1
|
Morel C, Parise LF, Van der Zee YY, Issler O, Cai M, Browne CJ, Blando A, LeClair KB, Aubry AV, Haynes S, Williams RW, Mulligan MK, Russo SJ, Nestler EJ, Han MH. Male and female behavioral variability and morphine response in C57BL/6J, DBA/2J, and their BXD progeny following chronic stress exposure. Sci Rep 2024; 14:30785. [PMID: 39730457 DOI: 10.1038/s41598-024-80767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and, thereby, more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress-here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J. Utilizing the chronic social defeat stress (CSDS) and chronic variable stress (CVS) paradigms, we first showed sexual dimorphism in social and exploratory behaviors between the mouse strains. Further, we observed an interaction between genetic background and vulnerability to prolonged exposure to non-social stressors. Finally, we found that DBA/2J and C57BL/6J mice pre-exposed to stress displayed differences in morphine sensitivity. Our results support the hypothesis that genetic variation influences chronic stress-induced behavioral outcomes such as social and approach-avoidance behaviors, reward responses, as well as morphine sensitivity, and is likely to modulate the development of drug addiction.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lyonna F Parise
- Friedman Brain Institute, and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Y Van der Zee
- Friedman Brain Institute, and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Orna Issler
- Friedman Brain Institute, and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min Cai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caleb J Browne
- Friedman Brain Institute, and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony Blando
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine B LeClair
- Friedman Brain Institute, and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonio V Aubry
- Friedman Brain Institute, and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sherod Haynes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Scott J Russo
- Friedman Brain Institute, and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric J Nestler
- Friedman Brain Institute, and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, and Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology (SIAT), and Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Patel H. The role of the lateral septum in neuropsychiatric disease. J Neurosci Res 2022; 100:1422-1437. [PMID: 35443088 DOI: 10.1002/jnr.25052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
The lateral septum (LS) is a structure in the midline of the brain that is interconnected with areas associated with stress and feeding. This review highlights the role of the LS in anxiety, depression, and eating disorders and their comorbidity. There is a prevailing view that the LS is anxiolytic. This review finds that the LS is both anxiolytic and anxiogenic. Furthermore, the LS can promote and inhibit feeding. Given these shared roles, the LS represents a common site for the comorbidity of neuropsychiatric disorders, and therefore a potential pharmacological target. This is crucial since currently available treatments are not always effective. Corticotrophin-releasing factor 2 antagonists are potential drugs for the treatment of anxiety and anorexia and require further research. Furthermore, other drugs currently in trials for binge eating, such as alpha-adrenergic agonists, may in fact promote food intake. It is hoped that the advancements in chemo- and optogenetic techniques will allow future studies to profile the specific neural connections of the LS and their function. This information could facilitate our understanding of the underlying mechanisms, and therefore pharmacological targets, of these psychiatric conditions.
Collapse
|
3
|
Li Y, Wei S, Liu Q, Gong Q, Zhang Q, Zheng T, Yong Z, Chen F, Lawrence AJ, Liang J. Mu-opioid receptors in septum mediate the development of behavioural sensitization to a single morphine exposure in male rats. Addict Biol 2022; 27:e13066. [PMID: 34030217 DOI: 10.1111/adb.13066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/01/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Behavioural sensitization (BS) is characterized by enhanced psychomotor responses to a dose of substance of abuse after prior repeated exposure. We previously reported that BS can be induced by a single injection of morphine in rats, whereas septal nuclei are specifically involved in the development phase of BS. Here, we demonstrated that intra-LS or intra-MS microinjections also incubated BS to a systemic morphine injection in a cross-sensitization fashion, whereas inactivation of either subdivision of septal nuclei (LS: lateral septum; MS: medial septum) can negate this ability of morphine. Then, non-selective (naloxone) and selective (μ-, δ- and κ-)opioid receptor antagonists were directly delivered into LS or MS, respectively, ahead of a morphine microinjection, whereas only μ-opioid receptors in both LS and MS play indispensable roles in mediating the BS development. Finally, there was a pronounced elevation in the levels of the monoamines (i.e. dopamine, homovanillic acid, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid) in the septum, 8 h after a morphine injection detected with a HPLC-ECD method, suggesting that dopaminergi and serotoninergic systems are implicated in the BS formation. Our studies demonstrated that septal nuclei critically participate in the BS development. Essentially, μ- instead of δ- or κ-opioid receptors in LS and MS mediate sensitization to opiates.
Collapse
Affiliation(s)
- Yu‐Ling Li
- Department of Pharmacology, School of Basic Medical Sciences Peking University Beijing China
- Department of Pharmacy, East Hospital Tongji University School of Medicine Shanghai China
| | - Shoupeng Wei
- Department of Pharmacology, School of Basic Medical Sciences Peking University Beijing China
- The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Qing Liu
- Department of Pharmacology, School of Basic Medical Sciences Peking University Beijing China
| | - Qi Gong
- Department of Pharmacology, School of Basic Medical Sciences Peking University Beijing China
| | - Qing‐Jie Zhang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences Peking University Beijing China
| | - Tian‐Ge Zheng
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences Peking University Beijing China
| | - Zheng Yong
- Beijing Institute of Pharmacology and Toxicology Academy of Military Medical Sciences Beijing China
| | - Feng Chen
- The Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Victoria Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville Victoria Australia
| | - Jian‐Hui Liang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences Peking University Beijing China
| |
Collapse
|
4
|
|
5
|
Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance. Prog Neurobiol 2020; 199:101937. [PMID: 33383106 DOI: 10.1016/j.pneurobio.2020.101937] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Maintenance of the endothelial blood-brain-barrier (BBB) through Wnt/β-catenin signalling is essential for neuronal function. The cells however, providing Wnt growth factors at the adult neurovascular unit (NVU) are poorly explored. Here we show by conditionally knocking out the evenness interrupted (Evi) gene in astrocytes (EviΔAC) that astrocytic Wnt release is crucial for BBB and NVU integrity. EviΔAC mice developed brain oedema and increased vascular tracer leakage. While brain vascularization and endothelial junctions were not altered in 10 and 40 week-old mice, endothelial caveolin(Cav)-1-mediated vesicle formation was increased in vivo and in vitro. Moreover, astrocytic end-feet were swollen, and aquaporin-4 distribution was disturbed, coinciding with decreased astrocytic Wnt activity. Vascular permeability correlated with increased neuronal activation by c-fos staining, indicative of altered neuronal function. Astrocyte-derived Wnts thus serve to maintain Wnt/β-catenin activity in endothelia and in astrocytes, thereby controlling Cav-1 expression, vesicular abundance, and end-feet integrity at the NVU.
Collapse
|
6
|
de Leão ERLP, de Souza DNC, de Moura LVB, da Silveira Júnior AM, Dos Santos ALG, Diniz DG, Diniz CWP, Sosthenes MCK. Lateral septum microglial changes and behavioral abnormalities of mice exposed to valproic acid during the prenatal period. J Chem Neuroanat 2020; 111:101875. [PMID: 33127448 DOI: 10.1016/j.jchemneu.2020.101875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Most animal model studies of autism spectrum disorder (ASD) have been performed in males, which may be a reflex of the 3-times higher prevalence in boys than in girls. For this reason, little is known about the mechanisms underlying disease progression in females, and nothing is known about potential associations between microglial changes in the lateral septum (LS) and adult female cognition. Prenatal exposure to valproic acid (VPA) in mice has been widely used as an experimental model of autism-like behaviors associated with cellular changes. However, no study has reported the influence of VPA exposure in utero and its consequences on limbic system-dependent tasks or the microglial response in the LS in adult female mice. We compared the exploratory activity and risk assessment in novel environments of BALB/c control mice to mice exposed in utero to VPA and estimated the total number of microglia in the LS using an optical fractionator. On day 12.5 of pregnancy, females received diluted VPA or saline by gavage. After weaning, VPA exposed or control pups were separately housed in standard laboratory cages. At 5 months of age, all mice underwent behavioral testing and their brain sections were immunolabelled using IBA-1 antibody. In the open field test, VPA group showed a greater distance traveled, which was accompanied by less immobility, less time spent on the periphery and a greater number, crossed lines. Similar findings were found in the elevated plus maze test, where VPA mice traveled greater distances, immobility was significantly higher than that of control and VPA group spent less time on the closed arms of apparatus. Stereological analysis demonstrated higher microglial total number and density in the LS of VPA mice, as the cell count was greater, but the volume was similar. Therefore, we suggest that an increase in microglia in the LS may be part of the cellular changes associated with behavioral dysfunction in the VPA model of ASD.
Collapse
Affiliation(s)
- Ellen Rose Leandro Ponce de Leão
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Dilza Nazaré Colares de Souza
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Larissa Victória Barra de Moura
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Antonio Morais da Silveira Júnior
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Alinne Lorrany Gomes Dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil; Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.
| |
Collapse
|
7
|
Song SY, Zhai XM, Dai JH, Lu LL, Shan CJ, Hong J, Cao JL, Zhang LC. Novel Projections to the Cerebrospinal Fluid-Contacting Nucleus From the Subcortex and Limbic System in Rat. Front Neuroanat 2020; 14:57. [PMID: 32973466 PMCID: PMC7468392 DOI: 10.3389/fnana.2020.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
Objective: To identify the novel projections received by the cerebrospinal fluid (CSF)-contacting nucleus from the subcortex and limbic system to understand the biological functions of the nucleus. Methods: The cholera toxin subunit B (CB), a retrograde tracer, was injected into the CSF-contacting nucleus in Sprague–Dawley rats. After 7–10 days, the surviving rats were perfused, and the whole brain and spinal cord were sliced for CB immunofluorescence detection. The CB-positive neurons in the subcortex and limbic system were observed under a fluorescence microscope, followed by 3D reconstructed with the imaris software. Results: CB-positive neurons were found in the basal forebrain, septum, periventricular organs, preoptic area, and amygdaloid structures. Five functional areas including 46 sub-regions sent projections to the CSF-contacting nucleus. However, the projections had different densities, ranging from sparse to moderate, to dense. Conclusions: According to the projections from the subcortex and limbic system, we hypothesize that the CSF-contacting nucleus participates in emotion, cognition, homeostasis regulation, visceral activity, pain, and addiction. In this study, we illustrate the novel projections from the subcortex and limbic system to the CSF-contacting nucleus, which underlies the diverse and complicated circuits of the nucleus in body regulations.
Collapse
|
8
|
Hosford PS, Mosienko V, Kishi K, Jurisic G, Seuwen K, Kinzel B, Ludwig MG, Wells JA, Christie IN, Koolen L, Abdala AP, Liu BH, Gourine AV, Teschemacher AG, Kasparov S. CNS distribution, signalling properties and central effects of G-protein coupled receptor 4. Neuropharmacology 2018; 138:381-392. [PMID: 29894771 PMCID: PMC6063991 DOI: 10.1016/j.neuropharm.2018.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022]
Abstract
Information on the distribution and biology of the G-protein coupled receptor 4 (GPR4) in the brain is limited. It is currently thought that GPR4 couples to Gs proteins and may mediate central respiratory sensitivity to CO2. Using a knock-in mouse model, abundant GPR4 expression was detected in the cerebrovascular endothelium and neurones of dorsal raphe, retro-trapezoidal nucleus locus coeruleus and lateral septum. A similar distribution was confirmed using RNAscope in situ hybridisation. In HEK293 cells, overexpressing GPR4, it was highly constitutively active at neutral pH with little further increase in cAMP towards acidic pH. The GPR4 antagonist NE 52-QQ57 effectively blocked GPR4-mediated cAMP accumulation (IC50 26.8 nM in HEK293 cells). In HUVEC which natively express GPR4, physiological acidification (pH 7.4-7.0) resulted in a cAMP increase by ∼55% which was completely prevented by 1 μM NE 52-QQ57. The main extracellular organic acid, l-lactic acid (LL; 1-10 mM), suppressed pH dependent activation of GPR4 in HEK293 and HUVEC cells, suggesting allosteric negative modulation. In unanaesthetised mice and rats, NE 52-QQ57 (20 mg kg-1) reduced ventilatory response to 5 and 10% CO2. In anaesthetised rats, systemic administration of NE 52-QQ57 (up to 20 mg kg-1) had no effect on hemodynamics, cerebral blood flow and blood oxygen level dependent responses. Central administration of NE 52-QQ57 (1 mM) in vagotomised anaesthetised rats did not affect CO2-induced respiratory responses. Our results indicate that GPR4 is expressed by multiple neuronal populations and endothelium and that its pH sensitivity is affected by level of expression and LL. NE 52-QQ57 blunts hypercapnic response to CO2 but this effect is absent under anaesthesia, possibly due to the inhibitory effect of LL on GPR4.
Collapse
Affiliation(s)
- P S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT, UK
| | - V Mosienko
- Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - K Kishi
- Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - G Jurisic
- Novartis Institutes for Biomedical Research, CH-4002 Basel, Switzerland
| | - K Seuwen
- Novartis Institutes for Biomedical Research, CH-4002 Basel, Switzerland
| | - B Kinzel
- Novartis Institutes for Biomedical Research, CH-4002 Basel, Switzerland
| | - M G Ludwig
- Novartis Institutes for Biomedical Research, CH-4002 Basel, Switzerland
| | - J A Wells
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT, UK
| | - I N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT, UK
| | - L Koolen
- Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - A P Abdala
- Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - B H Liu
- Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT, UK
| | - A G Teschemacher
- Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK.
| | - S Kasparov
- Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK; Baltic Federal University, Kaliningrad 236041, Russian Federation.
| |
Collapse
|
9
|
Gass N, Becker R, Sack M, Schwarz AJ, Reinwald J, Cosa-Linan A, Zheng L, von Hohenberg CC, Inta D, Meyer-Lindenberg A, Weber-Fahr W, Gass P, Sartorius A. Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior. Psychopharmacology (Berl) 2018; 235:1055-1068. [PMID: 29305627 DOI: 10.1007/s00213-017-4823-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
RATIONALE Evidence indicates that ketamine's rapid antidepressant efficacy likely results from its antagonism of NR2B-subunit-containing NMDA receptors (NMDAR). Since ketamine equally blocks NR2A- and NR2B-containing NMDAR, and has affinity to other receptors, NR2B-selective drugs might have improved therapeutic efficiency and side effect profile. OBJECTIVES We aimed to compare the effects of (S)-ketamine and two different types of NR2B-selective antagonists on functional brain networks in rats, in order to find common circuits, where their effects intersect, and that might explain their antidepressant action. METHODS The experimental design comprised four parallel groups of rats (N = 37), each receiving (S)-Ketamine, CP-101,606, Ro 25-6981 or saline. After compound injection, we acquired resting-state functional magnetic resonance imaging time series. We used graph theoretical approach to calculate brain network properties. RESULTS Ketamine and CP-101,606 diminished the global clustering coefficient and small-worldness index. At the nodal level, all compounds induced increased connectivity of the regions mediating reward and cognitive aspects of emotional processing, such as ventromedial prefrontal cortex, septal nuclei, and nucleus accumbens. The dorsal hippocampus and regions involved in sensory processing and aversion, such as superior and inferior colliculi, exhibited an opposite effect. CONCLUSIONS The effects common to ketamine and NR2B-selective compounds were localized to the same brain regions as those reported in depression, but in the opposite direction. The upregulation of the reward circuitry might partially underlie the antidepressant and anti-anhedonic effects of the antagonists and could potentially serve as a translational imaging phenotype for testing putative antidepressants, especially those targeting the NR2B receptor subtype.
Collapse
Affiliation(s)
- Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
| | - Robert Becker
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Markus Sack
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Adam J Schwarz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Jonathan Reinwald
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Alejandro Cosa-Linan
- Research Group In Silico Pharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lei Zheng
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Christian Clemm von Hohenberg
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Gass N, Weber-Fahr W, Sartorius A, Becker R, Didriksen M, Stensbøl TB, Bastlund JF, Meyer-Lindenberg A, Schwarz AJ. An acetylcholine alpha7 positive allosteric modulator rescues a schizophrenia-associated brain endophenotype in the 15q13.3 microdeletion, encompassing CHRNA7. Eur Neuropsychopharmacol 2016; 26:1150-60. [PMID: 27061851 DOI: 10.1016/j.euroneuro.2016.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
The 15q13.3 microdeletion copy number variation is strongly associated with schizophrenia and epilepsy. The CHRNA7 gene, encoding nicotinic acetylcholine alpha 7 receptors (nAChA7Rs), is hypothesized to be one of the main genes in this deletion causing the neuropsychiatric phenotype. Here we used a recently developed 15q13.3 microdeletion mouse model to explore whether an established schizophrenia-associated connectivity phenotype is replicated in a murine model, and whether positive modulation of nAChA7 receptor might pharmacologically normalize the connectivity patterns. Resting-state fMRI data were acquired from male mice carrying a hemizygous 15q13.3 microdeletion (N=9) and from wild-type mice (N=9). To study the connectivity profile of 15q13.3 mice and test the effect of nAChA7 positive allosteric modulation, the 15q13.3 mice underwent two imaging sessions, one week apart, receiving a single intraperitoneal injection of either 15mg/kg Lu AF58801 or saline. The control group comprised wild-type mice treated with saline. We performed seed-based functional connectivity analysis to delineate aberrant connectivity patterns associated with the deletion (15q13.3 mice (saline treatment) versus wild-type mice (saline treatment)) and their modulation by Lu AF58801 (15q13.3 mice (Lu AF58801 treatment) versus 15q13.3 mice (saline treatment)). Compared to wild-type mice, 15q13.3 mice evidenced a predominant hyperconnectivity pattern. The main effect of Lu AF58801 was a normalization of elevated functional connectivity between prefrontal and frontal, hippocampal, striatal, thalamic and auditory regions. The strongest effects were observed in brain regions expressing nAChA7Rs, namely hippocampus, cerebral cortex and thalamus. These effects may underlie the antiepileptic, pro-cognitive and auditory gating deficit-reversal effects of nAChA7R stimulation.
Collapse
Affiliation(s)
- Natalia Gass
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany.
| | - Wolfgang Weber-Fahr
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Alexander Sartorius
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Robert Becker
- Research Group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | | | | | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Adam J Schwarz
- Tailored Therapeutics - Neuroscience, Eli Lilly and Company, Indianapolis, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
11
|
Zhao W, Zhao T, Chen Y, Zhao F, Gu Q, Williams RW, Bhattacharya SK, Lu L, Sun Y. A Murine Hypertrophic Cardiomyopathy Model: The DBA/2J Strain. PLoS One 2015; 10:e0133132. [PMID: 26241864 PMCID: PMC4524617 DOI: 10.1371/journal.pone.0133132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/07/2015] [Indexed: 12/12/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM) is attributed to mutations in genes that encode for the sarcomere proteins, especially Mybpc3 and Myh7. Genotype-phenotype correlation studies show significant variability in HCM phenotypes among affected individuals with identical causal mutations. Morphological changes and clinical expression of HCM are the result of interactions with modifier genes. With the exceptions of angiotensin converting enzyme, these modifiers have not been identified. Although mouse models have been used to investigate the genetics of many complex diseases, natural murine models for HCM are still lacking. In this study we show that the DBA/2J (D2) strain of mouse has sequence variants in Mybpc3 and Myh7, relative to widely used C57BL/6J (B6) reference strain and the key features of human HCM. Four-month-old of male D2 mice exhibit hallmarks of HCM including increased heart weight and cardiomyocyte size relative to B6 mice, as well as elevated markers for cardiac hypertrophy including β-myosin heavy chain (MHC), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and skeletal muscle alpha actin (α1-actin). Furthermore, cardiac interstitial fibrosis, another feature of HCM, is also evident in the D2 strain, and is accompanied by up-regulation of type I collagen and α-smooth muscle actin (SMA)-markers of fibrosis. Of great interest, blood pressure and cardiac function are within the normal range in the D2 strain, demonstrating that cardiac hypertrophy and fibrosis are not secondary to hypertension, myocardial infarction, or heart failure. Because D2 and B6 strains have been used to generate a large family of recombinant inbred strains, the BXD cohort, the D2 model can be effectively exploited for in-depth genetic analysis of HCM susceptibility and modifier screens.
Collapse
MESH Headings
- Actins/blood
- Animals
- Biomarkers
- Blood Pressure
- Cardiomyopathy, Hypertrophic, Familial/blood
- Cardiomyopathy, Hypertrophic, Familial/diagnostic imaging
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/pathology
- Carrier Proteins/genetics
- Disease Models, Animal
- Fibrosis
- Gene Expression Profiling
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/pathology
- Myofibroblasts/pathology
- Myosin Heavy Chains/blood
- Myosin Heavy Chains/genetics
- Natriuretic Peptides/blood
- Phenotype
- RNA, Messenger/biosynthesis
- Ultrasonography
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Wenyuan Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
| | - Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
| | - Yuanjian Chen
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
| | - Fengbo Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Syamal K. Bhattacharya
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Jiangsu Key Laboratory of Neuroregenertion, Nantong University, Nantong, Jiangsu, China
- * E-mail: (YS); (LL)
| | - Yao Sun
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee HealthScience Center, Memphis, Tennessee, United States of America
- * E-mail: (YS); (LL)
| |
Collapse
|
12
|
Bubier JA, Phillips CA, Langston MA, Baker EJ, Chesler EJ. GeneWeaver: finding consilience in heterogeneous cross-species functional genomics data. Mamm Genome 2015; 26:556-66. [PMID: 26092690 PMCID: PMC4602068 DOI: 10.1007/s00335-015-9575-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/03/2015] [Indexed: 01/20/2023]
Abstract
A persistent challenge lies in the interpretation of consensus and discord from functional genomics experimentation. Harmonizing and analyzing this data will enable investigators to discover relations of many genes to many diseases, and from many phenotypes and experimental paradigms to many diseases through their genomic substrates. The GeneWeaver.org system provides a platform for cross-species integration and interrogation of heterogeneous curated and experimentally derived functional genomics data. GeneWeaver enables researchers to store, share, analyze, and compare results of their own genome-wide functional genomics experiments in an environment containing rich companion data obtained from major curated repositories, including the Mouse Genome Database and other model organism databases, along with derived data from highly specialized resources, publications, and user submissions. The data, largely consisting of gene sets and putative biological networks, are mapped onto one another through gene identifiers and homology across species. A versatile suite of interactive tools enables investigators to perform a variety of set analysis operations to find consilience among these often noisy experimental results. Fast algorithms enable real-time analysis of large queries. Specific applications include prioritizing candidate genes for quantitative trait loci, identifying biologically valid mouse models and phenotypic assays for human disease, finding the common biological substrates of related diseases, classifying experiments and the biological concepts they represent from empirical data, and applying patterns of genomic evidence to implicate novel genes in disease. These results illustrate an alternative to strict emphasis on replicability, whereby researchers classify experimental results to identify the conditions that lead to their similarity.
Collapse
Affiliation(s)
| | - Charles A Phillips
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Erich J Baker
- Computer Science Department, Baylor University, Waco, TX, 76798, USA
| | | |
Collapse
|
13
|
Cheng Q, Seltzer Z, Sima C, Lakschevitz FS, Glogauer M. Quantitative Trait Loci and Candidate Genes for Neutrophil Recruitment in Sterile Inflammation Mapped in AXB-BXA Recombinant Inbred Mice. PLoS One 2015; 10:e0124117. [PMID: 25942439 PMCID: PMC4420501 DOI: 10.1371/journal.pone.0124117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophil recruitment (NR) to sites of sterile inflammation plays a key role in tissue damage and healing potential of lesions characteristic to non-infectious inflammatory diseases. Previous studies suggested significant genetic control of neutrophil survival, function, and migration in inflammatory responses to endogenous and exogenous stimuli. We have mapped the murine genome for quantitative trait loci (QTLs) harbouring genetic determinants that regulate NR in SI using a murine model of chemically-induced peritonitis. NR was quantified in 16 AXB-BXA recombinant inbred strains and their progenitors, A/J (A) and C57BL/6J (B). A continuous distribution of NR was found among the strains, with parent B showing higher NR and parent A showing lower NR (3.0-fold difference, p=0.05). Within the progeny strains, a 5.5-fold difference in NR was observed between the lowest, BXA1, and the highest responders AXB19 (p<0.001). This data was analyzed using GeneNetwork, which linked NR to one significant QTL on chromosome 12 (Peritoneal Neutrophil Recruitment 1, PNR1) and two suggestive QTLs (PNR2, PNR3) on chromosomes 12 and 16 respectively. Sixty-four candidate genes within PNR1 were cross-referenced with currently published data, mRNA expression from two NR microarrays, and single nucleotide polymorphism analysis. The present study brings new light into the genetics of NR in response to cell injury and highlights potential candidate genes Hif1α, Fntb, and Prkch and their products for further studies on neutrophil infiltration and inflammation resolution in sterile inflammation.
Collapse
Affiliation(s)
- Quyen Cheng
- Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Ze’ev Seltzer
- Centre for the Study of Pain, Faculties of Dentistry and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Corneliu Sima
- Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Flavia S. Lakschevitz
- Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael Glogauer
- Department of Periodontology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Bian C, Zhang K, Zhao Y, Guo Q, Cai W, Zhang J. Regional specific regulation of steroid receptor coactivator-1 immunoreactivity by orchidectomy in the brain of adult male mice. Steroids 2014; 88:7-14. [PMID: 24945110 DOI: 10.1016/j.steroids.2014.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 01/06/2023]
Abstract
Androgens including testosterone and dihydrotestosterone play important roles on brain structure and function, either directly through androgen receptor or indirectly through estrogen receptors, which need coactivators for their transcription activation. Steroid receptor coactivator-1 (SRC-1) has been shown to be multifunctional potentials in the brain, but how it is regulated by androgens in the brain remains unclear. In this study, we explored the effect of orchidectomy (ORX) on the expression of SRC-1 in the adult male mice using nickel-intensified immunohistochemistry. The results showed that ORX induced dramatic decrease of SRC-1 immunoreactivity in the olfactory tubercle, piriform cortex, ventral pallidum, most parts of the septal area, hippocampus, substantia nigra (compact part), pontine nuclei and nucleus of the trapezoid body (p<0.01). Significant decrease of SRC-1 was noticed in the dorsal and lateral septal nucleus, medial preoptical area, dorsomedial and ventromedial hypothalamic nucleus and superior paraolivary nucleus (p<0.05). Whereas in other regions examined, levels of SRC-1 immunoreactivity were not obviously changed by ORX (p>0.05). The above results demonstrated ORX downregulation of SRC-1 in specific regions that have been involved in sense of smell, learning and memory, cognition, neuroendocrine, reproduction and motor control, indicating that SRC-1 play pivotal role in the mediating circulating androgenic regulation on these important brain functions. It also indicates that SRC-1 may serve as a novel target for the central disorders caused by the age-related decrease of circulating androgens.
Collapse
Affiliation(s)
- Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Kaiyuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Qiang Guo
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Wenqin Cai
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
15
|
Dehkordi O, Rose JE, Asadi S, Manaye KF, Millis RM, Jayam-Trouth A. Neuroanatomical circuitry mediating the sensory impact of nicotine in the central nervous system. J Neurosci Res 2014; 93:230-43. [PMID: 25223294 DOI: 10.1002/jnr.23477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/24/2022]
Abstract
Direct actions of nicotine in the CNS appear to be essential for its reinforcing properties. However, activation of nicotinic acetylcholine receptors (nAChRs) on afferent sensory nerve fibers is an important component of addiction to, and withdrawal from, cigarette smoking. The aim of the present study was to identify the neuroanatomical substrates activated by the peripheral actions of nicotine and to determine whether these sites overlap brain structures stimulated by direct actions of nicotine. Mouse brains were examined by immunohistochemistry for c-Fos protein after intraperitoneal injection of either nicotine hydrogen tartrate salt (NIC; 30 and 40 μg/kg) or nicotine pyrrolidine methiodide (NIC-PM; 20 and 30 μg/kg). NIC-PM induced c-Fos immunoreactivity (IR) at multiple brain sites. In the brainstem, c-Fos IR was detected in the locus coeruleus, laterodorsal tegmental nucleus, and pedunculotegmental nucleus. In the midbrain, c-Fos IR was observed in areas overlapping the ventral tegmental area (VTA), which includes the paranigral nucleus, parainterfascicular nucleus, parabrachial pigmental area, and rostral VTA. Other structures of the nicotine brain-reward circuitry activated by NIC-PM included the hypothalamus, paraventricular thalamic nucleus, lateral habenular nucleus, hippocampus, amygdala, accumbens nucleus, piriform cortex, angular insular cortex, anterior olfactory nucleus, lateral septal nucleus, bed nucleus of stria terminalis, cingulate and medial prefrontal cortex, olfactory tubercle, and medial and lateral orbital cortex. NIC, acting through central and peripheral nAChRs, produced c-Fos IR in areas that overlapped NIC-PM-induced c-Fos-expressing sites. These neuroanatomical data are the first to demonstrate that the CNS structures that are the direct targets of nicotine are also anatomical substrates for the peripheral sensory impact of nicotine.
Collapse
Affiliation(s)
- Ozra Dehkordi
- Department of Neurology, Howard University Hospital, Washington, DC; Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC
| | | | | | | | | | | |
Collapse
|