1
|
Aksoyalp ZŞ, Temel A, Karpuz M. Pharmacological Innovations in Space: Challenges and Future Perspectives. Pharm Res 2024; 41:2095-2120. [PMID: 39532779 DOI: 10.1007/s11095-024-03788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Since the first human experience in space, the interest in space research and medicine to explore universe is growing day by day. The extreme space conditions mainly radiation and microgravity effects on human physiology, antimicrobial susceptibility, and efficacy, safety, and stability of drugs. Therefore, the aim of this review is to address the impact of extreme space conditions, mainly microgravity and radiation, on human physiology and highlights the need for future approaches by evaluating the effectiveness of strategies to prevent or mitigate health problems. METHODS Published papers and NASA technical documents were searched in Pubmed and Google Scholar databases using the keywords ''antimicrobial susceptibility or drug resistance or drug stability or innovations or pharmacokinetic or pharmacodynamics'' and ''radiation or microgravity or space environments or space medicine or space pharmacy'' to prepare this review. RESULTS In this review, the challenges regarding physiological effects and drug-related problems are examined through the evaluation of extreme conditions in space. Medications used in spaceflight are summarized, and the role of pharmacists specializing in space medicine is briefly explained. Last but not least, to overcome the aforementioned issues, novel approaches have been addressed, such as personalised treatments, development of space-resistant formulations and various microbial applications. CONCLUSIONS Further research in the space medicine is required to facilitate the safe and healthy travel of humans to the Moon, Mars and other extraterrestrial destinations. One bear in mind that space research will contribute not only to the exploration of the universe, but also to the advancement of health and technological discoveries on Earth.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye
| | - Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Türkiye.
| |
Collapse
|
2
|
Li LF, Yu J, Li R, Li SS, Huang JY, Wang MD, Jiang LN, Xu JH, Wang Z. Apoptosis, Mitochondrial Autophagy, Fission, and Fusion Maintain Mitochondrial Homeostasis in Mouse Liver Under Tail Suspension Conditions. Int J Mol Sci 2024; 25:11196. [PMID: 39456978 PMCID: PMC11508632 DOI: 10.3390/ijms252011196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microgravity can induce alterations in liver morphology, structure, and function, with mitochondria playing an important role in these changes. Tail suspension (TS) is a well-established model for simulating the effects of microgravity on muscles and bones, but its impact on liver function remains unclear. In the current study, we explored the regulatory mechanisms of apoptosis, autophagy, fission, and fusion in maintaining liver mitochondrial homeostasis in mice subjected to TS for 2 or 4 weeks (TS2 and TS4). The results showed the following: (1) No significant differences were observed in nuclear ultrastructure or DNA fragmentation between the control and TS-treated groups. (2) No significant differences were detected in the mitochondrial area ratio among the three groups. (3) Cysteine aspartic acid-specific protease 3 (Caspase3) activity and the Bcl-2-associated X protein (bax)/B-cell lymphoma-2 (bcl2) ratio were not higher in the TS2 and TS4 groups compared to the control group. (4) dynamin-related protein 1 (DRP1) protein expression was increased, while mitochondrial fission factor (MFF) protein levels were decreased in the TS2 and TS4 groups compared to the control, suggesting stable mitochondrial fission. (5) No significant differences were observed in the optic atrophy 1 (OPA1), mitofusin 1 and 2 (MFN1 and MFN2) protein expression levels across the three groups. (6) Mitochondrial autophagy vesicles were present in the TS2 and TS4 groups, with a significant increase in Parkin phosphorylation corresponding to the duration of the TS treatment. (7) ATP synthase and citrate synthase activities were significantly elevated in the TS2 group compared to the control group but were significantly reduced in the TS4 group compared to the TS2 group. In summary, the coordinated regulation of apoptosis, mitochondrial fission and fusion, and particularly mitochondrial autophagy preserved mitochondrial morphology and contributed to the restoration of the activities of these two key mitochondrial enzymes, thereby maintaining liver mitochondrial homeostasis in mice under TS conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin-Hui Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (L.-F.L.); (J.Y.); (R.L.); (S.-S.L.); (J.-Y.H.); (M.-D.W.); (L.-N.J.)
| | - Zhe Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (L.-F.L.); (J.Y.); (R.L.); (S.-S.L.); (J.-Y.H.); (M.-D.W.); (L.-N.J.)
| |
Collapse
|
3
|
Zong B, Wang J, Wang K, Hao J, Han JY, Jin R, Ge Q. Effects of Ginsenoside Rb1 on the Crosstalk between Intestinal Stem Cells and Microbiota in a Simulated Weightlessness Mouse Model. Int J Mol Sci 2024; 25:8769. [PMID: 39201456 PMCID: PMC11354315 DOI: 10.3390/ijms25168769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Exposure to the space microenvironment has been found to disrupt the homeostasis of intestinal epithelial cells and alter the composition of the microbiota. To investigate this in more detail and to examine the impact of ginsenoside Rb1, we utilized a mouse model of hindlimb unloading (HU) for four weeks to simulate the effects of microgravity. Our findings revealed that HU mice had ileum epithelial injury with a decrease in the number of intestinal stem cells (ISCs) and the level of cell proliferation. The niche functions for ISCs were also impaired in HU mice, including a reduction in Paneth cells and Wnt signaling, along with an increase in oxidative stress. The administration of Rb1 during the entire duration of HU alleviated the observed intestinal defects, suggesting its beneficial influence on epithelial cell homeostasis. Hindlimb unloading also resulted in gut dysbiosis. The supplementation of Rb1 in the HU mice or the addition of Rb1 derivative compound K in bacterial culture in vitro promoted the growth of beneficial probiotic species such as Akkermansia. The co-housing experiment further showed that Rb1 treatment in ground control mice alone could alleviate the defects in HU mice that were co-housed with Rb1-treated ground mice. Together, these results underscore a close relationship between dysbiosis and impaired ISC functions in the HU mouse model. It also highlights the beneficial effects of Rb1 in mitigating HU-induced epithelial injury by promoting the expansion of intestinal probiotics. These animal-based insights provide valuable knowledge for the development of improved approaches to maintaining ISC homeostasis in astronauts.
Collapse
Affiliation(s)
- Beibei Zong
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (B.Z.); (J.-Y.H.)
| | - Jingyi Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Jie Hao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (B.Z.); (J.-Y.H.)
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| | - Qing Ge
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (B.Z.); (J.-Y.H.)
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (J.W.); (K.W.); (J.H.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Tahimic CGT, Steczina S, Sebastian A, Hum NR, Abegaz M, Terada M, Cimini M, Goukassian DA, Schreurs AS, Hoban-Higgins TM, Fuller CA, Loots GG, Globus RK, Shirazi-Fard Y. Simulated Microgravity Alters Gene Regulation Linked to Immunity and Cardiovascular Disease. Genes (Basel) 2024; 15:975. [PMID: 39202335 PMCID: PMC11353732 DOI: 10.3390/genes15080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microgravity exposure induces a cephalad fluid shift and an overall reduction in physical activity levels which can lead to cardiovascular deconditioning in the absence of countermeasures. Future spaceflight missions will expose crew to extended periods of microgravity among other stressors, the effects of which on cardiovascular health are not fully known. In this study, we determined cardiac responses to extended microgravity exposure using the rat hindlimb unloading (HU) model. We hypothesized that exposure to prolonged simulated microgravity and subsequent recovery would lead to increased oxidative damage and altered expression of genes involved in the oxidative response. To test this hypothesis, we examined hearts of male (three and nine months of age) and female (3 months of age) Long-Evans rats that underwent HU for various durations up to 90 days and reambulated up to 90 days post-HU. Results indicate sex-dependent changes in oxidative damage marker 8-hydroxydeoxyguanosine (8-OHdG) and antioxidant gene expression in left ventricular tissue. Three-month-old females displayed elevated 8-OHdG levels after 14 days of HU while age-matched males did not. In nine-month-old males, there were no differences in 8-OHdG levels between HU and normally loaded control males at any of the timepoints tested following HU. RNAseq analysis of left ventricular tissue from nine-month-old males after 14 days of HU revealed upregulation of pathways involved in pro-inflammatory signaling, immune cell activation and differential expression of genes associated with cardiovascular disease progression. Taken together, these findings provide a rationale for targeting antioxidant and immune pathways and that sex differences should be taken into account in the development of countermeasures to maintain cardiovascular health in space.
Collapse
Affiliation(s)
- Candice G. T. Tahimic
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| | - Sonette Steczina
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Aimy Sebastian
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
| | - Metadel Abegaz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Masahiro Terada
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Universities Space Research Association, Washington, DC 20024, USA
| | - Maria Cimini
- Temple University School of Medicine, Philadelphia, PA 19140, USA;
| | - David A. Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
- Universities Space Research Association, Washington, DC 20024, USA
| | - Tana M. Hoban-Higgins
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Charles A. Fuller
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Gabriela G. Loots
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA (G.G.L.)
- Department of Orthopedic Surgery, University of California Davis Health, Sacramento, CA 95817, USA
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA (M.A.); (Y.S.)
| |
Collapse
|
5
|
Wadhwa A, Moreno-Villanueva M, Crucian B, Wu H. Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks. Immun Ageing 2024; 21:50. [PMID: 39033285 PMCID: PMC11264846 DOI: 10.1186/s12979-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Spaceflight poses a myriad of environmental stressors to astronauts´ physiology including microgravity and radiation. The individual impacts of microgravity and radiation on the immune system have been extensively investigated, though a comprehensive review on their combined effects on immune system outcomes is missing. Therefore, this review aims at understanding the synergistic, additive, and antagonistic interactions between microgravity and radiation and their impact on immune function as observed during spaceflight-analog studies such as rodent hindlimb unloading and cell culture rotating wall vessel models. These mimic some, but not all, of the physiological changes observed in astronauts during spaceflight and provide valuable information that should be considered when planning future missions. We provide guidelines for the design of further spaceflight-analog studies, incorporating influential factors such as age and sex for rodent models and standardizing the longitudinal evaluation of specific immunological alterations for both rodent and cellular models of spaceflight exposure.
Collapse
Affiliation(s)
- Anna Wadhwa
- Harvard Medical School, Boston, MA, 02115, USA.
- NASA Johnson Space Center, Houston, TX, 77058, USA.
| | | | | | - Honglu Wu
- NASA Johnson Space Center, Houston, TX, 77058, USA
| |
Collapse
|
6
|
Hicks J, Olson M, Mitchell C, Juran CM, Paul AM. The Impact of Microgravity on Immunological States. Immunohorizons 2023; 7:670-682. [PMID: 37855736 PMCID: PMC10615652 DOI: 10.4049/immunohorizons.2200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
As we explore other planetary bodies, astronauts will face unique environmental and physiological challenges. The human immune system has evolved under Earth's gravitational force. Consequently, in the microgravity environment of space, immune function is altered. This can pose problematic consequences for astronauts on deep space missions where medical intervention will be limited. Studying the unique environment of microgravity has its challenges, yet current research has uncovered immunological states that are probable during exploration missions. As microgravity-induced immune states are uncovered, novel countermeasure developments and personalized mitigation programs can be designed to improve astronaut health. This can also benefit immune-related monitoring programs for disorders on Earth. This is a comprehensive review, including gaps in knowledge, of simulated and spaceflight microgravity studies in human and rodent models.
Collapse
Affiliation(s)
- Janelle Hicks
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL
| | - Makaila Olson
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL
| | - Carol Mitchell
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL
| | - Cassandra M. Juran
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA
- Blue Marble Space Institute of Science, Seattle, WA
| | - Amber M. Paul
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA
- Blue Marble Space Institute of Science, Seattle, WA
| |
Collapse
|
7
|
Sanford LD, Adkins AM, Boden AF, Gotthold JD, Harris RD, Shuboni-Mulligan D, Wellman LL, Britten RA. Sleep and Core Body Temperature Alterations Induced by Space Radiation in Rats. Life (Basel) 2023; 13:life13041002. [PMID: 37109531 PMCID: PMC10144689 DOI: 10.3390/life13041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sleep problems in astronauts can arise from mission demands and stress and can impact both their health and ability to accomplish mission objectives. In addition to mission-related physical and psychological stressors, the long durations of the proposed Mars missions will expose astronauts to space radiation (SR), which has a significant impact on the brain and may also alter sleep and physiological functions. Therefore, in this study, we assessed sleep, EEG spectra, activity, and core body temperature (CBT) in rats exposed to SR and compared them to age-matched nonirradiated rats. Male outbred Wistar rats (8-9 months old at the time of the study) received SR (15 cGy GCRsim, n = 15) or served as age- and time-matched controls (CTRL, n = 15) without irradiation. At least 90 days after SR and 3 weeks prior to recording, all rats were implanted with telemetry transmitters for recording EEG, activity, and CBT. Sleep, EEG spectra (delta, 0.5-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; sigma, 12-16 Hz; beta, 16-24 Hz), activity, and CBT were examined during light and dark periods and during waking and sleeping states. When compared to the CTRLs, SR produced significant reductions in the amounts of dark period total sleep time, total nonrapid eye movement sleep (NREM), and total rapid eye movement sleep (REM), with significant decreases in light and dark period NREM deltas and dark period REM thetas as well as increases in alpha and sigma in NREM and REM during either light or dark periods. The SR animals showed modest increases in some measures of activity. CBT was significantly reduced during waking and sleeping in the light period. These data demonstrate that SR alone can produce alterations to sleep and temperature control that could have consequences for astronauts and their ability to meet mission demands.
Collapse
Affiliation(s)
- Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Austin M Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Alea F Boden
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Justin D Gotthold
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ryan D Harris
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Dorela Shuboni-Mulligan
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Laurie L Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Richard A Britten
- Center for Integrative Neuroscience and Inflammatory Diseases, Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
8
|
Vroom MM, Troncoso-Garcia A, Duscher AA, Foster JS. Modeled microgravity alters apoptotic gene expression and caspase activity in the squid-vibrio symbiosis. BMC Microbiol 2022; 22:202. [PMID: 35982413 PMCID: PMC9389742 DOI: 10.1186/s12866-022-02614-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Spaceflight is a novel and profoundly stressful environment for life. One aspect of spaceflight, microgravity, has been shown to perturb animal physiology thereby posing numerous health risks, including dysregulation of normal developmental pathways. Microgravity can also negatively impact the interactions between animals and their microbiomes. However, the effects of microgravity on developmental processes influenced by beneficial microbes, such as apoptosis, remains poorly understood. Here, the binary mutualism between the bobtail squid, Euprymna scolopes, and the gram-negative bacterium, Vibrio fischeri, was studied under modeled microgravity conditions to elucidate how this unique stressor alters apoptotic cell death induced by beneficial microbes. Results Analysis of the host genome and transcriptome revealed a complex network of apoptosis genes affiliated with extrinsic/receptor-mediated and intrinsic/stress-induced apoptosis. Expression of apoptosis genes under modeled microgravity conditions occurred earlier and at high levels compared to gravity controls, in particular the expression of genes encoding initiator and executioner caspases. Functional assays of these apoptotic proteases revealed heightened activity under modeled microgravity; however, these increases could be mitigated using caspase inhibitors. Conclusions The outcomes of this study indicated that modeled microgravity alters the expression of both extrinsic and intrinsic apoptosis gene expression and that this process is mediated in part by caspases. Modeled microgravity-associated increases of caspase activity can be pharmacologically inhibited suggesting that perturbations to the normal apoptosis signaling cascade can be mitigated, which may have broader implications for maintaining animal-microbial homeostasis in spaceflight. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02614-x.
Collapse
Affiliation(s)
- Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Angel Troncoso-Garcia
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Alexandrea A Duscher
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, 32953, USA.
| |
Collapse
|
9
|
Livanova AA, Fedorova AA, Zavirsky AV, Bikmurzina AE, Krivoi II, Markov AG. Dose and time dependence of functional impairments in rat jejunum following ionizing radiation exposure. Physiol Rep 2021; 9:e14960. [PMID: 34337895 PMCID: PMC8326886 DOI: 10.14814/phy2.14960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation causes dramatic change in the transport and barrier functions of the intestine. The degree of radiation damage rate depends primarily on the absorbed dose and post-irradiation time. Variety of experimental protocols providing different time points and doses exist, with the lack of a common approach. In this study, to develop a unified convenient experimental scheme, dose and time dependence of barrier and transport properties of rat jejunum following ionizing radiation exposure were examined. Male Wistar rats were exposed to total body X-ray irradiation (2, 5, or 10 Gy). The control group was subjected to sham irradiation procedure. Samples of rat jejunum were obtained at 24, 48, or 72 h post-irradiation. Transepithelial resistance, short circuit current (Isc ), and paracellular permeability for sodium fluorescein of jejunum samples were measured in an Ussing chamber; a histological examination was also performed. These parameters were significantly disturbed only 72 h after irradiation at a dose of 10 Gy, which was accompanied by loss of crypt and villi, inflammatory infiltrations, and disintegration of enterocytes. This suggests that found experimental point (72 h after 10 Gy exposure) is the most appropriate for future study using rat jejunum as a model.
Collapse
Affiliation(s)
- Alexandra A. Livanova
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
- Department of BiologyS.M. Kirov Military Medical AcademySt. PetersburgRussia
| | - Arina A. Fedorova
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
| | - Alexander V. Zavirsky
- Department of Military Toxicology and Medical DefenseS.M. Kirov Military Medical AcademySt. PetersburgRussia
| | | | - Igor I. Krivoi
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
| | - Alexander G. Markov
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
| |
Collapse
|
10
|
Vroom MM, Rodriguez-Ocasio Y, Lynch JB, Ruby EG, Foster JS. Modeled microgravity alters lipopolysaccharide and outer membrane vesicle production of the beneficial symbiont Vibrio fischeri. NPJ Microgravity 2021; 7:8. [PMID: 33686090 PMCID: PMC7940393 DOI: 10.1038/s41526-021-00138-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2020] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Reduced gravity, or microgravity, can have a pronounced impact on the physiology of animals, but the effects on their associated microbiomes are not well understood. Here, the impact of modeled microgravity on the shedding of Gram-negative lipopolysaccharides (LPS) by the symbiotic bacterium Vibrio fischeri was examined using high-aspect ratio vessels. LPS from V. fischeri is known to induce developmental apoptosis within its symbiotic tissues, which is accelerated under modeled microgravity conditions. In this study, we provide evidence that exposure to modeled microgravity increases the amount of LPS released by the bacterial symbiont in vitro. The higher rates of shedding under modeled microgravity conditions are associated with increased production of outer-membrane vesicles (OMV), which has been previously correlated to flagellar motility. Mutants of V. fischeri defective in the production and rotation of their flagella show significant decreases in LPS shedding in all treatments, but levels of LPS are higher under modeled microgravity despite loss of motility. Modeled microgravity also appears to affect the outer-membrane integrity of V. fischeri, as cells incubated under modeled microgravity conditions are more susceptible to cell-membrane-disrupting agents. These results suggest that, like their animal hosts, the physiology of symbiotic microbes can be altered under microgravity-like conditions, which may have important implications for host health during spaceflight.
Collapse
Affiliation(s)
- Madeline M Vroom
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, USA
| | - Yaneli Rodriguez-Ocasio
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, USA
| | - Jonathan B Lynch
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Manoa, Honolulu, HI, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Edward G Ruby
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, Space Life Science Lab, University of Florida, Merritt Island, FL, USA.
| |
Collapse
|
11
|
Willey JS, Britten RA, Blaber E, Tahimic CG, Chancellor J, Mortreux M, Sanford LD, Kubik AJ, Delp MD, Mao XW. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:129-179. [PMID: 33902391 PMCID: PMC8274610 DOI: 10.1080/26896583.2021.1885283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/06/2023]
Abstract
Both microgravity and radiation exposure in the spaceflight environment have been identified as hazards to astronaut health and performance. Substantial study has been focused on understanding the biology and risks associated with prolonged exposure to microgravity, and the hazards presented by radiation from galactic cosmic rays (GCR) and solar particle events (SPEs) outside of low earth orbit (LEO). To date, the majority of the ground-based analogues (e.g., rodent or cell culture studies) that investigate the biology of and risks associated with spaceflight hazards will focus on an individual hazard in isolation. However, astronauts will face these challenges simultaneously Combined hazard studies are necessary for understanding the risks astronauts face as they travel outside of LEO, and are also critical for countermeasure development. The focus of this review is to describe biologic and functional outcomes from ground-based analogue models for microgravity and radiation, specifically highlighting the combined effects of radiation and reduced weight-bearing from rodent ground-based tail suspension via hind limb unloading (HLU) and partial weight-bearing (PWB) models, although in vitro and spaceflight results are discussed as appropriate. The review focuses on the skeletal, ocular, central nervous system (CNS), cardiovascular, and stem cells responses.
Collapse
Affiliation(s)
| | | | - Elizabeth Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | | | | | - Marie Mortreux
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Larry D. Sanford
- Department of Radiation Oncology, Eastern Virginia Medical School
| | - Angela J. Kubik
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute
| | - Michael D. Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University
| |
Collapse
|
12
|
Abstract
The impact of spaceflight on the immune system has been investigated extensively during spaceflight missions and in model experiments conducted on Earth. Data suggest that the spaceflight environment may affect the development of acquired immunity, and immune responses. Herein we summarize and discuss the influence of the spaceflight environment on acquired immunity. Bone marrow and the thymus, two major primary lymphoid organs, are evidently affected by gravitational change during spaceflight. Changes in the microenvironments of these organs impair lymphopoiesis, and thereby may indirectly impinge on acquired immunity. Acquired immune responses may also be disturbed by gravitational fluctuation, stressors, and space radiation both directly and in a stress hormone-dependent manner. These changes may affect acquired immune responses to pathogens, allergens, and tumors.
Collapse
|
13
|
Fu H, Su F, Zhu J, Zheng X, Ge C. Effect of simulated microgravity and ionizing radiation on expression profiles of miRNA, lncRNA, and mRNA in human lymphoblastoid cells. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:1-8. [PMID: 31987473 DOI: 10.1016/j.lssr.2019.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
In space, multiple unique environmental factors, particularly microgravity and space radiation, pose a constant threat to astronaut health. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are functional RNAs that play critical roles in regulating multiple cellular processes. To gain insight into the role of non-coding RNAs in response to radiation and microgravity, we analyzed RNA expression profiles in human lymphoblastoid TK6 cells incubated for 24 h under static or rotating conditions to stimulate microgravity in space, after 2-Gy γ-ray irradiation. The expression of 14 lncRNAs and 17 mRNAs (differentially-expressed genes, DEGs) was found to be significantly downregulated under simulated microgravity conditions. In contrast, irradiation upregulated 55 lncRNAs and 56 DEGs, whereas only one lncRNA, but no DEGs, was downregulated. Furthermore, two miRNAs, 70 lncRNAs, and 87 DEGs showed significantly altered expression in response to simulated microgravity after irradiation, and these changes were independently induced by irradiation and simulated microgravity. GO enrichment and KEGG pathway analyses indicated that the associated target genes showed similar patterns to the noncoding RNAs and were suggested to be involved in the immune/inflammatory response including LPS/TLR, TNF, and NF-κB signaling pathways. However, synergistic effects on RNA expression and cellular responses were also observed with a combination of simulated microgravity and irradiation based on microarray and RT-PCR analysis. Together, our results indicate that simulated microgravity and irradiation additively alter expression patterns but synergistically modulate the expression levels of RNAs and their target genes in human lymphoblastoid cells.
Collapse
Affiliation(s)
- Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China
| | - Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China.
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China.
| |
Collapse
|
14
|
Jones CB, Davis CM, Sfanos KS. The Potential Effects of Radiation on the Gut-Brain Axis. Radiat Res 2020; 193:209-222. [DOI: 10.1667/rr15493.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Catherine M. Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences
| | | |
Collapse
|
15
|
Louneva N, Maity A, Kennedy AR. Plasma D-Dimer Levels are Elevated in Radiation Oncology Patients. Radiat Res 2019; 193:46-53. [PMID: 31675265 DOI: 10.1667/rr15429.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
D-dimer plasma levels were evaluated to determine whether they are altered by radiation. D-dimer levels were measured in radiation oncology patients, who were diagnosed with prostate, breast or lung cancer, or leukemia, as well as in healthy subjects serving as controls. Blood samples from radiotherapy patients were taken at three different time points: pre-, on- and post-radiotherapy. For the patients, considered together, differences between the D-dimer levels at these three time points compared to controls were statistically significant. Compared to the pre-radiotherapy measurements, radiation exposure was associated with a significant increase in the D-dimer levels at the on- and post-radiotherapy time points. At the post-radiotherapy time point, D-dimer levels in the patients were not significantly reduced compared to the on-radiotherapy levels, indicating that the risk for developing disseminated intravascular coagulation (DIC) may be increased in some radiation oncology patients. Of particular concern are the post-radiotherapy results observed for the D-dimer levels in the leukemia patients, in which the average fold increase in the D-dimer levels was 5.43 (compared to the pre-radiotherapy levels). These results suggest that leukemia patients might benefit from frequent assessment of their D-dimer levels after their total-body irradiation-conditioning regimen to detect early signs of DIC development. It is hoped that the results described here will lead to heightened awareness in the radiation oncology community that the risk of DIC development is greatly increased in some of these patients.
Collapse
Affiliation(s)
- Natalia Louneva
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ann R Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Moreno-Villanueva M, Feiveson AH, Krieger S, Kay Brinda A, von Scheven G, Bürkle A, Crucian B, Wu H. Synergistic Effects of Weightlessness, Isoproterenol, and Radiation on DNA Damage Response and Cytokine Production in Immune Cells. Int J Mol Sci 2018; 19:ijms19113689. [PMID: 30469384 PMCID: PMC6275019 DOI: 10.3390/ijms19113689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 12/15/2022] Open
Abstract
The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the β2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy.
Collapse
Affiliation(s)
- Maria Moreno-Villanueva
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alan H Feiveson
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | | | - AnneMarie Kay Brinda
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA.
| | - Gudrun von Scheven
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany.
| | - Brian Crucian
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| | - Honglu Wu
- National Aeronautics and Space Administration (NASA), Johnson Space Center Houston, Houston, TX 77058, USA.
| |
Collapse
|
17
|
Jin M, Zhang H, Zhao K, Xu C, Shao D, Huang Q, Shi J, Yang H. Responses of Intestinal Mucosal Barrier Functions of Rats to Simulated Weightlessness. Front Physiol 2018; 9:729. [PMID: 29962963 PMCID: PMC6011188 DOI: 10.3389/fphys.2018.00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Exposure to microgravity or weightlessness leads to various adaptive and pathophysiological alterations in digestive structures and physiology. The current study was carried out to investigate responses of intestinal mucosal barrier functions to simulated weightlessness, by using the hindlimb unloading rats model. Compared with normal controls, simulated weightlessness damaged the intestinal villi and structural integrity of tight junctions, up-regulated the expression of pro-apoptotic protein Bax while down-regulated the expression of anti-apoptotic protein Bcl-2, thus improved the intestinal permeability. It could also influence intestinal microbiota composition with the expansion of Bacteroidetes and decrease of Firmicutes. The predicted metagenomic analysis emphasized significant dysbiosis associated differences in genes involved in membrane transport, cofactors and vitamins metabolism, energy metabolism, and genetic information processing. Moreover, simulated weightlessness could modify the intestinal immune status characterized by the increase of proinflammatory cytokines, decrease of secretory immunoglobulin A, and activation of TLR4/MyD88/NF-κB signaling pathway in ileum. These results indicate the simulated weightlessness disrupts intestinal mucosal barrier functions in animal model. The data also emphasize the necessity of monitoring and regulating astronauts’ intestinal health during real space flights to prevent breakdowns in intestinal homeostasis of crewmembers.
Collapse
Affiliation(s)
- Mingliang Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Chunlan Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
18
|
Cromer WE, Zawieja DC. Acute exposure to space flight results in evidence of reduced lymph Transport, tissue fluid Shifts, and immune alterations in the rat gastrointestinal system. LIFE SCIENCES IN SPACE RESEARCH 2018; 17:74-82. [PMID: 29753416 DOI: 10.1016/j.lssr.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Space flight causes a number of alterations in physiological systems, changes in the immunological status of subjects, and altered interactions of the host to environmental stimuli. We studied the effect of space flight on the lymphatic system of the gastrointestinal tract which is responsible for lipid transport and immune surveillance which includes the host interaction with the gut microbiome. We found that there were signs of tissue damage present in the space flown animals that was lacking in ground controls (epithelial damage, crypt morphological changes, etc.). Additionally, morphology of the lymphatic vessels in the tissue suggested a collapsed state at time of harvest and there was a profound change in the retention of lipid in the villi of the ileum. Contrary to our assumptions there was a reduction in tissue fluid volume likely associated with other fluid shifts described. The reduction of tissue fluid volume in the colon and ileum is a likely contributing factor to the state of the lymphatic vessels and lipid transport issues observed. There were also associated changes in the number of MHC-II+ immune cells in the colon tissue, which along with reduced lymphatic competence would favor immune dysfunction in the tissue. These findings help expand our understanding of the effects of space flight on various organ systems. It also points out potential issues that have not been closely examined and have to potential for the need of countermeasure development.
Collapse
Affiliation(s)
- W E Cromer
- Department of Medical Physiology, Texas A&M University Health Science Center, United States.
| | - D C Zawieja
- Department of Medical Physiology, Texas A&M University Health Science Center, United States
| |
Collapse
|
19
|
Chancellor JC, Blue RS, Cengel KA, Auñón-Chancellor SM, Rubins KH, Katzgraber HG, Kennedy AR. Limitations in predicting the space radiation health risk for exploration astronauts. NPJ Microgravity 2018; 4:8. [PMID: 29644336 PMCID: PMC5882936 DOI: 10.1038/s41526-018-0043-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 12/23/2022] Open
Abstract
Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.
Collapse
Affiliation(s)
- Jeffery C Chancellor
- 1Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242 USA
| | - Rebecca S Blue
- 2Aerospace Medicine and Vestibular Research Laboratory, The Mayo Clinic Arizona, Scottsdale, AZ 85054 USA
| | - Keith A Cengel
- 3Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Serena M Auñón-Chancellor
- 4National Aeronautics and Space Administration (NASA), Johnson Space Center, Houston, 77058 USA.,5University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Kathleen H Rubins
- 4National Aeronautics and Space Administration (NASA), Johnson Space Center, Houston, 77058 USA
| | - Helmut G Katzgraber
- 1Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242 USA.,1QB Information Technologies (1QBit), Vancouver, BC V6B 4W4 Canada.,7Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 USA
| | - Ann R Kennedy
- 3Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
20
|
Yang Y, Qu C, Liang S, Wang G, Han H, Chen N, Wang X, Luo Z, Zhong C, Chen Y, Li L, Wu W. Estrogen inhibits the overgrowth of Escherichia coli in the rat intestine under simulated microgravity. Mol Med Rep 2017; 17:2313-2320. [PMID: 29207065 PMCID: PMC5783461 DOI: 10.3892/mmr.2017.8109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Microgravity can affect many aspects of intestinal homeostasis, leading to an increased risk of colitis. Estrogen, the most frequently affected hormone when under simulated microgravity, regulates the permeability of the colonic mucosa barrier. The associations between alterations in intestinal microbiota and increased susceptibility under microgravity have not been thoroughly elucidated. The aim of the present study was to evaluate the changes in intestinal microbiota under simulated microgravity and to investigate the protective effect of estrogen against those changes. The hindlimb unweighting (HU) model was used to simulate microgravity in rats. Estrogen was administered via intramuscular injection. Amplicons of the V3 variable regions of bacterial 16S rDNA were analyzed using denaturing gradient gel electrophoresis (DGGE), cloning and sequencing. Several specific bacterial groups were assayed using quantitative-polymerase chain reaction. Bacterial translocation was evaluated by detecting serum lipopolysaccharide (LPS) and LPS binding protein (LBP) levels. DGGE profiles generated by universal primers revealed minor, though specific, changes in bacterial communities under simulated microgravity, particularly the band matching the sequence of Escherichia coli (E. coli). The quantification of 16S RNA revealed increased numbers of Bacteroides fragilis, E. coli and Fusobacterium nucleatum; however, Bifidobacteria longum significantly decreased under microgravity. Estrogen inhibited the overgrowth of E. coli, and decreased the levels of LBS and LBP under simulated microgravity. These results demonstrated that simulated microgravity alters the intestinal microflora and may contribute to bacterial translocation in the gut mucosa. The data also suggested that further investigations evaluating the administration of estrogen to protect against microgravity-associated diseases may be required.
Collapse
Affiliation(s)
- Yongtao Yang
- Department of Gastroenterology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Changmin Qu
- Department of Gastroenterology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Shuwen Liang
- Department of Gastroenterology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Gang Wang
- Department of Otorhinolaryngology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Haolun Han
- Department of Otorhinolaryngology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Na Chen
- Department of Otorhinolaryngology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Xiaoying Wang
- Department of Gastroenterology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Zhiwen Luo
- Department of Gastroenterology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Changqing Zhong
- Department of Gastroenterology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Yan Chen
- Department of Gastroenterology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Lianyong Li
- Department of Gastroenterology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| | - Wei Wu
- Department of Otorhinolaryngology, The 306th Hospital of PLA, Beijing 100101, P.R. China
| |
Collapse
|
21
|
Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences. Int J Mol Sci 2017; 18:ijms18061166. [PMID: 28561779 PMCID: PMC5485990 DOI: 10.3390/ijms18061166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 01/05/2023] Open
Abstract
In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.
Collapse
|
22
|
Alwood JS, Ronca AE, Mains RC, Shelhamer MJ, Smith JD, Goodwin TJ. From the bench to exploration medicine: NASA life sciences translational research for human exploration and habitation missions. NPJ Microgravity 2017. [PMID: 28649627 PMCID: PMC5460236 DOI: 10.1038/s41526-016-0002-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
NASA’s Space Biology and Human Research Program entities have recently spearheaded communications both internally and externally to coordinate the agency’s translational research efforts. In this paper, we strongly advocate for translational research at NASA, provide recent examples of NASA sponsored early-stage translational research, and discuss options for a path forward. Our overall objective is to help in stimulating a collaborative research across multiple disciplines and entities that, working together, will more effectively and more rapidly achieve NASA’s goals for human spaceflight.
Collapse
Affiliation(s)
- Joshua S Alwood
- Space BioSciences Division, NASA Ames Research Center, Moffett Field, CA USA
| | - April E Ronca
- Space BioSciences Division, NASA Ames Research Center, Moffett Field, CA USA.,Wake Forest School of Medicine, Winston-Salem, NC USA
| | | | - Mark J Shelhamer
- Human Research Program, NASA Johnson Space Center, Houston, TX USA
| | - Jeffrey D Smith
- Space BioSciences Division, NASA Ames Research Center, Moffett Field, CA USA
| | - Thomas J Goodwin
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX USA
| |
Collapse
|
23
|
Ossetrova NI, Blakely WF, Nagy V, McGann C, Ney PH, Christensen CL, Koch AL, Gulani J, Sigal GB, Glezer EN, Hieber KP. Non-human Primate Total-body Irradiation Model with Limited and Full Medical Supportive Care Including Filgrastim for Biodosimetry and Injury Assessment. RADIATION PROTECTION DOSIMETRY 2016; 172:174-191. [PMID: 27473690 DOI: 10.1093/rpd/ncw176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
An assessment of multiple biomarkers from radiation casualties undergoing limited- or full-supportive care including treatment with filgrastim is critical to develop rapid and effective diagnostic triage strategies. The efficacy of filgrastim with full-supportive care was compared with results with limited-supportive care by analyzing survival, necropsy, histopathology and serial blood samples for hematological, serum chemistry and protein profiles in a non-human primate (Macaca mulatta, male and female) model during 60-d post-monitoring period following sham- and total-body irradiation with 6.5 Gy 60Co gamma-rays at 0.6 Gy min-1 Filgrastim (10 μg kg-1) was administered beginning on Day 1 post-exposure and continued daily until neutrophil counts were ≥2,000 μL-1 for two consecutive days. Filgrastim and full-supportive care significantly decreased the pancytopenia duration and resulted in improved animal survival and recovery compared to animals with a limited-supportive care. These findings also identified and validated a multiparametric biomarker panel to support radiation diagnostic device development.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Vitaly Nagy
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Camille McGann
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Patrick H Ney
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - Christine L Christensen
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
- Tri-Service Research Laboratory (TRSL), 4141 Petroleum Road, JBSA-Fort Sam Houston, TX 78234, USA
| | - Amory L Koch
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
- Tripler Army Medical Center, Honolulu, HI 96859, USA
| | - Jatinder Gulani
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| | - George B Sigal
- Meso Scale Diagnostics, LLC. (MSD), 1601 Research Boulevard, Rockville, MD 20850, USA
| | - Eli N Glezer
- Meso Scale Diagnostics, LLC. (MSD), 1601 Research Boulevard, Rockville, MD 20850, USA
| | - Kevin P Hieber
- Scientific Research Department, Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University (USU) , 8901 Wisconsin Avenue, Bethesda, ML 20889, USA
| |
Collapse
|
24
|
Ghosh P, Behnke BJ, Stabley JN, Kilar CR, Park Y, Narayanan A, Alwood JS, Shirazi-Fard Y, Schreurs AS, Globus RK, Delp MD. Effects of High-LET Radiation Exposure and Hindlimb Unloading on Skeletal Muscle Resistance Artery Vasomotor Properties and Cancellous Bone Microarchitecture in Mice. Radiat Res 2016; 185:257-66. [PMID: 26930379 DOI: 10.1667/rr4308.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
Weightlessness during spaceflight leads to functional changes in resistance arteries and loss of cancellous bone, which may be potentiated by radiation exposure. The purpose of this study was to assess the effects of hindlimb unloading (HU) and total-body irradiation (TBI) on the vasomotor responses of skeletal muscle arteries. Male C57BL/6 mice were assigned to control, HU (13-16 days), TBI (1 Gy (56)Fe, 600 MeV, 10 cGy/min) and HU-TBI groups. Gastrocnemius muscle feed arteries were isolated for in vitro study. Endothelium-dependent (acetylcholine) and -independent (Dea-NONOate) vasodilator and vasoconstrictor (KCl, phenylephrine and myogenic) responses were evaluated. Arterial endothelial nitric oxide synthase (eNOS), superoxide dismutase-1 (SOD-1) and xanthine oxidase (XO) protein content and tibial cancellous bone microarchitecture were quantified. Endothelium-dependent and -independent vasodilator responses were impaired in all groups relative to control, and acetylcholine-induced vasodilation was lower in the HU-TBI group relative to that in the HU and TBI groups. Reductions in endothelium-dependent vasodilation correlated with a lower cancellous bone volume fraction. Nitric oxide synthase inhibition abolished all group differences in endothelium-dependent vasodilation. HU and HU-TBI resulted in decreases in eNOS protein levels, while TBI and HU-TBI produced lower SOD-1 and higher XO protein content. Vasoconstrictor responses were not altered. Reductions in NO bioavailability (eNOS), lower anti-oxidant capacity (SOD-1) and higher pro-oxidant capacity (XO) may contribute to the deficits in NOS signaling in skeletal muscle resistance arteries. These findings suggest that the combination of insults experienced in spaceflight leads to impairment of vasodilator function in resistance arteries that is mediated through deficits in NOS signaling.
Collapse
Affiliation(s)
- Payal Ghosh
- a Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 32306
| | - Brad J Behnke
- b Department of Kinesiology and the Johnson Cancer Research Center, Kansas State University, Manhattan, Kansas 66506
| | - John N Stabley
- c Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Cody R Kilar
- d Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida 32611
| | - Yoonjung Park
- e Department of Health and Human Performance, University of Houston, Houston, Texas 77204
| | - Anand Narayanan
- f Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, Texas 77807; and
| | - Joshua S Alwood
- g Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035
| | - Yasaman Shirazi-Fard
- g Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035
| | - Ann-Sofie Schreurs
- g Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035
| | - Ruth K Globus
- g Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035
| | - Michael D Delp
- a Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
25
|
Globus RK, Morey-Holton E. Hindlimb unloading: rodent analog for microgravity. J Appl Physiol (1985) 2016; 120:1196-206. [PMID: 26869711 DOI: 10.1152/japplphysiol.00997.2015] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
The rodent hindlimb unloading (HU) model was developed in the 1980s to make it possible to study mechanisms, responses, and treatments for the adverse consequences of spaceflight. Decades before development of the HU model, weightlessness was predicted to yield deficits in the principal tissues responsible for structure and movement on Earth, primarily muscle and bone. Indeed, results from early spaceflight and HU experiments confirmed the expected sensitivity of the musculoskeletal system to gravity loading. Results from human and animal spaceflight and HU experiments show that nearly all organ systems and tissues studied display some measurable changes, albeit sometimes minor and of uncertain relevance to astronaut health. The focus of this review is to examine key HU results for various organ systems including those related to stress; the immune, cardiovascular, and nervous systems; vision changes; and wound healing. Analysis of the validity of the HU model is important given its potential value for both hypothesis testing and countermeasure development.
Collapse
Affiliation(s)
- Ruth K Globus
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| | - Emily Morey-Holton
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, California
| |
Collapse
|
26
|
Walb MC, Black PJ, Payne VS, Munley MT, Willey JS. A reproducible radiation delivery method for unanesthetized rodents during periods of hind limb unloading. LIFE SCIENCES IN SPACE RESEARCH 2015; 6:10-4. [PMID: 26097807 PMCID: PMC4470431 DOI: 10.1016/j.lssr.2015.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/07/2023]
Abstract
Exposure to the spaceflight environment has long been known to be a health challenge concerning many body systems. Both microgravity and/or ionizing radiation can cause acute and chronic effects in multiple body systems. The hind limb unloaded (HLU) rodent model is a ground-based analogue for microgravity that can be used to simulate and study the combined biologic effects of reduced loading with spaceflight radiation exposure. However, studies delivering radiation to rodents during periods of HLU are rare. Herein we report the development of an irradiation protocol using a clinical linear accelerator that can be used with hind limb unloaded, unanesthetized rodents that is capable of being performed at most academic medical centers. A 30.5 cm×30.5 cm×40.6 cm30.5 cm×30.5 cm×40.6 cm rectangular chamber was constructed out of polymethyl methacrylate (PMMA) sheets (0.64 cm thickness). Five centimeters of water-equivalent material were placed outside of two PMMA inserts on either side of the rodent that permitted the desired radiation dose buildup (electronic equilibrium) and helped to achieve a flatter dose profile. Perforated aluminum strips permitted the suspension dowel to be placed at varying heights depending on the rodent size. Radiation was delivered using a medical linear accelerator at an accelerating potential of 10 MV. A calibrated PTW Farmer ionization chamber, wrapped in appropriately thick tissue-equivalent bolus material to simulate the volume of the rodent, was used to verify a uniform dose distribution at various regions of the chamber. The dosimetry measurements confirmed variances typically within 3%, with maximum variance <10% indicated through optically stimulated luminescent dosimeter (OSLD) measurements, thus delivering reliable spaceflight-relevant total body doses and ensuring a uniform dose regardless of its location within the chamber. Due to the relative abundance of LINACs at academic medical centers and the reliability of their dosimetry properties, this method may find great utility in the implementation of future ground-based studies that examine the combined spaceflight challenges of reduced loading and radiation while using the HLU rodent model.
Collapse
|
27
|
Ritchie LE, Taddeo SS, Weeks BR, Lima F, Bloomfield SA, Azcarate-Peril MA, Zwart SR, Smith SM, Turner ND. Space Environmental Factor Impacts upon Murine Colon Microbiota and Mucosal Homeostasis. PLoS One 2015; 10:e0125792. [PMID: 26083373 PMCID: PMC4470690 DOI: 10.1371/journal.pone.0125792] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2014] [Accepted: 03/26/2015] [Indexed: 01/01/2023] Open
Abstract
Astronaut intestinal health may be impacted by microgravity, radiation, and diet. The aim of this study was to characterize how high and low linear energy transfer (LET) radiation, microgravity, and elevated dietary iron affect colon microbiota (determined by 16S rDNA pyrosequencing) and colon function. Three independent experiments were conducted to achieve these goals: 1) fractionated low LET γ radiation (137Cs, 3 Gy, RAD), high Fe diet (IRON) (650 mg/kg diet), and a combination of low LET γ radiation and high Fe diet (IRON+RAD) in male Sprague-Dawley rats; 2) high LET 38Si particle exposure (0.050 Gy), 1/6 G partial weight bearing (PWB), and a combination of high LET38Si particle exposure and PWB in female BalbC/ByJ mice; and 3) 13 d spaceflight in female C57BL/6 mice. Low LET radiation, IRON and spaceflight increased Bacteroidetes and decreased Firmicutes. RAD and IRON+RAD increased Lactobacillales and lowered Clostridiales compared to the control (CON) and IRON treatments. Low LET radiation, IRON, and spaceflight did not significantly affect diversity or richness, or elevate pathogenic genera. Spaceflight increased Clostridiales and decreased Lactobacillales, and similar trends were observed in the experiment using a ground-based model of microgravity, suggesting altered gravity may affect colonic microbiota. Although we noted no differences in colon epithelial injury or inflammation, spaceflight elevated TGFβ gene expression. Microbiota and mucosal characterization in these models is a first step in understanding the impact of the space environment on intestinal health.
Collapse
Affiliation(s)
- Lauren E. Ritchie
- Intercollegiate Faculty of Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Stella S. Taddeo
- Nutrition & Food Science Department, Texas A&M University, College Station, Texas, United States of America
| | - Brad R. Weeks
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Florence Lima
- Division of Nephrology, Department of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Susan A. Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas, United States of America
| | - M. Andrea Azcarate-Peril
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Sara R. Zwart
- Human Health and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, Texas, United States of America
| | - Scott M. Smith
- Human Health and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, Texas, United States of America
| | - Nancy D. Turner
- Intercollegiate Faculty of Genetics, Texas A&M University, College Station, Texas, United States of America
- Nutrition & Food Science Department, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
28
|
Chang TT, Spurlock SM, Candelario TLT, Grenon SM, Hughes-Fulford M. Spaceflight impairs antigen-specific tolerance induction in vivo and increases inflammatory cytokines. FASEB J 2015; 29:4122-32. [PMID: 26085131 DOI: 10.1096/fj.15-275073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2015] [Accepted: 06/08/2015] [Indexed: 01/07/2023]
Abstract
The health risks of a dysregulated immune response during spaceflight are important to understand as plans emerge for humans to embark on long-term space travel to Mars. In this first-of-its-kind study, we used adoptive transfer of T-cell receptor transgenic OT-II CD4 T cells to track an in vivo antigen-specific immune response that was induced during the course of spaceflight. Experimental mice destined for spaceflight and mice that remained on the ground received transferred OT-II cells and cognate peptide stimulation with ovalbumin (OVA) 323-339 plus the inflammatory adjuvant, monophosphoryl lipid A. Control mice in both flight and ground cohorts received monophosphoryl lipid A alone without additional OVA stimulation. Numbers of OT-II cells in flight mice treated with OVA were significantly increased by 2-fold compared with ground mice treated with OVA, suggesting that tolerance induction was impaired by spaceflight. Production of proinflammatory cytokines were significantly increased in flight compared with ground mice, including a 5-fold increase in IFN-γ and a 10-fold increase in IL-17. This study is the first to show that immune tolerance may be impaired in spaceflight, leading to excessive inflammatory responses.
Collapse
Affiliation(s)
- Tammy T Chang
- *Department of Surgery and Department of Medicine, University of California, San Franscisco, San Francisco, California, USA; and Northern California Institute for Research and Education, San Francisco, California, USA
| | - Sandra M Spurlock
- *Department of Surgery and Department of Medicine, University of California, San Franscisco, San Francisco, California, USA; and Northern California Institute for Research and Education, San Francisco, California, USA
| | - Tara Lynne T Candelario
- *Department of Surgery and Department of Medicine, University of California, San Franscisco, San Francisco, California, USA; and Northern California Institute for Research and Education, San Francisco, California, USA
| | - S Marlene Grenon
- *Department of Surgery and Department of Medicine, University of California, San Franscisco, San Francisco, California, USA; and Northern California Institute for Research and Education, San Francisco, California, USA
| | - Millie Hughes-Fulford
- *Department of Surgery and Department of Medicine, University of California, San Franscisco, San Francisco, California, USA; and Northern California Institute for Research and Education, San Francisco, California, USA
| |
Collapse
|
29
|
|
30
|
Li P, Shi J, Zhang P, Wang K, Li J, Liu H, Zhou Y, Xu X, Hao J, Sun X, Pang X, Li Y, Wu H, Chen X, Ge Q. Simulated microgravity disrupts intestinal homeostasis and increases colitis susceptibility. FASEB J 2015; 29:3263-73. [PMID: 25877215 DOI: 10.1096/fj.15-271700] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 01/01/2023]
Abstract
The immune systems can be altered by spaceflight in many aspects, but microgravity-related mucosal immune changes and its clinical significance have not been well studied. The purpose of this study was to investigate whether simulated microgravity influences the intestinal homeostasis and increases the susceptibility to colon inflammation. The hindlimb unloading (HU) mouse model was used to simulate the microgravity condition. Three percent dextran sulfate sodium (DSS) was given to mice to induce colitis. Compared to ground control (Ctrl) mice, the HU ones revealed an impaired intestinal homeostasis and increased susceptibility to DSS-induced colitis. This includes an early-onset, 4-fold expansion of segmented filamentous bacteria (SFB), more than 2-fold decrease in regulatory T (Treg) cell numbers and IL-10 production, ∼2-fold increase in colonic IL-1β expression, 2-fold increase in circulating neutrophils, and colonic neutrophil infiltration. The application of antibiotics ameliorated the Treg and IL-10 reductions but did not significantly dampen neutrophilia and elevated expression of colonic IL-1β. These results indicate that the intestinal microflora and innate immune system both respond to simulated microgravity and together, contribute to the proinflammatory shift in the gut microenvironment. The data also emphasize the necessity for evaluating the susceptibility to inflammatory bowel diseases (IBDs) in distant space travels.
Collapse
Affiliation(s)
- Pingping Li
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Junxiu Shi
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Peng Zhang
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Ke Wang
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Jinglong Li
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Hongju Liu
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Yu Zhou
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Xi Xu
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Jie Hao
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Xiuyuan Sun
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Xuewen Pang
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Yan Li
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Hounan Wu
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Xiaoping Chen
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| | - Qing Ge
- *Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, and Peking University Medical and Health Analytical Center, Peking University Health Sciences Center, Beijing, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China; and College of Life Sciences and Key Laboratory of Modern Teaching Technology, Shaanxi Normal University, Xian, China
| |
Collapse
|
31
|
Ni J, Romero-Weaver AL, Kennedy AR. Potential Beneficial Effects of Si-Wu-Tang on White Blood Cell Numbers and the Gastrointestinal Tract of γ-Ray Irradiated Mice. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2014; 10:182-90. [PMID: 25324699 PMCID: PMC4199477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/12/2014] [Accepted: 09/18/2014] [Indexed: 11/01/2022]
Abstract
Si-Wu-Tang (SWT) is a decoction consisting of a mixture of ingredients of Rehmanniae Radix, Angelica Radix, Chuanxiong Rhizoma and Paeoniae Radix. As a traditional Chinese herbal decoction, SWT has been widely used for the treatment of diseases characterized as blood and/or energy deficit. The present study was performed to evaluate the effects of SWT on the different populations of circulating white blood cells (WBCs) and gastrointestinal changes in γ-ray irradiated mice. Female mice were treated daily with orally administered SWT seven days before irradiation, until one day before irradiation or until one day before sample collection. WBC counts were determined from peripheral blood samples taken from the mice at different times post-irradiation. Hematoxylin and eosin (H&E) staining, as well as immunohistochemical analysis of fibrinogen, were utilized to evaluate the effects of SWT in the intestines of mice after radiation exposure. The results of the present studies demonstrate that SWT has protective effects against radiation damage to circulating WBCs, specifically to lymphocytes, and to the gastrointestinal tract of the irradiated animals.
Collapse
Affiliation(s)
- Jin Ni
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA;,Current Address: Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ana L. Romero-Weaver
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ann R. Kennedy
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
32
|
Chakraborty N, Gautam A, Muhie S, Miller SA, Jett M, Hammamieh R. An integrated omics analysis: impact of microgravity on host response to lipopolysaccharide in vitro. BMC Genomics 2014; 15:659. [PMID: 25102863 PMCID: PMC4287545 DOI: 10.1186/1471-2164-15-659] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2014] [Accepted: 07/30/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Microgravity facilitates the opportunistic infections by augmenting the pathogenic virulence and suppressing the host resistance. Hence the extraterrestrial infections may activate potentially novel bionetworks different from the terrestrial equivalent, which could only be probed by investigating the host-pathogen relationship with a minimum of terrestrial bias. RESULTS We customized a cell culture module to expose human endothelial cells to lipopolysaccharide (LPS). The assay was carried out onboard the STS-135 spaceflight, and a concurrent ground study constituted the baseline. Transcriptomic investigation revealed a possible immune blunting in microgravity suppressing in particular Lbp, MyD88 and MD-2, which encode proteins responsible for early LPS uptake. Certain cytokines, such as IL-6 and IL-8, surged in response to LPS insult in microgravity, as suggested by the proteomics study. Contrasting proteomic expressions of B2M, TIMP-1 and VEGRs suggested impaired pro-survival adaptation and healing mechanisms. Differential expression of miR-200a and miR-146b suggested the susceptibility of hosts in spaceflight to oxidative stress and further underscored the influence of microgravity on the immunity. CONCLUSIONS A molecular interpretation explaining the etiology of the microgravitational impact on the host-pathogen relationship elucidated comprehensive immune blunting of the host cells responding to LPS challenges. Longer LPS exposure prompted a delayed host response, potentially ineffectual in preventing pathogens from opportunistic invasion. Significant consequences include the subsequent failure in recruiting the growth factors and a debilitated apoptosis. Follow up studies with larger sample size are warranted.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| | - Aarti Gautam
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| | - Seid Muhie
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| | - Stacy-Ann Miller
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| | - Marti Jett
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research Fort Detrick, 568 Doughten Drive, Fort Detrick, MD 21702-5010 USA
| |
Collapse
|
33
|
Romero-Weaver AL, Lin L, Carabe-Fernandez A, Kennedy AR. Effects of Solar Particle Event-Like Proton Radiation and/or Simulated Microgravity on Circulating Mouse Blood Cells. GRAVITATIONAL AND SPACE RESEARCH : PUBLICATION OF THE AMERICAN SOCIETY FOR GRAVITATIONAL AND SPACE RESEARCH 2014; 2:42-53. [PMID: 25360441 PMCID: PMC4209740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Academic Contribution Register] [Indexed: 06/04/2023]
Abstract
Astronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells. Therefore, it is critical to determine the combined effects of exposure to both microgravity and SPE radiation. The purpose of the present study was to assess these risks by evaluating the effects of SPE-like proton radiation and/or microgravity, as simulated with the hindlimb unloading (HU) system, on circulating blood cells using mouse as a model system. The results indicate that exposure to HU alone caused minimal or no significant changes in mouse circulating blood cell numbers. The exposure of mice to SPE-like proton radiation with or without HU treatment caused a significant decrease in the number of circulating lymphocytes, granulocytes and platelets. The reduced numbers of circulating lymphocytes, granulocytes, and platelets, resulting from the SPE-like proton radiation exposure, with or without HU treatment, in mice suggest that astronauts participating in exploration class missions may be at greater risk of developing infections and thrombotic diseases; thus, countermeasures may be necessary for these biological endpoints.
Collapse
Affiliation(s)
- Ana L. Romero-Weaver
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Liyong Lin
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alejandro Carabe-Fernandez
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ann R. Kennedy
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain Behav Immun 2014; 39:23-32. [PMID: 24462949 DOI: 10.1016/j.bbi.2014.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/21/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 11/24/2022] Open
Abstract
Recent data indicates that dysregulation of the immune system occurs and persists during spaceflight. Impairment of immunity, especially in conjunction with elevated radiation exposure and limited clinical care, may increase certain health risks during exploration-class deep space missions (i.e. to an asteroid or Mars). Research must thoroughly characterize immune dysregulation in astronauts to enable development of a monitoring strategy and validate any necessary countermeasures. Although the International Space Station affords an excellent platform for on-orbit research, access may be constrained by technical, logistical vehicle or funding limitations. Therefore, terrestrial spaceflight analogs will continue to serve as lower cost, easier access platforms to enable basic human physiology studies. Analog work can triage potential in-flight experiments and thus result in more focused on-orbit studies, enhancing overall research efficiency. Terrestrial space analogs generally replicate some of the physiological or psychological stress responses associated with spaceflight. These include the use of human test subjects in a laboratory setting (i.e. exercise, bed rest, confinement, circadian misalignment) and human remote deployment analogs (Antarctica winterover, undersea, etc.) that incorporate confinement, isolation, extreme environment, physiological mission stress and disrupted circadian rhythms. While bed rest has been used to examine the effects of physical deconditioning, radiation and microgravity may only be simulated in animal or microgravity cell culture (clinorotation) analogs. This article will characterize the array of terrestrial analogs for spaceflight immune dysregulation, the current evidence base for each, and interpret the analog catalog in the context of acute and chronic stress.
Collapse
|
35
|
Kennedy AR. Biological Effects of Space Radiation and Development of Effective Countermeasures. LIFE SCIENCES IN SPACE RESEARCH 2014; 1:10-43. [PMID: 25258703 PMCID: PMC4170231 DOI: 10.1016/j.lssr.2014.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/21/2023]
Abstract
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.
Collapse
Affiliation(s)
- Ann R Kennedy
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6072
| |
Collapse
|
36
|
Diffenderfer ES, Dolney D, Schaettler M, Sanzari JK, Mcdonough J, Cengel KA. Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation. JOURNAL OF RADIATION RESEARCH 2014; 55:364-372. [PMID: 24309720 PMCID: PMC3951080 DOI: 10.1093/jrr/rrt118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/22/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 05/30/2023]
Abstract
The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations.
Collapse
|
37
|
Sanzari JK, Romero-Weaver AL, James G, Krigsfeld G, Lin L, Diffenderfer ES, Kennedy AR. Leukocyte activity is altered in a ground based murine model of microgravity and proton radiation exposure. PLoS One 2013; 8:e71757. [PMID: 23977138 PMCID: PMC3743739 DOI: 10.1371/journal.pone.0071757] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
Immune system adaptation during spaceflight is a concern in space medicine. Decreased circulating leukocytes observed during and after space flight infer suppressed immune responses and susceptibility to infection. The microgravity aspect of the space environment has been simulated on Earth to study adverse biological effects in astronauts. In this report, the hindlimb unloading (HU) model was employed to investigate the combined effects of solar particle event-like proton radiation and simulated microgravity on immune cell parameters including lymphocyte subtype populations and activity. Lymphocytes are a type of white blood cell critical for adaptive immune responses and T lymphocytes are regulators of cell-mediated immunity, controlling the entire immune response. Mice were suspended prior to and after proton radiation exposure (2 Gy dose) and total leukocyte numbers and splenic lymphocyte functionality were evaluated on days 4 or 21 after combined HU and radiation exposure. Total white blood cell (WBC), lymphocyte, neutrophil, and monocyte counts are reduced by approximately 65%, 70%, 55%, and 70%, respectively, compared to the non-treated control group at 4 days after combined exposure. Splenic lymphocyte subpopulations are altered at both time points investigated. At 21 days post-exposure to combined HU and proton radiation, T cell activation and proliferation were assessed in isolated lymphocytes. Cell surface expression of the Early Activation Marker, CD69, is decreased by 30% in the combined treatment group, compared to the non-treated control group and cell proliferation was suppressed by approximately 50%, compared to the non-treated control group. These findings reveal that the combined stressors (HU and proton radiation exposure) result in decreased leukocyte numbers and function, which could contribute to immune system dysfunction in crew members. This investigation is one of the first to report on combined proton radiation and simulated microgravity effects on hematopoietic, specifically immune cells.
Collapse
Affiliation(s)
- Jenine K. Sanzari
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ana L. Romero-Weaver
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gabrielle James
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gabriel Krigsfeld
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Liyong Lin
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Eric S. Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ann R. Kennedy
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
Krigsfeld GS, Kennedy AR. Is disseminated intravascular coagulation the major cause of mortality from radiation at relatively low whole body doses? Radiat Res 2013; 180:231-4. [PMID: 23944605 DOI: 10.1667/rr3321.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Affiliation(s)
- Gabriel S Krigsfeld
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6072
| | | |
Collapse
|
39
|
Mortazavi SMJ, Motamedifar M, Namdari G, Taheri M, Mortazavi AR, Shokrpour N. Non-linear adaptive phenomena which decrease the risk of infection after pre-exposure to radiofrequency radiation. Dose Response 2013; 12:233-45. [PMID: 24910582 DOI: 10.2203/dose-response.12-055.mortazavi] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
Substantial evidence indicates that adaptive response induced by low doses of ionizing radiation can result in resistance to the damage caused by a subsequently high-dose radiation or cause cross-resistance to other non-radiation stressors. Adaptive response contradicts the linear-non-threshold (LNT) dose-response model for ionizing radiation. We have previously reported that exposure of laboratory animals to radiofrequency radiation can induce a survival adaptive response. Furthermore, we have indicated that pre-exposure of mice to radiofrequency radiation emitted by a GSM mobile phone increased their resistance to a subsequent Escherichia coli infection. In this study, the survival rates in animals receiving both adapting (radiofrequency) and challenge dose (bacteria) and the animals receiving only the challenge dose (bacteria) were 56% and 20%, respectively. In this light, our findings contribute to the assumption that radiofrequency-induced adaptive response can be used as an efficient method for decreasing the risk of infection in immunosuppressed irradiated individuals. The implication of this phenomenon in human's long term stay in the space is also discussed.
Collapse
Affiliation(s)
- S M J Mortazavi
- Professor of Medical Physics, Medical Physics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; ; The Center for Research in Ionizing and Non-Ionizing Radiation, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Motamedifar
- Associate Professor of Microbiology, Department of Bacteriology, School of Medicine and Shiraz HIV/Aids Research Center (SHARC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - G Namdari
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Taheri
- Lecturer of Microbiology, Laboratory Sciences Department, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A R Mortazavi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Shokrpour
- Professor, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
40
|
Mortazavi S, Motamedifar M, Namdari G, Taheri M, Mortazavi A. Counterbalancing immunosuppression-induced infections during long-term stay of humans in space. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2013. [DOI: 10.1016/j.jmhi.2012.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
|