1
|
Martins B, Bister A, Dohmen RGJ, Gouveia MA, Hueber R, Melzener L, Messmer T, Papadopoulos J, Pimenta J, Raina D, Schaeken L, Shirley S, Bouchet BP, Flack JE. Advances and Challenges in Cell Biology for Cultured Meat. Annu Rev Anim Biosci 2024; 12:345-368. [PMID: 37963400 DOI: 10.1146/annurev-animal-021022-055132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs. Nevertheless, these technologies remain at a nascent stage, and myriad challenges remain, spanning the entire bioprocess. From a cell biological perspective, these include the identification of suitable starting cell types, tuning of proliferation and differentiation conditions, and optimization of cell-biomaterial interactions to create nutritious, enticing foods. Here, we discuss the key advances and outstanding challenges in cultured meat, with a particular focus on cell biology, and argue that solving the remaining bottlenecks in a cost-effective, scalable fashion will require coordinated, concerted scientific efforts. Success will also require solutions to nonscientific challenges, including regulatory approval, consumer acceptance, and market feasibility. However, if these can be overcome, cultured meat technologies can revolutionize our approach to food.
Collapse
Affiliation(s)
- Beatriz Martins
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Arthur Bister
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Maria Ana Gouveia
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lea Melzener
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joanna Papadopoulos
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Joana Pimenta
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Dhruv Raina
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lieke Schaeken
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Sara Shirley
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Benjamin P Bouchet
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands;
| | - Joshua E Flack
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| |
Collapse
|
2
|
Kayser A, Dittmann S, van Impel A, Šarić T, Schulze-Bahr E. Patient-derived stem cell line UKMi005-A (hiPSC) harboring a non-synonymous heterozygous KCNJ5 gene variant. Stem Cell Res 2023; 73:103223. [PMID: 37890333 DOI: 10.1016/j.scr.2023.103223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
A published heterozygous gain-of-function variant in the KCNJ5 gene (p.Trp101Cys) encoding the G-protein-activated inward-rectifier potassium channel 4 subunit of the IK,ACh channel is associated with human sinus node dysfunction (SND). Differentiated hiPSC-cardiomyocytes may serve as an in-vitro model to study SND and to develop pharmacological rescue strategies. Therefore, a mutant hiPSCs line from patient-derived peripheral blood mononuclear cells (PBMCs) were reprogrammed with CytoTune-iPS 2.0 Sendai Reprogramming Kit. The hiPSC line (KCNJ5 K8) showed a regular karyotype, a typical hiPSC morphology, expressed pluripotency-associated markers in immunofluorescence stainings and RT-qPCR analysis. The ability for differentiation into all three germ layers was shown.
Collapse
Affiliation(s)
- Anne Kayser
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Sven Dittmann
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany.
| | - Andreas van Impel
- Institute of Cardiovascular Organogenesis and Regeneration, WWU Muenster, Muenster, Germany
| | - Tomo Šarić
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Physiology and Pathophysiology, Institute of Neurophysiology, Cologne, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany; Member of the European Reference Network for rare, low prevalence and/or complex diseases of the heart: ERN GUARD-Heart, The Netherlands
| |
Collapse
|
3
|
Schwarzová B, Stüdemann T, Sönmez M, Rössinger J, Pan B, Eschenhagen T, Stenzig J, Wiegert JS, Christ T, Weinberger F. Modulating cardiac physiology in engineered heart tissue with the bidirectional optogenetic tool BiPOLES. Pflugers Arch 2023; 475:1463-1477. [PMID: 37863976 PMCID: PMC10730631 DOI: 10.1007/s00424-023-02869-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.
Collapse
Affiliation(s)
- Barbora Schwarzová
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Tim Stüdemann
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Muhammed Sönmez
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Bangfen Pan
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany.
| |
Collapse
|
4
|
Kayser A, Dittmann S, Šarić T, Mearini G, Verkerk AO, Schulze-Bahr E. The W101C KCNJ5 Mutation Induces Slower Pacing by Constitutively Active GIRK Channels in hiPSC-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:15290. [PMID: 37894977 PMCID: PMC10607318 DOI: 10.3390/ijms242015290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Mutations in the KCNJ5 gene, encoding one of the major subunits of cardiac G-protein-gated inwardly rectifying K+ (GIRK) channels, have been recently linked to inherited forms of sinus node dysfunction. Here, the pathogenic mechanism of the W101C KCNJ5 mutation underlying sinus bradycardia in a patient-derived cellular disease model of sinus node dysfunction (SND) was investigated. A human-induced pluripotent stem cell (hiPSCs) line of a mutation carrier was generated, and CRISPR/Cas9-based gene targeting was used to correct the familial mutation as a control line. Both cell lines were further differentiated into cardiomyocytes (hiPSC-CMs) that robustly expressed GIRK channels which underly the acetylcholine-regulated K+ current (IK,ACh). hiPSC-CMs with the W101C KCNJ5 mutation (hiPSCW101C-CM) had a constitutively active IK,ACh under baseline conditions; the application of carbachol was able to increase IK,ACh, further indicating that not all available cardiac GIRK channels were open at baseline. Additionally, hiPSCW101C-CM had a more negative maximal diastolic potential (MDP) and a slower pacing frequency confirming the bradycardic phenotype. Of note, the blockade of the constitutively active GIRK channel with XAF-1407 rescued the phenotype. These results provide further mechanistic insights and may pave the way for the treatment of SND patients with GIRK channel dysfunction.
Collapse
Affiliation(s)
- Anne Kayser
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| | - Sven Dittmann
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Arie O. Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, 48149 Münster, Germany (S.D.); (E.S.-B.)
| |
Collapse
|
5
|
Morris S, Molina-Riquelme I, Barrientos G, Bravo F, Aedo G, Gómez W, Lagos D, Verdejo H, Peischard S, Seebohm G, Psathaki OE, Eisner V, Busch KB. Inner mitochondrial membrane structure and fusion dynamics are altered in senescent human iPSC-derived and primary rat cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148949. [PMID: 36493857 DOI: 10.1016/j.bbabio.2022.148949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Dysfunction of the aging heart is a major cause of death in the human population. Amongst other tasks, mitochondria are pivotal to supply the working heart with ATP. The mitochondrial inner membrane (IMM) ultrastructure is tailored to meet these demands and to provide nano-compartments for specific tasks. Thus, function and morphology are closely coupled. Senescent cardiomyocytes from the mouse heart display alterations of the inner mitochondrial membrane. To study the relation between inner mitochondrial membrane architecture, dynamics and function is hardly possible in living organisms. Here, we present two cardiomyocyte senescence cell models that allow in cellular studies of mitochondrial performance. We show that doxorubicin treatment transforms human iPSC-derived cardiomyocytes and rat neonatal cardiomyocytes in an aged phenotype. The treated cardiomyocytes display double-strand breaks in the nDNA, have β-galactosidase activity, possess enlarged nuclei, and show p21 upregulation. Most importantly, they also display a compromised inner mitochondrial structure. This prompted us to test whether the dynamics of the inner membrane was also altered. We found that the exchange of IMM components after organelle fusion was faster in doxorubicin-treated cells than in control cells, with no change in mitochondrial fusion dynamics at the meso-scale. Such altered IMM morphology and dynamics may have important implications for local OXPHOS protein organization, exchange of damaged components, and eventually the mitochondrial bioenergetics function of the aged cardiomyocyte.
Collapse
Affiliation(s)
- Silke Morris
- Institute of Integrative Cell Biology and Physiology, Schlossplatz 5, Faculty of Biology, University of Muenster, 48149 Muenster, North-Rhine-Westphalia, Germany
| | - Isidora Molina-Riquelme
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Gonzalo Barrientos
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Francisco Bravo
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Geraldine Aedo
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Wileidy Gómez
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Daniel Lagos
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Hugo Verdejo
- Facultad de Medicina, División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile
| | - Stefan Peischard
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, North-Rhine-Westphalia, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, North-Rhine-Westphalia, Germany
| | - Olympia Ekaterini Psathaki
- Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, 49076 Osnabrück, Lower Saxony, Germany
| | - Verónica Eisner
- Departmento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O´Higgins 340, Santiago de Chile, Chile.
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, Schlossplatz 5, Faculty of Biology, University of Muenster, 48149 Muenster, North-Rhine-Westphalia, Germany.
| |
Collapse
|
6
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
Peischard S, Möller M, Disse P, Ho HT, Verkerk AO, Strutz-Seebohm N, Budde T, Meuth SG, Schweizer PA, Morris S, Mücher L, Eisner V, Thomas D, Klingel K, Busch K, Seebohm G. Virus-induced inhibition of cardiac pacemaker channel HCN4 triggers bradycardia in human-induced stem cell system. Cell Mol Life Sci 2022; 79:440. [PMID: 35864219 PMCID: PMC9304080 DOI: 10.1007/s00018-022-04435-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022]
Abstract
The enterovirus Coxsackievirus B3 (CVB3) is known to be a major source for the development of cardiac dysfunctions like viral myocarditis (VMC) and dilatative cardiomyopathy (DCM), but also results in bradycardia and fatal cardiac arrest. Besides clinical reports on bradycardia and sudden cardiac death, very little is known about the influence of CVB3 on the activity of human cardiac pacemaker cells. Here, we address this issue using the first human induced pluripotent stem cell (hiPSC)-derived pacemaker-like cells, in which the expression of a transgenic non-infectious variant of CVB3 can be controlled dose- and time-dependently. We found that CVB3 drastically changed hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) distribution and function in hiPSC-derived pacemaker-like tissue. In addition, using HCN4 cell expression systems, we found that HCN4 currents were decreased with altered voltage dependency of activation when CVB3 was expressed. Increased autophagosome formation and autophagosomal HCN4 insertion was observed in hiPSC-derived pacemaker-like cells under CVB3 expression as well. Individual effects of single, non-structural CVB3 proteins were analyzed and demonstrated that CVB3 proteins 2C and 3A had the most robust effect on HCN4 activity. Treatment of cells with the Rab7 inhibitor CID 106770 or the CVB3-3A inhibitor GW5074 led to the recovery of the cytoplasmatic HCN4 accumulation into a healthy appearing phenotype, indicating that malfunctioning Rab7-directed autophagosome transport is involved in the disturbed, cytoplasmatic HCN4 accumulation in CVB3-expressing human pacemaker-like cells. Summarizing, the enterovirus CVB3 inhibits human cardiac pacemaker function by reducing the pacemaker channel plasma membrane density, an effect that can be corrected by pharmacological intervention of endocytic vesicle trafficking.
Collapse
Affiliation(s)
- Stefan Peischard
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Melina Möller
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Huyen Tran Ho
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105, Amsterdam, The Netherlands
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Thomas Budde
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Institute of Physiology I, Westfälische-Wilhems Universität Münster, 48149, Münster, Germany
| | - Sven G Meuth
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Silke Morris
- Institute for Integrative Cell Biology and Physiology, Department of Biology, University of Münster, 48149, Münster, Germany
| | - Lena Mücher
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Verónica Eisner
- Department of Cellular and Molecular Biology, School of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital of Tuebingen, 72076, Tübingen, Germany
| | - Karin Busch
- Institute for Integrative Cell Biology and Physiology, Department of Biology, University of Münster, 48149, Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany. .,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
8
|
Schade D, Drowley L, Wang QD, Plowright AT, Greber B. Phenotypic screen identifies FOXO inhibitor to counteract maturation and promote expansion of human iPS cell-derived cardiomyocytes. Bioorg Med Chem 2022; 65:116782. [PMID: 35512484 DOI: 10.1016/j.bmc.2022.116782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/15/2022]
Abstract
Achieving pharmacological control over cardiomyocyte proliferation represents a prime goal in therapeutic cardiovascular research. Here, we identify a novel chemical tool compound for the expansion of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. The forkhead box O (FOXO) inhibitor AS1842856 was identified as a significant hit from an unbiased proliferation screen in early, immature hiPSC- cardiomyocytes (eCMs). The mitogenic effects of AS1842856 turned out to be robust, dose-dependent, sustained, and reversible. eCM numbers increased >30-fold as induced by AS1842856 over three passages. Phenotypically as well as by marker gene expression, the compound interestingly appeared to counteract cellular maturation both in immature hiPSC-CMs as well as in more advanced ones. Thus, FOXO inhibitor AS1842856 presents a novel proliferation inducer for the chemically defined, xeno-free expansion of hiPSC-derived CMs, while its de-differentiation effect might as well bear potential in regenerative medicine.
Collapse
Affiliation(s)
- Dennis Schade
- Department of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany; Partner Site Kiel, DZHK, German Center for Cardiovascular Research, 24105 Kiel, Germany; Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Lauren Drowley
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alleyn T Plowright
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany.
| |
Collapse
|
9
|
Generating iPSCs with a High-Efficient, Non-Invasive Method-An Improved Way to Cultivate Keratinocytes from Plucked Hair for Reprogramming. Cells 2022; 11:cells11121955. [PMID: 35741085 PMCID: PMC9222083 DOI: 10.3390/cells11121955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Various somatic cell types are suitable for induced pluripotency reprogramming, such as dermal fibroblasts, mesenchymal stem cells or hair keratinocytes. Harvesting primary epithelial keratinocytes from plucked human hair follicles (HFs) represents an easy and non-invasive alternative to a fibroblast culture from invasive skin biopsies. Nevertheless, to facilitate and simplify the process, which can be divided into three main steps (collecting, culturing and reprogramming), the whole procedure of generating hair keratinocytes has to be revised and upgraded continuously. In this study, we address advancements and approaches which improve the generation and handling of primary HF-derived keratinocytes tremendously, e.g., for iPSCs reprogramming. We not only evaluated different serum- and animal-origin-free media, but also supplements and coating solutions for an enhanced protocol. Here, we demonstrate the importance of speed and accuracy in the collecting step, as well as the choice of the right transportation medium. Our results lead to a more defined approach that further increases the reliability of downstream experiments and inter-laboratory reproducibility. These improvements will make it possible to obtain keratinocytes from plucked human hair for the generation of donor-specific iPSCs easier and more efficient than ever before, whilst preserving a non-invasive capability.
Collapse
|
10
|
Flechner M, Schaller J, Stahl M, Achberger K, Gerike S, Hannappel Y, Fu J, Jaeger M, Hellweg T, Duschl C, Uhlig K. Adhesion, proliferation and detachment of various cell types on thermoresponsive microgel coatings. Biotechnol Bioeng 2022; 119:1728-1739. [PMID: 35355251 DOI: 10.1002/bit.28095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
Cutting-edge biomedical applications require increasingly complex and fastidious cell systems, for example, various classes of primary or stem cells. Their cultivation, however, still differs little from 30 years ago. This especially applies to the use of indiscriminative proteases for non-specific cell detachment. A far more gentle alternative changes the adhesive properties of the cell culture substrates through coatings based on thermoresponsive polymers. Such polymers mediate cell adhesion at 3 7 ∘ C, but become repulsive upon a cell-compatible temperature drop to e.g. 3 2 ∘ C. While the high functionality of this method has already been well proven, it must also be easy and reproducible to apply. Here, we emphasize the potential of standard cell culture materials coated by spraying with thermoresponsive microgels for routine cultivation and beyond. On these surfaces, we successfully cultivated and detached various cell types, including induced pluripotent stem cells (iPS-cells) and cells in serum-free culture on. In addition, we evaluated the compatibility of the microgel-sprayed surfaces with adhesion-promoting proteins, which are essential for e.g. stem cells or neuronal cells. Finally, we demonstrate that the microgel surfaces do not impair proliferation and show their long-term stability. We conclude that for cell detachment, thermoresponsive cell culture substrates can fully substitute proteases, like trypsin, by employing a comparably straightforward protocol that is compatible with many industrial processing lines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marie Flechner
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| | - Julia Schaller
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| | - Maike Stahl
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| | - Kevin Achberger
- Eberhard Karls University Tuebingen, Institute of Neuroanatomy & Developmental Biology INDB, 72074, Tuebingen, Germany
| | - Susanna Gerike
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| | - Yvonne Hannappel
- Department of Physical and Biophysical Chemistry (PC III), Bielefeld University, 33615, Bielefeld, Germany
| | - Jianan Fu
- PAN-Biotech GmbH, 94501, Aidenbach, Germany
| | - Magnus Jaeger
- German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry (PC III), Bielefeld University, 33615, Bielefeld, Germany
| | - Claus Duschl
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany
| | - Katja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476, Potsdam, Germany.,German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| |
Collapse
|
11
|
The Human Induced Pluripotent Stem Cell Test as an Alternative Method for Embryotoxicity Testing. Int J Mol Sci 2022; 23:ijms23063295. [PMID: 35328717 PMCID: PMC8950674 DOI: 10.3390/ijms23063295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The evaluation of substances for their potency to induce embryotoxicity is controlled by safety regulations. Test guidelines for reproductive and developmental toxicity rely mainly on animal studies, which make up the majority of animal usage in regulatory toxicology. Therefore, there is an urgent need for alternative in vitro methods to follow the 3R principles. To improve human safety, cell models based on human cells are of great interest to overcome species differences. Here, human induced pluripotent stem cells (hiPSCs) are an ideal cell source as they largely recapitulate embryonic stem cells without bearing ethical concerns and they are able to differentiate into most cell types of the human body. Here, we set up and characterized a fetal bovine serum (FBS)-free hiPSC-based in vitro test method, called the human induced pluripotent stem cell test (hiPS Test), to evaluate the embryotoxic potential of substances. After 10 days in culture, hiPSCs develop into beating cardiomyocytes. As terminal endpoint evaluations, cell viability, qPCR analyses as well as beating frequency and area of beating cardiomyocytes by video analyses are measured. The embryotoxic positive and non-embryotoxic negative controls, 5-Fluorouracil (5-FU) and Penicillin G (PenG), respectively, were correctly assessed in the hiPS Test. More compounds need to be screened in the future for defining the assay’s applicability domain, which will inform us of the suitability of the hiPS Test for detecting adverse effects of substances on embryonic development.
Collapse
|
12
|
Lee Y, Lee HJ, Ham S, Jeong D, Lee M, Lee U, Lee M, Kwon T, Ko K. Plant-derived human recombinant growth factors and serum albumin maintain stemness of human-induced pluripotent stem cells. Cell Biol Int 2022; 46:139-147. [PMID: 34694043 PMCID: PMC9298993 DOI: 10.1002/cbin.11715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 11/23/2022]
Abstract
Stem cells are an important therapeutic source for recovery and regeneration, as their ability of self-renewal and differentiation offers an unlimited supply of highly specialized cells for therapeutic transplantation. Growth factors and serum are essential for maintaining the characteristics of stem cells in culture and for inducing differentiation. Because growth factors are produced mainly in bacterial (Escherichia coli) or animal cells, the use of such growth factors raises safety concerns that need to be resolved for the commercialization of stem cell therapeutics. To overcome this problem, studies on proteins produced in plants have been conducted. Here, we describe the functions of plant-derived fibroblast growth factor 2 (FGF2) and human serum albumin in the maintenance and differentiation of human-induced pluripotent stem cells (hiPSCs). Plant-derived FGF2 and human epidermal growth factor EGF were able to differentiate hiPSCs into neural stem cells (NSCs). These NSCs could differentiate into neuronal and glial cells. Our results imply that culturing stem cells in animal-free culture medium, which is composed of plant-derived proteins, would facilitate stem cell application research, for example, for cell therapy, by reducing contamination risk.
Collapse
Affiliation(s)
- Yukyeong Lee
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
| | - Hye Jeong Lee
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
| | - Seokbeom Ham
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
| | - Dahee Jeong
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
| | - Minseong Lee
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
| | - Uiil Lee
- Xcell TherapeuticsSeoulRepublic of Korea
| | | | - Tae‐Ho Kwon
- Natural Bio‐Materials Inc.IksanRepublic of Korea
| | - Kinarm Ko
- Department of Stem Cell BiologyKonkuk University School of MedicineSeoulRepublic of Korea
- Research, Institute of Medical ScienceKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
13
|
Badone B, Ronchi C, Lodola F, Knaust AE, Hansen A, Eschenhagen T, Zaza A. Characterization of the PLN p.Arg14del Mutation in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2021; 22:13500. [PMID: 34948294 PMCID: PMC8709382 DOI: 10.3390/ijms222413500] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/19/2023] Open
Abstract
Phospholamban (PLN) is the natural inhibitor of the sarco/endoplasmic reticulum Ca2+ ATP-ase (SERCA2a). Heterozygous PLN p.Arg14del mutation is associated with an arrhythmogenic dilated cardiomyopathy (DCM), whose pathogenesis has been attributed to SERCA2a "superinhibition". AIM To test in cardiomyocytes (hiPSC-CMs) derived from a PLN p.Arg14del carrier whether (1) Ca2+ dynamics and protein localization were compatible with SERCA2a superinhibition and (2) if functional abnormalities could be reverted by pharmacological SERCA2a activation (PST3093). METHODS Ca2+ transients (CaT) were recorded at 36 °C in hiPSC-CMs clusters during field stimulation. SERCA2a and PLN where immunolabeled in single hiPSC-CMs. Mutant preparations (MUT) were compared to isogenic wild-type ones (WT), obtained by mutation reversal. RESULTS WT and MUT differed for the following properties: (1) CaT time to peak (tpeak) and half-time of CaT decay were shorter in MUT; (2) several CaT profiles were identified in WT, "hyperdynamic" ones largely prevailed in MUT; (3) whereas tpeak rate-dependently declined in WT, it was shorter and rate-independent in MUT; (4) diastolic Ca2+ rate-dependently accumulated in WT, but not in MUT. When applied to WT, PST3093 turned all the above properties to resemble those of MUT; when applied to MUT, PST3093 had a smaller or negligible effect. Preferential perinuclear SERCA2a-PLN localization was lost in MUT hiPSC-CMs. CONCLUSIONS Functional data converge to argue for PLN p.Arg14del incompetence in inhibiting SERCA2a in the tested case, thus weakening the rationale for therapeutic SERCA2a activation. Mechanisms alternative to SERCA2a superinhibition should be considered in the pathogenesis of DCM, possibly including dysregulation of Ca2+-dependent transcription.
Collapse
Affiliation(s)
- Beatrice Badone
- Laboratory of Cardiac Cellular Physiology, Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milan, Italy; (B.B.); (C.R.); (F.L.)
| | - Carlotta Ronchi
- Laboratory of Cardiac Cellular Physiology, Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milan, Italy; (B.B.); (C.R.); (F.L.)
| | - Francesco Lodola
- Laboratory of Cardiac Cellular Physiology, Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milan, Italy; (B.B.); (C.R.); (F.L.)
| | - Anika E. Knaust
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.E.K.); (A.H.); (T.E.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20249 Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.E.K.); (A.H.); (T.E.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20249 Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.E.K.); (A.H.); (T.E.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20249 Hamburg, Germany
| | - Antonio Zaza
- Laboratory of Cardiac Cellular Physiology, Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milan, Italy; (B.B.); (C.R.); (F.L.)
| |
Collapse
|
14
|
Radke MH, Badillo-Lisakowski V, Britto-Borges T, Kubli DA, Jüttner R, Parakkat P, Carballo JL, Hüttemeister J, Liss M, Hansen A, Dieterich C, Mullick AE, Gotthardt M. Therapeutic inhibition of RBM20 improves diastolic function in a murine heart failure model and human engineered heart tissue. Sci Transl Med 2021; 13:eabe8952. [PMID: 34851694 DOI: 10.1126/scitranslmed.abe8952] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael H Radke
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany
| | - Victor Badillo-Lisakowski
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany.,Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | | | - René Jüttner
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Pragati Parakkat
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Jacobo Lopez Carballo
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Judith Hüttemeister
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany
| | - Martin Liss
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | | | - Michael Gotthardt
- Department of Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785 Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| |
Collapse
|
15
|
Achberger K, Cipriano M, Düchs MJ, Schön C, Michelfelder S, Stierstorfer B, Lamla T, Kauschke SG, Chuchuy J, Roosz J, Mesch L, Cora V, Pars S, Pashkovskaia N, Corti S, Hartmann SM, Kleger A, Kreuz S, Maier U, Liebau S, Loskill P. Human stem cell-based retina on chip as new translational model for validation of AAV retinal gene therapy vectors. Stem Cell Reports 2021; 16:2242-2256. [PMID: 34525384 PMCID: PMC8452599 DOI: 10.1016/j.stemcr.2021.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
Gene therapies using adeno-associated viruses (AAVs) are among the most promising strategies to treat or even cure hereditary and acquired retinal diseases. However, the development of new efficient AAV vectors is slow and costly, largely because of the lack of suitable non-clinical models. By faithfully recreating structure and function of human tissues, human induced pluripotent stem cell (iPSC)-derived retinal organoids could become an essential part of the test cascade addressing translational aspects. Organ-on-chip (OoC) technology further provides the capability to recapitulate microphysiological tissue environments as well as a precise control over structural and temporal parameters. By employing our recently developed retina on chip that merges organoid and OoC technology, we analyzed the efficacy, kinetics, and cell tropism of seven first- and second-generation AAV vectors. The presented data demonstrate the potential of iPSC-based OoC models as the next generation of screening platforms for future gene therapeutic studies.
Collapse
Affiliation(s)
- Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Madalena Cipriano
- Department of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthias J Düchs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Christian Schön
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | - Thorsten Lamla
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Stefan G Kauschke
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Johanna Chuchuy
- Department of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Roosz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Lena Mesch
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Virginia Cora
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Selin Pars
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Natalia Pashkovskaia
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Serena Corti
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sophia-Marie Hartmann
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Sebastian Kreuz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Udo Maier
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Department of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Shibamiya A, Schulze E, Krauß D, Augustin C, Reinsch M, Schulze ML, Steuck S, Mearini G, Mannhardt I, Schulze T, Klampe B, Werner T, Saleem U, Knaust A, Laufer SD, Neuber C, Lemme M, Behrens CS, Loos M, Weinberger F, Fuchs S, Eschenhagen T, Hansen A, Ulmer BM. Cell Banking of hiPSCs: A Practical Guide to Cryopreservation and Quality Control in Basic Research. ACTA ACUST UNITED AC 2021; 55:e127. [PMID: 32956561 DOI: 10.1002/cpsc.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reproducibility of stem cell research relies on the constant availability of quality-controlled cells. As the quality of human induced pluripotent stem cells (hiPSCs) can deteriorate in the course of a few passages, cell banking is key to achieve consistent results and low batch-to-batch variation. Here, we provide a cost-efficient route to generate master and working cell banks for basic research projects. In addition, we describe minimal protocols for quality assurance including tests for sterility, viability, pluripotency, and genetic integrity. © 2020 The Authors. Basic Protocol 1: Expansion of hiPSCs Basic Protocol 2: Cell banking of hiPSCs Support Protocol 1: Pluripotency assessment by flow cytometry Support Protocol 2: Thawing control: Viability and sterility Support Protocol 3: Potency, viral clearance, and pluripotency: Spontaneous differentiation and qRT-PCR Support Protocol 4: Identity: Short tandem repeat analysis.
Collapse
Affiliation(s)
- Aya Shibamiya
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elisabeth Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dana Krauß
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Current address: Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Christa Augustin
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Reinsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Mirja Loreen Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simone Steuck
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Ingra Mannhardt
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tessa Werner
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Umber Saleem
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Anika Knaust
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Christiane Neuber
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marta Lemme
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Charlotta Sophie Behrens
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Malte Loos
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Bärbel Maria Ulmer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
17
|
Kargapolova Y, Rehimi R, Kayserili H, Brühl J, Sofiadis K, Zirkel A, Palikyras S, Mizi A, Li Y, Yigit G, Hoischen A, Frank S, Russ N, Trautwein J, van Bon B, Gilissen C, Laugsch M, Gusmao EG, Josipovic N, Altmüller J, Nürnberg P, Längst G, Kaiser FJ, Watrin E, Brunner H, Rada-Iglesias A, Kurian L, Wollnik B, Bouazoune K, Papantonis A. Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology. Nat Commun 2021; 12:3014. [PMID: 34021162 PMCID: PMC8140133 DOI: 10.1038/s41467-021-23327-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.
Collapse
Affiliation(s)
- Yulia Kargapolova
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Heart Center, University Hospital Cologne, Cologne, Germany.
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Age-associated Disorders (CECAD), University of Cologne, Cologne, Germany
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine, Istanbul, Turkey
| | - Joanna Brühl
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | | | - Anne Zirkel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Spiros Palikyras
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefan Frank
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Bayer AG, Wuppertal, Germany
| | - Nicole Russ
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Jonathan Trautwein
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magdalena Laugsch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Eduardo Gade Gusmao
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Gernot Längst
- Biochemistry Centre Regensburg (BRC), University of Regensburg, Regensburg, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Erwan Watrin
- Research Institute of Genetics and Development, Faculté de Médecine, Rennes, France
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Age-associated Disorders (CECAD), University of Cologne, Cologne, Germany
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria, Santander, Spain
| | - Leo Kurian
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Karim Bouazoune
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany.
| | - Argyris Papantonis
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
18
|
Renner H, Grabos M, Becker KJ, Kagermeier TE, Wu J, Otto M, Peischard S, Zeuschner D, TsyTsyura Y, Disse P, Klingauf J, Leidel SA, Seebohm G, Schöler HR, Bruder JM. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. eLife 2020; 9:52904. [PMID: 33138918 PMCID: PMC7609049 DOI: 10.7554/elife.52904] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) culture systems have fueled hopes to bring about the next generation of more physiologically relevant high-throughput screens (HTS). However, current protocols yield either complex but highly heterogeneous aggregates (‘organoids’) or 3D structures with less physiological relevance (‘spheroids’). Here, we present a scalable, HTS-compatible workflow for the automated generation, maintenance, and optical analysis of human midbrain organoids in standard 96-well-plates. The resulting organoids possess a highly homogeneous morphology, size, global gene expression, cellular composition, and structure. They present significant features of the human midbrain and display spontaneous aggregate-wide synchronized neural activity. By automating the entire workflow from generation to analysis, we enhance the intra- and inter-batch reproducibility as demonstrated via RNA sequencing and quantitative whole mount high-content imaging. This allows assessing drug effects at the single-cell level within a complex 3D cell environment in a fully automated HTS workflow. In 1907, the American zoologist Ross Granville Harrison developed the first technique to artificially grow animal cells outside the body in a liquid medium. Cells are still grown in much the same way in modern laboratories: a single layer of cells is placed in a warm incubator with nutrient-rich broth. These cell layers are often used to test new drugs, but they cannot recapitulate the complexity of a real organ made from multiple cell types within a living, breathing human body. Growing three-dimensional miniature organs or 'organoids' that behave in a similar way to real organs is the next step towards creating better platforms for drug screening, but there are several difficulties inherent to this process. For one thing, it is hard to recreate the multitude of cell types that make up an organ. For another, the cells that do grow often fail to connect and communicate with each other in biologically realistic ways. It is also tough to grow a large number of organoids that all behave in the same way, making it hard to know whether a particular drug works or whether it is just being tested on a 'good' organoid. Renner et al. have been able to overcome these issues by using robotic technology to create thousands of identical, mid-brain organoids from human cells in the lab. The robots perform a series of precisely controlled tasks – including dispensing the initial cells into wells, feeding organoids as they grow and testing them at different stages of development. These mini-brains, which are the size of the head of a pin, mimic the part of the brain where Parkinson's disease first manifests. They can be used to test new drugs for Parkinson's, and to better understand the biology of the brain. Perhaps more importantly, other types of organoids can be created using the same technique to model diseases that affect other areas of the brain, or other organs altogether. For example, Renner et al. also generated forebrain organoids using an automated approach for both generation and analysis. This research, which shows that organoids can be grown and tested in a fully automated, reproducible and scalable way, creates a platform to quickly, cheaply and easily test thousands of drugs for Parkinson's and other difficult-to-treat diseases in a human setting. This approach has the potential to reduce research waste by increasing the chances that a drug that works in the lab will also ultimately work in a patient; and reduce animal experiments, as drugs that do not work in human tissues will not proceed to animal testing.
Collapse
Affiliation(s)
- Henrik Renner
- Department for Cell and Developmental Biology, Max Planck Institute for molecular Biomedicine, Münster, Germany
| | - Martha Grabos
- Department for Cell and Developmental Biology, Max Planck Institute for molecular Biomedicine, Münster, Germany
| | - Katharina J Becker
- Department for Cell and Developmental Biology, Max Planck Institute for molecular Biomedicine, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Theresa E Kagermeier
- Department for Cell and Developmental Biology, Max Planck Institute for molecular Biomedicine, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jie Wu
- Max Planck Research Group for RNA Biology, Max Planck Institute for molecular Biomedicine, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Mandy Otto
- Department for Cell and Developmental Biology, Max Planck Institute for molecular Biomedicine, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Stefan Peischard
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for molecular Biomedicine, Münster, Germany
| | - Yaroslav TsyTsyura
- Cellular Biophysics Group, Institute for Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Paul Disse
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Jürgen Klingauf
- Cellular Biophysics Group, Institute for Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for molecular Biomedicine, Münster, Germany.,Research Group for RNA Biochemistry, Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Hans R Schöler
- Department for Cell and Developmental Biology, Max Planck Institute for molecular Biomedicine, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jan M Bruder
- Department for Cell and Developmental Biology, Max Planck Institute for molecular Biomedicine, Münster, Germany
| |
Collapse
|
19
|
The first versatile human iPSC-based model of ectopic virus induction allows new insights in RNA-virus disease. Sci Rep 2020; 10:16804. [PMID: 33033381 PMCID: PMC7546621 DOI: 10.1038/s41598-020-72966-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
A detailed description of pathophysiological effects that viruses exert on their host is still challenging. For the first time, we report a highly controllable viral expression model based on an iPS-cell line from a healthy human donor. The established viral model system enables a dose-dependent and highly localized RNA-virus expression in a fully controllable environment, giving rise for new applications for the scientific community.
Collapse
|
20
|
Pasquini G, Cora V, Swiersy A, Achberger K, Antkowiak L, Müller B, Wimmer T, Fraschka SAK, Casadei N, Ueffing M, Liebau S, Stieger K, Busskamp V. Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in vivo Genome Editing. Int J Mol Sci 2020; 21:E1380. [PMID: 32085662 PMCID: PMC7073035 DOI: 10.3390/ijms21041380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in more than 200 retina-specific genes have been associated with inherited retinal diseases. Genome editing represents a promising emerging field in the treatment of monogenic disorders, as it aims to correct disease-causing mutations within the genome. Genome editing relies on highly specific endonucleases and the capacity of the cells to repair double-strand breaks (DSBs). As DSB pathways are cell-cycle dependent, their activity in postmitotic retinal neurons, with a focus on photoreceptors, needs to be assessed in order to develop therapeutic in vivo genome editing. Three DSB-repair pathways are found in mammalian cells: Non-homologous end joining (NHEJ); microhomology-mediated end joining (MMEJ); and homology-directed repair (HDR). While NHEJ can be used to knock out mutant alleles in dominant disorders, HDR and MMEJ are better suited for precise genome editing, or for replacing entire mutation hotspots in genomic regions. Here, we analyzed transcriptomic in vivo and in vitro data and revealed that HDR is indeed downregulated in postmitotic neurons, whereas MMEJ and NHEJ are active. Using single-cell RNA sequencing analysis, we characterized the dynamics of DSB repair pathways in the transition from dividing cells to postmitotic retinal cells. Time-course bulk RNA-seq data confirmed DSB repair gene expression in both in vivo and in vitro samples. Transcriptomic DSB repair pathway profiles are very similar in adult human, macaque, and mouse retinas, but not in ground squirrel retinas. Moreover, human-induced pluripotent stem-cell-derived neurons and retinal organoids can serve as well suited in vitro testbeds for developing genomic engineering approaches in photoreceptors. Our study provides additional support for designing precise in vivo genome-editing approaches via MMEJ, which is active in mature photoreceptors.
Collapse
Affiliation(s)
- Giovanni Pasquini
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
| | - Virginia Cora
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Anka Swiersy
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Lena Antkowiak
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Brigitte Müller
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Tobias Wimmer
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Sabine Anne-Kristin Fraschka
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- DFG NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- DFG NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Marius Ueffing
- Department of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Volker Busskamp
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
- Universitäts-Augenklinik Bonn, University of Bonn, Dept. of Ophthalmology, 53127 Bonn, Germany
| |
Collapse
|
21
|
Kuo HH, Gao X, DeKeyser JM, Fetterman KA, Pinheiro EA, Weddle CJ, Fonoudi H, Orman MV, Romero-Tejeda M, Jouni M, Blancard M, Magdy T, Epting CL, George AL, Burridge PW. Negligible-Cost and Weekend-Free Chemically Defined Human iPSC Culture. Stem Cell Reports 2020; 14:256-270. [PMID: 31928950 PMCID: PMC7013200 DOI: 10.1016/j.stemcr.2019.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) culture has become routine, yet the cost of pluripotent cell media, frequent medium changes, and the reproducibility of differentiation have remained restrictive. Here, we describe the formulation of a hiPSC culture medium (B8) as a result of the exhaustive optimization of medium constituents and concentrations, establishing the necessity and relative contributions of each component to the pluripotent state and cell proliferation. The reagents in B8 represent only 3% of the costs of commercial media, made possible primarily by the in-lab generation of three E. coli-expressed, codon-optimized recombinant proteins: fibroblast growth factor 2, transforming growth factor β3, and neuregulin 1. We demonstrate the derivation and culture of 34 hiPSC lines in B8 as well as the maintenance of pluripotency long term (over 100 passages). This formula also allows a weekend-free feeding schedule without sacrificing capacity for differentiation.
Collapse
Affiliation(s)
- Hui-Hsuan Kuo
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaozhi Gao
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily A Pinheiro
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carly J Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael V Orman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marisol Romero-Tejeda
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Conrad L Epting
- Departments of Pediatrics and Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
22
|
Liu W, Deng C, Godoy-Parejo C, Zhang Y, Chen G. Developments in cell culture systems for human pluripotent stem cells. World J Stem Cells 2019; 11:968-981. [PMID: 31768223 PMCID: PMC6851012 DOI: 10.4252/wjsc.v11.i11.968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are important resources for cell-based therapies and pharmaceutical applications. In order to realize the potential of hPSCs, it is critical to develop suitable technologies required for specific applications. Most hPSC technologies depend on cell culture, and are critically influenced by culture medium composition, extracellular matrices, handling methods, and culture platforms. This review summarizes the major technological advances in hPSC culture, and highlights the opportunities and challenges in future therapeutic applications.
Collapse
Affiliation(s)
- Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
23
|
Drowley L, McPheat J, Nordqvist A, Peel S, Karlsson U, Martinsson S, Müllers E, Dellsén A, Knight S, Barrett I, Sánchez J, Magnusson B, Greber B, Wang QD, Plowright AT. Discovery of retinoic acid receptor agonists as proliferators of cardiac progenitor cells through a phenotypic screening approach. Stem Cells Transl Med 2019; 9:47-60. [PMID: 31508905 PMCID: PMC6954720 DOI: 10.1002/sctm.19-0069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of small molecules with the potential to selectively proliferate cardiac progenitor cells (CPCs) will aid our understanding of the signaling pathways and mechanisms involved and could ultimately provide tools for regenerative therapies for the treatment of post‐MI cardiac dysfunction. We have used an in vitro human induced pluripotent stem cell‐derived CPC model to screen a 10,000‐compound library containing molecules representing different target classes and compounds reported to modulate the phenotype of stem or primary cells. The primary readout of this phenotypic screen was proliferation as measured by nuclear count. We identified retinoic acid receptor (RAR) agonists as potent proliferators of CPCs. The CPCs retained their progenitor phenotype following proliferation and the identified RAR agonists did not proliferate human cardiac fibroblasts, the major cell type in the heart. In addition, the RAR agonists were able to proliferate an independent source of CPCs, HuES6. The RAR agonists had a time‐of‐differentiation‐dependent effect on the HuES6‐derived CPCs. At 4 days of differentiation, treatment with retinoic acid induced differentiation of the CPCs to atrial cells. However, after 5 days of differentiation treatment with RAR agonists led to an inhibition of terminal differentiation to cardiomyocytes and enhanced the proliferation of the cells. RAR agonists, at least transiently, enhance the proliferation of human CPCs, at the expense of terminal cardiac differentiation. How this mechanism translates in vivo to activate endogenous CPCs and whether enhancing proliferation of these rare progenitor cells is sufficient to enhance cardiac repair remains to be investigated.
Collapse
Affiliation(s)
- Lauren Drowley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Jane McPheat
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anneli Nordqvist
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | | | - Ulla Karlsson
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sofia Martinsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Erik Müllers
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Anita Dellsén
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Ian Barrett
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - José Sánchez
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Qing-Dong Wang
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Alleyn T Plowright
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| |
Collapse
|
24
|
Achberger K, Probst C, Haderspeck J, Bolz S, Rogal J, Chuchuy J, Nikolova M, Cora V, Antkowiak L, Haq W, Shen N, Schenke-Layland K, Ueffing M, Liebau S, Loskill P. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. eLife 2019; 8:46188. [PMID: 31451149 PMCID: PMC6777939 DOI: 10.7554/elife.46188] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
The devastating effects and incurable nature of hereditary and sporadic retinal diseases such as Stargardt disease, age-related macular degeneration or retinitis pigmentosa urgently require the development of new therapeutic strategies. Additionally, a high prevalence of retinal toxicities is becoming more and more an issue of novel targeted therapeutic agents. Ophthalmologic drug development, to date, largely relies on animal models, which often do not provide results that are translatable to human patients. Hence, the establishment of sophisticated human tissue-based in vitro models is of upmost importance. The discovery of self-forming retinal organoids (ROs) derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) is a promising approach to model the complex stratified retinal tissue. Yet, ROs lack vascularization and cannot recapitulate the important physiological interactions of matured photoreceptors and the retinal pigment epithelium (RPE). In this study, we present the retina-on-a-chip (RoC), a novel microphysiological model of the human retina integrating more than seven different essential retinal cell types derived from hiPSCs. It provides vasculature-like perfusion and enables, for the first time, the recapitulation of the interaction of mature photoreceptor segments with RPE in vitro. We show that this interaction enhances the formation of outer segment-like structures and the establishment of in vivo-like physiological processes such as outer segment phagocytosis and calcium dynamics. In addition, we demonstrate the applicability of the RoC for drug testing, by reproducing the retinopathic side-effects of the anti-malaria drug chloroquine and the antibiotic gentamicin. The developed hiPSC-based RoC has the potential to promote drug development and provide new insights into the underlying pathology of retinal diseases.
Collapse
Affiliation(s)
- Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Christopher Probst
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Jasmin Haderspeck
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sylvia Bolz
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Rogal
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Johanna Chuchuy
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marina Nikolova
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Virginia Cora
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lena Antkowiak
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Wadood Haq
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nian Shen
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany.,Natural and Medical Sciences Institute (NMI), Reutlingen, Germany.,Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, Los Angeles, United States
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Loskill
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Friese A, Ursu A, Hochheimer A, Schöler HR, Waldmann H, Bruder JM. The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery. Cell Chem Biol 2019; 26:1050-1066. [PMID: 31231030 DOI: 10.1016/j.chembiol.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/04/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Recent advances in induced pluripotent stem cell technologies and phenotypic screening shape the future of bioactive small-molecule discovery. In this review we analyze the impact of small-molecule phenotypic screens on drug discovery as well as on the investigation of human development and disease biology. We further examine the role of 3D spheroid/organoid structures, microfluidic systems, and miniaturized on-a-chip systems for future discovery strategies. In highlighting representative examples, we analyze how recent achievements can translate into future therapies. Finally, we discuss remaining challenges that need to be overcome for the adaptation of the next generation of screening approaches.
Collapse
Affiliation(s)
- Alexandra Friese
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Andrei Ursu
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Andreas Hochheimer
- ISAR Bioscience GmbH, Institute for Stem Cell & Applied Regenerative Medicine Research, 82152 Planegg, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstrasse 3, 48149 Münster, Germany.
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | - Jan M Bruder
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| |
Collapse
|
26
|
Cora V, Haderspeck J, Antkowiak L, Mattheus U, Neckel PH, Mack AF, Bolz S, Ueffing M, Pashkovskaia N, Achberger K, Liebau S. A Cleared View on Retinal Organoids. Cells 2019; 8:E391. [PMID: 31035373 PMCID: PMC6562974 DOI: 10.3390/cells8050391] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived organoids mimicking tissues and organs in vitro have advanced medical research, as they opened up new possibilities for in-depth basic research on human organ development as well as providing a human in vitro model for personalized therapeutic approaches. hiPSC-derived retinal organoids have proven to be of great value for modeling the human retina featuring a very similar cellular composition, layering, and functionality. The technically challenging imaging of three-dimensional structures such as retinal organoids has, however, raised the need for robust whole-organoid imaging techniques. To improve imaging of retinal organoids we optimized a passive clearing technique (PACT), which enables high-resolution visualization of fragile intra-tissue structures. Using cleared retinal organoids, we could greatly enhance the antibody labeling efficiency and depth of imaging at high resolution, thereby improving the three-dimensional microscopy output. In that course, we were able to identify the spatial morphological shape and organization of, e.g., photoreceptor cells and bipolar cell layers. Moreover, we used the synaptic protein CtBP2/Ribeye to visualize the interconnection points of photoreceptor and bipolar cells forming the retinal-specific ribbon synapses.
Collapse
Affiliation(s)
- Virginia Cora
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany.
| | - Jasmin Haderspeck
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany.
| | - Lena Antkowiak
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany.
| | - Ulrich Mattheus
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, 72074 Tübingen, Germany.
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, 72074 Tübingen, Germany.
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, 72074 Tübingen, Germany.
| | - Sylvia Bolz
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany.
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany.
- Center for Neurosensory Systems (ZFN), Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Natalia Pashkovskaia
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany.
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany.
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany.
- Center for Neurosensory Systems (ZFN), Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
27
|
Ahuja G, Bartsch D, Yao W, Geissen S, Frank S, Aguirre A, Russ N, Messling JE, Dodzian J, Lagerborg KA, Vargas NE, Muck JS, Brodesser S, Baldus S, Sachinidis A, Hescheler J, Dieterich C, Trifunovic A, Papantonis A, Petrascheck M, Klinke A, Jain M, Valenzano DR, Kurian L. Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart. EMBO Rep 2019; 20:embr.201847407. [PMID: 30886000 DOI: 10.15252/embr.201847407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
Cardiac dysfunctions dramatically increase with age. Revealing a currently unknown contributor to cardiac ageing, we report the age-dependent, cardiac-specific accumulation of the lysosphingolipid sphinganine (dihydrosphingosine, DHS) as an evolutionarily conserved hallmark of the aged vertebrate heart. Mechanistically, the DHS-derivative sphinganine-1-phosphate (DHS1P) directly inhibits HDAC1, causing an aberrant elevation in histone acetylation and transcription levels, leading to DNA damage. Accordingly, the pharmacological interventions, preventing (i) the accumulation of DHS1P using SPHK2 inhibitors, (ii) the aberrant increase in histone acetylation using histone acetyltransferase (HAT) inhibitors, (iii) the DHS1P-dependent increase in transcription using an RNA polymerase II inhibitor, block DHS-induced DNA damage in human cardiomyocytes. Importantly, an increase in DHS levels in the hearts of healthy young adult mice leads to an impairment in cardiac functionality indicated by a significant reduction in left ventricular fractional shortening and ejection fraction, mimicking the functional deterioration of aged hearts. These molecular and functional defects can be partially prevented in vivo using HAT inhibitors. Together, we report an evolutionarily conserved mechanism by which increased DHS levels drive the decline in cardiac health.
Collapse
Affiliation(s)
- Gaurav Ahuja
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Deniz Bartsch
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Wenjie Yao
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Simon Geissen
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Stefan Frank
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Aitor Aguirre
- Departments of Medicine & Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Nicole Russ
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Jan-Erik Messling
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Joanna Dodzian
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Kim A Lagerborg
- Departments of Medicine & Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Natalia Emilse Vargas
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Joscha Sergej Muck
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Agapios Sachinidis
- Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Juergen Hescheler
- Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Christoph Dieterich
- Department of Internal Medicine III, University Hospital Heidelberg & German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Aleksandra Trifunovic
- CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Argyris Papantonis
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Anna Klinke
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Mohit Jain
- Departments of Medicine & Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of Ageing, Cologne, Germany .,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| | - Leo Kurian
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany .,Institute for Neurophysiology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany.,CECAD; Cologne Cluster of Excellence in Cellular Stress Responses in Ageing-associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Liang W, Gasparyan L, AlQarawi W, Davis DR. Disease modeling of cardiac arrhythmias using human induced pluripotent stem cells. Expert Opin Biol Ther 2019; 19:313-333. [PMID: 30682895 DOI: 10.1080/14712598.2019.1575359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Inherited arrhythmias are an uncommon, but malignant family of cardiac diseases that result from genetic abnormalities in the ion channels and/or structural proteins within cardiomyocytes. Given the inherent differences between species and the limited reproducibility of in vitro heterologous cell models, progress in understanding the mechanisms underlying these malignant diseases has always languished far behind the clinical science and need. The ability to study human induced pluripotent stem cells (iPSCs) derived cardiomyocytes promises to change this paradigm as patient cells have the potential to become testing platforms for disease phenotyping or therapeutic discovery. AREAS COVERED This review will outline methods developed to genetically reprogram adult cells into iPSCs, differentiate iPSCs into ex vivo models of adult cardiac tissue and iPSCs-based progress in exploring the mechanisms underlying pro-arrhythmic disease phenotypes. EXPERT OPINION Despite being discovered less than 15 years ago, several studies have successfully leveraged iPSCs-derived cardiomyocytes to study malignant arrhythmogenic diseases. These models promise to increase our understanding of the pathophysiology underlying these complex diseases and may identify personalized approaches to treatment.
Collapse
Affiliation(s)
- Wenbin Liang
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada.,b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , Canada
| | - Lilit Gasparyan
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada
| | - Wael AlQarawi
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada
| | - Darryl R Davis
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada.,b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
29
|
Brenière-Letuffe D, Domke-Shibamiya A, Hansen A, Eschenhagen T, Fehse B, Riecken K, Stenzig J. Clonal dynamics studied in cultured induced pluripotent stem cells reveal major growth imbalances within a few weeks. Stem Cell Res Ther 2018; 9:165. [PMID: 29914569 PMCID: PMC6006556 DOI: 10.1186/s13287-018-0893-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Background Human induced pluripotent stem (iPS) cells have revolutionised research and spark hopes for future tissue replacement therapies. To obtain high cell numbers, iPS cells can be expanded indefinitely. However, as long-term expansion can compromise cell integrity and quality, we set out to assess potential reduction of clonal diversity by inherent growth imbalances. Methods Using red, green, blue marking as a lentiviral multi-colour clonal cell tracking technology, we marked three different iPS cell lines as well as three other cell lines, assigning a unique fluorescent colour to each cell at one point in culture. Subsequently, we followed the sub-clonal distribution over time by flow cytometry and fluorescence microscopy analysis in regular intervals. Results In three human iPS cell lines as well as primary human fibroblasts and two widely used human cell lines as controls (K562 and HEK 293 T), we observed a marked reduction in sub-clonal diversity over time of culture (weeks). After 38 passages, all iPS cultures consisted of less than 10 residual clones. Karyotype and function, the latter assessed by cardiomyocyte differentiation and tissue engineering, did not reveal obvious differences. Conclusions Our results argue for a quick selection of sub-clones with a growth advantage and flag a normally invisible and potentially undesired behaviour of cultured iPS cells, especially when using long-term cultured iPS cells for experiments or even in-vivo applications. Electronic supplementary material The online version of this article (10.1186/s13287-018-0893-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Brenière-Letuffe
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Aya Domke-Shibamiya
- Core Facility Stem Cells, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
30
|
Cevallos RR, Rodríguez-Martínez G, Gazarian K. Wnt/β-Catenin/TCF Pathway Is a Phase-Dependent Promoter of Colony Formation and Mesendodermal Differentiation During Human Somatic Cell Reprogramming. Stem Cells 2018; 36:683-695. [DOI: 10.1002/stem.2788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Somatic cell reprogramming is a biphasic phenomenon that goes through a mesenchymal-to-epithelial transition, called initiation phase, followed by a maturation phase wherein reprogramming cells acquire pluripotency. Here, we show that these phases display a differential response to Wnt signaling activation. Wnt signaling increases colony formation by promoting cellular epithelialization during the initiation phase in a TCF7-dependent manner. However, during maturation phase, it is also responsible for inducing mesendodermal differentiation, which is negatively regulated by TCF7L1. Thus, Wnt signaling inhibition or TCF7L1 overexpression downregulates mesendodermal gene expression without perturbing pluripotency. Together, our results demonstrate that a phase-specific modulation of Wnt signaling leads to an improved reprogramming efficiency in terms of colony output and pluripotency acquisition. This work provides new insights into the cell context-dependent roles of Wnt signaling during human somatic cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Raúl Cevallos
- Biomedical Research Institute, Universidad Nacional Autónoma de México, México City, México
| | - Griselda Rodríguez-Martínez
- Biomedical Research Institute, Universidad Nacional Autónoma de México, México City, México
- Cellular Physiology Institute, Universidad Nacional Autónoma de México, México City, México
| | - Karlen Gazarian
- Biomedical Research Institute, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
31
|
Im JH, Hwang SI, Kim JW, Park SJ, Kang KR, You JS, Kim KP, Moon SH, Cha HJ, Chung HM, Schöler HR, Hyun JK, Han DW. Inhibition of BET selectively eliminates undifferentiated pluripotent stem cells. Sci Bull (Beijing) 2018; 63:477-487. [PMID: 36658808 DOI: 10.1016/j.scib.2018.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/06/2018] [Accepted: 02/27/2018] [Indexed: 01/21/2023]
Abstract
Embryonic stem cells (ESCs) maintain their cellular identity through the systematic regulation of master transcription factors and chromatin remodeling complexes. Recent work has shown that the unusually large-scale enhancers-namely super-enhancers (SEs), on which BRD4, a member of the bromodomain and extraterminal domain (BET) family is highly enriched-could regulate pluripotency-related transcription factors. Moreover, inhibition of BRD4 binding on SEs has been shown to induce the differentiation of ESCs. However, the underlying mechanism of BRD4 inhibition-mediated stem cell differentiation remains elusive. Here we show that both mouse and human ESCs lose their capacity for self-renewal upon treatment with JQ1, a selective inhibitor of BET family including BRD4, with rapid suppression of pluripotency-associated genes. Notably, a high concentration of JQ1 could selectively eliminate ESCs via apoptosis, without affecting the functionality of differentiated somatic cells from ESCs, suggesting that inhibition of BET may have a beneficial effect on the development of pluripotent stem cell-based cell therapy.
Collapse
Affiliation(s)
- Jung Hyun Im
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seon In Hwang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong-Wan Kim
- Department of Nanobiomedical Science, Dankook University Graduate School, Cheonan 330714, Republic of Korea
| | - Soon-Jung Park
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu-Ree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kee Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Sung-Hwan Moon
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyuk-Jin Cha
- Department of Life Sciences, College of Natural Sciences, Sogang University, Seoul 04107, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hans R Schöler
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Jung Keun Hyun
- Department of Nanobiomedical Science, Dankook University Graduate School, Cheonan 330714, Republic of Korea
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea; KU Open-Innovation Center, Institute of Biomedical Science & Technology, Konkuk University, Seoul 05029, Republic of Korea; Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
32
|
Horváth A, Lemoine MD, Löser A, Mannhardt I, Flenner F, Uzun AU, Neuber C, Breckwoldt K, Hansen A, Girdauskas E, Reichenspurner H, Willems S, Jost N, Wettwer E, Eschenhagen T, Christ T. Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes. Stem Cell Reports 2018; 10:822-833. [PMID: 29429959 PMCID: PMC5918194 DOI: 10.1016/j.stemcr.2018.01.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (IK1). Here, IK1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. IK1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively. IK1 density in EHT-CMs from the commercial line was 2-fold smaller than in the proprietary line. RMP in EHT of both lines was similar to RA and LV. Repolarization fraction and IK,ACh response discriminated best between RA and LV and indicated predominantly ventricular phenotype in hiPSC-CMs/EHT. The data indicate that IK1 is not necessarily low in hiPSC-CMs, and technical issues may underlie low RMP in hiPSC-CMs.
Collapse
Affiliation(s)
- András Horváth
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6721 Szeged, Hungary
| | - Marc D Lemoine
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Department of Cardiology-Electrophysiology, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Alexandra Löser
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ahmet Umur Uzun
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Christiane Neuber
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6721 Szeged, Hungary
| | - Erich Wettwer
- Institute of Pharmacology, University Duisburg-Essen, 45122 Essen, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
33
|
Sierra RA, Hoverter NP, Ramirez RN, Vuong LM, Mortazavi A, Merrill BJ, Waterman ML, Donovan PJ. TCF7L1 suppresses primitive streak gene expression to support human embryonic stem cell pluripotency. Development 2018; 145:dev.161075. [PMID: 29361574 DOI: 10.1242/dev.161075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
Human embryonic stem cells (hESCs) are exquisitely sensitive to WNT ligands, which rapidly cause differentiation. Therefore, hESC self-renewal requires robust mechanisms to keep the cells in a WNT inactive but responsive state. How they achieve this is largely unknown. We explored the role of transcriptional regulators of WNT signaling, the TCF/LEFs. As in mouse ESCs, TCF7L1 is the predominant family member expressed in hESCs. Genome-wide, it binds a gene cohort involved in primitive streak formation at gastrulation, including NODAL, BMP4 and WNT3 Comparing TCF7L1-bound sites with those bound by the WNT signaling effector β-catenin indicates that TCF7L1 acts largely on the WNT signaling pathway. TCF7L1 overlaps less with the pluripotency regulators OCT4 and NANOG than in mouse ESCs. Gain- and loss-of-function studies indicate that TCF7L1 suppresses gene cohorts expressed in the primitive streak. Interestingly, we find that BMP4, another driver of hESC differentiation, downregulates TCF7L1, providing a mechanism of BMP and WNT pathway intersection. Together, our studies indicate that TCF7L1 plays a major role in maintaining hESC pluripotency, which has implications for human development during gastrulation.
Collapse
Affiliation(s)
- Robert A Sierra
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Nathan P Hoverter
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ricardo N Ramirez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Linh M Vuong
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Peter J Donovan
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA .,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
34
|
Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES. Nat Commun 2018; 9:440. [PMID: 29382828 PMCID: PMC5789885 DOI: 10.1038/s41467-017-02812-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Master cell fate determinants are thought to induce specific cell lineages in gastrulation by orchestrating entire gene programs. The T-box transcription factor EOMES (eomesodermin) is crucially required for the development of the heart—yet it is equally important for endoderm specification suggesting that it may act in a context-dependent manner. Here, we define an unrecognized interplay between EOMES and the WNT signaling pathway in controlling cardiac induction by using loss and gain-of-function approaches in human embryonic stem cells. Dose-dependent EOMES induction alone can fully replace a cocktail of signaling molecules otherwise essential for the specification of cardiogenic mesoderm. Highly efficient cardiomyocyte programming by EOMES mechanistically involves autocrine activation of canonical WNT signaling via the WNT3 ligand, which necessitates a shutdown of this axis at a subsequent stage. Our findings provide insights into human germ layer induction and bear biotechnological potential for the robust production of cardiomyocytes from engineered stem cells. The T-box transcription factor eomesodermin (EOMES) acts both in endoderm specification as well as heart development, suggesting context-specific function. Here, the authors show that dose-controlled EOMES induction is sufficient for cardiogenic programming of human pluripotent stem cells.
Collapse
|
35
|
Quaranta R, Fell J, Rühle F, Rao J, Piccini I, Araúzo-Bravo MJ, Verkerk AO, Stoll M, Greber B. Revised roles of ISL1 in a hES cell-based model of human heart chamber specification. eLife 2018; 7. [PMID: 29337667 PMCID: PMC5770158 DOI: 10.7554/elife.31706] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
The transcription factor ISL1 is thought to be key for conveying the multipotent and proliferative properties of cardiac precursor cells. Here, we investigate its function upon cardiac induction of human embryonic stem cells. We find that ISL1 does not stabilize the transient cardiac precursor cell state but rather serves to accelerate cardiomyocyte differentiation. Conversely, ISL1 depletion delays cardiac differentiation and respecifies nascent cardiomyocytes from a ventricular to an atrial identity. Mechanistic analyses integrate this unrecognized anti-atrial function of ISL1 with known and newly identified atrial inducers. In this revised view, ISL1 is antagonized by retinoic acid signaling via a novel player, MEIS2. Conversely, ISL1 competes with the retinoic acid pathway for prospective cardiomyocyte fate, which converges on the atrial specifier NR2F1. This study reveals a core regulatory network putatively controlling human heart chamber formation and also bears implications for the subtype-specific production of human cardiomyocytes with enhanced functional properties.
Collapse
Affiliation(s)
- Roberto Quaranta
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Jakob Fell
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Frank Rühle
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Jyoti Rao
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Ilaria Piccini
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Marcos J Araúzo-Bravo
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| |
Collapse
|
36
|
Martins S, Bohndorf M, Schröter F, Assar F, Wruck W, Sleegers K, Van Broeckhoven C, Adjaye J. Lymphoblast-derived integration-free ISRM-CON9 iPS cell line from a 75year old female. Stem Cell Res 2017; 26:76-79. [PMID: 29268155 DOI: 10.1016/j.scr.2017.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022] Open
Abstract
Human lymphoblast cells were used to generate integration-free induced pluripotent stem cells (iPSCs) employing episomal-based plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The derived iPSCs were defined as pluripotent based on (i) expression of pluripotency-associated markers, (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptomes of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.95.
Collapse
Affiliation(s)
- Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Friederike Schröter
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Fatima Assar
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Kristel Sleegers
- Neurodegenerative Brain Disease Groups, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Disease Groups, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5, Düsseldorf 40225, Germany.
| |
Collapse
|
37
|
Reprogramming to pluripotency does not require transition through a primitive streak-like state. Sci Rep 2017; 7:16543. [PMID: 29185460 PMCID: PMC5707390 DOI: 10.1038/s41598-017-15187-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
Pluripotency can be induced in vitro from adult somatic mammalian cells by enforced expression of defined transcription factors regulating and initiating the pluripotency network. Despite the substantial advances over the last decade to improve the efficiency of direct reprogramming, exact mechanisms underlying the conversion into the pluripotent stem cell state are still vaguely understood. Several studies suggested that induced pluripotency follows reversed embryonic development. For somatic cells of mesodermal and endodermal origin that would require the transition through a Primitive streak-like state, which would necessarily require an Eomesodermin (Eomes) expressing intermediate. We analyzed reprogramming in human and mouse cells of mesodermal as well as ectodermal origin by thorough marker gene analyses in combination with genetic reporters, conditional loss of function and stable fate-labeling for the broad primitive streak marker Eomes. We unambiguously demonstrate that induced pluripotency is not dependent on a transient primitive streak-like stage and thus does not represent reversal of mesendodermal development in vivo.
Collapse
|
38
|
Hübner K, Grassme KS, Rao J, Wenke NK, Zimmer CL, Korte L, Müller K, Sumanas S, Greber B, Herzog W. Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1. Dev Biol 2017; 430:142-155. [DOI: 10.1016/j.ydbio.2017.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 01/06/2023]
|
39
|
Peischard S, Piccini I, Strutz-Seebohm N, Greber B, Seebohm G. From iPSC towards cardiac tissue-a road under construction. Pflugers Arch 2017; 469:1233-1243. [PMID: 28573409 PMCID: PMC5590027 DOI: 10.1007/s00424-017-2003-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/16/2023]
Abstract
The possibility to generate induced pluripotent stem cells (iPSC) opens the way to generate virtually all cell types of our human body. In combination with modern gene editing techniques like CRISPR/CAS, a new set of powerful tools becomes available for life science. Scientific fields like genotype and cell type-specific pharmacology, disease modeling, stem cell biology, and developmental biology have been dramatically fostered and their faces have been changed. However, as golden as the age of iPSC-derived cells and their manipulation has started, the shine begins to tarnish. Researchers face more and more practical problems intrinsic to the system. These problems are related to the specific culturing conditions which are not yet sufficient to mimic the natural environment of native stem cells differentiating towards adult cells. However, researchers work hard to uncover these factors. Here, we review a common standard approach to generate iPSCs and transduce these to iPSC cardiomyocytes. Further, we review recent achievements and discuss their current limitations and future perspectives. We are on track, but the road is still under construction.
Collapse
Affiliation(s)
- Stefan Peischard
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
| | - Ilaria Piccini
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
- Human Stem Cell Pluripotency Group, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227, Münster, Germany
- Innovative Medizinische Forschung (IMF), Münster, Germany
| | - Nathalie Strutz-Seebohm
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
| | - Boris Greber
- Human Stem Cell Pluripotency Group, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227, Münster, Germany
| | - Guiscard Seebohm
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany.
- Innovative Medizinische Forschung (IMF), Münster, Germany.
- Institut für Genetik von Herzerkrankungen (IfGH), Department für Kardiologie und Angiologie, Universitätsklinikum Münster, 48149, Münster, Germany.
| |
Collapse
|
40
|
Piccini I, Fehrmann E, Frank S, Müller FU, Greber B, Seebohm G. Adrenergic Stress Protection of Human iPS Cell-Derived Cardiomyocytes by Fast K v7.1 Recycling. Front Physiol 2017; 8:705. [PMID: 28959214 PMCID: PMC5603700 DOI: 10.3389/fphys.2017.00705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/31/2017] [Indexed: 01/09/2023] Open
Abstract
The fight-or-flight response (FFR), a physiological acute stress reaction, involves positive chronotropic and inotropic effects on heart muscle cells mediated through β-adrenoceptor activation. Increased systolic calcium is required to enable stronger heart contractions whereas elevated potassium currents are to limit the duration of the action potentials and prevent arrhythmia. The latter effect is accomplished by an increased functional activity of the Kv7.1 channel encoded by KCNQ1. Current knowledge, however, does not sufficiently explain the full extent of rapid Kv7.1 activation and may hence be incomplete. Using inducible genetic KCNQ1 complementation in KCNQ1-deficient human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we here reinvestigate the functional role of Kv7.1 in adapting human CMs to adrenergic stress. Under baseline conditions, Kv7.1 was barely detectable at the plasma membrane of hiPSC-CMs, yet it fully protected these from adrenergic stress-induced beat-to-beat variability of repolarization and torsade des pointes-like arrhythmia. Furthermore, isoprenaline treatment increased field potential durations specifically in KCNQ1-deficient CMs to cause these adverse macroscopic effects. Mechanistically, we find that the protective action by Kv7.1 resides in a rapid translocation of channel proteins from intracellular stores to the plasma membrane, induced by adrenergic signaling. Gene silencing experiments targeting RAB GTPases, mediators of intracellular vesicle trafficking, showed that fast Kv7.1 recycling under acute stress conditions is RAB4A-dependent.Our data reveal a key mechanism underlying the rapid adaptation of human cardiomyocytes to adrenergic stress. These findings moreover aid to the understanding of disease pathology in long QT syndrome and bear important implications for safety pharmacological screening.
Collapse
Affiliation(s)
- Ilaria Piccini
- Department of Cardiovascular Medicine, Institute of Genetics of Heart Diseases, University of Münster Medical SchoolMünster, Germany.,Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular BiomedicineMünster, Germany
| | - Edda Fehrmann
- Institute of Pharmacology and Toxicology, University of MünsterMünster, Germany
| | - Stefan Frank
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular BiomedicineMünster, Germany.,Chemical Genomics Centre of the Max Planck SocietyDortmund, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of MünsterMünster, Germany
| | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular BiomedicineMünster, Germany.,Chemical Genomics Centre of the Max Planck SocietyDortmund, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute of Genetics of Heart Diseases, University of Münster Medical SchoolMünster, Germany
| |
Collapse
|
41
|
Marczenke M, Piccini I, Mengarelli I, Fell J, Röpke A, Seebohm G, Verkerk AO, Greber B. Cardiac Subtype-Specific Modeling of K v1.5 Ion Channel Deficiency Using Human Pluripotent Stem Cells. Front Physiol 2017; 8:469. [PMID: 28729840 PMCID: PMC5498524 DOI: 10.3389/fphys.2017.00469] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
The ultrarapid delayed rectifier K+ current (IKur), mediated by Kv1.5 channels, constitutes a key component of the atrial action potential. Functional mutations in the underlying KCNA5 gene have been shown to cause hereditary forms of atrial fibrillation (AF). Here, we combine targeted genetic engineering with cardiac subtype-specific differentiation of human induced pluripotent stem cells (hiPSCs) to explore the role of Kv1.5 in atrial hiPSC-cardiomyocytes. CRISPR/Cas9-mediated mutagenesis of integration-free hiPSCs was employed to generate a functional KCNA5 knockout. This model as well as isogenic wild-type control hiPSCs could selectively be differentiated into ventricular or atrial cardiomyocytes at high efficiency, based on the specific manipulation of retinoic acid signaling. Investigation of electrophysiological properties in Kv1.5-deficient cardiomyocytes compared to isogenic controls revealed a strictly atrial-specific disease phentoype, characterized by cardiac subtype-specific field and action potential prolongation and loss of 4-aminopyridine sensitivity. Atrial Kv1.5-deficient cardiomyocytes did not show signs of arrhythmia under adrenergic stress conditions or upon inhibiting additional types of K+ current. Exposure of bulk cultures to carbachol lowered beating frequencies and promoted chaotic spontaneous beating in a stochastic manner. Low-frequency, electrical stimulation in single cells caused atrial and mutant-specific early afterdepolarizations, linking the loss of KCNA5 function to a putative trigger mechanism in familial AF. These results clarify for the first time the role of Kv1.5 in atrial hiPSC-cardiomyocytes and demonstrate the feasibility of cardiac subtype-specific disease modeling using engineered hiPSCs.
Collapse
Affiliation(s)
- Maike Marczenke
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular BiomedicineMünster, Germany.,Chemical Genomics Centre of the Max Planck SocietyDortmund, Germany
| | - Ilaria Piccini
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular BiomedicineMünster, Germany.,Department of Cardiovascular Medicine, Institute of Genetics of Heart Diseases, University of Münster Medical SchoolMünster, Germany
| | - Isabella Mengarelli
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Jakob Fell
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular BiomedicineMünster, Germany.,Chemical Genomics Centre of the Max Planck SocietyDortmund, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of MünsterMünster, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute of Genetics of Heart Diseases, University of Münster Medical SchoolMünster, Germany
| | - Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular BiomedicineMünster, Germany.,Chemical Genomics Centre of the Max Planck SocietyDortmund, Germany
| |
Collapse
|
42
|
Massai D, Bolesani E, Diaz DR, Kropp C, Kempf H, Halloin C, Martin U, Braniste T, Isu G, Harms V, Morbiducci U, Dräger G, Zweigerdt R. Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development. Sci Rep 2017. [PMID: 28638147 PMCID: PMC5479836 DOI: 10.1038/s41598-017-04158-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Controlled large-scale production of human pluripotent stem cells (hPSCs) is indispensable for their envisioned clinical translation. Aiming at advanced process development in suspension culture, the sensitivity of hPSC media to continuous peristaltic pump-based circulation, a well-established technology extensively used in hydraulically-driven bioreactors, was investigated. Unexpectedly, conditioning of low protein media (i.e. E8 and TeSR-E8) in a peristaltic pump circuit induced severe viability loss of hPSCs cultured as aggregates in suspension. Optical, biochemical, and cytological analyses of the media revealed that the applied circulation mode resulted in the reduction of the growth hormone insulin by precipitation of micro-sized particles. Notably, in contrast to insulin depletion, individual withdrawal of other medium protein components (i.e. bFGF, TGFβ1 or transferrin) provoked minor reduction of hPSC viability, if any. Supplementation of the surfactant glycerol or the use of the insulin analogue Aspart did not overcome the issue of insulin precipitation. In contrast, the presence of bovine or human serum albumin (BSA or HSA, respectively) stabilized insulin rescuing its content, possibly by acting as molecular chaperone-like protein, ultimately supporting hPSC maintenance. This study highlights the potential and the requirement of media optimization for automated hPSC processing and has broad implications on media development and bioreactor-based technologies.
Collapse
Affiliation(s)
- Diana Massai
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Emiliano Bolesani
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Diana Robles Diaz
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christina Kropp
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Tudor Braniste
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,National Center for Materials Study and Testing, Technical University of Moldova, Bv. Stefan cel Mare 168, Chisinau, 2004, Republic of Moldova
| | - Giuseppe Isu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.,Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Vanessa Harms
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Gerald Dräger
- REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
43
|
Abstract
Since the advent of the generation of human induced pluripotent stem cells (hiPSCs), numerous protocols have been developed to differentiate hiPSCs into cardiomyocytes and then subsequently assess their ability to recapitulate the properties of adult human cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) are often assessed in single-cell assays. A shortcoming of these assays is the limited ability to characterize the physiological parameters of cardiomyocytes, such as contractile force, due to random orientations. This protocol describes the differentiation of cardiomyocytes from hiPSCs, which occurs within 14 d. After casting, cardiomyocytes undergo 3D assembly. This produces fibrin-based engineered heart tissues (EHTs)-in a strip format-that generate force under auxotonic stretch conditions. 10-15 d after casting, the EHTs can be used for contractility measurements. This protocol describes parallel expansion of hiPSCs; standardized generation of defined embryoid bodies, growth factor and small-molecule-based cardiac differentiation; and standardized generation of EHTs. To carry out the protocol, experience in advanced cell culture techniques is required.
Collapse
|
44
|
Marczenke M, Fell J, Piccini I, Röpke A, Seebohm G, Greber B. Generation and cardiac subtype-specific differentiation of PITX2-deficient human iPS cell lines for exploring familial atrial fibrillation. Stem Cell Res 2017; 21:26-28. [PMID: 28677534 DOI: 10.1016/j.scr.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Loss-of-function mutations in the PITX2 transcription factor gene have been shown to cause familial atrial fibrillation (AF). To potentially model aspects of AF and unravel PITX2-regulated downstream genes for drug target discovery, we here report the generation of integration-free PITX2-deficient hiPS cell lines. We also show that both PITX2 knockout hiPS cells and isogenic wild-type controls can selectively be differentiated into human atrial cardiomyocytes, to potentially uncover differentially expressed gene sets between these groups.
Collapse
Affiliation(s)
- Maike Marczenke
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Jakob Fell
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Ilaria Piccini
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Cardiovascular Medicine, Institute of Genetics of Heart Diseases, University of Münster Medical School, Münster, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute of Genetics of Heart Diseases, University of Münster Medical School, Münster, Germany
| | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.
| |
Collapse
|
45
|
Mannhardt I, Saleem U, Benzin A, Schulze T, Klampe B, Eschenhagen T, Hansen A. Automated Contraction Analysis of Human Engineered Heart Tissue for Cardiac Drug Safety Screening. J Vis Exp 2017:55461. [PMID: 28448053 PMCID: PMC5564700 DOI: 10.3791/55461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cardiac tissue engineering describes techniques to constitute three dimensional force-generating engineered tissues. For the implementation of these procedures in basic research and preclinical drug development, it is important to develop protocols for automated generation and analysis under standardized conditions. Here, we present a technique to generate engineered heart tissue (EHT) from cardiomyocytes of different species (rat, mouse, human). The technique relies on the assembly of a fibrin-gel containing dissociated cardiomyocytes between elastic polydimethylsiloxane (PDMS) posts in a 24-well format. Three-dimensional, force-generating EHTs constitute within two weeks after casting. This procedure allows for the generation of several hundred EHTs per week and is technically limited only by the availability of cardiomyocytes (0.4-1.0 x 106/EHT). Evaluation of auxotonic muscle contractions is performed in a modified incubation chamber with a mechanical interlock for 24-well plates and a camera placed on top of this chamber. A software controls a camera moved on an XYZ axis system to each EHT. EHT contractions are detected by an automated figure recognition algorithm, and force is calculated based on shortening of the EHT and the elastic propensity and geometry of the PDMS posts. This procedure allows for automated analysis of high numbers of EHT under standardized and sterile conditions. The reliable detection of drug effects on cardiomyocyte contraction is crucial for cardiac drug development and safety pharmacology. We demonstrate, with the example of the hERG channel inhibitor E-4031, that the human EHT system replicates drug responses on contraction kinetics of the human heart, indicating it to be a promising tool for cardiac drug safety screening.
Collapse
Affiliation(s)
- Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research);
| | - Umber Saleem
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| | - Anika Benzin
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| | - Thomas Schulze
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| | - Birgit Klampe
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf and DZHK (German Center for Cardiovascular Research)
| |
Collapse
|
46
|
Hohwieler M, Illing A, Hermann PC, Mayer T, Stockmann M, Perkhofer L, Eiseler T, Antony JS, Müller M, Renz S, Kuo CC, Lin Q, Sendler M, Breunig M, Kleiderman SM, Lechel A, Zenker M, Leichsenring M, Rosendahl J, Zenke M, Sainz B, Mayerle J, Costa IG, Seufferlein T, Kormann M, Wagner M, Liebau S, Kleger A. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut 2017; 66:473-486. [PMID: 27633923 PMCID: PMC5534761 DOI: 10.1136/gutjnl-2016-312423] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The generation of acinar and ductal cells from human pluripotent stem cells (PSCs) is a poorly studied process, although various diseases arise from this compartment. DESIGN We designed a straightforward approach to direct human PSCs towards pancreatic organoids resembling acinar and ductal progeny. RESULTS Extensive phenotyping of the organoids not only shows the appropriate marker profile but also ultrastructural, global gene expression and functional hallmarks of the human pancreas in the dish. Upon orthotopic transplantation into immunodeficient mice, these organoids form normal pancreatic ducts and acinar tissue resembling fetal human pancreas without evidence of tumour formation or transformation. Finally, we implemented this unique phenotyping tool as a model to study the pancreatic facets of cystic fibrosis (CF). For the first time, we provide evidence that in vitro, but also in our xenograft transplantation assay, pancreatic commitment occurs generally unhindered in CF. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) activation in mutated pancreatic organoids not only mirrors the CF phenotype in functional assays but also at a global expression level. We also conducted a scalable proof-of-concept screen in CF pancreatic organoids using a set of CFTR correctors and activators, and established an mRNA-mediated gene therapy approach in CF organoids. CONCLUSIONS Taken together, our platform provides novel opportunities to model pancreatic disease and development, screen for disease-rescuing agents and to test therapeutic procedures.
Collapse
Affiliation(s)
- Meike Hohwieler
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Anett Illing
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Patrick C Hermann
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Tobias Mayer
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Marianne Stockmann
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Justin S Antony
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany
| | - Martin Müller
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Susanne Renz
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Chao-Chung Kuo
- Medical Faculty, IZKF Computational Biology Research Group, RWTH Aachen University, Aachen, Germany
| | - Qiong Lin
- Medical Faculty, Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Markus Breunig
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | | | - André Lechel
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Magdeburg, Germany
| | - Michael Leichsenring
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Jonas Rosendahl
- Department of Internal Medicine I, Division of Medicine, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Zenke
- Medical Faculty, Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Madrid, Spain
| | - Julia Mayerle
- Department of Medicine A, University Medicine, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Ivan G Costa
- Medical Faculty, IZKF Computational Biology Research Group, RWTH Aachen University, Aachen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Michael Kormann
- Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tuebingen, Tuebingen, Germany
| | - Martin Wagner
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
47
|
Rao J, Greber B. Concise Review: Signaling Control of Early Fate Decisions Around the Human Pluripotent Stem Cell State. Stem Cells 2016; 35:277-283. [PMID: 27758015 DOI: 10.1002/stem.2527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 01/23/2023]
Abstract
Human embryonic stem cells (hESCs) present a fascinating and powerful system for generating specialized cell types of the human body. Culture and directed differentiation of these cells however requires an understanding of the pluripotent ground state and of how cell lineage decisions in this system are made. In this review, we highlight both these aspects in light of recent findings and technical progress. Hence, advances in culturing the human preimplantation embryo beyond the implantation barrier and in analyzing it at the single-cell level shed new light on the hESC tissue of origin. We argue that these findings have important implications for our view of hESC identity and we critically discuss recent efforts in converting these cells to a more primitive state. With an emphasis on the roles played by major signaling pathways, we furthermore attempt to infer key principles underlying cell fate control in hESCs from recently published work. This integrated model combines defined signaling pathway manipulation with the regulation of core hESC genes, to aid in controlling cell lineage allocation in a rational manner. Stem Cells 2017;35:277-283.
Collapse
Affiliation(s)
- Jyoti Rao
- Max Planck Institute for Molecular Biomedicine, Human Stem Cell Pluripotency Group, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Boris Greber
- Max Planck Institute for Molecular Biomedicine, Human Stem Cell Pluripotency Group, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| |
Collapse
|
48
|
Schröter F, Sleegers K, Cuyvers E, Bohndorf M, Wruck W, Van Broeckhoven C, Adjaye J. Lymphoblast-derived integration-free iPS cell line from a female 67-year-old Alzheimer's disease patient with TREM2 (R47H) missense mutation. Stem Cell Res 2016; 17:553-555. [PMID: 27789408 DOI: 10.1016/j.scr.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022] Open
Abstract
Human lymphoblast cells from a female patient diagnosed with Alzheimer's disease (AD) possessing the missense mutation TREM2 p.R47H were used to generate integration-free induced pluripotent stem cells (iPSCs) employing episomal plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The iPSCs retained the TREM2 mutation, and were defined as pluripotent based on (i) expression of pluripotent-associated markers, (ii) embryoid body-based differentiation into cell types representative of the three germ layers and (iii) the similarity between the transcriptomes of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation of 0.961.
Collapse
Affiliation(s)
- Friederike Schröter
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Kristel Sleegers
- Neurodegenerative Brain Disease Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - Elise Cuyvers
- Neurodegenerative Brain Disease Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Disease Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
49
|
Schröter F, Sleegers K, Van Cauwenberghe C, Bohndorf M, Wruck W, Van Broeckhoven C, Adjaye J. Lymphoblast-derived integration-free iPSC lines from a female and male Alzheimer's disease patient expressing different copy numbers of a coding CNV in the Alzheimer risk gene CR1. Stem Cell Res 2016; 17:560-563. [PMID: 27789410 DOI: 10.1016/j.scr.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
Abstract
Human lymphoblast cells from a female and male patient diagnosed with Alzheimer's disease (AD) with different genotypes of a functional copy number variation (CNV) in the AD risk gene CR1 were used to generate integration-free induced pluripotent stem cells (iPSCs) employing episomal plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and L-MYC. The iPSCs retained the CR1 CNV, and comparative transcriptome analyses with the human embryonic stem cell line H1 revealed a Pearson correlation of 0.956 for AD1-CR10 and 0.908 for AD1-CR14.
Collapse
Affiliation(s)
- Friederike Schröter
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - Caroline Van Cauwenberghe
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Belgium
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
50
|
Piccini I, Araúzo-Bravo M, Seebohm G, Greber B. Functional high-resolution time-course expression analysis of human embryonic stem cells undergoing cardiac induction. GENOMICS DATA 2016; 10:71-74. [PMID: 27722090 PMCID: PMC5048627 DOI: 10.1016/j.gdata.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022]
Abstract
Cardiac induction of human embryonic stem cells (hESCs) is a process bearing increasing medical relevance, yet it is poorly understood from a developmental biology perspective. Anticipated technological progress in deriving stably expandable cardiac precursor cells or in advancing cardiac subtype specification protocols will likely require deeper insights into this fascinating system. Recent improvements in controlling hESC differentiation now enable a near-homogeneous induction of the cardiac lineage. This is based on an optimized initial stimulation of mesoderm-inducing signaling pathways such as Activin and/or FGF, BMP, and WNT, followed by WNT inhibition as a secondary requirement. Here, we describe a comprehensive data set based on varying hESC differentiation conditions in a systematic manner and recording high-resolution differentiation time-courses analyzed by genome-wide expression profiling (GEO accession number GSE67154). As a baseline, hESCs were differentiated into cardiomyocytes under optimal conditions. Moreover, in additional time-series, individual signaling factors were withdrawn from the initial stimulation cocktail to reveal their specific roles via comparison to the standard condition. Hence, this data set presents a rich resource for hypothesis generation in studying human cardiac induction, as we reveal numbers of known as well as uncharacterized genes prominently marking distinct intermediate stages in the process. These data will also be useful for identifying putative cardiac master regulators in the human system as well as for characterizing expandable cardiac stem cells.
Collapse
Affiliation(s)
- Ilaria Piccini
- Institute of Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Marcos Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Guiscard Seebohm
- Institute of Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| |
Collapse
|