aignan, France.
| | - J Bodilis
- LMSM, EA 4312, Université de Rouen-Normandie, Place Emile Blondel, 76821 Mont Saint Aignan, France.
| | - F Portet-Koltalo
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France.
| |
Collapse
|
35
|
Murugan K, Vasudevan N. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:40-60. [PMID: 29605643 DOI: 10.1016/j.ecoenv.2018.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated biphenyls (PCBs) are xenobiotic compounds that persists in the environment for long-term, though its productivity is banned. Abatement of the pollutants have become laborious due to it's recalcitrant nature in the environment leading to toxic effects in humans and other living beings. Biphenyl degrading bacteria co-metabolically degrade low chlorinated PCBs using the active metabolic pathway. bph operon possess different genetic arrangements in gram positive and gram negative bacteria. The binding ability of the genes and the active sites were determined by PCB docking studies. The active site of bphA gene with conserved amino acid residues determines the substrate specificity and biodegradability. Accumulation of toxic intermediates alters cellular behaviour, biomass production and downturn the metabolic activity. Several bacteria in the environment attain unculturable state which is viable and metabolically active but not cultivable (VBNC). Resuscitation-promoting factor (Rpf) and Rpf homologous protein retrieve the culturability of the so far uncultured bacteria. Recovery of this adaptive mechanism against various physical and chemical stressors make a headway in understanding the functionality of both environmental and medically important unculturable bacteria. Thus, this paper review about the general aspects of PCBs, cellular toxicity exerted by PCBs, role of unculturable bacterial strains in biodegradation, genes involved and degradation pathways. It is suggested to extrapolate the research findings on extracellular organic matters produced in culture supernatant of VBNC thus transforming VBNC to culturable state.
Collapse
Affiliation(s)
- Karuvelan Murugan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| | - Namasivayam Vasudevan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| |
Collapse
|
36
|
Kotoky R, Rajkumari J, Pandey P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:858-870. [PMID: 29660711 DOI: 10.1016/j.jenvman.2018.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities are an essential part of plant rhizosphere and participate in the functioning of plants, including rhizoremediation of petroleum contaminants. Rhizoremediation is a promising technology for removal of polyaromatic hydrocarbons based on interactions between plants and microbiome in the rhizosphere. Root exudation in the rhizosphere provides better nutrient uptake for rhizosphere microbiome, and therefore it is considered to be one of the major factors of microbial community function in the rhizosphere that plays a key role in the enhanced PAH biodegradation. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, the interactions between microbiome and plant roots in the process of rhizosphere mediated remediation of PAH still needs attention. Most of the current researches target PAH degradation by plant or single microorganism, separately, whereas the interactions between plants and whole microbiome are overlooked and its role has been ignored. This review summarizes recent knowledge of PAH degradation in the rhizosphere in the process of plant-microbiome interactions based on emerging omics approaches such as metagenomics, metatranscriptomics, metabolomics and metaproteomics. These omics approaches with combinations to bioinformatics tools provide us a better understanding in integrated activity patterns between plants and rhizosphere microbes, and insight into the biochemical and molecular modification of the meta-organisms (plant-microbiome) to maximize rhizoremediation activity. Moreover, a better understanding of the interactions could lead to the development of techniques to engineer rhizosphere microbiome for better hydrocarbon degradation.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
37
|
Martinez-Cruz K, Leewis MC, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:23-31. [PMID: 28686892 DOI: 10.1016/j.scitotenv.2017.06.187] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 05/25/2023]
Abstract
Anaerobic oxidation of methane (AOM) is a biological process that plays an important role in reducing the CH4 emissions from a wide range of ecosystems. Arctic and sub-Arctic lakes are recognized as significant contributors to global methane (CH4) emission, since CH4 production is increasing as permafrost thaws and provides fuels for methanogenesis. Methanotrophy, including AOM, is critical to reducing CH4 emissions. The identity, activity, and metabolic processes of anaerobic methane oxidizers are poorly understood, yet this information is critical to understanding CH4 cycling and ultimately to predicting future CH4 emissions. This study sought to identify the microorganisms involved in AOM in sub-Arctic lake sediments using DNA- and phospholipid-fatty acid (PLFA)- based stable isotope probing. Results indicated that aerobic methanotrophs belonging to the genus Methylobacter assimilate carbon from CH4, either directly or indirectly. Other organisms that were found, in minor proportions, to assimilate CH4-derived carbon were methylotrophs and iron reducers, which might indicate the flow of CH4-derived carbon from anaerobic methanotrophs into the broader microbial community. While various other taxa have been reported in the literature to anaerobically oxidize methane in various environments (e.g. ANME-type archaea and Methylomirabilis Oxyfera), this report directly suggest that Methylobacter can perform this function, expanding our understanding of CH4 oxidation in anaerobic lake sediments.
Collapse
Affiliation(s)
- Karla Martinez-Cruz
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico.
| | - Mary-Cathrine Leewis
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| | - Ian Charold Herriott
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| | - Armando Sepulveda-Jauregui
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA.
| | - Katey Walter Anthony
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA.
| | - Frederic Thalasso
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico.
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| |
Collapse
|
38
|
Sarkar P, Roy A, Pal S, Mohapatra B, Kazy SK, Maiti MK, Sar P. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. BIORESOURCE TECHNOLOGY 2017; 242:15-27. [PMID: 28533069 DOI: 10.1016/j.biortech.2017.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Intrinsic biodegradation potential of bacteria from petroleum refinery waste was investigated through isolation of cultivable strains and their characterization. Pseudomonas and Bacillus spp. populated the normal cultivable taxa while prolonged enrichment with hydrocarbons and crude oil yielded hydrocarbonoclastic bacteria of genera Burkholderia, Enterobacter, Kocuria, Pandoraea, etc. Strains isolated through enrichment showed assemblages of superior metabolic properties: utilization of aliphatic (C6-C22) and polyaromatic compounds, anaerobic growth with multiple terminal electron acceptors and higher biosurfactant production. Biodegradation of dodecane was studied thoroughly by GC-MS along with detection of gene encoding alkane hydroxylase (alkB). Microcosms bioaugmented with Enterobacter, Pandoraea and Burkholderia strains showed efficient biodegradation (98% TPH removal) well fitted in first order kinetic model with low rate constants and decreased half-life. This study proves that catabolically efficient bacteria resides naturally in complex petroleum refinery wastes and those can be useful for bioaugmentation based bioremediation.
Collapse
Affiliation(s)
- Poulomi Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
39
|
Weiland-Bräuer N, Fischer MA, Schramm KW, Schmitz RA. Polychlorinated Biphenyl (PCB)-Degrading Potential of Microbes Present in a Cryoconite of Jamtalferner Glacier. Front Microbiol 2017; 8:1105. [PMID: 28663747 PMCID: PMC5471330 DOI: 10.3389/fmicb.2017.01105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Aiming to comprehensively survey the potential pollution of an alpine cryoconite (Jamtalferner glacier, Austria), and its bacterial community structure along with its biodegrading potential, first chemical analyses of persistent organic pollutants, explicitly polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) as well as polycyclic aromatic hydrocarbons (PAHs), revealed a significant contamination. In total, 18 PCB congeners were detected by high resolution gas chromatography/mass spectrometry with a mean concentration of 0.8 ng/g dry weight; 16 PAHs with an average concentration of 1,400 ng/g; and 26 out of 29 OCPs with a mean concentration of 2.4 ng/g. Second, the microbial composition was studied using 16S amplicon sequencing. The analysis revealed high abundances of Proteobacteria (66%), the majority representing α-Proteobacteria (87%); as well as Cyanobacteria (32%), however high diversity was due to 11 low abundant phyla comprising 75 genera. Biodegrading potential of cryoconite bacteria was further analyzed using enrichment cultures (microcosms) with PCB mixture Aroclor 1242. 16S rDNA analysis taxonomically classified 37 different biofilm-forming and PCB-degrading bacteria, represented by Pseudomonas, Shigella, Subtercola, Chitinophaga, and Janthinobacterium species. Overall, the combination of culture-dependent and culture-independent methods identified degrading bacteria that can be potential candidates to develop novel bioremediation strategies.
Collapse
Affiliation(s)
- Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| | - Martin A. Fischer
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| | - Karl-Werner Schramm
- Molecular EXposomics, German Research Center for Environmental Health, Helmholtz Zentrum München GmbHNeuherberg, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität zu KielKiel, Germany
| |
Collapse
|
40
|
Crampon M, Cébron A, Portet-Koltalo F, Uroz S, Le Derf F, Bodilis J. Low effect of phenanthrene bioaccessibility on its biodegradation in diffusely contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:663-673. [PMID: 28390702 DOI: 10.1016/j.envpol.2017.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches. First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties. Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using 13C-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity. These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.
Collapse
Affiliation(s)
- M Crampon
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France; Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen, 76821 Mont Saint Aignan, France
| | - A Cébron
- CNRS, LIEC UMR 7360, Faculté des Sciences et Technologies, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex, France; Université de Lorraine, LIEC UMR 7360, Faculté des Sciences et Technologies, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - F Portet-Koltalo
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France
| | - S Uroz
- UMR 1138 INRA, Centre de Nancy, Biogéochimie des Ecosystèmes forestiers, Route d'Amance, 54280 Champenoux, France
| | - F Le Derf
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France
| | - J Bodilis
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen, 76821 Mont Saint Aignan, France; Université de Lyon, France, CNRS, INRA, Ecole Nationale Vétérinaire de Lyon, Université Lyon 1, UMR 5557 Ecologie Microbienne, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France.
| |
Collapse
|
41
|
Thijs S, Sillen W, Weyens N, Vangronsveld J. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:23-38. [PMID: 27484694 DOI: 10.1080/15226514.2016.1216076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytoremediation is increasingly adopted as a more sustainable approach for soil remediation. However, significant advances in efficiency are still necessary to attain higher levels of environmental and economic sustainability. Current interventions do not always give the expected outcomes in field settings due to an incomplete understanding of the multicomponent biological interactions. New advances in -omics are gradually implemented for studying microbial communities of polluted land in situ. This opens new perspectives for the discovery of biodegradative strains and provides us new ways of interfering with microbial communities to enhance bioremediation rates. This review presents retrospectives and future perspectives for plant microbiome studies relevant to phytoremediation, as well as some knowledge gaps in this promising research field. The implementation of phytoremediation in soil clean-up management systems is discussed, and an overview of the promoting factors that determine the growth of the phytoremediation market is given. Continuous growth is expected since elimination of contaminants from the environment is demanded. The evolution of scientific thought from a reductionist view to a more holistic approach will boost phytoremediation as an efficient and reliable phytotechnology. It is anticipated that phytoremediation will prove the most promising for organic contaminant degradation and bioenergy crop production on marginal land.
Collapse
Affiliation(s)
- Sofie Thijs
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Wouter Sillen
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Nele Weyens
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| | - Jaco Vangronsveld
- a Centre for Environmental Sciences, Hasselt University , Diepenbeek , Belgium
| |
Collapse
|
42
|
Vergani L, Mapelli F, Zanardini E, Terzaghi E, Di Guardo A, Morosini C, Raspa G, Borin S. Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook on plant-microbe beneficial interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1395-1406. [PMID: 27717569 DOI: 10.1016/j.scitotenv.2016.09.218] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 05/18/2023]
Abstract
Polychlorinated biphenyls (PCBs) are toxic chemicals, recalcitrant to degradation, bioaccumulative and persistent in the environment, causing adverse effects on ecosystems and human health. For this reason, the remediation of PCB-contaminated soils is a primary issue to be addressed. Phytoremediation represents a promising tool for in situ soil remediation, since the available physico-chemical technologies have strong environmental and economic impacts. Plants can extract and metabolize several xenobiotics present in the soil, but their ability to uptake and mineralize PCBs is limited due to the recalcitrance and low bioavailability of these molecules that in turn impedes an efficient remediation of PCB-contaminated soils. Besides plant degradation ability, rhizoremediation takes into account the capability of soil microbes to uptake, attack and degrade pollutants, so it can be seen as the most suitable strategy to clean-up PCB-contaminated soils. Microbes are in fact the key players of PCB degradation, performed under both aerobic and anaerobic conditions. In the rhizosphere, microbes and plants positively interact. Microorganisms can promote plant growth under stressed conditions typical of polluted soils. Moreover, in this specific niche, root exudates play a pivotal role by promoting the biphenyl catabolic pathway, responsible for microbial oxidative PCB metabolism, and by improving the overall PCB degradation performance. Besides rhizospheric microbial community, also the endophytic bacteria are involved in pollutant degradation and represent a reservoir of microbial resources to be exploited for bioremediation purposes. Here, focusing on plant-microbe beneficial interactions, we propose a review of the available results on PCB removal from soil obtained combining different plant and microbial species, mainly under simplified conditions like greenhouse experiments. Furthermore, we discuss the potentiality of "omics" approaches to identify PCB-degrading microbes, an aspect of paramount importance to design rhizoremediation strategies working efficiently under different environmental conditions, pointing out the urgency to expand research investigations to field scale.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Elisabetta Zanardini
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 9, Como, Italy
| | - Elisa Terzaghi
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 9, Como, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology (DiSAT), University of Insubria, Via Valleggio 9, Como, Italy
| | - Cristiana Morosini
- Department of Science and High Technology (DiSAT), University of Insubria, Via G.B. Vico 46, Varese, Italy
| | - Giuseppe Raspa
- Department of Chemical Engineering Materials Environment (DICMA), Rome "La Sapienza" University, Via Eudossiana 18, Rome, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
43
|
Viktorova J, Jandova Z, Madlenakova M, Prouzova P, Bartunek V, Vrchotova B, Lovecka P, Musilova L, Macek T. Native Phytoremediation Potential of Urtica dioica for Removal of PCBs and Heavy Metals Can Be Improved by Genetic Manipulations Using Constitutive CaMV 35S Promoter. PLoS One 2016; 11:e0167927. [PMID: 27930707 PMCID: PMC5145202 DOI: 10.1371/journal.pone.0167927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/22/2016] [Indexed: 01/20/2023] Open
Abstract
Although stinging nettle (Urtica dioica) has been shown to reduce HM (heavy metal) content in soil, its wider phytoremediation potential has been neglected. Urtica dioica was cultivated in soils contaminated with HMs or polychlorinated biphenyls (PCBs). After four months, up to 33% of the less chlorinated biphenyls and 8% of HMs (Zn, Pb, Cd) had been removed. Bacteria were isolated from the plant tissue, with the endophytic bacteria Bacillus shackletonii and Streptomyces badius shown to have the most significant effect. These bacteria demonstrated not only benefits for plant growth, but also extreme tolerance to As, Zn and Pb. Despite these results, the native phytoremediation potential of nettles could be improved by biotechnologies. Transient expression was used to investigate the functionality of the most common constitutive promoter, CaMV 35S in Urtica dioica. This showed the expression of the CUP and bphC transgenes. Collectively, our findings suggest that remediation by stinging nettle could have a much wider range of applications than previously thought.
Collapse
Affiliation(s)
- Jitka Viktorova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Zuzana Jandova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Michaela Madlenakova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Petra Prouzova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Vilem Bartunek
- UCT Prague, Faculty of Chemical Technology, Department of Inorganic Chemistry, Technicka 3, Prague, Czech Republic
| | - Blanka Vrchotova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Petra Lovecka
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Lucie Musilova
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
| | - Tomas Macek
- UCT Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 3, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
44
|
Bjørnsgaard Aas A, Davey ML, Kauserud H. ITS all right mama: investigating the formation of chimeric sequences in the ITS2 region by DNA metabarcoding analyses of fungal mock communities of different complexities. Mol Ecol Resour 2016; 17:730-741. [DOI: 10.1111/1755-0998.12622] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/23/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Anders Bjørnsgaard Aas
- Section for Genetics and Evolutionary Biology (Evogene); Department of Biosciences; University of Oslo; P.O. Box 1066 Blindern NO-0316 Oslo Norway
| | - Marie Louise Davey
- Section for Genetics and Evolutionary Biology (Evogene); Department of Biosciences; University of Oslo; P.O. Box 1066 Blindern NO-0316 Oslo Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (Evogene); Department of Biosciences; University of Oslo; P.O. Box 1066 Blindern NO-0316 Oslo Norway
| |
Collapse
|
45
|
Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:169-179. [PMID: 27267691 DOI: 10.1016/j.jhazmat.2016.05.066] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 06/06/2023]
Abstract
Diversity, distribution and composition of bacterial community of soils contaminated long-term with both polycyclic aromatic hydrocarbons (PAHs) and heavy metals were explored for the first time following 454 pyrosequencing. Strikingly, the complete picture of the Gram positive (+ve) and Gram negative (-ve) bacterial profile obtained in our study illustrates novel postulates that include: (1) Metal-tolerant and PAH-degrading Gram -ves belonging to the class Alphaproteobacteria persist relatively more in the real contaminated sites compared to Gram +ves, (2) Gram +ves are not always resistant to heavy metal toxicity, (3) Stenotrophomonas followed by Burkholderia and Pseudomonas are the dominant genera of PAH degraders with high metabolic activity in long-term contaminated soils, (4) Actinobacteria is the predominant group among the Gram +ves in soils contaminated with high molecular weight PAHs that co-exist with toxic heavy metals like Pb, Cu and Zn, (5) Microbial communities are nutrient-driven in natural environments and (6) Catabolically potential Gram +/-ves with diverse applicability to remediate the real contaminated sites evolve eventually in the historically-polluted soils. Thus, the most promising indigenous Gram +/-ve strains from the long-term contaminated sites with increased catabolic potential, enzymatic activity and metal tolerance need to be harnessed for mixed contaminant cleanups.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia.
| | - Palanisami Thavamani
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
46
|
Zhou Q, Zhang L, Chen J, Luo Y, Zou H, Sun B. Enhanced stable long-term operation of biotrickling filters treating VOCs by low-dose ozonation and its affecting mechanism on biofilm. CHEMOSPHERE 2016; 162:139-147. [PMID: 27494314 DOI: 10.1016/j.chemosphere.2016.07.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/13/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
For long-term operation of highly loaded biotrickling filters (BTFs), the prevention of excess biomass accumulation was essential for avoiding BTF failure. In this study, we proposed low-dose ozonation as a biomass control strategy to maintain high removal efficiencies of volatile organic compounds (VOCs) over extended operation of BTFs. To obtain an optimized biomass control strategy, the relative performance of five parallel BTFs receiving different ozone doses was determined, and the affecting mechanism of ozonation on biofilm was elucidated. Experimental results showed that the decline in ozone-free BTF performance began from day 150, which was correlated with excess biomass accumulation, abundant excretion of extracellular polymeric substances (EPS) and a decline in metabolic activity of biofilm over extended operation. Ozone of 5-10 mg m(-3) was effective in preventing excessive growth and uneven distribution of biomass, and eventually maintaining long-term stable operations. Ozone of over 20 mg m(-3) possibly inhibited microorganism growth severely, thereby deteriorating the elimination performance instead. Comparison of the biofilm EPS indicated that the presence of ozone reduce EPS contents to different extents, which was possibly beneficial for mass transfer and metabolic activity. Comparative community analysis showed that ozonation resulted in different microbial communities in the BTFs. Dyella was found to be the most abundant bacterial genera in all BTFs regardless of ozonation, indicating strong resistance to ozonation. Chryseobacterium and Burkholderia members were markedly enriched in the ozone-added biofilm, implying good adaptation to ozone presence. These findings provided an improved understanding of low-dose ozonation in maintaining a stable long-term operation of BTF.
Collapse
Affiliation(s)
- Qingwei Zhou
- State Key Laboratory of Organic-Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China; School of Biological and Environmental Engineering, Zhejiang University of Technology, No.6 District, Zhaohui, Hangzhou, 310032, China
| | - Lili Zhang
- State Key Laboratory of Organic-Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jianmeng Chen
- School of Biological and Environmental Engineering, Zhejiang University of Technology, No.6 District, Zhaohui, Hangzhou, 310032, China
| | - Yong Luo
- State Key Laboratory of Organic-Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haikui Zou
- State Key Laboratory of Organic-Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baochang Sun
- State Key Laboratory of Organic-Inorganic Composites and Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
47
|
Delgado-Balbuena L, Bello-López JM, Navarro-Noya YE, Rodríguez-Valentín A, Luna-Guido ML, Dendooven L. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils. PLoS One 2016; 11:e0160991. [PMID: 27727277 PMCID: PMC5058544 DOI: 10.1371/journal.pone.0160991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/28/2016] [Indexed: 01/13/2023] Open
Abstract
Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the effect of application of carrot residue, earthworms or the surfactant on the bacterial community structure was more accentuated in the arable soil than in the pasture soil. It was found that removal of anthracene was not linked to changes in the bacterial community structure.
Collapse
Affiliation(s)
| | | | | | | | | | - Luc Dendooven
- Laboratory of Soil Ecology, ABACUS, Cinvestav, Mexico City, D.F., Mexico
| |
Collapse
|
48
|
Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments. Int J Mol Sci 2016; 17:E1205. [PMID: 27483244 PMCID: PMC5000603 DOI: 10.3390/ijms17081205] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/20/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022] Open
Abstract
Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes.
Collapse
Affiliation(s)
- Lucie Musilova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Marketa Polivkova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Tomas Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
49
|
Wang X, Zhao X, Li H, Jia J, Liu Y, Ejenavi O, Ding A, Sun Y, Zhang D. Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation. Res Microbiol 2016; 167:731-744. [PMID: 27475037 DOI: 10.1016/j.resmic.2016.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022]
Abstract
Uncultivable microorganisms account for over 99% of all species on the planet, but their functions are yet not well characterized. Though many cultivable degraders for n-alkanes have been intensively investigated, the roles of functional n-alkane degraders remain hidden in the natural environment. This study introduces the novel magnetic nanoparticle-mediated isolation (MMI) technology in Nigerian soils and successfully separates functional microbes belonging to the families Oxalobacteraceae and Moraxellaceae, which are dominant and responsible for alkane metabolism in situ. The alkR-type n-alkane monooxygenase genes, instead of alkA- or alkP-type, were the key functional genes involved in the n-alkane degradation process. Further physiological investigation via a BIOLOG PM plate revealed some carbon (Tween 20, Tween 40 and Tween 80) and nitrogen (tyramine, l-glutamine and d-aspartic acid) sources promoting microbial respiration and n-alkane degradation. With further addition of promoter carbon or nitrogen sources, the separated functional alkane degraders significantly improved n-alkane biodegradation rates. This suggests that MMI is a promising technology for separating functional microbes from complex microbiota, with deeper insight into their ecological functions and influencing factors. The technique also broadens the application of the BIOLOG PM plate for physiological research on functional yet uncultivable microorganisms.
Collapse
Affiliation(s)
- Xinzi Wang
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xiaohui Zhao
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hanbing Li
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, PR China
| | - Yueqiao Liu
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Odafe Ejenavi
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Dayi Zhang
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
50
|
Qu Y, Zhang X, Shen W, Ma Q, You S, Pei X, Li S, Ma F, Zhou J. Illumina MiSeq sequencing reveals long-term impacts of single-walled carbon nanotubes on microbial communities of wastewater treatment systems. BIORESOURCE TECHNOLOGY 2016; 211:209-215. [PMID: 27017131 DOI: 10.1016/j.biortech.2016.03.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
In this study, phenol wastewater treatment systems treated with different concentrations of single-walled carbon nanotubes (SWCNTs) (0-3.5g/L) were exposed to phenol and carbon nanotubes (CNTs) shock loadings to investigate the long-term impacts of SWCNTs on microbial communities. Phenol removal remained high efficiency (>98%) in SWCNTs-treated groups but decreased in non-treated group (85.1±1.9%) when exposed to high concentration of phenol (500mg/L). However, secondary dosing of SWCNTs in SWCNTs-treated groups would decrease the phenol removal efficiency. Illumina MiSeq sequencing revealed that the diversity, richness and structure of microbial communities were shifted under phenol shock loading, especially under high phenol concentration, but not under CNTs shock loading. In response to phenol and CNTs shock loadings, Rudaea, Burkholderia, Sphingomonas, Acinetobacter, Methylocystis and Thauera became dominant genera, which should be involved in phenol removal. These results suggested that a proper amount of SWCNTs might have positive effects on phenol wastewater treatment systems.
Collapse
Affiliation(s)
- Yuanyuan Qu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuwang Zhang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wenli Shen
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiao Ma
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengnan You
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaofang Pei
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuzhen Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jiti Zhou
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|