1
|
Ribeiro JM, Canuto GAB, Caldeira ASP, de Siqueira EP, Zani CL, Murta SMF, de Almeida Alves TM. Untargeted Liquid Chromatography-High-Resolution Mass Spectrometry Metabolomic Investigation Reveals Altered Lipid Content in Leishmania infantum Lacking Lipid Droplet Protein Kinase. Trop Med Infect Dis 2024; 9:208. [PMID: 39330897 PMCID: PMC11435790 DOI: 10.3390/tropicalmed9090208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/28/2024] Open
Abstract
Leishmaniasis is a complex disease caused by different species of Leishmania. To date, no vaccine for humans or ideal therapy has been developed owing to the limited efficacy and toxicity of available drugs, as well as the emergence of resistant strains. Therefore, it is necessary to identify novel therapeutic targets and discover therapeutic options for leishmaniasis. In this study, we evaluated the impact of deleting the lipid droplet protein kinase (LDK) enzyme in Leishmania infantum using an untargeted metabolomics approach performed using liquid chromatography and high-resolution mass spectrometry. LDK is involved in lipid droplet biogenesis in trypanosomatids. Thirty-nine lipid metabolites altered in the stationary and logarithmic growth phases were noted and classified into five classes: (1) sterols, (2) fatty and conjugated acids, (3) ceramides, (4) glycerophosphocholine and its derivatives, and (5) glycerophosphoethanolamine and its derivatives. Our data demonstrated that glycerophosphocholine and its derivatives were the most affected after LDK deletion, suggesting that the absence of this enzyme promotes the remodeling of lipid composition in L. infantum, thus contributing to a better understanding of the function of LDK in this parasite.
Collapse
Affiliation(s)
- Juliana Martins Ribeiro
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Minas Gerais, Brazil;
| | - Gisele André Baptista Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Bahia, Brazil;
| | - Alisson Samuel Portes Caldeira
- Grupo Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Minas Gerais, Brazil; (A.S.P.C.); (E.P.d.S.); (C.L.Z.)
| | - Ezequias Pessoa de Siqueira
- Grupo Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Minas Gerais, Brazil; (A.S.P.C.); (E.P.d.S.); (C.L.Z.)
| | - Carlos Leomar Zani
- Grupo Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Minas Gerais, Brazil; (A.S.P.C.); (E.P.d.S.); (C.L.Z.)
| | - Silvane Maria Fonseca Murta
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Minas Gerais, Brazil;
| | - Tânia Maria de Almeida Alves
- Grupo Química de Produtos Naturais Bioativos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Minas Gerais, Brazil; (A.S.P.C.); (E.P.d.S.); (C.L.Z.)
| |
Collapse
|
2
|
Bai Y, Hu N, Duan X, Yang J, Ju H. Mechanisms and Factors Influencing the Production of Uniform-Sized Giant Unilamellar Vesicles by Discrete Lipid Film Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45948-45955. [PMID: 39164880 DOI: 10.1021/acsami.4c07934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
In this paper, we innovatively proposed a highly uniform vesicle preparation scheme based on the intervesicle mechanical self-constraint effect of vesicle crowding. By adjusting the spacing of discrete microwell structures, we observed that during the self-assembly of phospholipid molecules in microwells to form giant unilamellar vesicles (GUVs), the scale swelling of the vesicles during the continuous growth process would lead to the crowding of vesicles in adjacent microwells, thus inducing the formation of intervesicle mechanical self-constraint effect. The results of the experiment showed that this paper obtained the optimized discretized microwell structure (micropillar side: 30 μm; pitch: 0 μm), and the corresponding lipid mass was measured and determined, yielding homogeneous giant GUVs of 37.9 ± 2.0 μm. In this paper, homogenized GUVs (∼40 μm) with different cholesterol concentrations (10, 20, and 30%) were obtained by this method, and the above vesicles were subjected to controlled electroporation experiment under external electric fields of 23, 31, and 41 kV/cm, respectively. It showed that the mechanical self-constraint effect of vesicle crowding induced by patterned microstructures during the self-assembly of phospholipid molecules significantly enhances the size homogeneity of GUVs, which would be helpful for the wide applications of GUVs in other areas such as cell-like models and controlled release of drugs.
Collapse
Affiliation(s)
- Yaqi Bai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Xinyu Duan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Alpizar-Sosa E, Zimbres FM, Mantilla BS, Dickie EA, Wei W, Burle-Caldas GA, Filipe LNS, Van Bocxlaer K, Price HP, Ibarra-Meneses AV, Beaudry F, Fernandez-Prada C, Whitfield PD, Barrett MP, Denny PW. Evaluation of the Leishmania Inositol Phosphorylceramide Synthase as a Drug Target Using a Chemical and Genetic Approach. ACS Infect Dis 2024; 10:2913-2928. [PMID: 39023360 PMCID: PMC11320567 DOI: 10.1021/acsinfecdis.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.
Collapse
Affiliation(s)
| | - Flavia M. Zimbres
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Brian S. Mantilla
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Emily A. Dickie
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Wenbin Wei
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Gabriela A. Burle-Caldas
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
- Departamento
de Bioquímica e Imunologia, Universidade
Federal de Minas Gerais, Caixa Postal 486 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Laura N. S. Filipe
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Katrien Van Bocxlaer
- York
Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5NG, U.K.
| | - Helen P. Price
- School
of Life Sciences, Keele University, Staffordshire, ST5 5BG, U.K.
| | - Ana V. Ibarra-Meneses
- Département
de Pathologie et Microbiologie, Faculté de Médecine
Vétérinaire, Université
de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Francis Beaudry
- Département
de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Christopher Fernandez-Prada
- Département
de Pathologie et Microbiologie, Faculté de Médecine
Vétérinaire, Université
de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Philip D. Whitfield
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Michael P. Barrett
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Paul W. Denny
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| |
Collapse
|
4
|
Majhi S, Awasthi BP, Sharma RK, Mitra K. Buparvaquone Induces Ultrastructural and Physiological Alterations Leading to Mitochondrial Dysfunction and Caspase-Independent Apoptotic Cell Death in Leishmania donovani. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:521-538. [PMID: 38709559 DOI: 10.1093/mam/ozae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/09/2024] [Accepted: 03/31/2024] [Indexed: 05/08/2024]
Abstract
Leishmaniasis is a neglected tropical disease (endemic in 99 countries) caused by parasitic protozoa of the genus Leishmania. As treatment options are limited, there is an unmet need for new drugs. The hydroxynaphthoquinone class of compounds demonstrates broad-spectrum activity against protozoan parasites. Buparvaquone (BPQ), a member of this class, is the only drug licensed for the treatment of theileriosis. BPQ has shown promising antileishmanial activity but its mode of action is largely unknown. The aim of this study was to evaluate the ultrastructural and physiological effects of BPQ for elucidating the mechanisms underlying the in vitro antiproliferative activity in Leishmania donovani. Transmission and scanning electron microscopy analyses of BPQ-treated parasites revealed ultrastructural effects characteristic of apoptosis-like cell death, which include alterations in the nucleus, mitochondrion, kinetoplast, flagella, and the flagellar pocket. Using flow cytometry, laser scanning confocal microscopy, and fluorometry, we found that BPQ induced caspase-independent apoptosis-like cell death by losing plasma membrane phospholipid asymmetry and cell cycle arrest at sub-G0/G1 phase. Depolarization of the mitochondrial membrane leads to the generation of oxidative stress and impaired ATP synthesis followed by disruption of intracellular calcium homeostasis. Collectively, these findings provide valuable mechanistic insights and demonstrate BPQ's potential for development as an antileishmanial agent.
Collapse
Affiliation(s)
- Swetapadma Majhi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Bhanu Priya Awasthi
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Kumar Sharma
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
5
|
Granato JDT, Silva ETD, Lemos ASDO, Machado PDA, Midlej VDV, Antinarelli LMR, Silva Neto AFD, Souza MVN, Coimbra ES. 4-Quinolinylhydrazone analogues kill Leishmania (Leishmania) amazonensis by inducing apoptosis and mitochondria-dependent pathway cell death. Chem Biol Drug Des 2024; 103:e14535. [PMID: 38772877 DOI: 10.1111/cbdd.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Despite efforts, available alternatives for the treatment of leishmaniasis are still scarce. In this work we tested a class of 15 quinolinylhydrazone analogues and presented data that support the use of the most active compound in cutaneous leishmaniasis caused by Leishmania amazonensis. In general, the compounds showed activity at low concentrations for both parasitic forms (5.33-37.04 μM to promastigotes, and 14.31-61.98 μM to amastigotes). In addition, the best compound (MHZ15) is highly selective for the parasite. Biochemical studies indicate that the treatment of promastigotes with MHZ15 leads the loss of mitochondrial potential and increase in ROS levels as the primary effects, which triggers accumulation of lipid droplets, loss of plasma membrane integrity and apoptosis hallmarks, including DNA fragmentation and phosphatidylserine exposure. These effects were similar in the intracellular form of the parasite. However, in this parasitic form there is no change in plasma membrane integrity in the observed treatment time, which can be attributed to metabolic differences and the resilience of the amastigote. Also, ultrastructural changes such as vacuolization suggesting autophagy were observed. The in vivo effectiveness of MHZ15 in the experimental model of cutaneous leishmaniasis was carried out in mice of the BALB/c strain infected with L. amazonensis. The treatment by intralesional route showed that MHZ15 acted with great efficiency with significantly reduction in the parasite load in the injured paws and draining lymph nodes, without clinical signs of distress or compromise of animal welfare. In vivo toxicity was also evaluated and null alterations in the levels of hepatic enzymes aspartate aminotransferase, and alanine aminotransferase was observed. The data presented herein demonstrates that MHZ15 exhibits a range of favorable characteristics conducive to the development of an antileishmanial agent.
Collapse
Affiliation(s)
- Juliana da Trindade Granato
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Emerson Teixeira da Silva
- Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos Farmanguinhos, Rio de Janeiro, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Patrícia de Almeida Machado
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Victor do Valle Midlej
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Luciana Maria Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Adolfo Firmino da Silva Neto
- Departamento de Medicina Veterinária, Faculdade de Medicina, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Marcus Vinícius Nora Souza
- Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos Farmanguinhos, Rio de Janeiro, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
6
|
Balmer EA, Wirdnam CD, Faso C. A core UPS molecular complement implicates unique endocytic compartments at the parasite-host interface in Giardia lamblia. Virulence 2023; 14:2174288. [PMID: 36730629 PMCID: PMC9928461 DOI: 10.1080/21505594.2023.2174288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unconventional protein secretion (UPS) plays important roles in cell physiology. In contrast to canonical secretory routes, UPS does not generally require secretory signal sequences and often bypasses secretory compartments such as the ER and the Golgi apparatus. Giardia lamblia is a protist parasite with reduced subcellular complexity which releases several proteins, some of them virulence factors, without canonical secretory signals. This implicates UPS at the parasite-host interface. No dedicated machinery nor mechanism(s) for UPS in Giardia are currently known, although speculations on the involvement of endocytic organelles called PV/PECs, have been put forth. To begin to address the question of whether PV/PECs are implicated in virulence-associated UPS and to define the composition of molecular machinery involved in protein release, we employed affinity purification and mass spectrometry, coupled to microscopy-based subcellular localization and signal correlation quantification to investigate the interactomes of 11 reported unconventionally secreted proteins, all predicted to be cytosolic. A subset of these are associated with PV/PECs. Extended and validated interactomes point to a core PV/PECs-associated UPS machinery, which includes uncharacterized and Giardia-specific coiled-coil proteins and NEK kinases. Finally, a subset of the alpha-giardin protein family was enriched in all PV/PECs-associated protein interactomes, highlighting a previously unappreciated role for these proteins at PV/PECs and in UPS. Taken together, our results provide the first characterization of a virulence-associated UPS protein complex in Giardia lamblia at PV/PECs, suggesting a novel link between these primarily endocytic and feeding organelles and UPS at the parasite-host interface.
Collapse
Affiliation(s)
- Erina A. Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland,Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland,CONTACT Carmen Faso
| |
Collapse
|
7
|
Ristow LC, Jezewski AJ, Chadwick BJ, Stamnes MA, Lin X, Krysan DJ. Cryptococcus neoformans adapts to the host environment through TOR-mediated remodeling of phospholipid asymmetry. Nat Commun 2023; 14:6587. [PMID: 37852972 PMCID: PMC10584969 DOI: 10.1038/s41467-023-42318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Cryptococcus spp. are environmental fungi that first must adapt to the host environment before they can cause life-threatening meningitis in immunocompromised patients. Host CO2 concentrations are 100-fold higher than the external environment and strains unable to grow at host CO2 concentrations are not pathogenic. Using a genetic screening and transcriptional profiling approach, we report that the TOR pathway is critical for C. neoformans adaptation to host CO2 partly through Ypk1-dependent remodeling of phosphatidylserine asymmetry at the plasma membrane. We also describe a C. neoformans ABC/PDR transporter (PDR9) that is highly expressed in CO2-sensitive environmental strains, suppresses CO2-induced phosphatidylserine/phospholipid remodeling, and increases susceptibility to host concentrations of CO2. Interestingly, regulation of plasma membrane lipid asymmetry by the TOR-Ypk1 axis is distinct in C. neoformans compared to S. cerevisiae. Finally, host CO2 concentrations suppress the C. neoformans pathways that respond to host temperature (Mpk1) and pH (Rim101), indicating that host adaptation requires a stringent balance among distinct stress responses.
Collapse
Affiliation(s)
- Laura C Ristow
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew J Jezewski
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Mark A Stamnes
- Department of Molecular Physiology and Biophysics, Caver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Xiaorong Lin
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Molecular Physiology and Biophysics, Caver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
8
|
Baum JF, Uzun HD, Pomorski TG. Visualizing Loss of Plasma Membrane Lipid Asymmetry Using Annexin V Staining. Bio Protoc 2023; 13:e4754. [PMID: 37497452 PMCID: PMC10366992 DOI: 10.21769/bioprotoc.4754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 05/23/2023] [Indexed: 07/28/2023] Open
Abstract
Loss of plasma membrane lipid asymmetry contributes to many cellular functions and responses, including apoptosis, blood coagulation, and cell fusion. In this protocol, we describe the use of fluorescently labeled annexin V to detect loss of lipid asymmetry in the plasma membrane of adherent living cells by fluorescence microscopy. The approach provides a simple, sensitive, and reproducible method to detect changes in lipid asymmetry but is limited by low sample throughput. The protocol can also be adapted to other fluorescently labeled lipid-binding proteins or peptide probes. To validate the lipid binding properties of such probes, we additionally describe here the preparation and use of giant unilamellar vesicles as simple model membrane systems that have a size comparable to cells. Key features Monitoring loss of lipid asymmetry in the plasma membrane via confocal microscopy. Protocol can be applied to any type of cell that is adherent in culture, including primary cells. Assay can be adapted to other fluorescently labeled lipid-binding proteins or peptide probes. Giant unilamellar vesicles serve as a tool to validate the lipid binding properties of such probes. Graphical overview Imaging the binding of fluorescent annexin V to adherent mammalian cells and giant vesicles by confocal microscopy. Annexin V labeling is a useful method for detecting a loss of plasma membrane lipid asymmetry in cells (top image, red); DAPI can be used to identify nuclei (top image, blue). Giant vesicles are used as a tool to validate the lipid binding properties of annexin V to anionic lipids (lower image, red).
Collapse
Affiliation(s)
- Julia F. Baum
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Huriye D. Uzun
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
9
|
Sasidharan S, Saudagar P. An anti-leishmanial compound 4',7-dihydroxyflavone elicits ROS-mediated apoptosis-like death in Leishmania parasite. FEBS J 2023. [PMID: 36871140 DOI: 10.1111/febs.16770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The treatment for leishmaniasis is currently plagued by side effects such as toxicity and the emergence of drug resistance to the available repertoire of drugs, as well as the expense of these drugs. Considering such rising concerns, we report the anti-leishmanial activity and mechanism of a flavone compound 4',7-dihydroxyflavone (TI 4). Four flavanoids were initially screened for anti-leishmanial activity and cytotoxicity. The results showed that the compound TI 4 exhibited higher activity and selectivity index at the same time as maintaining low cytotoxicity. Preliminary microscopic studies and fluorescence-activated cell sorting analysis reported that the parasite underwent apoptosis on TI 4 treatment. Further in-depth studies revealed high reactive oxygen species (ROS) production and thiol levels in the parasites, suggesting ROS-mediated apoptosis in the parasites upon TI 4 treatment. Other apoptotic indicators such as intracellular Ca2+ and mitochondrial membrane potential also indicated the onset of apoptosis in the treated parasites. The mRNA expression levels signified that the redox metabolism genes were upregulated by two-fold along with the apoptotic genes. In summary, the use of TI 4 on Leishmania parasites induces ROS-mediated apoptosis; therefore, the compound has immense potential to be an anti-leishmanial drug. However, in vivo studies would be required to ascertain its safety and efficacy before we can exploit the compound against the growing leishmaniasis crisis.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
10
|
The enemy within: lipid asymmetry in intracellular parasite-host interactions. Emerg Top Life Sci 2023; 7:67-79. [PMID: 36820809 DOI: 10.1042/etls20220089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Eukaryotic pathogens with an intracellular parasitic lifestyle are shielded from extracellular threats during replication and growth. In addition to many nutrients, parasites scavenge host cell lipids to establish complex membrane structures inside their host cells. To counteract the disturbance of the host cell plasma membrane they have evolved strategies to regulate phospholipid asymmetry. In this review, the function and importance of lipid asymmetry in the interactions of intracellular protozoan parasites with the target and immune cells of the host are highlighted. The malaria parasite Plasmodium infects red blood cells and extensively refurbishes these terminally differentiated cells. Cholesterol depletion and an altered intracellular calcium ion homeostasis can lead to disruption in erythrocyte membrane asymmetry and increased exposure of phosphatidylserine (PS). Binding to the PS receptor on monocytes and macrophages results in phagocytosis and destruction of infected erythrocytes. Leishmania parasites display apoptotic mimicry by actively enhancing PS exposure on their surface to trigger increased infection of macrophages. In extracellular Toxoplasma gondii a P4-type ATPase/CDC50 co-chaperone pair functions as a flippase important for exocytosis of specialised secretory organelles. Identification and functional analysis of parasite lipid-translocating proteins, i.e. flippases, floppases, and scramblases, will be central for the recognition of the molecular mechanisms of parasite/host interactions. Ultimately, a better understanding of parasitic diseases, host immunity, and immune escape by parasites require more research on the dynamics of phospholipid bilayers of parasites and the infected host cell.
Collapse
|
11
|
The Anti- Leishmania amazonensis and Anti- Leishmania chagasi Action of Copper(II) and Silver(I) 1,10-Phenanthroline-5,6-dione Coordination Compounds. Pathogens 2023; 12:pathogens12010070. [PMID: 36678418 PMCID: PMC9865435 DOI: 10.3390/pathogens12010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by protozoa belonging to the Leishmania genus. Notably, the search for new, promising and potent anti-Leishmania compounds remains a major goal due to the inefficacy of the available drugs used nowadays. In the present work, we evaluated the effects of 1,10-phenanthroline-5,6-dione (phendione) coordinated to silver(I), [Ag(phendione)2]ClO4 (Ag-phendione), and copper(II), [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione), as potential drugs to be used in the chemotherapy against Leishmania amazonensis and Leishmania chagasi. The results showed that promastigotes treated with Ag-phendione and Cu-phendione presented a significant reduction in the proliferation rate. The IC50 values calculated to Ag-phendione and Cu-phendione, respectively, were 7.8 nM and 7.5 nM for L. amazonensis and 24.5 nM and 20.0 nM for L. chagasi. Microscopical analyses revealed several relevant morphological changes in promastigotes, such as a rounding of the cell body and a shortening/loss of the single flagellum. Moreover, the treatment promoted alterations in the unique mitochondrion of these parasites, inducing significant reductions on both metabolic activity and membrane potential parameters. All these cellular perturbations induced the triggering of apoptosis-like death in these parasites, as judged by the (i) increased percentage of annexin-positive/propidium iodide negative cells, (ii) augmentation in the proportion of parasites in the sub-G0/G1 phase and (iii) DNA fragmentation. Finally, the test compounds showed potent effects against intracellular amastigotes; contrarily, these molecules were well tolerated by THP-1 macrophages, which resulted in excellent selective index values. Overall, the results highlight new selective and effective drugs against Leishmania species, which are important etiological agents of both cutaneous (L. amazonensis) and visceral (L. chagasi) leishmaniasis in a global perspective.
Collapse
|
12
|
Plant transbilayer lipid asymmetry and the role of lipid flippases. Emerg Top Life Sci 2022; 7:21-29. [PMID: 36562347 DOI: 10.1042/etls20220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Many biological membranes present an asymmetric lipid distribution between the two leaflets that is known as the transbilayer lipid asymmetry. This asymmetry is essential for cell survival and its loss is related to apoptosis. In mammalian and yeast cells, ATP-dependent transport of lipids to the cytosolic side of the biological membranes, carried out by so-called lipid flippases, contributes to the transbilayer lipid asymmetry. Most of these lipid flippases belong to the P4-ATPase protein family, which is also present in plants. In this review, we summarize the relatively scarce literature concerning the presence of transbilayer lipid asymmetry in different plant cell membranes and revise the potential role of lipid flippases of the P4-ATPase family in generation and/or maintenance of this asymmetry.
Collapse
|
13
|
Ozlem-Caliskan S, Ilikci-Sagkan R, Karakas H, Sever S, Yildirim C, Balikci M, Ertabaklar H. Efficacy of malachite green mediated photodynamic therapy on treatment of Cutaneous Leishmaniasis: In vitro study. Photodiagnosis Photodyn Ther 2022; 40:103111. [PMID: 36075521 DOI: 10.1016/j.pdpdt.2022.103111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leishmaniasis is a common zoonotic disease that is transmitted by phlebotomus and causes several clinical conditions, from self healing lesion to deadly internal organ involvement. Photodynamic therapy (PDT) is a treatment method that leads to the generation of cytotoxic species and consequently to cell death and tissue destruction by visible light in the presence of a photosensitizer and oxygen. The aim of this study was to investigate effect of malachite green (MG)-mediated PDT in Leishmania tropica (L. tropica) promastigotes. MATERIAL AND METHODS Parasites were incubated with 0.19, 0.39, 1.56, 3.25 and 6.25 μM of MG for one hour and subjected to 46.4 J/cm2 light irradiation. Trypan blue assay was used to evaluate the viability of the cells and mitochondirial activity alteration was determined by MTT. Morphological changes were analyzed by Giemsa staining and Scanning electron microscopy (SEM) analyses. Flow cytometry was used to quantify the fluorescence emitted by cell volume, JC-1, Cell Cycle and Annexin V/PI staining reagents. RESULTS Malachite green mediated photodynamic therapy at 1.56 and 3.125 μM decreased the viability of the L. tropica promastigotes and induced changes in the mitochondrial membrane potential. L.tropica promastigotes was bloked in G0/G1 phase. The morphology of the parasite was affected at the 1.56 and 3.125 μM MG+PDT, resulting in rounded cells with loss of flagellum and irregular shape. CONCLUSIONS This study demonstrated that antileishmanial effects through mitochondrial dysfunction, cell cycle arrest, and apoptosis-like cell death to parasites. This work showed PDT with MG effectedparasites. Therefore, MG-mediated PDT may provide a promising approach for L. tropica promastigotes.
Collapse
Affiliation(s)
| | - Rahsan Ilikci-Sagkan
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey
| | - Hatice Karakas
- Faculty of Medicine, Student at Usak University, Usak, Turkey
| | - Sevgi Sever
- Faculty of Medicine, Student at Usak University, Usak, Turkey
| | - Cansu Yildirim
- Faculty of Medicine, Student at Usak University, Usak, Turkey
| | - Misra Balikci
- Faculty of Medicine, Student at Usak University, Usak, Turkey
| | - Hatice Ertabaklar
- Department of Medical Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
14
|
Chacón-Vargas KF, Sánchez-Torres LE, Chávez-González ML, Adame-Gallegos JR, Nevárez-Moorillón GV. Mexican Oregano (Lippia berlandieri Schauer and Poliomintha longiflora Gray) Essential Oils Induce Cell Death by Apoptosis in Leishmania (Leishmania) mexicana Promastigotes. Molecules 2022; 27:molecules27165183. [PMID: 36014423 PMCID: PMC9416784 DOI: 10.3390/molecules27165183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis is a neglected vector-borne disease; there are different manifestations of the diseases and species involved, and cutaneous leishmaniasis caused by Leishmania (L.) mexicana is the most prevalent in Mexico. Currently, the drugs available for the treatment of leishmaniasis are toxic, expensive, and often ineffective; therefore, it is imperative to carry out research and development of new therapeutic alternatives, with natural products being an attractive option. In particular, oregano is a plant with worldwide distribution; in Mexico, two species: Lippia berlandieri Schauer and Poliomintha longiflora Gray are endemic. Both essential oils (EO’s) have been reported to have antimicrobial activity attributed to their main components, thymol and carvacrol. In this research, the leishmanicidal effect and mechanism of cell death induced by L. berlandieri EO, P. longiflora EO, thymol, and carvacrol in L. mexicana promastigotes were determined in vitro. Additionally, the cytotoxic activity in mammalian cells was evaluated. L. berlandieri EO presented higher leishmanicidal activity (IC50 = 41.78 µg/mL) than P. longiflora EO (IC50 = 77.90 µg/mL). Thymol and carvacrol were the major components of both Mexican oregano EO’s. Thymol presented higher leishmanial inhibitory activity (IC50 = 22.39 µg/mL), above that of carvacrol (IC50 = 61.52 µg/mL). All the EO’s and compounds evaluated presented lower cytotoxic activity than the reference drug; thymol was the compound with the best selectivity index (SI). In all cases, apoptosis was identified as the main mechanism of death induced in the parasites. The leishmanicidal capacity of the Mexican oregano EO is an accessible and affordable alternative that can be further explored.
Collapse
Affiliation(s)
- Karla Fabiola Chacón-Vargas
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Chihuahua 31125, Mexico
| | - Luvia Enid Sánchez-Torres
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
- Correspondence: (L.E.S.-T.); (G.V.N.-M.)
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Mexico
| | - Jaime R. Adame-Gallegos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Chihuahua 31125, Mexico
| | - Guadalupe Virginia Nevárez-Moorillón
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Chihuahua 31125, Mexico
- Correspondence: (L.E.S.-T.); (G.V.N.-M.)
| |
Collapse
|
15
|
Mendes A, Armada A, Cabral LIL, Amado PSM, Campino L, Cristiano MLS, Cortes S. 1,2,4-Trioxolane and 1,2,4,5-Tetraoxane Endoperoxides against Old-World Leishmania Parasites: In Vitro Activity and Mode of Action. Pharmaceuticals (Basel) 2022; 15:ph15040446. [PMID: 35455443 PMCID: PMC9024893 DOI: 10.3390/ph15040446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis remains one of the ten Neglected Tropical Diseases with significant morbidity and mortality in humans. Current treatment of visceral leishmaniasis is difficult due to a lack of effective, non-toxic, and non-extensive medications. This study aimed to evaluate the selectivity of 12 synthetic endoperoxides (1,2,4-trioxolanes; 1,2,4,5-tetraoxanes) and uncover their biochemical effects on Leishmania parasites responsible for visceral leishmaniasis. The compounds were screened for in vitro activity against L. infantum and L. donovani and for cytotoxicity in two monocytic cell lines (J774A.1 and THP-1) using the methyl thiazol tetrazolium assay. Reactive oxygen species formation, apoptosis, and mitochondrial impairment were measured by flow cytometry. The compounds exhibited fair to moderate anti-proliferative activity against promastigotes of the 2 Leishmania species, with IC50 values ranging from 13.0 ± 1.7 µM to 793.0 ± 37.2 µM. Tetraoxanes LC132 and LC138 demonstrated good leishmanicidal activity on L. infantum amastigotes (IC50 13.2 ± 5.2 and 23.9 ± 2.7 µM) with low cytotoxicity in mammalian cells (SIs 22.1 and 118.6), indicating selectivity towards the parasite. Furthermore, LC138 was able to induce late apoptosis and dose-dependent oxidative stress without affecting mithocondria. Compounds LC132 and LC138 can be further explored as potential antileishmanial chemotypes.
Collapse
Affiliation(s)
- Andreia Mendes
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (A.M.); (A.A.); (L.C.)
| | - Ana Armada
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (A.M.); (A.A.); (L.C.)
- Global Health Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Lília I. L. Cabral
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.I.L.C.); (P.S.M.A.)
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Patrícia S. M. Amado
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.I.L.C.); (P.S.M.A.)
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Lenea Campino
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (A.M.); (A.A.); (L.C.)
| | - Maria L. S. Cristiano
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.I.L.C.); (P.S.M.A.)
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Correspondence: (M.L.S.C.); (S.C.)
| | - Sofia Cortes
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (A.M.); (A.A.); (L.C.)
- Global Health Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Correspondence: (M.L.S.C.); (S.C.)
| |
Collapse
|
16
|
Grifell-Junyent M, Baum JF, Välimets S, Herrmann A, Paulusma CC, López-Marqués RL, Günther Pomorski T. CDC50A is required for aminophospholipid transport and cell fusion in mouse C2C12 myoblasts. J Cell Sci 2022; 135:jcs258649. [PMID: 34664668 PMCID: PMC10405909 DOI: 10.1242/jcs.258649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022] Open
Abstract
Myoblast fusion is essential for the formation of multinucleated muscle fibers and is promoted by transient changes in the plasma membrane lipid distribution. However, little is known about the lipid transporters regulating these dynamic changes. Here, we show that proliferating myoblasts exhibit an aminophospholipid flippase activity that is downregulated during differentiation. Deletion of the P4-ATPase flippase subunit CDC50A (also known as TMEM30A) results in loss of the aminophospholipid flippase activity and compromises actin remodeling, RAC1 GTPase membrane targeting and cell fusion. In contrast, deletion of the P4-ATPase ATP11A affects aminophospholipid uptake without having a strong impact on cell fusion. Our results demonstrate that myoblast fusion depends on CDC50A and may involve multiple CDC50A-dependent P4-ATPases that help to regulate actin remodeling.
Collapse
Affiliation(s)
- Marta Grifell-Junyent
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Julia F. Baum
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Silja Välimets
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Andreas Herrmann
- Institut für Biologie, Molekulare Biophysik, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Coen C. Paulusma
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rosa L. López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
17
|
Das A, Kamran M, Ali N. HO-3867 Induces ROS-Dependent Stress Response and Apoptotic Cell Death in Leishmania donovani. Front Cell Infect Microbiol 2021; 11:774899. [PMID: 34926321 PMCID: PMC8677699 DOI: 10.3389/fcimb.2021.774899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Lack of vaccine and increasing chemotherapeutic toxicities currently necessitate the development of effective and safe drugs against various forms of leishmaniases. We characterized the cellular stress induced by a novel curcumin analogue, HO-3867, encapsulated within the phosphatidylcholine-stearylamine (PC-SA) liposome for the first time against Leishmania. The liposomal formulation of HO-3867 (i.e., PC-SA/HO-3867) initiated oxidative stress-induced apoptosis in L. donovani, revealed by altered cell morphology, phosphatidylserine externalization, mitochondrial depolarization, intracellular lipid accumulation, and cell cycle arrest in promastigotes. Liposomal HO-3867 was observed to be a strong apoptosis inducer in L. donovani and L. major in a dose-dependent manner, yet completely safe for normal murine macrophages. Moreover, PC-SA/HO-3867 treatment induced L. donovani metacaspase and PARP1 activation along with downregulation of the Sir2 gene. PC-SA/HO-3867 arrested intracellular L. donovani amastigote burden in vitro, with reactive oxygen species (ROS) and nitric oxide (NO)-mediated parasite killing. These data suggest that liposomal HO-3867 represents a highly promising and non-toxic nanoparticle-based therapeutic platform against leishmaniasis inspiring further preclinical developments.
Collapse
Affiliation(s)
| | | | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
18
|
Morla S, Deguchi H, Fernández JA, Ruf W, Brekken RA, Griffin JH. Procoagulant activities of skeletal muscle and cardiac myosins require both myosin protein and myosin-associated anionic phospholipids. Blood 2021; 137:1839-1842. [PMID: 33232975 PMCID: PMC8020266 DOI: 10.1182/blood.2020008580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | | | - Wolfram Ruf
- Department of Immunology, Scripps Research Institute, La Jolla, CA
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX; and
| | - John H Griffin
- Department of Molecular Medicine and
- Department of Medicine, University of California-San Diego, San Diego, CA
| |
Collapse
|
19
|
Moitra S, Basu S, Pawlowic M, Hsu FF, Zhang K. De Novo Synthesis of Phosphatidylcholine Is Essential for the Promastigote But Not Amastigote Stage in Leishmania major. Front Cell Infect Microbiol 2021; 11:647870. [PMID: 33777852 PMCID: PMC7996062 DOI: 10.3389/fcimb.2021.647870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylcholine (PC) is the most abundant type of phospholipids in eukaryotes constituting ~30% of total lipids in Leishmania. PC synthesis mainly occurs via the choline branch of the Kennedy pathway (choline ⇒ choline-phosphate ⇒ CDP-choline ⇒ PC) and the N-methylation of phosphatidylethanolamine (PE). In addition, Leishmania parasites can acquire PC and other lipids from the host or culture medium. In this study, we assessed the function and essentiality of choline ethanolamine phosphotransferase (CEPT) in Leishmania major which is responsible for the final step of the de novo synthesis of PC and PE. Our data indicate that CEPT is localized in the endoplasmic reticulum and possesses the activity to generate PC from CDP-choline and diacylglycerol. Targeted deletion of CEPT is only possible in the presence of an episomal CEPT gene in the promastigote stage of L. major. These chromosomal null parasites require the episomal expression of CEPT to survive in culture, confirming its essentiality during the promastigote stage. In contrast, during in vivo infection of BALB/c mice, these chromosomal null parasites appeared to lose the episomal copy of CEPT while maintaining normal levels of virulence, replication and cellular PC. Therefore, while the de novo synthesis of PC/PE is indispensable for the proliferation of promastigotes, intracellular amastigotes appear to acquire most of their lipids through salvage and remodeling.
Collapse
Affiliation(s)
- Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mattie Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
20
|
Song H, He X, Du X, Hua R, Xu J, He R, Xie Y, Gu X, Peng X, Yang G. Molecular characterization and expression analysis of annexin B3 and B38 as secretory proteins in Echinococcus granulosus. Parasit Vectors 2021; 14:103. [PMID: 33557917 PMCID: PMC7869467 DOI: 10.1186/s13071-021-04596-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background Cystic echinococcosis is a parasitic zoonotic disease, which poses a threat to public health and animal husbandry, and causes significant economic losses. Annexins are a family of phospholipid-binding proteins with calcium ion-binding activity, which have many functions. Methods Two annexin protein family genes [Echinococcus granulosus annexin B3 (EgAnxB3) and EgAnxB38] were cloned and molecularly characterized using bioinformatic analysis. The immunoreactivity of recombinant EgAnxB3 (rEgAnxB3) and rEgAnxB38 was investigated using western blotting. The distribution of EgAnxB3 and EgAnxB38 in protoscoleces (PSCs), the germinal layer, 18-day strobilated worms and 45-day adult worms was analyzed by immunofluorescence localization, and their secretory characteristics were analyzed preliminarily; in addition, quantitative real-time reverse transcription polymerase chain reaction was used to analyze their transcript levels in PSCs and 28-day strobilated worms stages. The phospholipid-binding activities of rEgAnxB3 and rEgAnxB38 were also analyzed. Results EgAnxB3 and EgAnxB38 are conserved and contain calcium-binding sites. Both rEgAnxB3 and rEgAnxB38 could be specifically recognized by the serum samples from E. granulosus-infected sheep, indicating that they had strong immunoreactivity. EgAnxB3 and EgAnxB38 were distributed in all stages of E. granulosus, and their transcript levels were high in the 28-day strobilated worms. They were found in liver tissues near the cysts. In addition, rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. Conclusions EgAnxB3 and EgAnxB38 contain calcium-binding sites, and rEgAnxB3 has Ca2+-dependent phospholipid-binding properties. EgAnxB3 and EgAnxB38 were transcribed in PSCs and 28-day strobilated worms. They were expressed in all stages of E. granulosus, and distributed in the liver tissues near the hydatid cyst, indicating that they are secreted proteins that play a crucial role in the development of E. granulosus. ![]()
Collapse
Affiliation(s)
- Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|
21
|
Karampetsou K, Koutsoni OS, Gogou G, Angelis A, Skaltsounis LA, Dotsika E. Total Phenolic Fraction (TPF) from Extra Virgin Olive Oil: Induction of apoptotic-like cell death in Leishmania spp. promastigotes and in vivo potential of therapeutic immunomodulation. PLoS Negl Trop Dis 2021; 15:e0008968. [PMID: 33428610 PMCID: PMC7799795 DOI: 10.1371/journal.pntd.0008968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Leishmaniasis is a serious multifactorial parasitic disease with limited treatment options. Current chemotherapy is mainly consisted of drugs with serious drawbacks such as toxicity, variable efficacy and resistance. Alternative bioactive phytocompounds may provide a promising source for discovering new anti-leishmanial drugs. Extra Virgin Olive Oil (EVOO), a key-product in the Mediterranean diet, is rich in phenols which are associated with anti-inflammatory, anti-cancer and anti-microbial effects. In this study, we investigate the anti-leishmanial effect of Total Phenolic Fraction (TPF) derived from EVOO in both in vitro and in vivo systems by investigating the contributing mechanism of action. METHODOLOGY/PRINCIPAL FINDINGS We tested the ability of TPF to cause apoptotic-like programmed cell death in L. infantum and L. major exponential-phase promastigotes by evaluating several apoptotic indices, such as reduction of proliferation rate, sub-G0/G1 phase cell cycle arrest, phosphatidylserine externalization, mitochondrial transmembrane potential disruption and increased ROS production, by using flow cytometry and microscopy techniques. Moreover, we assessed the therapeutic effect of TPF in L. major-infected BALB/c mice by determining skin lesions, parasite burden in popliteal lymph nodes, Leishmania-specific antibodies and biomarkers of tissue site cellular immune response, five weeks post-treatment termination. Our results show that TPF triggers cell-cycle arrest and apoptotic-like changes in Leishmania spp. promastigotes. Moreover, TPF treatment induces significant reduction of parasite burden in draining lymph nodes together with an antibody profile indicative of the polarization of Th1/Th2 immune balance towards the protective Th1-type response, characterized by the presence of IFN-γ-producing CD4+ T-cells and increased Tbx21/GATA-3 gene expression ratio in splenocytes. CONCLUSIONS/SIGNIFICANCE TPF exhibits chemotherapeutic anti-leishmanial activity by inducing programmed cell death on cell-free promastigotes and immunomodulatory properties that induce in vivo T cell-mediated responses towards the protective Th1 response in experimental cutaneous leishmaniasis. These findings enable deeper understanding of TPF's dual mode of action that encourages further studies.
Collapse
Affiliation(s)
- Kalliopi Karampetsou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga S. Koutsoni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Georgia Gogou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Leandros-Alexios Skaltsounis
- Division of Pharmacognosy and Natural Product Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
22
|
Bar Routaray C, Bhor R, Bai S, Kadam NS, Jagtap S, Doshi PJ, Sundar S, Sawant S, Kulkarni MJ, Pai K. SWATH-MS based quantitative proteomics analysis to evaluate the antileishmanial effect of Commiphora wightii- Guggul and Amphotericin B on a clinical isolate of Leishmania donovani. J Proteomics 2020; 223:103800. [DOI: 10.1016/j.jprot.2020.103800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
|
23
|
Leishmanicidal Activity of an In Silico-Screened Novel Inhibitor against Ascorbate Peroxidase of Leishmania donovani. Antimicrob Agents Chemother 2020; 64:AAC.01766-19. [PMID: 32366716 DOI: 10.1128/aac.01766-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
Peroxidases are a heterogeneous family of enzymes that have diverse biological functions. Ascorbate peroxidase is a redox enzyme that is reduced by trypanothione, which plays a central role in the redox defense system of Leishmania In view of developing new and novel therapeutics, we performed in silico studies in order to search for a ligand library and identify new drug candidates and their physiological roles against promastigotes and intracellular amastigotes of Leishmania donovani Our results demonstrated that the selected inhibitor ZINC96021026 has significant antileishmanial effect and effectively killed both free and intracellular forms of the parasite. ZINC96021026 was found to be identical to ML-240, a selective inhibitor of valosin-containing protein (VCP), or p97, a member of the AAA-ATPase protein family which was derived from the scaffold of N 2,N 4-dibenzylquinazoline-2,4-diamine (DBeQ), targeting the D2-ATPase domain of the enzyme. ZINC96021026 (ML-240) thus has a broad range of cellular functions, thought to be derived from its ability to unfold proteins or disassemble protein complexes, besides inhibiting the ascorbate peroxidase activity. ML-240 may inhibit the parasite's ascorbate peroxidase, leading to extensive apoptosis and inducing generation of reactive oxygen species. Taken together, our results demonstrated that ML-240 could be an attractive therapeutic option for treatment against leishmaniasis.
Collapse
|
24
|
Podešvová L, Leštinová T, Horáková E, Lukeš J, Volf P, Yurchenko V. Suicidal Leishmania. Pathogens 2020; 9:pathogens9020079. [PMID: 31991768 PMCID: PMC7168676 DOI: 10.3390/pathogens9020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Leishmania are obligate intracellular parasites known to have developed successful ways of efficient immunity evasion. Because of this, leishmaniasis, a disease caused by these flagellated protists, is ranked as one of the most serious tropical infections worldwide. Neither prophylactic medication, nor vaccination has been developed thus far, even though the infection has usually led to strong and long-lasting immunity. In this paper, we describe a “suicidal” system established in Leishmania mexicana, a human pathogen causing cutaneous leishmaniasis. This system is based on the expression and (de)stabilization of a basic phospholipase A2 toxin from the Bothrops pauloensis snake venom, which leads to the inducible cell death of the parasites in vitro. Furthermore, the suicidal strain was highly attenuated during macrophage infection, regardless of the toxin stabilization. Such a deliberately weakened parasite could be used to vaccinate the host, as its viability is regulated by the toxin stabilization, causing a profoundly reduced pathogenesis.
Collapse
Affiliation(s)
- Lucie Podešvová
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Eva Horáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence: ; Tel.: +420-597-092-326
| |
Collapse
|
25
|
Wanderley JLM, DaMatta RA, Barcinski MA. Apoptotic mimicry as a strategy for the establishment of parasitic infections: parasite- and host-derived phosphatidylserine as key molecule. Cell Commun Signal 2020; 18:10. [PMID: 31941500 PMCID: PMC6964003 DOI: 10.1186/s12964-019-0482-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
The establishment of parasitic infection is dependent on the development of efficient strategies to evade the host defense mechanisms. Phosphatidylserine (PS) molecules are pivotal for apoptotic cell recognition and clearance by professional phagocytes. Moreover, PS receptors are able to trigger anti-inflammatory and immunosuppressive responses by phagocytes, either by coupled enzymes or through the induction of regulatory cytokine secretion. These PS-dependent events are exploited by parasites in a mechanism called apoptotic mimicry. Generally, apoptotic mimicry refers to the effects of PS recognition for the initiation and maintenance of pathogenic infections. However, in this context, PS molecules can be recognized on the surface of the infectious agent or in the surface of apoptotic host debris, leading to the respective denomination of classical and non-classical apoptotic mimicry. In this review, we discuss the role of PS in the pathogenesis of several human infections caused by protozoan parasites. Video Abstract
Collapse
Affiliation(s)
- João Luiz Mendes Wanderley
- Laboratório de Imunoparasitologia, Campus UFRJ Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual Norte-Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Marcello André Barcinski
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Abstract
Leishmaniases still represent a global scourge and new therapeutic tools are necessary to replace the current expensive, difficult to administer treatments that induce numerous adverse effects and for which resistance is increasingly worrying. In this context, the particularly original organization of the Leishmania parasite in comparison to higher eukaryotes is a great advantage. It allows for the development of new, very specific, and thus non-cytotoxic treatments. Among these originalities, Leishmania cell death can be cited. Despite a classic pattern of apoptosis, key mammalian apoptotic proteins are not present in Leishmania, such as caspases, cell death receptors, and anti-apoptotic molecules. Recent studies have helped to develop a better understanding of parasite cell death, identifying new proteins or even new apoptotic pathways. This review provides an overview of the current knowledge on Leishmania cell death, describing its physiological roles and its phenotype, and discusses the involvement of various proteins: endonuclease G, metacaspase, aquaporin Li-BH3AQP, calpains, cysteine proteinase C, LmjHYD36 and Lmj.22.0600. From these data, potential apoptotic pathways are suggested. This review also offers tools to identify new Leishmania cell death effectors. Lastly, different approaches to use this knowledge for the development of new therapeutic tools are suggested: either inhibition of Leishmania cell death or activation of cell death for instance by treating cells with proteins or peptides involved in parasite death fused to a cell permeant peptide or encapsulated into a lipidic vector to target intra-macrophagic Leishmania cells.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis Team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Magali Casanova
- Aix-Marseille University, CNRS, LISM, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 09, France
| |
Collapse
|
27
|
Parizi MH, Farajzadeh S, Sharifi I, Pardakhty A, Parizi MHD, Sharifi H, Salarkia E, Hassanzadeh S. Antileishmanial Activity of Niosomal Combination Forms of Tioxolone along with Benzoxonium Chloride against Leishmania tropica. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:359-368. [PMID: 31533402 PMCID: PMC6753291 DOI: 10.3347/kjp.2019.57.4.359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023]
Abstract
In this study, we carried out extensive in vitro studies on various concentrations of tioxolone along with benzoxonium chloride and their niosomal forms against Leishmania tropica. Niosomes were prepared by the hydration method and were evaluated for morphology, size, release study, and encapsulation efficiency. This study measured leishmanicidal activity against promastigote and amastigote, apoptosis and gene expression levels of free solution and niosomal-encapsulated tioxolone along with benzoxonium chloride. Span/Tween 60 niosome had good physical stability and high encapsulation efficiency (more than 97%). The release profile of the entrapped compound showed that a gradual release rate. The combination of niosomal forms on promastigote and amastigote were more effective than glucantime. Also, the niosomal form of this compound was significantly less toxic than glucantime (P≤0.05). The flowcytometric analysis on niosomal form of drugs showed that higher number of early apoptotic event as the principal mode of action (89.13% in 200 μg/ml). Also, the niosomal compound increased the expression level of IL-12 and metacaspase genes and decreased the expression level of the IL-10 gene, which further confirming the immunomodulatory role as the mechanism of action. We observed the synergistic effects of these 2 drugs that induced the apoptotic pathways and also up regulation of an immunomodulatory role against as the main mode of action. Also, niosomal form of this combination was safe and demonstrated strong anti-leishmaniasis effects highlights further therapeutic approaches against anthroponotic cutaneous leishmaniasis in future planning.
Collapse
Affiliation(s)
- Maryam Hakimi Parizi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Farajzadeh
- Department of Pediatric dermatology, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hamid Sharifi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Hassanzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
28
|
Scariot DB, Volpato H, Fernandes NDS, Soares EFP, Ueda-Nakamura T, Dias-Filho BP, Din ZU, Rodrigues-Filho E, Rubira AF, Borges O, Sousa MDC, Nakamura CV. Activity and Cell-Death Pathway in Leishmania infantum Induced by Sugiol: Vectorization Using Yeast Cell Wall Particles Obtained From Saccharomyces cerevisiae. Front Cell Infect Microbiol 2019; 9:208. [PMID: 31259161 PMCID: PMC6587907 DOI: 10.3389/fcimb.2019.00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Visceral leishmaniasis, caused by Leishmania infantum, is a neglected tropical disease, to which efforts in the innovation of effective and affordable treatments remain limited, despite the rising incidence in several regions of the world. In this work, the antileishmanial effects of sugiol were investigated in vitro. This compound was isolated from the bark of Cupressus lusitanica and showed promising activity against L. infantum. In spite of the positive results, it is known that the compound is a poorly water-soluble diterpene molecule, which hinders further investigation, especially in preclinical animal studies. Thus, in an alternative delivery method, sugiol was entrapped in glucan-rich particles obtained from Saccharomyces cerevisiae yeast cell walls (YCWPs). To evaluate the activity of sugiol, the experiments were divided into two parts: (i) the in vitro investigation of antileishmanial activity of free sugiol against L. infantum promastigotes after 24, 48, and 72 h of treatment and (ii) the evaluation of antileishmanial activity of sugiol entrapped in glucan-rich particles against intracellular L. infantum amastigotes. Free sugiol induced the cell-death process in promastigotes, which was triggered by enhancing cytosolic calcium level and promoting the autophagy up to the first 24 h. Over time, the presence of autophagic vacuoles became rarer, especially after treatment with lower concentrations of sugiol, but other cellular events intensified, like ROS production, cell shrinkage, and phosphatidylserine exposure. Hyperpolarization of mitochondrial membrane potential was found at 72 h, induced by the mitochondria calcium uptake, causing an increase in ROS production and lipid peroxidation as a consequence. These events resulted in the cell death of promastigotes by secondary necrosis. Sugiol entrapped in glucan-rich particles was specifically recognized by dectin-1 receptor on the plasma membrane of macrophages, the main host cell of Leishmania spp. Electron micrographs revealed particles containing sugiol within the infected macrophages and these particles were active against the intracellular L. infantum amastigotes without affecting the host cell. Therefore, the YCWPs act like a Trojan horse to successfully deliver sugiol into the macrophage, presenting an interesting strategy to deliver water-insoluble drugs to parasitized cells.
Collapse
Affiliation(s)
- Débora Botura Scariot
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Hélito Volpato
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Nilma de Souza Fernandes
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | | | - Tânia Ueda-Nakamura
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Benedito Prado Dias-Filho
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Zia Ud Din
- Chemistry Department, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| |
Collapse
|
29
|
Mostafavi M, Sharifi I, Farajzadeh S, Khazaeli P, Sharifi H, Pourseyedi E, Kakooei S, Bamorovat M, Keyhani A, Parizi MH, Khosravi A, Khamesipour A. Niosomal formulation of amphotericin B alone and in combination with glucantime: In vitro and in vivo leishmanicidal effects. Biomed Pharmacother 2019; 116:108942. [PMID: 31152929 DOI: 10.1016/j.biopha.2019.108942] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
This study aimed to evaluate the efficacy of glucantime and amphotericin B (AmB) encapsulated in niosome against cutaneous leishmaniasis (CL) using in vitro and in vivo models. The niosomal formulations of the drugs alone and in combination were prepared and characterized. Subsequent to the examination of their cytotoxicity, their efficacy was evaluated using an in vitro MTT assay, macrophage model, flow cytometry, and gene expression profiling. For evaluation of therapeutic effect of niosomal combination on the lesion induced by Leishmania major in inbred BALB/c mice, the size of lesions and number of parasites in spleen was assessed. The niosomal formulations demonstrated significantly greater inhibitory effects compared with the non-niosomal forms when the IC50 was considered. The niosomal combination showed an increase in the apoptotic values and gene expression levels of IL-12 and metacaspase and a decrease in the levels of IL-10 with a dose-response effect. The niosomal combination was also effective in reducing the lesion size and splenic parasite burden in mice. Our findings indicated that there is a synergistic effect between AmB and glucantime in niosomal form in the inhibition of intracellular and extracellular forms of L. tropica. Additionally, the in vivo results on L. major suggest that topical niosomal formulation could be useful in the treatment of CL.
Collapse
Affiliation(s)
- Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeedeh Farajzadeh
- Department of Pediatric dermatology, Kerman University of Medical Sciences, Kerman, Iran
| | - Payam Khazaeli
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Sharifi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Elnaz Pourseyedi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Kakooei
- Oral and Dental Diseases Research Center, Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hakimi Parizi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
SADUQI M, SHARIFI I, BABAEI Z, KEYHANI A, MOSTAFAVI M, HAKIMI PARIZI M, GHASEMIAN M, BAMOROVAT M, SHARIFI F, AFLATOONIAN MR, SHARIFIFAR F, GHASEMI NEJAD P, KHOSRAVI A, SALARKIA E, VARMA RS. Anti-Leishmanial and Immunomodulatory Effects of Epigallocatechin 3-O-Gallate on Leishmania tropica: Apoptosis and Gene Expression Profiling. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:521-533. [PMID: 32099555 PMCID: PMC7028242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pentavalent antimonials such as meglumine antimoniate (MA, Glucantime), are the first-line treatment against leishmaniasis, but at present, they have basically lost their efficacy. This study was aimed to explore epigallocatechin 3-O-gallate (EGCG), alone or in combination with MA against Leishmania tropica stages. METHODS All experiments were carried out in triplicate using colorimetric assay, macrophage model, flow cytometry and quantitative real-time PCR. This experimental study was carried out in 2017 in Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran. RESULTS Promastigotes and amastigotes were more susceptible to EGCG than MA alone, but the effect was more profound when used in combination. EGCG exhibited high antioxidant level with a remarkable potential to induce apoptosis. Furthermore, the results showed that the level of gene expression pertaining to Th-1 was significantly up-regulated (P<0.001). CONCLUSION EGCG demonstrated a potent anti-leishmanial effect alone and more enhanced lethal activity in combination. The principal mode of action entails the stimulation of a synergistic response and up-regulation of the immunomodulatory role towards Th-1 response against L. tropica.
Collapse
Affiliation(s)
- Morteza SADUQI
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj SHARIFI
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran,Correspondence
| | - Zahra BABAEI
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza KEYHANI
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid MOSTAFAVI
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam HAKIMI PARIZI
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdiyeh GHASEMIAN
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi BAMOROVAT
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh SHARIFI
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza AFLATOONIAN
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba SHARIFIFAR
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Kerman University of Medical Sciences, Kerman, Iran
| | - Pooya GHASEMI NEJAD
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad KHOSRAVI
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan SALARKIA
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Rajender S. VARMA
- Regional Center of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
31
|
A single-group trial of end-stage patients with anthroponotic cutaneous leishmaniasis: Levamisole in combination with Glucantime in field and laboratory models. Microb Pathog 2018; 128:162-170. [PMID: 30583021 DOI: 10.1016/j.micpath.2018.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022]
Abstract
Currently, there is no satisfactory treatment modality available for cutaneous leishmaniasis (CL). The major objective of the present study was to explore the effect of immunomodulator-levamisole in combination with Glucantime in end-stage unresponsive patients with anthroponotic CL (ACL). Twenty end-stage unresponsive patients with ACL were identified for participation in this single-group trial study. Simultaneously, each patient was received a combination of levamisole pills along with Glucantime during the remedy course. Several in vitro complementary experiments were performed to evaluate the mode of action of levamisole and Glucantime alone and in combination using a macrophage model, in vitro MTT assay, flow cytometry and quantitative real time PCR (qPCR). Overall, 75% of the patients showed complete clinical cure, 10% partially improved and the remaining (15%) had underlying chronic diseases demonstrated no response to the treatment regimen. In in vitro studies, there was no cytotoxic effect associated with these drugs in the range of our experiments. The findings by the flow cytometric analysis represented that the highest apoptotic values corresponded to the drugs combination (32.23%) at 200 μg/ml concentration. Finally, the gene expression level of IL-12 p40, iNOS and TNF-α promoted while the level of IL-10 and TGF-β genes reduced as anticipated. The findings clearly indicated that the combination of levamisole and Glucantime should be considered in end-stage unresponsive patients with ACL who have not responded to basic treatments. The immunomodulatory role of levamisole in mounting immune system as documented by the in vitro experiments and further substantiated by this single-group trail study was highlighted.
Collapse
|
32
|
Deppe JP, Rabbat R, Hörtensteiner S, Keller B, Martinoia E, Lopéz-Marqués RL. The wheat ABC transporter Lr34 modifies the lipid environment at the plasma membrane. J Biol Chem 2018; 293:18667-18679. [PMID: 30327425 PMCID: PMC6290163 DOI: 10.1074/jbc.ra118.002532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
Phospholipids (PLs) are emerging as important factors that initiate signal transduction cascades at the plasma membrane. Their distribution within biological membranes is tightly regulated, e.g. by ATP-binding cassette (ABC) transporters, which preferably translocate PLs from the cytoplasmic to the exoplasmic membrane leaflet and are therefore called PL-floppases. Here, we demonstrate that a plant ABC transporter, Lr34 from wheat (Triticum aestivum), is involved in plasma membrane remodeling characterized by an intracellular accumulation of phosphatidic acid and enhanced outward translocation of phosphatidylserine. In addition, the content of phosphatidylinositol 4,5-bisphosphate in the cytoplasmic leaflet of the plasma membrane was reduced in the presence of the ABC transporter. When heterologously expressed in Saccharomyces cerevisiae, Lr34 promoted oil body formation in a mutant defective in PL-transfer in the secretory pathway. Our results suggest that PL redistribution by Lr34 potentially affects the membrane-bound proteome and contributes to the previously reported stimuli-independent activation of biotic and abiotic stress responses and neutral lipid accumulation in transgenic Lr34-expressing barley plants.
Collapse
Affiliation(s)
- Johannes P Deppe
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Ritta Rabbat
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Stefan Hörtensteiner
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Beat Keller
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Enrico Martinoia
- From the Department of Plant and Microbial Biology, University of Zürich (UZH), Zollikerstrasse 107, 8008 Zürich, Switzerland and
| | - Rosa L Lopéz-Marqués
- the Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
33
|
Molecular Characterization of Annexin B2, B3 and B12 in Taenia multiceps. Genes (Basel) 2018; 9:genes9110559. [PMID: 30463204 PMCID: PMC6267623 DOI: 10.3390/genes9110559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022] Open
Abstract
Coenurus cerebralis, the metacestode of Taenia multiceps, causes coenurosis, a disease severely affecting goat, sheep, cattle and yak farming and resulting in huge economic losses annually. Annexins bind calcium ions and play an important role in flatworm parasite development. To explore potential functions of annexins in T. multiceps, three homologous genes, namely, TmAnxB2, TmAnxB3 and TmAnxB12, were screened from the transcriptome dataset, amplified from C. cerebralis cDNA and subjected to bioinformatics analysis. Then, polyclonal antibodies recognizing the recombinant TmAnxB2 (rTmAnxB2) and rTmAnxB3 were prepared for localization of TmAnxB2 and TmAnxB3 in different tissues and developmental stages by immunofluorescence. The transcription of all three genes was also measured by relative fluorescent quantitative PCR. The sizes of rTmAnxB2, rTmAnxB3 and rTmAnxB12 were 58.00, 53.06 and 53.51 kDa, respectively, and rTmAnxB12 was unstable. Both rTmAnxB2 and rTmAnxB3 were recognized by goat-positive T. multiceps sera in Western blots. Immunofluorescence revealed that TmAnxB2 and TmAnxB3 were localized in the protoscolex and cyst wall and TmAnxB3 was also detected in adult cortex. TmAnxB2 and TmAnxB12 mRNA levels were determined to be highest in oncospheres and protoscolex, whereas transcription of TmAnxB3 was highest in scolex and immature segments. Taken together, these findings indicate that TmAnxB2 and TmAnxB12 may play critical roles in T. multiceps larvae, while TmAnxB3 may have important functions in adults. These results will lay the foundation for functional research of annexins in T. multiceps.
Collapse
|
34
|
Basmaciyan L, Berry L, Gros J, Azas N, Casanova M. Temporal analysis of the autophagic and apoptotic phenotypes in Leishmania parasites. MICROBIAL CELL 2018; 5:404-417. [PMID: 30280103 PMCID: PMC6167523 DOI: 10.15698/mic2018.09.646] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The leishmaniases are worldwide neglected tropical diseases caused by parasitic protozoa of the Leishmania genus. Different stimuli induce Leishmania cell death, but the proteins involved remain poorly understood. Furthermore, confusion often appears between cell death and the cell survival process autophagy, whose phenotype is not clearly defined. In this article, we present a comprehensive and temporal analysis of the cellular events occurring during miltefosine-induced cell death and autophagy in L. major. We also provide a list of features in order to clearly identify apoptotic cells, autophagic cells and to distinguish both processes. Furthermore, we demonstrate that autophagy is followed by apoptosis in the absence of nutrients. Finally, we show that cells treated with the generic kinase inhibitor staurosporine express apoptotic as well as autophagic markers and therefore cannot be used as an apoptosis inducer in Leishmania. These descriptions lead to a better recognition and understanding of apoptosis and autophagy, enabling their targeting in the development of new anti-leishmanial drugs. These researches also make it possible to better understand these processes in general, through the study of an ancestral eukaryote.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR 5235, University of Montpellier, France
| | - Julie Gros
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Nadine Azas
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
35
|
Chauhan IS, Rao GS, Shankar J, Chauhan LKS, Kapadia GJ, Singh N. Chemoprevention of Leishmaniasis: In-vitro antiparasitic activity of dibenzalacetone, a synthetic curcumin analog leads to apoptotic cell death in Leishmania donovani. Parasitol Int 2018; 67:627-636. [PMID: 29913255 DOI: 10.1016/j.parint.2018.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 06/08/2018] [Indexed: 01/23/2023]
Abstract
Curcumin is the major phenolic compound found in turmeric, a dry powder of rhizomes and roots of the plant, Curcuma longa L., which is widely used as spice and food colorant around the world, and in herbal medicinal practice in Asian countries. The present study reports the leishmanicidal activity of trans-dibenzalacetone (DBA), a synthetic monoketone analog of curcumin, against Leishmania donovani parasites. We for the first time report the antiproliferative effect of a curcumin analog (DBA) on the intracellular amastigotes of L. donovani, the clinically more relevant stage of the parasite than its promastigotes stage. The leishmanicidal effect of DBA was further confirmed by scanning and transmission electron microscopies. Cell growth was arrested in G0/G1 phase with increased concentration of cytosolic calcium and dissipation of mitochondrial membrane potential. Further, the unique trypanothione/trypanothione reductase (TR) system of Leishmania cells was significantly inhibited by DBA. This economically synthesizable simple monoketone analog of curcumin has the potential for field use against visceral leishmaniasis which is currently widespread in tropical and subtropical developing countries of the world. In conclusion, we have identified an analog of curcumin for potential applications against leishmaniasis, based on its strong antiparasitic activity and low toxicity. This curcumin analog compares favorably, at least in vitro, with the existing medication miltefosine.
Collapse
Affiliation(s)
- Indira Singh Chauhan
- Biochemistry Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - G Subba Rao
- Global Biotechnology Resource Center, 145 Rosewood Drive, Streamwood, IL 60107, USA
| | - Jai Shankar
- Transmission Electron Microscopy, CSIR Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Lalit Kumar Singh Chauhan
- Transmission Electron Microscopy, CSIR Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Govind J Kapadia
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA
| | - Neeloo Singh
- Biochemistry Division, CSIR Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
36
|
Martínez-López M, Soto M, Iborra S, Sancho D. Leishmania Hijacks Myeloid Cells for Immune Escape. Front Microbiol 2018; 9:883. [PMID: 29867798 PMCID: PMC5949370 DOI: 10.3389/fmicb.2018.00883] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited.
Collapse
Affiliation(s)
- María Martínez-López
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| | - Manuel Soto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain.,Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| |
Collapse
|
37
|
Yousuf M, Mukherjee D, Dey S, Chatterjee S, Pal A, Sarkar B, Pal C, Adhikari S. Synthesis and biological evaluation of polyhydroxylated oxindole derivatives as potential antileishmanial agent. Bioorg Med Chem Lett 2018; 28:1056-1062. [DOI: 10.1016/j.bmcl.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 12/26/2022]
|
38
|
Muxel SM, Aoki JI, Fernandes JCR, Laranjeira-Silva MF, Zampieri RA, Acuña SM, Müller KE, Vanderlinde RH, Floeter-Winter LM. Arginine and Polyamines Fate in Leishmania Infection. Front Microbiol 2018; 8:2682. [PMID: 29379478 PMCID: PMC5775291 DOI: 10.3389/fmicb.2017.02682] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023] Open
Abstract
Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg-). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection.
Collapse
Affiliation(s)
- Sandra M Muxel
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana I Aoki
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliane C R Fernandes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo A Zampieri
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Stephanie M Acuña
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Karl E Müller
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rubia H Vanderlinde
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lucile M Floeter-Winter
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Basmaciyan L, Azas N, Casanova M. Calcein+/PI- as an early apoptotic feature in Leishmania. PLoS One 2017; 12:e0187756. [PMID: 29112976 PMCID: PMC5675397 DOI: 10.1371/journal.pone.0187756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/25/2017] [Indexed: 11/18/2022] Open
Abstract
Although leishmaniases are responsible for high morbidity and mortality all over the world, no really satisfying treatment exists. Furthermore, the corresponding parasite Leishmania undergoes a very characteristic form of programmed cell death. Indeed, different stimuli can induce morphological and biochemical apoptotic-like features. However, the key proteins involved in mammal apoptosis, such as caspases and death receptors, are not encoded in the genome of this parasite. Currently, little is known about Leishmania apoptosis, notably owing to the lack of specific tools for programmed cell death analysis in these parasites. Furthermore, there is a need for a better understanding of Leishmania programmed cell death in order (i) to better understand the role of apoptosis in unicellular organisms, (ii) to better understand apoptosis in general through the study of an ancestral eukaryote, and (iii) to identify new therapeutic targets against leishmaniases. To advance understanding of apoptosis in Leishmania, in this study we developed a new tool based on the quantification of calcein and propidium iodide by flow cytometry. This double labeling can be employed to distinguish early apoptosis, late apoptosis and necrosis in Leishmania live cells with a very simple and rapid assay. This paper should, therefore, be of interest for people working on Leishmania and related parasites.
Collapse
Affiliation(s)
- Louise Basmaciyan
- Aix Marseille Univ, Univ Montpellier 1, IRBA, IP-TPT, Marseille, France
| | - Nadine Azas
- Aix Marseille Univ, Univ Montpellier 1, IRBA, IP-TPT, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, Univ Montpellier 1, IRBA, IP-TPT, Marseille, France
- * E-mail:
| |
Collapse
|
40
|
Rivas L, Nácher-Vázquez M, Andreu D. The Physical Matrix of the Plasma Membrane as a Target: The Charm of Drugs with Low Specificity. DRUG DISCOVERY FOR LEISHMANIASIS 2017:248-281. [DOI: 10.1039/9781788010177-00248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Antimicrobial peptides (AMPs) are ubiquitous through living organisms from different kingdoms. Their role is either defense against invading pathogens, or to strive for survival against microorganisms sharing the same ecological niche. Many AMPs are active against a broad variety of target microorganisms. This, together with their low induction of resistance, heralded the use of AMPs as a new generation of antibiotics. However, studies addressing the feasibility of AMP implementation on leishmaniasis are scarce. This review describes the different approaches to leishmaniasis carried out with AMPs regardless their biological origin. The chapter encompasses studies of AMPs both in vitro and in animal models of Leishmania infection. The mechanisms of action of AMPs both on Leishmania and on the macrophage are described, as well as the underlying molecular determinants of AMPs driving their effectiveness on Leishmania. Finally, the prospects for the feasible implementation of a pharmacological strategy for leishmaniasis based on peptide-based therapies are outlined.
Collapse
Affiliation(s)
- Luis Rivas
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| | - Montserrat Nácher-Vázquez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) Ramiro de Maeztu 9 28040 Madrid Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park 08003 Barcelona Spain
| |
Collapse
|
41
|
Methionine aminopeptidase 2 is a key regulator of apoptotic like cell death in Leishmania donovani. Sci Rep 2017; 7:95. [PMID: 28273904 PMCID: PMC5427942 DOI: 10.1038/s41598-017-00186-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/13/2017] [Indexed: 01/11/2023] Open
Abstract
We investigate the role of methionine aminopeptidase 2 (MAP2) in miltefosine induced programmed cell death (PCD) in promastigote form of L. donovani. We report that TNP-470, an inhibitor of MAP2, inhibits programmed cell death in miltefosine treated promastigotes. It inhibits the biochemical features of metazoan apoptosis, including caspase3/7 protease like activity, oligonucleosomal DNA fragmentation, collapse of mitochondrial transmembrane potential, and increase in cytosolic pool of calcium ions but did not prevent the cell death and phosphatidyl serine externalization. The data suggests that the MAP2 is involved in the regulation of PCD in parasite. Moreover, TNP-470 shows the leishmanicidal activity (IC50 = 15 µM) and in vitro inhibition of LdMAP2 activity (Ki = 13.5 nM). Further studies on MAP2 and identification of death signaling pathways provide valuable information that could be exploited to understand the role of non caspase proteases in PCD of L. donovani.
Collapse
|
42
|
Shadab M, Jha B, Asad M, Deepthi M, Kamran M, Ali N. Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B. PLoS One 2017; 12:e0171306. [PMID: 28170432 PMCID: PMC5295687 DOI: 10.1371/journal.pone.0171306] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The present study aimed to elucidate the cell death mechanism in Leishmania donovani upon treatment with KalsomeTM10, a new liposomal amphotericin B. METHODOLOGY/PRINCIPAL FINDINGS We studied morphological alterations in promastigotes through phase contrast and scanning electron microscopy. Phosphatidylserine (PS) exposure, loss of mitochondrial membrane potential and disruption of mitochondrial integrity was determined by flow cytometry using annexinV-FITC, JC-1 and mitotraker, respectively. For analysing oxidative stress, generation of H2O2 (bioluminescence kit) and mitochondrial superoxide O2- (mitosox) were measured. DNA fragmentation was evaluated using terminal deoxyribonucleotidyl transferase mediated dUTP nick-end labelling (TUNEL) and DNA laddering assay. We found that KalsomeTM10 is more effective then Ambisome against the promastigote as well as intracellular amastigote forms. The mechanistic study showed that KalsomeTM10 induced several morphological alterations in promastigotes typical of apoptosis. KalsomeTM10 treatment showed a dose- and time-dependent exposure of PS in promastigotes. Further, study on mitochondrial pathway revealed loss of mitochondrial membrane potential as well as disruption in mitochondrial integrity with depletion of intracellular pool of ATP. KalsomeTM10 treated promastigotes showed increased ROS production, diminished GSH levels and increased caspase-like activity. DNA fragmentation and cell cycle arrest was observed in KalsomeTM10 treated promastigotes. Apoptotic DNA fragmentation was also observed in KalsomeTM10 treated intracellular amastigotes. KalsomeTM10 induced generation of ROS and nitric oxide leads to the killing of the intracellular parasites. Moreover, endocytosis is indispensable for KalsomeTM10 mediated anti-leishmanial effect in host macrophage. CONCLUSIONS KalsomeTM10 induces apoptotic-like cell death in L. donovani parasites to exhibit its anti-leishmanial function.
Collapse
Affiliation(s)
- Md. Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Baijayanti Jha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Makaraju Deepthi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Mohd. Kamran
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
43
|
Ramu D, Garg S, Ayana R, Keerthana AK, Sharma V, Saini CP, Sen S, Pati S, Singh S. Novel β-carboline-quinazolinone hybrids disrupt Leishmania donovani redox homeostasis and show promising antileishmanial activity. Biochem Pharmacol 2016; 129:26-42. [PMID: 28017772 DOI: 10.1016/j.bcp.2016.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Visceral Leishmaniasis is a deadly parasitic disease caused by Leishmania donovani. Paucity exists in the discovery of novel chemotherapeutics against Leishmaniasis. In this study, we synthesized a natural product inspired Diversity Oriented Synthesis library of L. donovani Trypanothione reductase (LdTR) inhibitor β-carboline-quinazolinone hybrids, which are different in stereochemical architecture and diverse in the bioactive chemical space. It is noteworthy that chirality affects drug-to-protein binding affinity since proteins in any living system are present only in one of the chiral forms. Upon evaluation of the hybrids, one of the chiral forms i.e. Compound 1 showed profound cytotoxic effect in micromolar range as compared to its other chiral form i.e. Compound 2. In-silico docking studies confirmed high binding efficiency of Compound 1 with the catalytic pocket of LdTR. Treatment of L. donovani parasites with Compound 1 inhibits LdTR activity, induces imbalance in redox homeostasis by enhancing ROS, disrupts the mitochondrial membrane potential, modifies actin polymerization and alters the surface topology and architecture. All these cellular modifications eventually led to apoptosis-like death of promastigotes. Furthermore, we synthesized the analogues of Compound 1 and found that these compounds show profound antileishmanial activity in the nanomolar range both in promastigotes and intracellular amastigotes. The enhanced inhibitory potential of these compounds was further supported by in-silico analysis of protein-ligand interactions which revealed high binding efficiency towards the catalytic pocket of LdTR. Taken together, this study reports the serendipitous discovery of β-carboline-quinazolinone hybrids with enhanced antileishmanial activity along with the in-depth structure-activity relationships and mechanism of action of these analogues.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - Swati Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - R Ayana
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - A K Keerthana
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, India
| | - Vijeta Sharma
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - C P Saini
- Department of Physics, School of Natural Sciences, Shiv Nadar University, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
44
|
Iniguez E, Varela-Ramirez A, Martínez A, Torres CL, Sánchez-Delgado RA, Maldonado RA. Ruthenium-Clotrimazole complex has significant efficacy in the murine model of cutaneous leishmaniasis. Acta Trop 2016; 164:402-410. [PMID: 27693373 DOI: 10.1016/j.actatropica.2016.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023]
Abstract
In previous studies we reported a novel series of organometallic compounds, RuII complexed with clotrimazole, displaying potent trypanosomatid activity with unnoticeable toxicity toward normal mammalian cells. In view of the promising activity of Ru-clotrimazole complexes against Leishmania major (L. major), the present work sought to investigate the anti-leishmanial activity of the AM162 complex in the murine model of cutaneous leishmaniasis. In addition, to facilitate the design of new therapeutic strategies against this disease, we investigated the mode of action of two Ru-clotrimazole complexes in L. major promastigotes. Overall, we demonstrate that AM162 significantly reduced the lesion size in mice exposed to L. major infection. In addition, Ru-clotrimazole compounds are able to induce a mitochondrial dependent apoptotic-like death in the extracellular form of the parasite based on labeling of DNA fragments, mitochondrial depolarization, cell cycle alteration profile and plasma membrane phospholipid externalization. Our findings reveal a promising efficacy of the Ru-clotrimazole AM162 complex for the treatment of cutaneous leishmaniasis, as well as pro-apoptotic activity and thus guarantees further evaluation in pre-clinical studies.
Collapse
Affiliation(s)
- Eva Iniguez
- Border Biomedical Research Center, Bioscience Research Building, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Armando Varela-Ramirez
- Border Biomedical Research Center, Bioscience Research Building, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Alberto Martínez
- Chemistry Department, New York City College of Technology, The City University of New York, Brooklyn, NY, USA.
| | - Caresse L Torres
- Border Biomedical Research Center, Bioscience Research Building, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Roberto A Sánchez-Delgado
- Chemistry Department, Brooklyn College and The Graduate Center, The City University of New York, Brooklyn, NY, USA
| | - Rosa A Maldonado
- Border Biomedical Research Center, Bioscience Research Building, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
45
|
Rice DR, Clear KJ, Smith BD. Imaging and therapeutic applications of zinc(ii)-dipicolylamine molecular probes for anionic biomembranes. Chem Commun (Camb) 2016; 52:8787-801. [PMID: 27302091 PMCID: PMC4949593 DOI: 10.1039/c6cc03669d] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This feature article describes the development of synthetic zinc(ii)-dipicolylamine (ZnDPA) receptors as selective targeting agents for anionic membranes in cell culture and living subjects. There is a strong connection between anionic cell surface charge and disease, and ZnDPA probes have been employed extensively for molecular imaging and targeted therapeutics. Fluorescence and nuclear imaging applications include detection of diseases such as cancer, neurodegeneration, arthritis, and microbial infection, and also quantification of cell death caused by therapy. Therapeutic applications include selective targeting of cytotoxic agents and drug delivery systems, photodynamic inactivation, and modulation of the immune system. The article concludes with a summary of expected future directions.
Collapse
Affiliation(s)
- Douglas R Rice
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| | - Kasey J Clear
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA.
| |
Collapse
|
46
|
The LABCG2 Transporter from the Protozoan Parasite Leishmania Is Involved in Antimony Resistance. Antimicrob Agents Chemother 2016; 60:3489-96. [PMID: 27021316 DOI: 10.1128/aac.02813-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/17/2016] [Indexed: 11/20/2022] Open
Abstract
Treatment for leishmaniasis, which is caused by Leishmania protozoan parasites, currently relies on a reduced arsenal of drugs. However, the significant increase in the incidence of drug therapeutic failure and the growing resistance to first-line drugs like antimonials in some areas of Northern India and Nepal limit the control of this parasitic disease. Understanding the molecular mechanisms of resistance in Leishmania is now a matter of urgency to optimize drugs used and to identify novel drug targets to block or reverse resistant mechanisms. Some members of the family of ATP-binding cassette (ABC) transporters in Leishmania have been associated with drug resistance. In this study, we have focused our interest to characterize LABCG2's involvement in drug resistance in Leishmania. Leishmania major parasites overexpressing the ABC protein transporter LABCG2 were generated in order to assess how LABCG2 is involved in drug resistance. Assays of susceptibility to different leishmanicidal agents were carried out. Analysis of the drug resistance profile revealed that Leishmania parasites overexpressing LABCG2 were resistant to antimony, as they demonstrated a reduced accumulation of Sb(III) due to an increase in drug efflux. Additionally, LABCG2 was able to transport thiols in the presence of Sb(III) Biotinylation assays using parasites expressing LABCG2 fused with an N-terminal green fluorescent protein tag revealed that LABCG2 is partially localized in the plasma membrane; this supports data from previous studies which suggested that LABCG2 is localized in intracellular vesicles that fuse with the plasma membrane during exocytosis. In conclusion, Leishmania LABCG2 probably confers antimony resistance by sequestering metal-thiol conjugates within vesicles and through further exocytosis by means of the parasite's flagellar pocket.
Collapse
|
47
|
Abstract
Diseases caused by Leishmania present a worldwide problem, and current therapeutic approaches are unable to achieve a sterile cure. Leishmania is able to persist in host cells by evading or exploiting host immune mechanisms. A thorough understanding of these mechanisms could lead to better strategies for effective management of Leishmania infections. Current research has focused on parasite modification of host cell signaling pathways, entry into phagocytic cells, and modulation of cytokine and chemokine profiles that alter immune cell activation and trafficking to sites of infection. Immuno-therapeutic approaches that target these mechanisms of immune evasion by Leishmania offer promising areas for preclinical and clinical research.
Collapse
|
48
|
Zinc(II)-Dipicolylamine Coordination Complexes as Targeting and Chemotherapeutic Agents for Leishmania major. Antimicrob Agents Chemother 2016; 60:2932-40. [PMID: 26926632 DOI: 10.1128/aac.00410-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 01/11/2023] Open
Abstract
Cutaneous leishmaniasis is a neglected tropical disease that causes painful lesions and severe disfigurement. Modern treatment relies on a few chemotherapeutics with serious limitations, and there is a need for more effective alternatives. This study describes the selective targeting of zinc(II)-dipicolylamine (ZnDPA) coordination complexes toward Leishmania major, one of the species responsible for cutaneous leishmaniasis. Fluorescence microscopy of L. major promastigotes treated with a fluorescently labeled ZnDPA probe indicated rapid accumulation of the probe within the axenic promastigote cytosol. The antileishmanial activities of eight ZnDPA complexes were measured using an in vitro assay. All tested complexes exhibited selective toxicity against L. major axenic promastigotes, with 50% effective concentration values in the range of 12.7 to 0.3 μM. Similar toxicity was observed against intracellular amastigotes, but there was almost no effect on the viability of mammalian cells, including mouse peritoneal macrophages. In vivo treatment efficacy studies used fluorescence imaging to noninvasively monitor changes in the red fluorescence produced by an infection of mCherry-L. major in a mouse model. A ZnDPA treatment regimen reduced the parasite burden nearly as well as the reference care agent, potassium antimony(III) tartrate, and with less necrosis in the local host tissue. The results demonstrate that ZnDPA coordination complexes are a promising new class of antileishmanial agents with potential for clinical translation.
Collapse
|
49
|
Corral MJ, Benito-Peña E, Jiménez-Antón MD, Cuevas L, Moreno-Bondi MC, Alunda JM. Allicin Induces Calcium and Mitochondrial Dysregulation Causing Necrotic Death in Leishmania. PLoS Negl Trop Dis 2016; 10:e0004525. [PMID: 27023069 PMCID: PMC4811430 DOI: 10.1371/journal.pntd.0004525] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Allicin has shown antileishmanial activity in vitro and in vivo. However the mechanism of action underlying its antiproliferative effect against Leishmania has been virtually unexplored. In this paper, we present the results obtained in L.infantum and a mechanistic basis is proposed. Methodology/Principal Finding Exposure of the parasites to allicin led to high Ca2+ levels and mitochondrial reactive oxygen species (ROS), collapse of the mitochondrial membrane potential, reduced production of ATP and elevation of cytosolic ROS. The incubation of the promastigotes with SYTOX Green revealed that decrease of ATP was not associated with plasma membrane permeabilization. Annexin V and propidium iodide (PI) staining indicated that allicin did not induce phospholipids exposure on the plasma membrane. Moreover, DNA agarose gel electrophoresis and TUNEL analysis demonstrated that allicin did not provoke DNA fragmentation. Analysis of the cell cycle with PI staining showed that allicin induced cell cycle arrest in the G2/M phase. Conclusions/Significance We conclude that allicin induces dysregulation of calcium homeostasis and oxidative stress, uncontrolled by the antioxidant defense of the cell, which leads to mitochondrial dysfunction and a bioenergetic catastrophe leading to cell necrosis and cell cycle arrest in the premitotic phase. Leishmaniasis is a vectorial parasitic disease caused by flagellate organisms from the genus Leishmania. Infection is present in over 80 countries and visceral forms are the second most fatal human parasitic disease. Control relies on chemotherapy but available drugs have important shortcomings such as toxicity, side effects, unaffordable price of the safest presentations and increasing reports of parasite resistance and clinical failures. Thus, new drugs are needed. Allicin, a molecule obtained from garlic, has shown antiproliferative effect against different cancer cells, bacteria, fungi and Protista including Leishmania. Insofar its mechanism of action is poorly known. Our results with L.infantum point towards allicin inducing high levels of intracellular calcium, redox inbalance, and mitochondrial dysfunction with reduction of ATP. These events lead to cell necrosis without evidence of apoptotic-like markers. The proposed model suggests the potential use of allicin against leishmaniasis, alone or in combination with other drugs with different mechanisms of action.
Collapse
Affiliation(s)
- María J. Corral
- Department of Animal Health, Group ICPVet, Faculty of Veterinary Medicine, University Complutense Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Optical Chemosensors and Applied Photochemistry Group (GSOLFA), University Complutense Madrid, Spain
| | - M. Dolores Jiménez-Antón
- Department of Animal Health, Group ICPVet, Faculty of Veterinary Medicine, University Complutense Madrid, Spain
| | - Laureano Cuevas
- National Microbiology Centre, Institute of Health Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - María C. Moreno-Bondi
- Department of Analytical Chemistry, Optical Chemosensors and Applied Photochemistry Group (GSOLFA), University Complutense Madrid, Spain
| | - José M. Alunda
- Department of Animal Health, Group ICPVet, Faculty of Veterinary Medicine, University Complutense Madrid, Spain
- * E-mail:
| |
Collapse
|
50
|
Ding Y, Li Z, Li Y, Lu C, Wang H, Shen Y, Du L. HSAF-induced antifungal effects in Candida albicans through ROS-mediated apoptosis. RSC Adv 2016; 6:30895-30904. [PMID: 27594989 PMCID: PMC5006743 DOI: 10.1039/c5ra26092b] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Heat-stable antifungal factor (HSAF) belongs to polycyclic tetramate macrolactams (PTMs), which inhibits many fungal pathogens and is effective in inhibiting Candida albicans (C. albicans). In this study, we found that HSAF induced the apoptosis of Candida albicans SC5314 through inducing the production of reactive oxygen species (ROS). Nevertheless, we validated the efficacy of HSAF against candidiasis caused by C. albicans in a murine model in vivo, and HSAF significantly improved survival and reduced fungal burden compared to vehicles. A molecular dynamics (MD) simulation was also investigated, revealing the theoretical binding mode of HSAF to the β-tubulin of C. albicans. This study first found PTMs-induced fungal apoptosis through ROS accumulation in C. albicans and its potential as a novel agent for fungicides.
Collapse
Affiliation(s)
- Yanjiao Ding
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Zhenyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Haoxin Wang
- State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, P. R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
- State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, P. R. China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|