1
|
Large-Scale Quantitative Proteomic Analysis during Different Stages of Somatic Embryogenesis in Larix olgensis. Curr Issues Mol Biol 2023; 45:2021-2034. [PMID: 36975500 PMCID: PMC10047913 DOI: 10.3390/cimb45030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Larix olgensis is an economically important tree species native to northeastern China. The use of somatic embryogenesis (SE) is efficient and enables the rapid production of varieties with desirable qualities. Here, isobaric labeling via tandem mass tags was used to conduct a large-scale quantitative proteomic analysis of proteins in three critically important stages of SE in L. olgensis: the primary embryogenic callus, the single embryo, and the cotyledon embryo. We identified 6269 proteins, including 176 shared differentially expressed proteins across the three groups. Many of these proteins are involved in glycolipid metabolism, hormone response/signal transduction, cell synthesis and differentiation, and water transport; proteins involved in stress resistance and secondary metabolism, as well as transcription factors, play key regulatory roles in SE. The results of this study provide new insights into the key pathways and proteins involved in SE in Larix. Our findings have implications for the expression of totipotency, the preparation of synthetic seeds, and genetic transformation.
Collapse
|
2
|
Wang B, Pan X, Wang F, Liu L, Jia J. Photoprotective carbon redistribution in mixotrophic Haematococcus pluvialis under high light stress. BIORESOURCE TECHNOLOGY 2022; 362:127761. [PMID: 35961507 DOI: 10.1016/j.biortech.2022.127761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Mixotrophy of Haematococcus pluvialis is a potential strategy for producing astaxanthin. However, this strategy has not been extensively commercialized because the mixotrophic mechanisms by which H. pluvialis overcomes high light stress are unclear. This study analyzed the biochemical compositions and differential proteomics of mixotrophic H. pluvialis under different light conditions. High light exposure substantially increased astaxanthin, carbohydrate, and fatty acid contents. A total of 119 and 81 proteins were significantly up- and down-regulated after two days of high light exposure. These proteins mainly enriched pathways for photosynthetic metabolism, glyoxylate cycle, and biosynthesis of secondary metabolites. This study proposed a regulatory model through which mixotrophic H. pluvialis copes with high light stress. The model includes pathways for modulating photosynthetic apparatus, increasing astaxanthin accumulation by enhancing photorespiration, pentose phosphate and Embden-Meyerhof-Parna pathways, while thickening the cell wall by malate-oxaloacetate shuttle.
Collapse
Affiliation(s)
- Baobei Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou 362000, China; Key Laboratory of Inshore Resources and Biotechnology, Fujian Province University, Quanzhou 362000, China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Fang Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lulu Liu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jing Jia
- SDIC Microalgae Biotechnology Center, SDIC Biotechnology Investment Co. Ltd., State Development and Investment Corporation, Beijing 100034, China; Beijing Key Laboratory of Microalgae Bioenergy and Bioresource, Beijing 100142, China.
| |
Collapse
|
3
|
Abstract
Peptide signaling is an emerging paradigm in molecular plant-microbe interactions with vast implications for our understanding of plant-nematode interactions and beyond. Plant-like peptide hormones, first discovered in cyst nematodes, are now recognized as an important class of peptide effectors mediating several different types of pathogenic and symbiotic interactions. Here, we summarize what has been learned about nematode-secreted CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptide effectors since the last comprehensive review on this topic a decade ago. We also highlight new discoveries of a diverse array of peptide effectors that go beyond the CLE peptide effector family in not only phytonematodes but in organisms beyond the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, USA; ,
| |
Collapse
|
4
|
Li J, Wang D, Sun S, Sun L, Zong J, Lei Y, Yu J, Liang W, Zhang D. The regulatory role of CARBON STARVED ANTHER-mediated photoperiod-dependent male fertility in rice. PLANT PHYSIOLOGY 2022; 189:955-971. [PMID: 35274732 PMCID: PMC9157076 DOI: 10.1093/plphys/kiac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Environmental signals, especially daylength, play important roles in determining fertility in photoperiod-sensitive genic male sterile (PGMS) lines that are critical to sustain production of high-yielding hybrid rice (Oryza sativa) varieties. However, the mechanisms by which PGMS lines perceive changes in photoperiod and transmit those signals to elicit downstream effects are not well understood. In this study, we compared the transcriptomes from the leaves and anthers of carbon starved anther (csa), a PGMS line, to wild-type (WT) tissues under different photoperiods. Components of circadian clock in the leaves, including Circadian Clock-Associated 1 and Pseudo-Response Regulator (PRR95), played vital roles in sensing the photoperiod signals. Photoperiod signals were weakly transduced to anthers, where gene expression was mainly controlled by the CSA allele. CSA played a critical role in regulating sugar metabolism and cell wall synthesis in anthers under short-day conditions, and transcription of key genes inducing csa-directed sterility was upregulated under long-day (LD) conditions though not to WT levels, revealing a mechanism to explain the partial restoration of fertility in rice under LD conditions. Eight direct targets of CSA regulation were identified, all of which were genes involved in sugar metabolism and transport (cell wall invertases, SWEETs, and monosaccharide transporters) expressed only in reproductive tissues. Several hub genes coordinating the effects of CSA regulation were identified as critical elements determining WT male fertility and further analysis of these and related genes will reveal insights into how CSA coordinates sugar metabolism, cell wall biosynthesis, and photoperiod sensing in rice anther development.
Collapse
Affiliation(s)
- Jingbin Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Duoxiang Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyu Sun
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linlin Sun
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqi Lei
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, Australia
| |
Collapse
|
5
|
Hawamda AIM, Reichert S, Ali MA, Nawaz MA, Austerlitz T, Schekahn P, Abbas A, Tenhaken R, Bohlmann H. Characterization of an Arabidopsis Defensin-like Gene Conferring Resistance against Nematodes. PLANTS 2022; 11:plants11030280. [PMID: 35161268 PMCID: PMC8838067 DOI: 10.3390/plants11030280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Arabidopsis contains 317 genes for defensin-like (DEFL) peptides. DEFLs have been grouped into different families based mainly on cysteine motifs. The DEFL0770 group contains seven genes, of which four are strongly expressed in roots. We found that the expression of these genes is downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii as revealed by RNAseq analysis. We have studied one gene of this group, At3g59930, in detail. A promoter::GUS line revealed that the gene is only expressed in roots but not in other plant organs. Infection of the GUS line with larvae of H. schachtii showed a strong downregulation of GUS expression in infection sites as early as 1 dpi, confirming the RNAseq data. The At3g59930 peptide had only weak antimicrobial activity against Botrytis cinerea. Overexpression lines had no enhanced resistance against this fungus but were more resistant to H. schachtii infection. Our data indicate that At3g59930 is involved in resistance to nematodes which is probably not due to direct nematicidal activity.
Collapse
Affiliation(s)
- Abdalmenem I. M. Hawamda
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Agricultural Biotechnology, Faculty of Agricultural Science and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm P.O. Box 7, Palestine
| | - Susanne Reichert
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Muhammad Amjad Ali
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Amjad Nawaz
- Siberian Federal Scientific Centre of Agrobiotechnology, Russian Academy of Sciences, 630501 Krasnoobsk, Russia;
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Tina Austerlitz
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Patricia Schekahn
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Amjad Abbas
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Raimund Tenhaken
- Plant Physiology, University of Salzburg, 5020 Salzburg, Austria;
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Correspondence:
| |
Collapse
|
6
|
Yang R, Yang Z, Peng Z, He F, Shi L, Dong Y, Ren M, Zhang Q, Geng G, Zhang S. Integrated transcriptomic and proteomic analysis of Tritipyrum provides insights into the molecular basis of salt tolerance. PeerJ 2022; 9:e12683. [PMID: 35036157 PMCID: PMC8710252 DOI: 10.7717/peerj.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Soil salinity is a major environmental stress that restricts crop growth and yield. Methods Here, crucial proteins and biological pathways were investigated under salt-stress and recovery conditions in Tritipyrum ‘Y1805’ using the data-independent acquisition proteomics techniques to explore its salt-tolerance mechanism. Results In total, 44 and 102 differentially expressed proteins (DEPs) were identified in ‘Y1805’ under salt-stress and recovery conditions, respectively. A proteome-transcriptome-associated analysis revealed that the expression patterns of 13 and 25 DEPs were the same under salt-stress and recovery conditions, respectively. ‘Response to stimulus’, ‘antioxidant activity’, ‘carbohydrate metabolism’, ‘amino acid metabolism’, ‘signal transduction’, ‘transport and catabolism’ and ‘biosynthesis of other secondary metabolites’ were present under both conditions in ‘Y1805’. In addition, ‘energy metabolism’ and ‘lipid metabolism’ were recovery-specific pathways, while ‘antioxidant activity’, and ‘molecular function regulator’ under salt-stress conditions, and ‘virion’ and ‘virion part’ during recovery, were ‘Y1805’-specific compared with the salt-sensitive wheat ‘Chinese Spring’. ‘Y1805’ contained eight specific DEPs related to salt-stress responses. The strong salt tolerance of ‘Y1805’ could be attributed to the strengthened cell walls, reactive oxygen species scavenging, osmoregulation, phytohormone regulation, transient growth arrest, enhanced respiration, transcriptional regulation and error information processing. These data will facilitate an understanding of the molecular mechanisms of salt tolerance and aid in the breeding of salt-tolerant wheat.
Collapse
Affiliation(s)
- Rui Yang
- Guizhou University, Guiyang, China
| | | | - Ze Peng
- Guizhou University, Guiyang, China
| | - Fang He
- Guizhou University, Guiyang, China
| | - Luxi Shi
- Guizhou University, Guiyang, China
| | | | - Mingjian Ren
- Guizhou University, Guiyang, China.,Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| | | | | | - Suqin Zhang
- Guizhou University, Guiyang, China.,Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| |
Collapse
|
7
|
Hong G, Su X, Xu K, Liu B, Wang G, Li J, Wang R, Zhu M, Li G. Salt stress downregulates 2-hydroxybutyrylation in Arabidopsis siliques. J Proteomics 2022; 250:104383. [PMID: 34562664 DOI: 10.1016/j.jprot.2021.104383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is one of the newly discovered post-translational modifications (PTMs) through protein acylation. It has been reported to be widely distributed in both eukaryotes and prokaryotes, and plays an important role in chromatin conformation change, gene transcription, protein subcellular localization, protein-protein interaction, signal transduction, and cellular proliferation. In this study, the Khib modification proteome of siliques from A. thaliana under salt stress (Ss) and those in the control (Cs) were compared. The results showed that Khib modification was abundant in siliques. Totally 3810 normalized Khib sites on 1254 proteins were identified, and the Khib modification showed a downregulation trend dramatically: it was down-regulated at 282 sites on 205 proteins while was up-regulated at 96 sites on 78 proteins in Ss siliques (Data are available via ProteomeXchange with identifier PXD028116 and PXD026643). Among them, 13 proteins, including F4IVN6, Q9M1P5, and Q9LF33, had sites with the most significant regulation of Khib modification. Bioinformatics analysis suggested that the differentially Khib-regulated proteins mainly participated in glycolysis/gluconeogenesis and endocytosis. In particular, there were differentially117 Khib-regulated proteins that were mapped to the protein-protein interaction database. In the KEGG pathway enrichment analysis, Khib-modified proteins were enriched in several pathways related to energy metabolism, including gluconeogenesis pathway, pentose phosphate pathway, and pyruvate metabolism. Overall, our work reveals the first systematic analysis of Khib proteome in Arabidopsis siliques under salt stress, and sheds a light on the future studies on the regulatory mechanisms of Khib during the salt stress response of plants. SIGNIFICANCE: In this study, we found the Khib-modified proteins in silique under salt stress and described the enrichment of Khib-modified proteins involved in the biological processes and cellular localization. Proteins undergoing 2-hydroxyisobutylation were mainly involved in the gluconeogenesis pathway, pentose phosphate pathway, and pyruvate metabolism, suggesting that 2-hydroxyisobutylation affects the energy metabolic pathway, and thus the development of the plant. In addition, specific candidate proteins that may affect plant development under salt stress were selected. This study will provide a theoretical basis for revealing the function and mechanism of these proteins and their 2-hydroxyisobutyryl modifications during the development of silique under salt stress.
Collapse
Affiliation(s)
- Geriqiqige Hong
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoyi Su
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ke Xu
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Bin Liu
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China; CAS Center of Excellence in Molecular Plant Science, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai 201602, China
| | - Guangxia Wang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Li
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruigang Wang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China.
| | - Mulan Zhu
- CAS Center of Excellence in Molecular Plant Science, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai 201602, China.
| | - Guojing Li
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
8
|
Chopra D, Hasan MS, Matera C, Chitambo O, Mendy B, Mahlitz SV, Naz AA, Szumski S, Janakowski S, Sobczak M, Mithöfer A, Kyndt T, Grundler FMW, Siddique S. Plant parasitic cyst nematodes redirect host indole metabolism via NADPH oxidase-mediated ROS to promote infection. THE NEW PHYTOLOGIST 2021; 232:318-331. [PMID: 34133755 DOI: 10.1111/nph.17559] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) generated in response to infections often activate immune responses in eukaryotes including plants. In plants, ROS are primarily produced by plasma membrane-bound NADPH oxidases called respiratory burst oxidase homologue (Rboh). Surprisingly, Rbohs can also promote the infection of plants by certain pathogens, including plant parasitic cyst nematodes. The Arabidopsis genome contains 10 Rboh genes (RbohA-RbohJ). Previously, we showed that cyst nematode infection causes a localised ROS burst in roots, mediated primarily by RbohD and RbohF. We also found that plants deficient in RbohD and RbohF (rbohD/F) exhibit strongly decreased susceptibility to cyst nematodes, suggesting that Rboh-mediated ROS plays a role in promoting infection. However, little information is known of the mechanism by which Rbohs promote cyst nematode infection. Here, using detailed genetic and biochemical analyses, we identified WALLS ARE THIN1 (WAT1), an auxin transporter, as a downstream target of Rboh-mediated ROS during parasitic infections. We found that WAT1 is required to modulate the host's indole metabolism, including indole-3-acetic acid levels, in infected cells and that this reprogramming is necessary for successful establishment of the parasite. In conclusion, this work clarifies a unique mechanism that enables cyst nematodes to use the host's ROS for their own benefit.
Collapse
Affiliation(s)
- Divykriti Chopra
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - M Shamim Hasan
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
- Department of Plant Pathology, Faculty of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Christiane Matera
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - Oliver Chitambo
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - Badou Mendy
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - Sina-Valerie Mahlitz
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - Ali Ahmad Naz
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, D-53115, Germany
| | - Shelly Szumski
- Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Slawomir Janakowski
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, PL-02-787, Poland
| | - Miroslaw Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, PL-02-787, Poland
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Plank Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Tina Kyndt
- Department Biotechnology, Research Group Epigenetics & Defence, Coupure links 653, Gent, B-9000, Belgium
| | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
- Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
9
|
A Comprehensive Transcriptional Profiling of Pepper Responses to Root-Knot Nematode. Genes (Basel) 2020; 11:genes11121507. [PMID: 33333784 PMCID: PMC7765216 DOI: 10.3390/genes11121507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic resistance remains a key component in integrated pest management systems. The cosmopolitan root-knot nematode (RKN; Meloidogyne spp.) proves a significant management challenge as virulence and pathogenicity vary among and within species. RKN greatly reduces commercial bell pepper yield, and breeding programs continuously develop cultivars to emerging nematode threats. However, there is a lack of knowledge concerning the nature and forms of nematode resistance. Defining how resistant and susceptible pepper cultivars mount defenses against RKN attacks can help inform breeding programs. Here, we characterized the transcriptional responses of the highly related resistant (Charleston Belle) and susceptible (Keystone Resistance Giant) pepper cultivars throughout early nematode infection stages. Comprehensive transcriptomic sequencing of resistant and susceptible cultivar roots with or without Meloidogyneincognita infection over three-time points; covering early penetration (1-day), through feeding site maintenance (7-days post-inoculation), produced > 300 million high quality reads. Close examination of chromosome P9, on which nematode resistance hotspots are located, showed more differentially expressed genes were upregulated in resistant cultivar at day 1 when compared to the susceptible cultivar. Our comprehensive approach to transcriptomic profiling of pepper resistance revealed novel insights into how RKN causes disease and the plant responses mounted to counter nematode attack. This work broadens the definition of resistance from a single loci concept to a more complex array of interrelated pathways. Focus on these pathways in breeding programs may provide more sustainable and enduring forms of resistance.
Collapse
|
10
|
Offler CE, Patrick JW. Transfer cells: what regulates the development of their intricate wall labyrinths? THE NEW PHYTOLOGIST 2020; 228:427-444. [PMID: 32463520 DOI: 10.1111/nph.16707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 05/26/2023]
Abstract
Transfer cells (TCs) support high nutrient rates into, or at symplasmic discontinuities within, the plant body. Their transport capacity is conferred by an amplified plasma membrane surface area, enriched in nutrient transporters, supported on an intricately invaginated wall labyrinth (WL). Thus, development of the WL is at the heart of TC function. Enquiry has shifted from describing WL architecture and formation to discovering mechanisms regulating WL assembly. Experimental systems used to examine these phenomena are critiqued. Considerable progress has been made in identifying master regulators that commit stem cells to a TC fate (e.g. the maize Myeloblastosis (MYB)-related R1-type transcription factor) and signals that induce differentiated cells to undergo trans-differentiation to a TC phenotype (e.g. sugar, auxin and ethylene). In addition, signals that provide positional information for assembly of the WL include apoplasmic hydrogen peroxide and cytosolic Ca2+ plumes. The former switches on, and specifies the intracellular site for WL construction, while the latter creates subdomains to direct assembly of WL invaginations. Less is known about macromolecule species and their spatial organization essential for WL assembly. Emerging evidence points to a dependency on methyl-esterified homogalacturonan accumulation, unique patterns of cellulose and callose deposition and spatial positioning of arabinogalactan proteins.
Collapse
Affiliation(s)
- Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
11
|
Anjam MS, Shah SJ, Matera C, Różańska E, Sobczak M, Siddique S, Grundler FMW. Host factors influence the sex of nematodes parasitizing roots of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:1160-1174. [PMID: 32103526 DOI: 10.1111/pce.13728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 05/23/2023]
Abstract
Plant-parasitic cyst nematodes induce hypermetabolic syncytial nurse cells in the roots of their host plants. Syncytia are their only food source. Cyst nematodes are sexually dimorphic, with their differentiation into male or female strongly influenced by host environmental conditions. Under favourable conditions with plenty of nutrients, more females develop, whereas mainly male nematodes develop under adverse conditions such as in resistant plants. Here, we developed and validated a method to predict the sex of beet cyst nematode (Heterodera schachtii) during the early stages of its parasitism in the host plant Arabidopsis thaliana. We collected root segments containing male-associated syncytia (MAS) or female-associated syncytia (FAS), isolated syncytial cells by laser microdissection, and performed a comparative transcriptome analysis. Genes belonging to categories of defence, nutrient deficiency, and nutrient starvation were over-represented in MAS as compared with FAS. Conversely, gene categories related to metabolism, modification, and biosynthesis of cell walls were over-represented in FAS. We used β-glucuronidase analysis, qRT-PCR, and loss-of-function mutants to characterize FAS- and MAS-specific candidate genes. Our results demonstrate that various plant-based factors, including immune response, nutrient availability, and structural modifications, influence the sexual fate of the cyst nematodes.
Collapse
Affiliation(s)
- Muhammad Shahzad Anjam
- Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, INRES, Bonn, Germany
| | - Syed Jehangir Shah
- Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, INRES, Bonn, Germany
| | - Christiane Matera
- Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, INRES, Bonn, Germany
| | - Elżbieta Różańska
- Department of Botany, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Miroslaw Sobczak
- Department of Botany, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Shahid Siddique
- Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, INRES, Bonn, Germany
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Florian M W Grundler
- Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, INRES, Bonn, Germany
| |
Collapse
|
12
|
Pogorelko GV, Juvale PS, Rutter WB, Hütten M, Maier TR, Hewezi T, Paulus J, van der Hoorn RA, Grundler FM, Siddique S, Lionetti V, Zabotina OA, Baum TJ. Re-targeting of a plant defense protease by a cyst nematode effector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1000-1014. [PMID: 30801789 DOI: 10.1111/tpj.14295] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 05/29/2023]
Abstract
Plants mount defense responses during pathogen attacks, and robust host defense suppression by pathogen effector proteins is essential for infection success. 4E02 is an effector of the sugar beet cyst nematode Heterodera schachtii. Arabidopsis thaliana lines expressing the effector-coding sequence showed altered expression levels of defense response genes, as well as higher susceptibility to both the biotroph H. schachtii and the necrotroph Botrytis cinerea, indicating a potential suppression of defenses by 4E02. Yeast two-hybrid analyses showed that 4E02 targets A. thaliana vacuolar papain-like cysteine protease (PLCP) 'Responsive to Dehydration 21A' (RD21A), which has been shown to function in the plant defense response. Activity-based protein profiling analyses documented that the in planta presence of 4E02 does not impede enzymatic activity of RD21A. Instead, 4E02 mediates a re-localization of this protease from the vacuole to the nucleus and cytoplasm, which is likely to prevent the protease from performing its defense function and at the same time, brings it in contact with novel substrates. Yeast two-hybrid analyses showed that RD21A interacts with multiple host proteins including enzymes involved in defense responses as well as carbohydrate metabolism. In support of a role in carbohydrate metabolism of RD21A after its effector-mediated re-localization, we observed cell wall compositional changes in 4E02 expressing A. thaliana lines. Collectively, our study shows that 4E02 removes RD21A from its defense-inducing pathway and repurposes this enzyme by targeting the active protease to different cell compartments.
Collapse
Affiliation(s)
- Gennady V Pogorelko
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Parijat S Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - William B Rutter
- USDA-ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Marion Hütten
- Rheinische Friedrich-Wilhelms-University Bonn, INRES - Molecular Phytomedicine, Bonn, Germany
| | - Thomas R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Judith Paulus
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | - Florian Mw Grundler
- Rheinische Friedrich-Wilhelms-University Bonn, INRES - Molecular Phytomedicine, Bonn, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University Bonn, INRES - Molecular Phytomedicine, Bonn, Germany
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie, Charles Darwin, Sapienza Università di Roma, 00185, Rome, Italy
| | - Olga A Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
13
|
Zhou K. Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Transduction. FRONTIERS IN PLANT SCIENCE 2019; 10:1022. [PMID: 31555307 PMCID: PMC6726743 DOI: 10.3389/fpls.2019.01022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Diverse proteins are found modified with glycosylphosphatidylinositol (GPI) at their carboxyl terminus in eukaryotes, which allows them to associate with membrane lipid bilayers and anchor on the external surface of the plasma membrane. GPI-anchored proteins (GPI-APs) play crucial roles in various processes, and more and more GPI-APs have been identified and studied. In this review, previous genomic and proteomic predictions of GPI-APs in Arabidopsis have been updated, which reveal their high abundance and complexity. From studies of individual GPI-APs in Arabidopsis, certain GPI-APs have been found associated with partner receptor-like kinases (RLKs), targeting RLKs to their subcellular localization and helping to recognize extracellular signaling polypeptide ligands. Interestingly, the association might also be involved in ligand selection. The analyses suggest that GPI-APs are essential and widely involved in signal transduction through association with RLKs.
Collapse
|
14
|
Labudda M, Różańska E, Czarnocka W, Sobczak M, Dzik JM. Systemic changes in photosynthesis and reactive oxygen species homeostasis in shoots of Arabidopsis thaliana infected with the beet cyst nematode Heterodera schachtii. MOLECULAR PLANT PATHOLOGY 2018; 19:1690-1704. [PMID: 29240311 PMCID: PMC6638082 DOI: 10.1111/mpp.12652] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 05/19/2023]
Abstract
Photosynthetic efficiency and redox homeostasis are important for plant physiological processes during regular development as well as defence responses. The second-stage juveniles of Heterodera schachtii induce syncytial feeding sites in host roots. To ascertain whether the development of syncytia alters photosynthesis and the metabolism of reactive oxygen species (ROS), chlorophyll a fluorescence measurements and antioxidant responses were studied in Arabidopsis thaliana shoots on the day of inoculation and at 3, 7 and 15 days post-inoculation (dpi). Nematode parasitism caused an accumulation of superoxide and hydrogen peroxide molecules in the shoots of infected plants at 3 dpi, probably as a result of the observed down-regulation of antioxidant enzymes. These changes were accompanied by an increase in RNA and lipid oxidation markers. The activities of antioxidant enzymes were found to be enhanced on infection at 7 and 15 dpi, and the content of anthocyanins was elevated from 3 dpi. The fluorescence parameter Rfd , defining plant vitality and the photosynthetic capacity of leaves, decreased by 11% only at 7 dpi, and non-photochemical quenching (NPQ), indicating the effectiveness of photoprotection mechanisms, was about 16% lower at 3 and 7 dpi. As a result of infection, the ultrastructure of chloroplasts was changed (large starch grains and plastoglobules), and more numerous and larger peroxisomes were observed in the mesophyll cells of leaves. We postulate that the joint action of antioxidant enzymes/molecules and photochemical mechanisms leading to the maintenance of photosynthetic efficiency promotes the fine-tuning of the infected plants to oxidative stress induced by parasitic cyst nematodes.
Collapse
Affiliation(s)
- Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and BiologyWarsaw University of Life Sciences‐SGGW02‐776 WarsawPoland
| | - Elżbieta Różańska
- Department of Botany, Faculty of Agriculture and BiologyWarsaw University of Life Sciences‐SGGW02‐776 WarsawPoland
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and BiologyWarsaw University of Life Sciences‐SGGW02‐776 WarsawPoland
| | - Mirosław Sobczak
- Department of Botany, Faculty of Agriculture and BiologyWarsaw University of Life Sciences‐SGGW02‐776 WarsawPoland
| | - Jolanta Maria Dzik
- Department of Biochemistry, Faculty of Agriculture and BiologyWarsaw University of Life Sciences‐SGGW02‐776 WarsawPoland
| |
Collapse
|
15
|
Koter MD, Święcicka M, Matuszkiewicz M, Pacak A, Derebecka N, Filipecki M. The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 268:18-29. [PMID: 29362080 DOI: 10.1016/j.plantsci.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 05/20/2023]
Abstract
Cyst-forming plant-parasitic nematodes are pests threatening many crops. By means of their secretions cyst nematodes induce the developmental and metabolic reprogramming of host cells that lead to the formation of a syncytium, which is the sole food source for growing nematodes. The in depth micro RNA (miRNA) dynamics in the syncytia induced by Globodera rostochiensis in tomato roots was studied. The miRNAomes were obtained from syncytia covering the early and intermediate developmental stages, and were the subject of differential expression analysis. The expression of 1235 miRNAs was monitored. The fold change (log2FC) ranged from -7.36 to 8.38, indicating that this transcriptome fraction was very variable. Moreover, we showed that the DE (differentially expressed) miRNAs do not fully overlap between the selected time points, suggesting infection stage specific regulation by miRNA. The correctness of RNA-seq expression profiling was confirmed by qRT-PCR (quantitative Real Time Polymerase Chain Reaction) for seven miRNA species. Down- and up-regulated miRNA species, including their isomiRs, were further used to identify their potential targets. Among them there are a large number of transcription factors linked to different aspects of plant development belonging to gene families, such as APETALA2 (AP2), SQUAMOSA (MADS-box), MYB, GRAS, and AUXIN RESPONSE FACTOR (ARF). The substantial portion of potential target genes belong to the NB-LRR and RLK (RECEPTOR-LIKE KINASE) families, indicating the involvement of miRNA mediated regulation in defense responses. We also collected the evidence for target cleavage in the case of 29 miRNAs using one of three alternative methods: 5' RACE (5' Rapid Amplification of cDNA Ends), a search of tasiRNA within our datasets, and the meta-analysis of tomato degradomes in the GEO (Gene Expression Omnibus) database. Eight target transcripts showed a negative correlation with their respective miRNAs at two or three time points. These results indicate a large regulatory potential for miRNAs in tuning the development and defense responses.
Collapse
Affiliation(s)
- Marek D Koter
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland.
| |
Collapse
|
16
|
Shah SJ, Anjam MS, Mendy B, Anwer MA, Habash SS, Lozano-Torres JL, Grundler FMW, Siddique S. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5949-5960. [PMID: 29053864 PMCID: PMC5854129 DOI: 10.1093/jxb/erx374] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/05/2017] [Indexed: 05/21/2023]
Abstract
When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant-nematode interactions remain unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of PGIP in plant resistance to cyst nematodes.
Collapse
Affiliation(s)
- Syed Jehangir Shah
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Muhammad Shahzad Anjam
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Badou Mendy
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Muhammad Arslan Anwer
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Samer S Habash
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | | | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES – Molecular Phytomedicine, Germany
- Correspondence:
| |
Collapse
|
17
|
Rayapuram N, Bigeard J, Alhoraibi H, Bonhomme L, Hesse AM, Vinh J, Hirt H, Pflieger D. Quantitative Phosphoproteomic Analysis Reveals Shared and Specific Targets of Arabidopsis Mitogen-Activated Protein Kinases (MAPKs) MPK3, MPK4, and MPK6. Mol Cell Proteomics 2017; 17:61-80. [PMID: 29167316 DOI: 10.1074/mcp.ra117.000135] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4, and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. Although some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3, mpk4, and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment. Partially overlapping substrates were retrieved for all three MAPKs, showing target specificity to one, two or all three MAPKs in different biological processes. More precisely, our results illustrate the fact that the entity to be defined as a specific or a shared substrate for MAPKs is not a phosphoprotein but a particular (S/T)P phosphorylation site in a given protein. One hundred fifty-two peptides were identified to be differentially phosphorylated in response to MAMP treatment and/or when compared between genotypes and 70 of them could be classified as putative MAPK targets. Biochemical analysis of a number of putative MAPK substrates by phosphorylation and interaction assays confirmed the global phosphoproteome approach. Our study also expands the set of MAPK substrates to involve other protein kinases, including calcium-dependent (CDPK) and sugar nonfermenting (SnRK) protein kinases.
Collapse
Affiliation(s)
- Naganand Rayapuram
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jean Bigeard
- §Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.,¶Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Hanna Alhoraibi
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ludovic Bonhomme
- ‖UMR INRA/UBP Génétique, Diversité et Écophysiologie des Céréales, Université de Clermont-Ferrand, 63039 Clermont-Ferrand, France
| | - Anne-Marie Hesse
- **CEA, BIG-BGE-EDyP, U1038 Inserm/CEA/UGA, 38000 Grenoble, France
| | - Joëlle Vinh
- ‡‡ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex05, France
| | - Heribert Hirt
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| | - Delphine Pflieger
- **CEA, BIG-BGE-EDyP, U1038 Inserm/CEA/UGA, 38000 Grenoble, France.,§§CNRS, LAMBE UMR 8587, Université d'Evry Val d'Essonne, Evry, France
| |
Collapse
|
18
|
Cui J, Peng H, Huang W, Liu S, Wu D, Kong L, He W, Peng D. Phenotype and Cellular Response of Wheat Lines Carrying Cre Genes to Heterodera avenae Pathotype Ha91. PLANT DISEASE 2017; 101:1885-1894. [PMID: 30677322 DOI: 10.1094/pdis-03-17-0404-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The cereal cyst nematode (CCN, Heterodera avenae), a major limiting factor for wheat production worldwide, is widespread in most wheat-growing regions in China. Accordingly, screening and characterization of resistant (R) wheat sources against H. avenae are very important. In this study, we screened 51 wheat lines, collected from the International Wheat and Maize Improvement Center (CIMMYT), carrying various Cre genes (Cre1, Cre2, Cre3, Cre5, Cre7, Cre8, CreR, and Pt). From that screen, we identified one immune (M) cultivar (with no adult females produced) and five resistant cultivars (with fewer than five females) to H. avenae pathotype Ha91. The Cre3 gene conferred the most effective resistance against H. avenae pathotype Ha91 in both field and greenhouse assays. Conversely, the Cre1 and CreR genes conferred the poorest effective resistance. Using Pluronic F-127 gel and a staining assay, juvenile nematodes invading wheat roots were observed, and nematode development was analyzed. Compared with R and M roots, those of the susceptible (S) wheat cultivar Wenmai19 were more attractive to H. avenae second-stage juveniles (J2s). We observed the retardation of nematode development in R cultivars and tiny white female cysts protruding from the R cultivar VP1620. Nematodes in M roots either disintegrated or remained J2s or third-stage juveniles (J3s) and failed to complete their life cycle. Molting was also suppressed or delayed in R and M genotypes. For both S and R cultivars, syncytia were characterized by cell wall perforations and dense cytoplasm in hypertrophied syncytium component cells. Syncytial size increased gradually with nematode development in S cultivars. Moreover, an incompatibility reaction occurred in M wheat roots: the syncytium was disorganized, exhibiting disintegration and condensed nuclei. These sources of genetic resistance against CCN can potentially be planted in severely infested fields to reduce economic loss or can be used for introgression in breeding.
Collapse
Affiliation(s)
- Jiangkuan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Duqing Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; and Centre for Plant Sciences, University of Leeds, LS2 9JT, U.K
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenting He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
19
|
Ali MA, Azeem F, Li H, Bohlmann H. Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1699. [PMID: 29046680 PMCID: PMC5632807 DOI: 10.3389/fpls.2017.01699] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/15/2017] [Indexed: 05/03/2023]
Abstract
Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS) and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.
Collapse
Affiliation(s)
- Muhammad A. Ali
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad A. Ali ;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hongjie Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
20
|
Wieczorek K, Elashry A, Quentin M, Grundler FMW, Favery B, Seifert GJ, Bohlmann H. A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root-knot nematodes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:901-12. [PMID: 24905398 DOI: 10.1094/mpmi-01-14-0005-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Pectin in the primary plant cell wall is thought to be responsible for its porosity, charge density, and microfibril spacing and is the main component of the middle lamella. Plant-parasitic nematodes secrete cell wall-degrading enzymes that macerate the plant tissue, facilitating the penetration and migration within the roots. In sedentary endoparasitic nematodes, these enzymes are released only during the migration of infective juveniles through the root. Later, nematodes manipulate the expression of host plant genes, including various cell wall enzymes, in order to induce specific feeding sites. In this study, we investigated expression of two Arabidopsis pectate lyase-like genes (PLL), PLL18 (At3g27400) and PLL19 (At4g24780), together with pectic epitopes with different degrees of methylesterification in both syncytia induced by the cyst nematode Heterodera schachtii and giant cells induced by the root-knot nematode Meloidogyne incognita. We confirmed upregulation of PLL18 and PLL19 in both types of feeding sites with quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ RT-PCR. Furthermore, the functional analysis of mutants demonstrated the important role of both PLL genes in the development and maintenance of syncytia but not giant cells. Our results show that both enzymes play distinct roles in different infected root tissues as well as during parasitism of different nematodes.
Collapse
|
21
|
Siddique S, Endres S, Sobczak M, Radakovic ZS, Fragner L, Grundler FMW, Weckwerth W, Tenhaken R, Bohlmann H. Myo-inositol oxygenase is important for the removal of excess myo-inositol from syncytia induced by Heterodera schachtii in Arabidopsis roots. THE NEW PHYTOLOGIST 2014; 201:476-485. [PMID: 24117492 PMCID: PMC4285123 DOI: 10.1111/nph.12535] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/21/2013] [Indexed: 05/23/2023]
Abstract
The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Here, we studied the effect of a quadruple myo-inositol oxygenase mutant on nematode development. We performed metabolite profiling of syncytia induced in roots of the myo-inositol oxygenase quadruple mutant. The role of galactinol in syncytia was studied using Arabidopsis lines with elevated galactinol levels and by supplying galactinol to wild-type seedlings. The quadruple myo-inositol oxygenase mutant showed a significant reduction in susceptibility to H. schachtii, and syncytia had elevated myo-inositol and galactinol levels and an elevated expression level of the antimicrobial thionin gene Thi2.1. This reduction in susceptibility could also be achieved by exogenous application of galactinol to wild-type seedlings. The primary function of myo-inositol oxygenase for syncytium development is probably not the production of UDP-glucuronic acid as a precursor for cell wall polysaccharides, but the reduction of myo-inositol levels and thereby a reduction in the galactinol level to avoid the induction of defence-related genes.
Collapse
Affiliation(s)
- Shahid Siddique
- Division of Plant Protection, Department of Crop
Sciences, University of Natural Resources and Life SciencesA-1019, Vienna, Austria
| | - Stefanie Endres
- Plant Physiology, University of SalzburgHellbrunnerstr. 34, A-5020, Salzburg, Austria
| | - Miroslaw Sobczak
- Department of Botany, Warsaw University of Life Sciences
(SGGW)02-787, Warsaw, Poland
| | - Zoran S Radakovic
- INRES, Department of Molecular Phytomedicine, University
of BonnKarlrobert–Kreiten–Str. 13, 53115, Bonn, Germany
| | - Lena Fragner
- Department of Molecular Systems Biology, University of
ViennaA-1090, Vienna, Austria
| | - Florian M W Grundler
- INRES, Department of Molecular Phytomedicine, University
of BonnKarlrobert–Kreiten–Str. 13, 53115, Bonn, Germany
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology, University of
ViennaA-1090, Vienna, Austria
| | - Raimund Tenhaken
- Plant Physiology, University of SalzburgHellbrunnerstr. 34, A-5020, Salzburg, Austria
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop
Sciences, University of Natural Resources and Life SciencesA-1019, Vienna, Austria
| |
Collapse
|
22
|
Cabrera J, Barcala M, Fenoll C, Escobar C. Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabidopsis focused on auxin and ethylene signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:107. [PMID: 24715895 PMCID: PMC3970009 DOI: 10.3389/fpls.2014.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/06/2014] [Indexed: 05/20/2023]
Abstract
Phyto-endoparasitic nematodes induce specialized feeding cells (NFCs) in their hosts, termed syncytia and giant cells (GCs) for cyst and root-knot nematodes (RKNs), respectively. They differ in their ontogeny and global transcriptional signatures, but both develop cell wall ingrowths (CIs) to facilitate high rates of apoplastic/symplastic solute exchange showing transfer cell (TC) characteristics. Regulatory signals for TC differentiation are not still well-known. The two-component signaling system (2CS) and reactive oxygen species are proposed as inductors of TC identity, while, 2CSs-related genes are not major contributors to differential gene expression in early developing NFCs. Transcriptomic and functional studies have assigned a major role to auxin and ethylene as regulatory signals on early developing TCs. Genes encoding proteins with similar functions expressed in both early developing NFCs and typical TCs are putatively involved in upstream or downstream responses mediated by auxin and ethylene. Yet, no function directly associated to the TCs identity of NFCs, such as the formation of CIs is described for most of them. Thus, we reviewed similarities between transcriptional changes observed during the early stages of NFCs formation and those described during differentiation of TCs to hypothesize about putative signals leading to TC-like differentiation of NFCs with particular emphasis on auxin an ethylene.
Collapse
Affiliation(s)
| | | | | | - Carolina Escobar
- *Correspondence: Carolina Escobar, Laboratory of Plant Physiology, Department of Environmental Sciences, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida de Carlos III s/n, 45071 Toledo, Spain e-mail:
| |
Collapse
|
23
|
Bohlmann H, Sobczak M. The plant cell wall in the feeding sites of cyst nematodes. FRONTIERS IN PLANT SCIENCE 2014; 5:89. [PMID: 24678316 PMCID: PMC3958752 DOI: 10.3389/fpls.2014.00089] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/24/2014] [Indexed: 05/19/2023]
Abstract
Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium.
Collapse
Affiliation(s)
- Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life SciencesVienna, Austria
- *Correspondence: Holger Bohlmann, Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, UFT Tulln, Konrad Lorenz Str. 24, Vienna, 3430 Tulln, Austria e-mail:
| | - Miroslaw Sobczak
- Department of Botany, Warsaw University of Life SciencesWarsaw, Poland
| |
Collapse
|
24
|
Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, Davis EL. Nematode effector proteins: an emerging paradigm of parasitism. THE NEW PHYTOLOGIST 2013; 199:879-894. [PMID: 23691972 DOI: 10.1111/nph.12323] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/05/2013] [Indexed: 05/18/2023]
Abstract
Phytonematodes use a stylet and secreted effectors to modify host cells and ingest nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode effectors, with a particular focus on proteinaceous stylet-secreted effectors of sedentary endoparasitic phytonematodes, for which a wealth of information has surfaced in the past 10 yr. We provide an update on the effector repertoires of several of the most economically important genera of phytonematodes and discuss current approaches to dissecting their function. Lastly, we highlight the latest breakthroughs in effector discovery that promise to shed new light on effector diversity and function across the phylum Nematoda.
Collapse
Affiliation(s)
- Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Xiaohong Wang
- USDA-ARS, Robert W. Holley Center for Agriculture and Health and Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Axel A Elling
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Martin Wubben
- USDA-ARS, Crop Science Research Laboratory, Genetics and Precision Agriculture Research Unit and Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Eric L Davis
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
25
|
Ali MA, Plattner S, Radakovic Z, Wieczorek K, Elashry A, Grundler FMW, Ammelburg M, Siddique S, Bohlmann H. An Arabidopsis ATPase gene involved in nematode-induced syncytium development and abiotic stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:852-66. [PMID: 23480402 PMCID: PMC3712482 DOI: 10.1111/tpj.12170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/08/2013] [Accepted: 03/04/2013] [Indexed: 05/08/2023]
Abstract
The beet cyst nematode Heterodera schachtii induces syncytia in the roots of Arabidopsis thaliana, which are its only nutrient source. One gene, At1g64110, that is strongly up-regulated in syncytia as shown by RT-PCR, quantitative RT-PCR, in situ RT-PCR and promoter::GUS lines, encodes an AAA+-type ATPase. Expression of two related genes in syncytia, At4g28000 and At5g52882, was not detected or not different from control root segments. Using amiRNA lines and T-DNA mutants, we show that At1g64110 is important for syncytium and nematode development. At1g64110 was also inducible by wounding, jasmonic acid, salicylic acid, heat and cold, as well as drought, sodium chloride, abscisic acid and mannitol, indicating involvement of this gene in abiotic stress responses. We confirmed this using two T-DNA mutants that were more sensitive to abscisic acid and sodium chloride during seed germination and root growth. These mutants also developed significantly smaller roots in response to abscisic acid and sodium chloride. An in silico analysis showed that ATPase At1g64110 (and also At4g28000 and At5g52882) belong to the 'meiotic clade' of AAA proteins that includes proteins such as Vps4, katanin, spastin and MSP1.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
| | - Stephan Plattner
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
| | - Zoran Radakovic
- Department of Molecular Phytomedicine, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of BonnBonn, 53115, Germany
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
| | - Abdelnaser Elashry
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
- Department of Molecular Phytomedicine, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of BonnBonn, 53115, Germany
| | - Florian MW Grundler
- Department of Molecular Phytomedicine, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of BonnBonn, 53115, Germany
| | - Moritz Ammelburg
- Department 1, Protein Evolution, Max Planck Institute for Developmental BiologySpemannstraße 35, Tübingen, 72076, Germany
| | - Shahid Siddique
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
- Department of Molecular Phytomedicine, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of BonnBonn, 53115, Germany
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Universitäts- und Forschungszentrum TullnKonrad Lorenz Straße 24, Tulln, 3430, Austria
- *For correspondence (e-mail )
| |
Collapse
|