1
|
Singh P, Pasi S, Pande V, Dhiman RC. Heat Shock Proteins expression in malaria and dengue vector. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024:10.1007/s00484-024-02806-2. [PMID: 39527249 DOI: 10.1007/s00484-024-02806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
The survival of mosquitoes under changing climatic conditions particularly temperature, is known to be supported by Heat Shock Proteins (HSPs). In view of climate change, it is imperative to know whether the mosquito vectors will be able to withstand the increased temperatures or perish. Therefore, the present study was undertaken on the expression of HSPs' gene in An. stephensi and Ae. aegypti by exposing them to temperatures ranging from 5 to 45°C for 15-180-minutes for once and continuously or with rest in between. We compared the temperature-tolerance of both the vectors in terms of expression of HSP83, HSP70, and HSP26 genes at varying degrees of temperature and duration. HSP70 and HSP26 were found distinctively expressed in both the vectors as compared to HSP83. With continuous exposure up to 180-minutes at 35°C and 40°C, HSP70 was found upregulated up to 35 and 47 folds in Ae. aegypti while in An. stephensi, the expression was only 1 fold. Between the genes, HSP70 was highly expressed at different temperatures followed by HSP26 and HSP83. The manifold up-regulation of HSP genes in Ae. aegypti than An. stephensi may be attributed to the robustness of Aedes vector in terms of temperature tolerance. This study has shown that Ae. aegypti and An. stephensi can withstand considerable temperature stress by expressing HSPs when exposed to variable temperature and duration. In view of changing climate, the study provides a clue that the vector of dengue and zika virus will be difficult to control.
Collapse
Affiliation(s)
- Poonam Singh
- ICMR-National Institute of Malaria Research, New Delhi, 110077, India
| | - Shweta Pasi
- ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, 380016, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Ramesh C Dhiman
- ICMR-National Institute of Malaria Research, New Delhi, 110077, India.
| |
Collapse
|
2
|
Mack LK, Attardo GM. Heat shock proteins, thermotolerance, and insecticide resistance in mosquitoes. FRONTIERS IN INSECT SCIENCE 2024; 4:1309941. [PMID: 38469339 PMCID: PMC10926544 DOI: 10.3389/finsc.2024.1309941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 03/13/2024]
Abstract
Mosquitoes transmit pathogens that pose a threat to millions of people globally. Unfortunately, widespread insecticide resistance makes it difficult to control these public health pests. General mechanisms of resistance, such as target site mutations or increased metabolic activity, are well established. However, many questions regarding the dynamics of these adaptations in the context of developmental and environmental conditions require additional exploration. One aspect of resistance that deserves further study is the role of heat shock proteins (HSPs) in insecticide tolerance. Studies show that mosquitoes experiencing heat stress before insecticide exposure demonstrate decreased mortality. This is similar to the observed reciprocal reduction in mortality in mosquitoes exposed to insecticide prior to heat stress. The environmental shifts associated with climate change will result in mosquitoes occupying environments with higher ambient temperatures, which could enhance existing insecticide resistance phenotypes. This physiological relationship adds a new dimension to the problem of insecticide resistance and further complicates the challenges that vector control and public health personnel face. This article reviews studies illustrating the relationship between insecticide resistance and HSPs or hsp genes as well as the intersection of thermotolerance and insecticide resistance. Further study of HSPs and insecticide resistance could lead to a deeper understanding of how environmental factors modulate the physiology of these important disease vectors to prepare for changing climatic conditions and the development of novel strategies to prevent vector-borne disease transmission.
Collapse
Affiliation(s)
| | - Geoffrey M. Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Meng X, Guan D, Zhang N, Jiang H, Jiang C, Ge H, Wei J, Wang J, Qian K. Comparative phosphoproteomics analysis provides insights into the responses of Chilo suppressalis to sublethal chlorantraniliprole exposure. PEST MANAGEMENT SCIENCE 2023; 79:2338-2352. [PMID: 36797212 DOI: 10.1002/ps.7411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 02/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Sublethal exposure to insecticides causes changes in insect behaviors and physiologies including feeding, mobility, communication, hormone homeostasis, development and fecundity, however, the underlying molecular mechanisms were largely unclear. Our previous studies revealed that sublethal chlorantraniliprole exposure disturbed the hormone homeostasis, reduced the weight and longevity and prolonged the developmental duration of Chilo suppressalis. In the present study, the potential phosphorylation modification regulation mechanisms in C. suppressalis in response to sublethal chlorantraniliprole exposure were explored using comparative and quantitative phosphoproteomics. RESULTS A total of 2640 phosphopeptides belonging to 1144 phosphoproteins were identified, among which 446 phosphopeptides derived from 303 unique phosphoproteins were differentially phosphorylated between the chlorantraniliprole-treated and control larvae. The phosphorylation levels of differentially phosphorylated phosphopeptides were further validated using parallel reaction monitoring (PRM). Functional classification and protein-protein interaction of the differentially phosphorylated proteins (DPPs) were analyzed. Generalized analysis of the DPPs and the differentially expressed genes (DEGs) identified in our previous study showed that sublethal chlorantraniliprole exposure significantly changed the transcription and phosphorylation levels of genes/proteins associated with carbohydrate and lipid metabolism, cytoskeleton, signal transduction, transcription, translation and post-translational modification, leading to the dysfunctions of energy metabolism, transcription regulation, protein synthesis and modification, and signal transduction in C. suppressalis. Further analysis of the phosphorylation motifs in DPPs revealed that the MAPKs, CDKs, CaMK II, PKA, PKC and CK II protein kinases might be directly responsible for the phosphoproteomics response of C. suppressalis to chlorantraniliprole treatment. CONCLUSION Our results provide abundant phosphorylation information for characterizing the protein modification in insects, and also provide valuable insights into the molecular mechanisms of insect post-translational modifications in response to sublethal insecticide exposure. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chengyun Jiang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Nagi SC, Oruni A, Weetman D, Donnelly MJ. RNA-Seq-Pop: Exploiting the sequence in RNA sequencing-A Snakemake workflow reveals patterns of insecticide resistance in the malaria vector Anopheles gambiae. Mol Ecol Resour 2023; 23:946-961. [PMID: 36695302 PMCID: PMC10568660 DOI: 10.1111/1755-0998.13759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/12/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
We provide a reproducible and scalable Snakemake workflow, called RNA-Seq-Pop, which provides end-to-end analysis of RNA sequencing data sets. The workflow allows the user to perform quality control, perform differential expression analyses and call genomic variants. Additional options include the calculation of allele frequencies of variants of interest, summaries of genetic variation and population structure, and genome-wide selection scans, together with clear visualizations. RNA-Seq-Pop is applicable to any organism, and we demonstrate the utility of the workflow by investigating pyrethroid resistance in selected strains of the major malaria mosquito, Anopheles gambiae. The workflow provides additional modules specifically for An. gambiae, including estimating recent ancestry and determining the karyotype of common chromosomal inversions. The Busia laboratory colony used for selections was collected in Busia, Uganda, in November 2018. We performed a comparative analysis of three groups: a parental G24 Busia strain; its deltamethrin-selected G28 offspring; and the susceptible reference strain Kisumu. Measures of genetic diversity reveal patterns consistent with that of laboratory colonization and selection, with the parental Busia strain exhibiting the highest nucleotide diversity, followed by the selected Busia offspring, and finally, Kisumu. Differential expression and variant analyses reveal that the selected Busia colony exhibits a number of distinct mechanisms of pyrethroid resistance, including the Vgsc-995S target-site mutation, upregulation of SAP genes, P450s and a cluster of carboxylesterases. During deltamethrin selections, the 2La chromosomal inversion rose in frequency (from 33% to 86%), supporting a previous link with pyrethroid resistance. RNA-Seq-Pop is hosted at: github.com/sanjaynagi/rna-seq-pop. We anticipate that the workflow will provide a useful tool to facilitate reproducible, transcriptomic studies in An. gambiae and other taxa.
Collapse
Affiliation(s)
- Sanjay C. Nagi
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | | | - David Weetman
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Martin J. Donnelly
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
5
|
Perugini E, Guelbeogo WM, Guglielmo F, Poggi C, Gabrieli E, Ranson H, Della Torre A, Pombi M. The interplay between malaria vectors and human activity accounts for high residual malaria transmission in a Burkina Faso village with universal ITN coverage. Parasit Vectors 2023; 16:101. [PMID: 36922855 PMCID: PMC10015820 DOI: 10.1186/s13071-023-05710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Mosquito and human behaviour interaction is a key determinant of the maximum level of protection against malaria that can be provided by insecticide-treated nets (ITNs). Nevertheless, scant literature focuses on this interaction, overlooking a fundamental factor for efficient malaria control. This study aims to estimate malaria transmission risk in a Burkina Faso village by integrating vector biting rhythms with some key information about human habits. METHODS Indoor/outdoor human landing catches were conducted for 16 h (16:00-08:00) during 8 nights (September 2020) in Goden village. A survey about net usage and sleeping patterns was submitted to half the households (October-December 2020). A subsample of collected specimens of Anopheles gambiae sensu lato was molecularly processed for species identification, Plasmodium detection from heads-thoraxes and L1014F pyrethroid-resistance allele genotyping. Hourly mosquito abundance was statistically assessed by GLM/GAM, and the entomological inoculation rate (EIR) was corrected for the actual ITN usage retrieved from the questionnaire. RESULTS Malaria transmission was mainly driven by Anopheles coluzzii (68.7%) followed by A. arabiensis (26.2%). The overall sporozoite rate was 2% with L1014F estimated frequency of 0.68 (N = 1070 out of 15,201 A. gambiae s.l. collected). No major shift in mosquito biting rhythms in response to ITN or differences between indoor and outdoor catches were detected. Impressive high biting pressure (mean 30.3 mosquitoes/person/hour) was exerted from 20:00 to 06:00 with a peak at 4:00. Human survey revealed that nearly all inhabitants were awake before 20:00 and after 7:00 and at least 8.7% had no access to bednets. Adjusting for anthropological data, the EIR dropped from 6.7 to 1.2 infective bites/person/16 h. In a scenario of full net coverage and accounting only for the human sleeping patterns, the daily malaria transmission risk not targetable by ITNs was 0.69 infective bites. CONCLUSIONS The high mosquito densities and interplay between human/vector activities means that an estimated 10% of residual malaria transmission cannot be prevented by ITNs in the village. Locally tailored studies, like the current one, are essential to explore the heterogeneity of human exposure to infective bites and, consequently, to instruct the adoption of new vector control tools strengthening individual and community protection.
Collapse
Affiliation(s)
- Eleonora Perugini
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Federica Guglielmo
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Cristiana Poggi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Eugenio Gabrieli
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Marco Pombi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.
| |
Collapse
|
6
|
Pusawang K, Sattabongkot J, Saingamsook J, Zhong D, Yan G, Somboon P, Wongpalee SP, Cui L, Saeung A, Sriwichai P. Insecticide Susceptibility Status of Anopheles and Aedes Mosquitoes in Malaria and Dengue Endemic Areas, Thai-Myanmar Border. INSECTS 2022; 13:1035. [PMID: 36354859 PMCID: PMC9694411 DOI: 10.3390/insects13111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The occurrence and spread of insecticide resistance has had a negative effect on the efficacy of insecticide-based tools and is distributed worldwide, including the Greater Mekong Subregion (GMS). This study aims to determine the insecticide susceptibility of malaria and dengue vectors in malaria and dengue hotspots on the Thai-Myanmar border. Mosquito larvae and pupae were obtained from water sources from December 2019 to April 2020 in Tha Song Yang District, Tak province, western Thailand. WHO bioassay susceptibility tests were conducted with three classes of insecticides to evaluate the knockdown and mortality rates of Anopheles and Aedes aegypti female adults. V1016G and F1534C kdr mutations in the voltage-gated sodium channel of Ae. aegypti were identified using a multiplex PCR. A total of 5764 female mosquitoes were bioassayed in this study, including Anopheles spp. (92.63%) and F1 Ae. aegypti (7.37%). After 24 h of observation, An. minimus s.l. (n = 3885) and An. maculatus s.l. (n = 1138) in Suan Oi (SO) and Tala Oka (TO) were susceptible to pyrethroids, organophosphates and carbamates (except bendiocarb) with 98-100% mortality (MR). Resistance to bendiocarb was detected with a mortality rate of 88.80%, 88.77%, and 89.92% for An. minimus s.l. (n = 125, 125) and An. maculatus s.l. (n = 66), respectively. The first generation of Ae. aegypti adult females were suspected of resistance to deltamethrin (n = 225, MR = 96.89%) and confirmed resistance to permethrin (n = 200, MR = 20.00%). V1016G and F1534C mutations were detected in three genotypes, heterozygote and homozygote forms. The correlation between the kdr alleles and deltamethrin resistance was significant. In conclusion, bendiocarb resistance was found in primary malaria vectors, An. minimus s.l. and An. maculatus s.l. F1 Ae. aegypti population was pyrethroids-resistant, associated with kdr alleles. Therefore, molecular analysis should be conducted to gain insights into the mechanism of insecticide resistance. Routine malaria vector control programmes, such as fogging implementation in hotspot villages to induce Aedes resistance available in peri-domestic sites, are questionable.
Collapse
Affiliation(s)
- Kanchon Pusawang
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Center, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jassada Saingamsook
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Daibin Zhong
- Department of Population Health and Disease Prevention, University of California, Irvine, CA 92697, USA
| | - Guiyun Yan
- Department of Population Health and Disease Prevention, University of California, Irvine, CA 92697, USA
| | - Pradya Somboon
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Liwang Cui
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Machani MG, Ochomo E, Amimo F, Mukabana WR, Githeko AK, Yan G, Afrane YA. Behavioral responses of pyrethroid resistant and susceptible Anopheles gambiae mosquitoes to insecticide treated bed net. PLoS One 2022; 17:e0266420. [PMID: 35390050 PMCID: PMC8989192 DOI: 10.1371/journal.pone.0266420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background Long-lasting insecticidal nets are an effective tool in reducing malaria transmission. However, with increasing insecticide resistance little is known about how physiologically resistant malaria vectors behave around a human-occupied bed net, despite their importance in malaria transmission. We used the Mbita bednet trap to assess the host-seeking behavior of insecticide-resistant Anopheles gambiae mosquitoes under semi-field conditions. The trap incorporates a mosquito netting panel which acts as a mechanical barrier that prevents host-seeking mosquitoes from reaching the human host baiting the trap. Methods Susceptible and pyrethroid-resistant colonies of female Anopheles gambiae mosquitoes aged 3–5 days old were used in this study. The laboratory-bred mosquitoes were color-marked with fluorescent powders and released inside a semi-field environment where a human subject slept inside a bednet trap erected in a traditional African hut. The netting panel inside the trap was either untreated (control) or deltamethrin-impregnated. The mosquitoes were released outside the hut. Only female mosquitoes were used. A window exit trap was installed on the hut to catch mosquitoes exiting the hut. A prokopack aspirator was used to collect indoor and outdoor resting mosquitoes. In addition, clay pots were placed outside the hut to collect outdoor resting mosquitoes. The F1 progeny of wild-caught mosquitoes were also used in these experiments. Results The mean number of resistant mosquitoes trapped in the deltamethrin-impregnated bed net trap was higher (mean = 50.21± 3.7) compared to susceptible counterparts (mean + 22.4 ± 1.31) (OR = 1.445; P<0.001). More susceptible mosquitoes were trapped in an untreated (mean = 51.9 ± 3.6) compared to a deltamethrin-treated bed net trap (mean = 22.4 ± 1.3) (OR = 2.65; P<0.001). Resistant mosquitoes were less likely to exit the house when a treated bed net was present compared to the susceptible mosquitoes. The number of susceptible mosquitoes caught resting outdoors (mean + 28.6 ± 2.22) when a treated bed net was hanged was higher than when untreated bednet was present inside the hut (mean = 4.6 ± 0.74). The susceptible females were 2.3 times more likely to stay outdoors away from the treated bed net (OR = 2.25; 95% CI = [1.7–2.9]; P<0.001). Conclusion The results show that deltamethrin-treatment of netting panels inside the bednet trap did not alter the host-seeking behavior of insecticide-resistant female An. gambiae mosquitoes. On the contrary, susceptible females exited the hut and remained outdoors when a treated net was used. However, further investigations of the behavior of resistant mosquitoes under natural conditions should be undertaken to confirm these observations and improve the current intervention which are threatened by insecticide resistance and altered vector behavior.
Collapse
Affiliation(s)
- Maxwell G. Machani
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Kisumu, Kenya
- * E-mail: (MGM); (YAA)
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Fred Amimo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Kisumu, Kenya
| | - Wolfgang R. Mukabana
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
- Science for Health Society, Nairobi, Kenya
| | - Andrew K. Githeko
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, United States of America
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
- * E-mail: (MGM); (YAA)
| |
Collapse
|
8
|
Morgan J, Salcedo-Sora JE, Triana-Chavez O, Strode C. Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:192-212. [PMID: 34718656 PMCID: PMC8755997 DOI: 10.1093/jme/tjab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/08/2023]
Abstract
Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Ormskirk, UK
| | - J Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Omar Triana-Chavez
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of Antioquia, Medellín, Colombia
| | - Clare Strode
- Department of Biology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
9
|
Yu JJ, Bong LJ, Panthawong A, Chareonviriyaphap T, Liu WT, Neoh KB. Effects of piperonyl butoxide synergism and cuticular thickening on the contact irritancy response of field Aedes aegypti (Diptera: Culicidae) to deltamethrin. PEST MANAGEMENT SCIENCE 2021; 77:5557-5565. [PMID: 34390293 DOI: 10.1002/ps.6597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exploiting indoor-resting mosquitoes' innate behavioral responses to commonly used insecticide is crucial in vector control programs. Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) treated with pyrethroids have become widely used for controlling dengue fever vectors. The present study tested the effects of piperonyl butoxide (PBO) synergism and cuticular thickening on the contact irritancy response of field A. aegypti (Diptera: Culicidae) to deltamethrin in Taiwan and Thailand. RESULTS The escape response of field mosquitoes treated with PBO was significantly elicited, with an escape percentage increase between 2- and 10-fold. In addition, the escape time was significantly lower in PBO-pretreated mosquitoes compared with field mosquitoes treated with deltamethrin alone. PBO-pretreated mosquitoes from seven out of 11 field strains exhibited a knockdown percentage of 11.23-54.91%, significantly higher than that of mosquitoes in corresponding strains treated with deltamethrin only. The Annan, Zhongxi, Sanmin, and North strains exhibited weak knockdown responses (≤3.75%). The mortality of PBO-pretreated field mosquitoes increased 2- to 75-fold compared with those treated with deltamethrin alone (mortality: 0-6.70%). Furthermore, the effect of cuticular thickness on the escape response of field mosquitoes was significant, that is, the escape response marginally increased inversely to cuticular thickness. By contrast, cuticular thickness was not significantly associated with knockdown or mortality percentage. CONCLUSION Irritant behavior in mosquitoes was significantly elicited by PBO synergism. PBO incorporating deltamethrin IRS or LLINs may be effective for controlling dengue fever vectors. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Jia Yu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Lee-Jin Bong
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Amonrat Panthawong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | | - Wei-Ting Liu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Chen XD, Neupane S, Gill TA, Gossett H, Pelz-Stelinski KS, Stelinski LL. Comparative transcriptome analysis of thiamethoxam susceptible and resistant Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), using RNA-sequencing. INSECT SCIENCE 2021; 28:1708-1720. [PMID: 33475237 DOI: 10.1111/1744-7917.12901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), transmits the causal pathogen of huanglongbing and is a global pest of citrus. D. citri populations exhibit resistance to multiple insecticide modes of action in areas where these chemicals have been overused. We performed genome-wide transcriptional analysis for two field populations of D. citri (Wauchula and Lake Alfred, Florida, USA) that exhibit 1300-fold resistance to the neonicotinoid insecticide, thiamethoxam, and compared it to that of susceptible psyllids collected from the same area and without imposed selection. The Lake Alfred population responded to insecticide resistance by up-regulation of 240 genes and down-regulation of 148 others. The Wauchula population exhibited similar patterns to the Lake Alfred population with up-regulation of 253 genes and down-regulation of 115 others. Gene Ontology annotation associated with cellular processes, cell, and catalytic activity were assigned to differentially expressed genes (DEGs). The DEGs from Lake Alfred and Wauchula populations were mapped to Kyoto Encyclopedia of Gene and Genomes pathways and implicated enrichment of metabolic pathways, oxidative phosphorylation, extracellular matrix-receptor interaction, terpenoid backbone biosynthesis, and insect hormone biosynthesis in the resistant populations. Up-regulation of 60s ribosomal proteins, UDP-gluscoyltransferases, cytochrome c oxidases, and CYP and ABC transporters among thiamethoxam-resistant D. citri implicates a broad array of novel and conventionally understood resistance mechanisms.
Collapse
Affiliation(s)
- Xue Dong Chen
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Surendra Neupane
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Torrence A Gill
- Biology Department, Chowan University, One University Place, Murfreesboro, NC, 27855, USA
| | - Hunter Gossett
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Kirsten S Pelz-Stelinski
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Lukasz L Stelinski
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| |
Collapse
|
11
|
Huang L, Li J, Peng L, Xie R, Su X, He P, Xu J, Jia Z, Luo X, Chen XG, Li H. The Differential Metabolic Profiles Between Deltamethrin-Resistant and -Susceptible Strains of Aedes albopictus (Diptera: Culicidae) by 1H-NMR. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1256-1263. [PMID: 33367827 PMCID: PMC8122240 DOI: 10.1093/jme/tjaa273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 05/26/2023]
Abstract
Metabolomics can indicate the physiological and biochemical responses of mosquitoes to different stimulants, including insecticides, which allow them to adapt to different inhospitable environments. Though metabolic differences between insecticide-resistant and -susceptible strains have been established for other mosquito species, such as Anopheles and Culex, it is yet to be done for Aedes albopictus (Skuse). In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis performed on Ae. albopictus deltamethrin-resistant and -susceptible strains showed significant differences in amino acid, organic acid, and sugar metabolism. Concentrations of neutral amino acids and sugars tended to be lower in the deltamethrin-resistant strain than in the deltamethrin-suceptible strain, but the concentration of basic and acidic amino acids and organic acids increased. All these changes might accommodate biochemical and physiological needs in deltamethrin-resistant mosquitoes, such as enzyme synthesis and detoxification. This was further confirmed by the predictable draft metabolic map. This is the first report using NMR spectroscopy to investigate the metabolic differences between deltamethrin-resistant and -susceptible strains of Ae. albopictus. To a certain degree, this demonstrates how Ae. albopictus develop insecticide resistance by metabolic reprograming to survive under the insecticide pressure.
Collapse
Affiliation(s)
- Lianfen Huang
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
- Clinical Laboratory, Guangzhou Women and Children’s Medical center, Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lilan Peng
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ruili Xie
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xinghua Su
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiqing He
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiabao Xu
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhirong Jia
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoting Luo
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hua Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Multiple cytochrome P450 genes: conferring high levels of permethrin resistance in mosquitoes, Culex quinquefasciatus. Sci Rep 2021; 11:9041. [PMID: 33907243 PMCID: PMC8079677 DOI: 10.1038/s41598-021-88121-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
Insecticides, especially pyrethroids, are the most important in the insect pest control and preventing insect vector-borne human diseases. However, insect pests, including mosquitoes, have developed resistance in the insecticides that used against them. Cytochrome P450s are associated with insecticide resistance through overexpression and detoxification mechanisms in insect species. In this study, we utilized a powerful tool, the RNAi technique, to determine the roles of key P450 genes overexpressed in permethrin resistant mosquitoes that confer insecticide resistance to unravel the molecular basis of resistance mechanisms in the mosquito Culex quinquefasciatus. The results showed that knockdown of 8 key P450 genes using RNAi techniques significantly decreased resistance to permethrin in resistant mosquitoes. In silico modeling and docking analysis further revealed the potential metabolic function of overexpressed P450 genes in the development of insecticide resistance in mosquitoes. These findings not only highlighted the functional importance of these P450 genes in insecticide resistance, but also revealed that overexpression of multiple P450 genes was responsible for the high levels of insecticide resistance in a mosquito population of Culex quinquefasciatus.
Collapse
|
13
|
Owuor KO, Machani MG, Mukabana WR, Munga SO, Yan G, Ochomo E, Afrane YA. Insecticide resistance status of indoor and outdoor resting malaria vectors in a highland and lowland site in Western Kenya. PLoS One 2021; 16:e0240771. [PMID: 33647049 PMCID: PMC7920366 DOI: 10.1371/journal.pone.0240771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Long Lasting Insecticidal Nets (LLINs) and indoor residual spraying (IRS) represent powerful tools for controlling malaria vectors in sub-Saharan Africa. The success of these interventions relies on their capability to inhibit indoor feeding and resting of malaria mosquitoes. This study sought to understand the interaction of insecticide resistance with indoor and outdoor resting behavioral responses of malaria vectors from Western Kenya. METHODS The status of insecticide resistance among indoor and outdoor resting anopheline mosquitoes was compared in Anopheles mosquitoes collected from Kisumu and Bungoma counties in Western Kenya. The level and intensity of resistance were measured using WHO-tube and CDC-bottle bioassays, respectively. The synergist piperonyl butoxide (PBO) was used to determine if metabolic activity (monooxygenase enzymes) explained the resistance observed. The mutations at the voltage-gated sodium channel (Vgsc) gene and Ace 1 gene were characterized using PCR methods. Microplate assays were used to measure levels of detoxification enzymes if present. RESULTS A total of 1094 samples were discriminated within Anopheles gambiae s.l. and 289 within An. funestus s.l. In Kisian (Kisumu county), the dominant species was Anopheles arabiensis 75.2% (391/520) while in Kimaeti (Bungoma county) collections the dominant sibling species was Anopheles gambiae s.s 96.5% (554/574). The An. funestus s.l samples analysed were all An. funestus s.s from both sites. Pyrethroid resistance of An.gambiae s.l F1 progeny was observed in all sites. Lower mortality was observed against deltamethrin for the progeny of indoor resting mosquitoes compared to outdoor resting mosquitoes (Mortality rate: 37% vs 51%, P = 0.044). The intensity assays showed moderate-intensity resistance to deltamethrin in the progeny of mosquitoes collected from indoors and outdoors in both study sites. In Kisian, the frequency of vgsc-L1014S and vgsc-L1014F mutation was 0.14 and 0.19 respectively in indoor resting malaria mosquitoes while those of the outdoor resting mosquitoes were 0.12 and 0.12 respectively. The ace 1 mutation was present in higher frequency in the F1 of mosquitoes resting indoors (0.23) compared to those of mosquitoes resting outdoors (0.12). In Kimaeti, the frequencies of vgsc-L1014S and vgsc-L1014F were 0.75 and 0.05 respectively for the F1 of mosquitoes collected indoors whereas those of outdoor resting ones were 0.67 and 0.03 respectively. The ace 1 G119S mutation was present in progeny of mosquitoes from Kimaeti resting indoors (0.05) whereas it was absent in those resting outdoors. Monooxygenase activity was elevated by 1.83 folds in Kisian and by 1.33 folds in Kimaeti for mosquitoes resting indoors than those resting outdoors respectively. CONCLUSION The study recorded high phenotypic, metabolic and genotypic insecticide resistance in indoor resting populations of malaria vectors compared to their outdoor resting counterparts. The indication of moderate resistance intensity for the indoor resting mosquitoes is alarming as it could have an operational impact on the efficacy of the existing pyrethroid based vector control tools. The use of synergist (PBO) in LLINs may be a better alternative for widespread use in these regions recording high insecticide resistance.
Collapse
Affiliation(s)
- Kevin O. Owuor
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Maxwell G. Machani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Wolfgang R. Mukabana
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
- Science for Health Society, Nairobi, Kenya
| | - Stephen O. Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
14
|
Yu JJ, Bong LJ, Panthawong A, Chareonviriyaphap T, Neoh KB. Repellency and Contact Irritancy Responses of Aedes aegypti (Diptera: Culicidae) Against Deltamethrin and Permethrin: A Cross-Regional Comparison. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:379-389. [PMID: 32876326 DOI: 10.1093/jme/tjaa172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Control strategies exploiting the innate response of mosquitoes to chemicals are urgently required to complement existing traditional approaches. We therefore examined the behavioral responses of 16 field strains of Aedes aegypti (L.) from two countries, to deltamethrin and permethrin by using an excito-repellency (ER) test system. The result demonstrated that the escape percentage of Ae. aegypti exposed to pyrethroids did not vary significantly between the two countries in both contact and noncontact treatment despite the differing epidemiological patterns. Deltamethrin (contact: 3.57 ± 2.06% to 31.20 ± 10.71%; noncontact: 1.67 ± 1.67% to 17.31 ± 14.85%) elicited relatively lower responses to field mosquitoes when compared with permethrin (contact: 16.15 ± 4.07% to 74.19 ± 4.69%; noncontact: 3.45 ± 2.00% to 41.59 ± 6.98%) in contact and noncontact treatments. Compared with field strains, the mean percentage of escaping laboratory susceptible strain individuals were significantly high after treatments (deltamethrin contact: 72.26 ± 6.95%, noncontact: 61.10 ± 12.31%; permethrin contact: 78.67 ± 9.67%, noncontact: 67.07 ± 7.02%) and the escaped individuals spent significantly shorter time escaping from the contact and noncontact chamber. The results indicated a significant effect of resistance ratio on mean escape percentage, but some strains varied idiosyncratically compared to the increase in insecticide resistance. The results also illustrated that the resistance ratio had a significant effect on the mortality in treatments. However, the mortality in field mosquitoes that prematurely escaped from the treated contact chamber or in mosquitoes that stayed up to the 30-min experimental period showed no significant difference.
Collapse
Affiliation(s)
- Jin-Jia Yu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Lee-Jin Bong
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Amonrat Panthawong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Machani MG, Ochomo E, Amimo F, Kosgei J, Munga S, Zhou G, Githeko AK, Yan G, Afrane YA. Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures. PLoS One 2020; 15:e0224718. [PMID: 32097407 PMCID: PMC7041793 DOI: 10.1371/journal.pone.0224718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/04/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya. METHODS Anopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections. RESULTS Anopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p < 0.0001, An. funestus; F1, 655 = 36.555, p < 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections (n = 73). CONCLUSION The study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.
Collapse
Affiliation(s)
- Maxwell G. Machani
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Fred Amimo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Jackline Kosgei
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Andrew K. Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, California, United States of America
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
16
|
Rösner J, Merzendorfer H. Transcriptional plasticity of different ABC transporter genes from Tribolium castaneum contributes to diflubenzuron resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103282. [PMID: 31740345 DOI: 10.1016/j.ibmb.2019.103282] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The development of insecticide resistance challenges the sustainability of pest control and several studies have shown that ABC transporters contribute to this process. ABC transporters are known to transport a large range of chemically diverse molecules across cellular membranes, and therefore the identification of ABC transporters involved in insecticide resistance is difficult. Here, we describe a comprehensive strategy for the identification of whole sets of ABC transporters involved in insecticide resistance using the pest beetle, Tribolium castaneum (Tc) as a model. We analyzed the expression of ABCA to ABCC genes in different tissues and developmental stages using larvae that were sensitive or resistant to diflubenzuron (DFB). The mRNA levels of several ABC genes expressed in excretory or metabolic tissues such as midgut, Malpighian tubules or fat body were markedly upregulated in response to DFB. Next, we monitored mortality in the presence of the ABC inhibitor verapamil, and found that it causes sensitization to DFB. We furthermore established a competitive assay for the elimination of DFB, based on Texas Red (TR) fluorescence. We monitored TR elimination in larvae that were treated with DFB or different ABC inhibitors, and combinations of them. TR elimination was decreased significantly in the presence of DFB, verapamil and the ABCC inhibitor MK-571. The effect was synergized when DFB and verapamil were both present suggesting that the transport of TR and DFB involves overlapping sets of ABC transporters. Finally, we silenced the expression of DFB-responding ABC genes by RNA interference and then followed the survival rates after DFB exposure. Mortality increased particularly when specific ABCA and ABCC genes were silenced. Taken together, we were able to show that different ABC transporters expressed in metabolic and excretory tissues contribute to the elimination of DFB. Up- or down-regulation of gene expression occurs within a few days already at very low DFB concentrations. These results suggests that transcriptional plasticity of several ABC genes allows adaptation of the efflux capacity in different tissues to eliminate insecticides and/or their metabolites.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany.
| |
Collapse
|
17
|
Orjuela LI, Álvarez-Diaz DA, Morales JA, Grisales N, Ahumada ML, Venegas H J, Quiñones ML, Yasnot MF. Absence of knockdown mutations in pyrethroid and DDT resistant populations of the main malaria vectors in Colombia. Malar J 2019; 18:384. [PMID: 31791331 PMCID: PMC6889704 DOI: 10.1186/s12936-019-3034-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/24/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Knockdown resistance (kdr) is a well-characterized target-site insecticide resistance mechanism that is associated with DDT and pyrethroid resistance. Even though insecticide resistance to pyrethroids and DDT have been reported in Anopheles albimanus, Anopheles benarrochi sensu lato (s.l.), Anopheles darlingi, Anopheles nuneztovari s.l., and Anopheles pseudopunctipennis s.l. malaria vectors in Latin America, there is a knowledge gap on the role that kdr resistance mechanisms play in this resistance. The aim of this study was to establish the role that kdr mechanisms play in pyrethroid and DDT resistance in the main malaria vectors in Colombia, in addition to previously reported metabolic resistance mechanisms, such as mixed function oxidases (MFO) and nonspecific esterases (NSE) enzyme families. METHODS Surviving (n = 62) and dead (n = 67) An. nuneztovari s.l., An. darlingi and An. albimanus mosquitoes exposed to diagnostic concentrations of DDT and pyrethroid insecticides were used to amplify and sequence a ~ 225 bp fragment of the voltage-gated sodium channels (VGSC) gene. This fragment spanning codons 1010, 1013 and 1014 at the S6 segment of domain II to identify point mutations, which have been associated with insecticide resistance in different species of Anopheles malaria vectors. RESULTS No kdr mutations were detected in the coding sequence of this fragment in 129 samples, 62 surviving mosquitoes and 67 dead mosquitoes, of An. darlingi, An. nuneztovari s.l. and An. albimanus. CONCLUSION Mutations in the VGSC gene, most frequently reported in other species of the genus Anopheles resistant to pyrethroid and DDT, are not associated with the low-intensity resistance detected to these insecticides in some populations of the main malaria vectors in Colombia. These results suggest that metabolic resistance mechanisms previously reported in these populations might be responsible for the resistance observed.
Collapse
Affiliation(s)
- Lorena I Orjuela
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba-GIMBIC, Universidad de Córdoba, Montería, 230001, Colombia.
- Universidad de Cartagena, Facultad de Medicina, Sede Zaragocilla, Calle 30 N° 48-152, Cartagena de Indias, Bolívar, 1300, Colombia.
| | - Diego A Álvarez-Diaz
- Grupo de Salud Materna y Perinatal, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá D.C., 110111, Colombia
| | - Juliana A Morales
- Grupo de Entomología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá D.C., 110111, Colombia
| | - Nelson Grisales
- Zika AIRS Project, Abt Associates, Rockville, MD, 20852, USA
| | - Martha L Ahumada
- Grupo de Entomología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá D.C., 110111, Colombia
| | - Juan Venegas H
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, 8320000, Chile
| | - Martha L Quiñones
- Departamento de Salud Pública, Universidad Nacional, Bogotá D.C., 110111, Colombia
| | - María F Yasnot
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba-GIMBIC, Universidad de Córdoba, Montería, 230001, Colombia
| |
Collapse
|
18
|
Mao X, He Z, Zhou F, Huang Y, Zhu G. Prognostic significance and molecular mechanisms of adenosine triphosphate-binding cassette subfamily C members in gastric cancer. Medicine (Baltimore) 2019; 98:e18347. [PMID: 31852133 PMCID: PMC6922578 DOI: 10.1097/md.0000000000018347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the major leading causes of tumor-related deaths worldwide. Adenosine triphosphate-binding cassette subfamily C (ABCC) consists of 13 members, ABCC1 to 13, which were examined for their associations with GC.The online Kaplan-Meier Plotter database was used to determine the prognostic significance of ABCC subfamily members in GC. Stratified analyses were performed using gender, disease stage, degree of tumor differentiation, expression of human epidermal growth factor receptor 2 (HER2), and Lauren classification. Molecular mechanisms were examined using the database for annotation, visualization, and integrated discovery database.ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 expression showed prognostic significance in the whole population and in male and female subpopulations (all P ≤ .05). Furthermore, high expression of most ABCC family members always suggested a poor prognosis, except for ABCC7 (P > .05). Stratified analyses revealed that ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 expression showed prognostic significance for the whole population, as well as male and female populations. ABCC2 and ABCC9 were significantly correlated with all disease stages, while ABCC2 and ABCC6 were significantly correlated with all Lauren classifications. Expression of ABCC1, ABCC3, ABCC5, ABCC7, ABCC8, ABCC9, and ABCC10 was significantly correlated with either negative or positive of HER2 status (all P ≤ .05). Enrichment analysis indicated that these genes were involved in ATPase activity, transmembrane transport, or were ABC transporters (all P ≤ .05).ABCC1, ABCC3, ABCC7, ABCC8, ABCC9, and ABCC10 may be potential prognosis biomarkers for GC, acting as ABC transporters and via ATPase activity.
Collapse
Affiliation(s)
- Xianshuang Mao
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Zhenhua He
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Fengsheng Zhou
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Yongchu Huang
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Hezhou City, Hezhou
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
19
|
A systemic study of indoxacarb resistance in Spodoptera litura revealed complex expression profiles and regulatory mechanism. Sci Rep 2019; 9:14997. [PMID: 31628365 PMCID: PMC6802196 DOI: 10.1038/s41598-019-51234-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 11/09/2022] Open
Abstract
The tobacco cutworm, Spodoptera litura, is an important pest of crop and vegetable plants worldwide, and its resistance to insecticides have quickly developed. However, the resistance mechanisms of this pest are still unclear. In this study, the change in mRNA and miRNA profiles in the susceptible, indoxacarb-resistant and field indoxacarb-resistant strains of S. litura were characterized. Nine hundred and ten co-up-regulated and 737 co-down-regulated genes were identified in the resistant strains. Further analysis showed that 126 co-differentially expressed genes (co-DEGs) (cytochrome P450, carboxy/cholinesterase, glutathione S-transferase, ATP-binding cassette transporter, UDP-glucuronosyl transferase, aminopeptidase N, sialin, serine protease and cuticle protein) may play important roles in indoxacarb resistance in S. litura. In addition, a total of 91 known and 52 novel miRNAs were identified, and 10 miRNAs were co-differentially expressed in the resistant strains of S. litura. Furthermore, 10 co-differentially expressed miRNAs (co-DEmiRNAs) had predicted co-DEGs according to the expected miRNA-mRNA negative regulation pattern and 37 indoxacarb resistance-related co-DEGs were predicted to be the target genes. These results not only broadened our understanding of molecular mechanisms of insecticide resistance by revealing complicated profiles, but also provide important clues for further study on the mechanisms of miRNAs involved in indoxacarb resistance in S. litura.
Collapse
|
20
|
Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-Binding Cassette (ABC) Transporters: Roles in Xenobiotic Detoxification and Bt Insecticidal Activity. Int J Mol Sci 2019; 20:ijms20112829. [PMID: 31185645 PMCID: PMC6600440 DOI: 10.3390/ijms20112829] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, a large class of transmembrane proteins, are widely found in organisms and play an important role in the transport of xenobiotics. Insect ABC transporters are involved in insecticide detoxification and Bacillus thuringiensis (Bt) toxin perforation. The complete ABC transporter is composed of two hydrophobic transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). Conformational changes that are needed for their action are mediated by ATP hydrolysis. According to the similarity among their sequences and organization of conserved ATP-binding cassette domains, insect ABC transporters have been divided into eight subfamilies (ABCA–ABCH). This review describes the functions and mechanisms of ABC transporters in insecticide detoxification, plant toxic secondary metabolites transport and insecticidal activity of Bt toxin. With improved understanding of the role and mechanisms of ABC transporter in resistance to insecticides and Bt toxins, we can identify valuable target sites for developing new strategies to control pests and manage resistance and achieve green pest control.
Collapse
Affiliation(s)
- Chao Wu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
21
|
Machani MG, Ochomo E, Sang D, Bonizzoni M, Zhou G, Githeko AK, Yan G, Afrane YA. Influence of blood meal and age of mosquitoes on susceptibility to pyrethroids in Anopheles gambiae from Western Kenya. Malar J 2019; 18:112. [PMID: 30940139 PMCID: PMC6444593 DOI: 10.1186/s12936-019-2746-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Physiological characteristics (age and blood feeding status) of malaria vectors can influence their susceptibility to the current vector control tools that target their feeding and resting behaviour. To ensure the sustainability of the current and future vector control tools an understanding of how physiological characteristics may contribute to insecticide tolerance in the field is fundamental for shaping resistance management strategies and vector control tools. The aim of this study was to determine whether blood meal and mosquito age affect pyrethroid tolerance in field-collected Anopheles gambiae from western Kenya. METHODS Wild mosquito larvae were reared to adulthood alongside the pyrethroid-susceptible Kisumu strain. Adult females from the two populations were monitored for deltamethrin resistance when they were young at 2-5 days old and older 14-16 days old and whether fed or unfed for each age group. Metabolic assays were also performed to determine the level of detoxification enzymes. Mosquito specimens were further identified to species level using the polymerase chain reaction (PCR) method. RESULTS Anopheles gambiae sensu stricto was the predominant species comprising 96% of specimens and 2.75% Anopheles arabiensis. Bioassay results showed reduced pyrethroid induced mortality with younger mosquitoes compared to older ones (mortality rates 83% vs. 98%), independently of their feeding status. Reduced mortality was recorded with younger females of which were fed compared to their unfed counterparts of the same age with a mortality rate of 35.5% vs. 83%. Older blood-fed females showed reduced susceptibility after exposure when compared to unfed females of the same age (mortality rates 86% vs. 98%). For the Kisumu susceptible population, mortality was straight 100% regardless of age and blood feeding status. Blood feeding status and mosquito age had an effect on enzyme levels in both populations, with blood fed individuals showing higher enzyme elevations compared to their unfed counterparts (P < 0.0001). The interaction between mosquito age and blood fed status had significant effect on mosquito mortality. CONCLUSION The results showed that mosquito age and blood feeding status confers increased tolerance to insecticides as blood feeding may be playing an important role in the toxicity of deltamethrin, allowing mosquitoes to rest on insecticide-treated materials despite treatment. These may have implications for the sustained efficacy of indoor residual spraying and insecticide-treated nets based control programmes that target indoor resting female mosquitoes of various gonotrophic status.
Collapse
Affiliation(s)
- Maxwell G Machani
- Climate and Human Health Research Unit, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Eric Ochomo
- Entomology Section, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - David Sang
- School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Andrew K Githeko
- Climate and Human Health Research Unit, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Yaw A Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
22
|
Xu N, Sun XH, Liu ZH, Xu Y, Sun Y, Zhou D, Shen B, Zhu CL. Identification and classification of differentially expressed genes in pyrethroid-resistant Culex pipiens pallens. Mol Genet Genomics 2019; 294:861-873. [PMID: 30904950 DOI: 10.1007/s00438-018-1521-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022]
Abstract
Culex pipiens pallens is an important vector that transmits Bancroftian filariasis, Japanese encephalitis and other diseases that pose a serious threat to human health. Extensive and improper use of insecticides has caused insecticide resistance in mosquitoes, which has become an important obstacle to the control of mosquito-borne diseases. It is crucial to investigate the underlying mechanism of insecticide resistance. The aims of this study were to identify genes involved in insecticide resistance based on the resistance phenotype, gene expression profile and single-nucleotide polymorphisms (SNPs) and to screen for major genes controlling insecticide resistance. Using a combination of SNP and transcriptome data, gene expression quantitative trait loci (eQTLs) were studied in deltamethrin-resistant mosquitoes. The most differentially expressed pathway in the resistant group was identified, and a regulatory network was built using these SNPs and the differentially expressed genes (DEGs) in this pathway. The major candidate genes involved in the control of insecticide resistance were analyzed by qPCR, siRNA microinjection and CDC bottle bioassays. A total of 85 DEGs that encoded putative detoxification enzymes (including 61 P450s) were identified in this pathway. The resistance regulatory network was built using SNPs, and these metabolic genes, and a major gene, CYP9AL1, were identified. The functional role of CYP9AL1 in insecticide resistance was confirmed by siRNA microinjection and CDC bottle bioassays. Using the eQTL approach, we identified important genes in pyrethroid resistance that may aid in understanding the mechanism underlying insecticide resistance and in targeting new measures for resistance monitoring and management.
Collapse
Affiliation(s)
- Na Xu
- Xuzhou Central Hospital, 29 Taihang Road, Yunlong District, Xuzhou, 221111, People's Republic of China
| | - Xiao-Hong Sun
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Zhi-Han Liu
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.,Key Laboratory of Pathogen Biology of Jiangsu Province, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.,Key Laboratory of Pathogen Biology of Jiangsu Province, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China. .,Key Laboratory of Pathogen Biology of Jiangsu Province, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.
| | - Chang-Liang Zhu
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China. .,Key Laboratory of Pathogen Biology of Jiangsu Province, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
23
|
He Q, Yan Z, Si F, Zhou Y, Fu W, Chen B. ATP-Binding Cassette (ABC) Transporter Genes Involved in Pyrethroid Resistance in the Malaria Vector Anopheles sinensis: Genome-Wide Identification, Characteristics, Phylogenetics, and Expression Profile. Int J Mol Sci 2019; 20:ijms20061409. [PMID: 30897799 PMCID: PMC6471920 DOI: 10.3390/ijms20061409] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
background: The ATP-binding cassette (ABC) transporters family is one of the largest families of membrane proteins existing in all living organisms. Pyrethroid resistance has become the largest unique obstacle for mosquito control worldwide. ABC transporters are thought to be associated with pyrethroid resistance in some agricultural pests, but little information is known for mosquitoes. Herein, we investigated the diversity, location, characteristics, phylogenetics, and evolution of ABC transporter family of genes in the Anopheles sinensis genome, and identified the ABC transporter genes associated with pyrethroid resistance through expression profiles using RNA-seq and qPCR. Results: 61 ABC transporter genes are identified and divided into eight subfamilies (ABCA-H), located on 22 different scaffolds. Phylogenetic and evolution analyses with ABC transporters of A. gambiae, Drosophila melanogaster, and Homo sapiens suggest that the ABCD, ABCG, and ABCH subfamilies are monophyly, and that the ABCC and ABCG subfamilies have experienced a gene duplication event. Both RNA-seq and qPCR analyses show that the AsABCG28 gene is uniquely significantly upregulated gene in all three field pyrethroid-resistant populations (Anhui, Chongqing, and Yunnan provinces) in comparison with a laboratory-susceptible strain from Jiangsu province. The AsABCG28 is significantly upregulated at 12-h and 24-h after deltamethrin exposure in three-day-old female adults. Conclusion: This study provides the information frame for ABC transporter subfamily of genes, and lays an important basis for the better understanding and further research of ABC transporter function in insecticide toxification. The AsABCG28 gene is associated with pyrethroid detoxification, and it functions at later period in the detoxification process for xenobiotics transportation.
Collapse
Affiliation(s)
- Qiyi He
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Zhentian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Fengling Si
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Yong Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Wenbo Fu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
24
|
Mastrantonio V, Ferrari M, Negri A, Sturmo T, Favia G, Porretta D, Epis S, Urbanelli S. Insecticide Exposure Triggers a Modulated Expression of ABC Transporter Genes in Larvae of Anopheles gambiae s.s. INSECTS 2019; 10:insects10030066. [PMID: 30841542 PMCID: PMC6468849 DOI: 10.3390/insects10030066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
Insecticides remain a main tool for the control of arthropod vectors. The urgency to prevent the insurgence of insecticide resistance and the perspective to find new target sites, for the development of novel molecules, are fuelling the study of the molecular mechanisms involved in insect defence against xenobiotic compounds. In this study, we have investigated if ATP-binding cassette (ABC) transporters, a major component of the defensome machinery, are involved in defence against the insecticide permethrin, in susceptible larvae of the malaria vector Anopheles gambiae sensu stricto. Bioassays were performed with permethrin alone, or in combination with an ABC transporter inhibitor. Then we have investigated the expression profiles of five ABC transporter genes at different time points following permethrin exposure, to assess their expression patterns across time. The inhibition of ABC transporters increased the larval mortality by about 15-fold. Likewise, three genes were up-regulated after exposure to permethrin, showing different patterns of expression across the 48 h. Our results provide the first evidences of ABC transporters involvement in defence against a toxic in larvae of An. gambiae s.s. and show that the gene expression response is modulated across time, being continuous, but stronger at the earliest and latest times after exposure.
Collapse
Affiliation(s)
| | - Marco Ferrari
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, 20133 Milan, Italy.
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Agata Negri
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy.
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, 20133 Milan, Italy.
| | - Tommaso Sturmo
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy.
| | - Guido Favia
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Macerata, Italy.
| | - Daniele Porretta
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy.
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center, University of Milan, 20133 Milan, Italy.
| | - Sandra Urbanelli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
25
|
Xu J, Su X, Bonizzoni M, Zhong D, Li Y, Zhou G, Nguyen H, Tong S, Yan G, Chen XG. Comparative transcriptome analysis and RNA interference reveal CYP6A8 and SNPs related to pyrethroid resistance in Aedes albopictus. PLoS Negl Trop Dis 2018; 12:e0006828. [PMID: 30418967 PMCID: PMC6258463 DOI: 10.1371/journal.pntd.0006828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/26/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
Wide and improper application of pyrethroid insecticides for mosquito control has resulted in widespread resistance in Aedes albopictus mosquitoes, an important dengue vector. Therefore, understanding the molecular regulation of insecticide resistance is urgently needed to provide a basis for developing novel resistance diagnostic methods and vector control approaches. We investigated the transcriptional profiles of deltamethrin-resistant and -susceptible Ae. albopictus by performing paired-end sequencing for RNA expression analysis. The analysis used 24 independent libraries constructed from 12 wild-caught resistant and 12 susceptible Ae. albopictus female adults. A total of 674,503,592 and 612,512,034 reads were obtained, mapped to the Ae. albopictus genome and assembled into 20,091 Ae. albopictus transcripts. A total of 1,130 significantly differentially expressed genes included 874 up-regulated genes and 256 down-regulated genes in the deltamethrin-resistant individuals. These differentially expressed genes code for cytochrome P450s, cuticle proteins, glutathione S-transferase, serine proteases, heat shock proteins, esterase, and others. We selected three highly differentially expressed candidate genes, CYP6A8 and two genes of unknown function (CCG013931 and CCG000656), to test the association between these 3 genes and deltamethrin resistance using RNAi through microinjection in adult mosquitoes and oral feeding in larval mosquitoes. We found that expression knockdown of these three genes caused significant changes in resistance. Further, we detected 1,162 single nucleotide polymorphisms (SNPs) with a frequency difference of more than 50%. Among them, 5 SNPs in 4 cytochrome P450 gene families were found to be significantly associated with resistance in a genotype-phenotype association study using independent field-collected mosquitoes of known resistance phenotypes. Altogether, a combination of novel individually based transcriptome profiling, RNAi, and genetic association study identified both differentially expressed genes and SNPs associated with pyrethroid resistance in Ae. albopictus mosquitoes, and laid a useful foundation for further studies on insecticide resistance mechanisms.
Collapse
Affiliation(s)
- Jiabao Xu
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xinghua Su
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Daibin Zhong
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Yiji Li
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- Key Laboratory of Translational Medicine Tropical Diseases of Ministry of Education and Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Hoan Nguyen
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Sarah Tong
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Guiyun Yan
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Xiao-Guang Chen
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
The Effect of Permethrin Resistance on Aedes aegypti Transcriptome Following Ingestion of Zika Virus Infected Blood. Viruses 2018; 10:v10090470. [PMID: 30200481 PMCID: PMC6165428 DOI: 10.3390/v10090470] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 01/02/2023] Open
Abstract
Aedes aegypti (L.) is the primary vector of many emerging arboviruses. Insecticide resistance among mosquito populations is a consequence of the application of insecticides for mosquito control. We used RNA-sequencing to compare transcriptomes between permethrin resistant and susceptible strains of Florida Ae. aegypti in response to Zika virus infection. A total of 2459 transcripts were expressed at significantly different levels between resistant and susceptible Ae. aegypti. Gene ontology analysis placed these genes into seven categories of biological processes. The 863 transcripts were expressed at significantly different levels between the two mosquito strains (up/down regulated) more than 2-fold. Quantitative real-time PCR analysis was used to validate the Zika-infection response. Our results suggested a highly overexpressed P450, with AAEL014617 and AAEL006798 as potential candidates for the molecular mechanism of permethrin resistance in Ae. aegypti. Our findings indicated that most detoxification enzymes and immune system enzymes altered their gene expression between the two strains of Ae. aegypti in response to Zika virus infection. Understanding the interactions of arboviruses with resistant mosquito vectors at the molecular level allows for the possible development of new approaches in mitigating arbovirus transmission. This information sheds light on Zika-induced changes in insecticide resistant Ae. aegypti with implications for mosquito control strategies.
Collapse
|
27
|
Yan ZW, He ZB, Yan ZT, Si FL, Zhou Y, Chen B. Genome-wide and expression-profiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae). PEST MANAGEMENT SCIENCE 2018; 74:1810-1820. [PMID: 29393554 DOI: 10.1002/ps.4879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Anopheles sinensis is one of the major malaria vectors. However, pyrethroid resistance in An. sinensis is threatening malaria control. Cytochrome P450-mediated detoxification is an important pyrethroid resistance mechanism that has been unexplored in An. sinensis. In this study, we performed a comprehensive analysis of the An. sinensis P450 gene superfamily with special attention to their role in pyrethroid resistance using bioinformatics and molecular approaches. RESULTS Our data revealed the presence of 112 individual P450 genes in An. sinensis, which were classified into four major clans (mitochondrial, CYP2, CYP3 and CYP4), 18 families and 50 subfamilies. Sixty-seven genes formed nine gene clusters, and genes within the same cluster and the same gene family had a similar gene structure. Phylogenetic analysis showed that most of An. sinensis P450s (82/112) had very close 1: 1 orthology with Anopheles gambiae P450s. Five genes (AsCYP6Z2, AsCYP6P3v1, AsCYP6P3v2, AsCYP9J5 and AsCYP306A1) were significantly upregulated in three pyrethroid-resistant populations in both RNA-seq and RT-qPCR analyses, suggesting that they could be the most important P450 genes involved in pyrethroid resistance in An. sinensis. CONCLUSION Our study provides insight on the diversity of An. sinensis P450 superfamily and basis for further elucidating pyrethroid resistance mechanism in this mosquito species. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng-Wen Yan
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zheng-Bo He
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Yong Zhou
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
28
|
Hancock PA, Wiebe A, Gleave KA, Bhatt S, Cameron E, Trett A, Weetman D, Smith DL, Hemingway J, Coleman M, Gething PW, Moyes CL. Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proc Natl Acad Sci U S A 2018; 115:5938-5943. [PMID: 29784773 PMCID: PMC6003363 DOI: 10.1073/pnas.1801826115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of insecticide resistance in African malaria vectors threatens the continued efficacy of important vector control methods that rely on a limited set of insecticides. To understand the operational significance of resistance we require quantitative information about levels of resistance in field populations to the suite of vector control insecticides. Estimation of resistance is complicated by the sparsity of observations in field populations, variation in resistance over time and space at local and regional scales, and cross-resistance between different insecticide types. Using observations of the prevalence of resistance in mosquito species from the Anopheles gambiae complex sampled from 1,183 locations throughout Africa, we applied Bayesian geostatistical models to quantify patterns of covariation in resistance phenotypes across different insecticides. For resistance to the three pyrethroids tested, deltamethrin, permethrin, and λ-cyhalothrin, we found consistent forms of covariation across sub-Saharan Africa and covariation between resistance to these pyrethroids and resistance to DDT. We found no evidence of resistance interactions between carbamate and organophosphate insecticides or between these insecticides and those from other classes. For pyrethroids and DDT we found significant associations between predicted mean resistance and the observed frequency of kdr mutations in the Vgsc gene in field mosquito samples, with DDT showing the strongest association. These results improve our capacity to understand and predict resistance patterns throughout Africa and can guide the development of monitoring strategies.
Collapse
Affiliation(s)
- Penelope A Hancock
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom;
| | - Antoinette Wiebe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Katherine A Gleave
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - Samir Bhatt
- Department of Infectious Disease Epidemiology, St Mary's Hospital, Imperial College, W2 1NY London, United Kingdom
| | - Ewan Cameron
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Anna Trett
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98121
| | - Janet Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom;
| | - Michael Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - Peter W Gething
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom
| | - Catherine L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, OX3 7LF Oxford, United Kingdom;
| |
Collapse
|
29
|
Wanjala CL, Kweka EJ. Malaria Vectors Insecticides Resistance in Different Agroecosystems in Western Kenya. Front Public Health 2018; 6:55. [PMID: 29546039 PMCID: PMC5838019 DOI: 10.3389/fpubh.2018.00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/13/2018] [Indexed: 12/04/2022] Open
Abstract
Background Malaria vector control efforts have taken malaria related cases down to appreciable number per annum after large scale of intervention tools. Insecticides-based tools remain the major control option for malaria vectors in Kenya and, therefore, the potential of such programs to be compromised by the reported insecticide resistance is of major concern. The objective of this study was to evaluate the status of insecticide resistance in malaria vectors in different agro ecosystems from western Kenya. Methods The study was carried out in the lowlands and highlands of western Kenya namely; Ahero, Kisian, Chulaimbo, Emutete, Emakakha, Iguhu, and Kabula. World Health Organization tube bioassays was conducted using standard diagnostic dosages of Lambdacyhalothrin, Deltamethrin, Permethrin, DDT, Bendiocarb, and Malathion tested on Anopheles mosquitoes collected from seven sites; Ahero, Kisian, Chulaimbo, Emutete, Emakakha, Iguhu, and Kabula. Biochemical assays, where the enzymatic activity of three enzymes (monooxygenases, esterases, and glutathione S-transferases) were performed on susceptible and resistant mosquito populations. Wild mosquito populations were identified to species level using polymerase chain reaction (PCR). The species of the wild mosquito populations were identified to species level using PCR. Real-time PCR was performed on the susceptible and resistant mosquitoes after the WHO tube bioassays to determine the presence of knockdown resistance (kdr) allele. Results WHO susceptibility tests indicated that Anopheles gambiae showed resistance to Pyrethroids and DDT in all the study sites, to Bendiocarb in Iguhu and Kabula and susceptible to Malathion (100% mortality) in all the study sites. There was an elevation of monooxygenases and esterases enzymatic activities in resistant An. gambiae mosquito populations exposed to Lambdacyhalothrin, Permethrin, Deltamethrin and DDT but no elevation in glutathione S-transferases. A high frequency of L1014S allele was detected in An. gambiae s.s. population, but there was no kdr allele found in Anopheles arabiensis mosquitoes. Conclusion An. gambiae mosquitoes from western Kenya have developed phenotypic resistance to pyrethroids and DDT. Therefore, there is a need for further research covering different climatic zones with different agroeconomic activities for detailed report on current status of insecticide resistance in malaria vectors.
Collapse
Affiliation(s)
- Christine Ludwin Wanjala
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.,Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Eliningaya J Kweka
- School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.,Tropical Pesticides Research Institute, Arusha, Tanzania
| |
Collapse
|
30
|
Nardini L, Hunt RH, Dahan-Moss YL, Christie N, Christian RN, Coetzee M, Koekemoer LL. Malaria vectors in the Democratic Republic of the Congo: the mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus. Malar J 2017; 16:448. [PMID: 29115954 PMCID: PMC5678590 DOI: 10.1186/s12936-017-2099-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/28/2017] [Indexed: 11/22/2022] Open
Abstract
Background The Democratic Republic of the Congo (DRC) is characterized as a holoendemic malaria area with the main vectors being Anopheles funestus and members of the Anopheles gambiae complex. Due to political instability and socio-economic challenges in the region, knowledge of insecticide resistance status and resistance mechanisms in these vectors is limited. Mosquitoes were collected from a mining site in the north-eastern part of the country and, following identification, were subjected to extensive testing for the target-site and biochemical basis of resistance. Quantitative real-time PCR was used to assess a suite of 10 genes frequently involved in pyrethroid and dichlorodiphenyltrichloroethane (DDT) resistance in An. gambiae females and males. In An. funestus, gene expression microarray analysis was carried out on female mosquitoes. Results In both species, deltamethrin resistance was recorded along with high resistance and suspected resistance to DDT in An. gambiae and An. funestus, respectively. A total of 85% of An. gambiae carried the kdr mutations as either homozygous resistant (RR) (L1014S, L1014F or both) or heterozygous (RS), however only 3% carried the rdl mutant allele (RS) and no ace-1 mutations were recorded. Synergist assays indicated a strong role for P450s in deltamethrin resistance in both species. In An. gambiae, analysis of transcription levels showed that the glutathione-S-transferase, GSTS1-2, produced the highest fold change in expression (7.6-fold in females and 31-fold in males) followed by GSTE2, thioredoxin peroxidase (TPX2), and cytochrome oxidases (CYP6M2 and CYP6P1). All other genes tested produced fold change values below 2. Microarray analysis revealed significant over-transcription of cuticular proteins as well as CYP6M7, CYP6P9a and CYP6P9b in insecticide resistant An. funestus. Conclusions These data show that high levels of deltamethrin resistance in the main malaria vector species, conferred by enzymatic detoxification, are present in the DRC. Electronic supplementary material The online version of this article (10.1186/s12936-017-2099-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luisa Nardini
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Richard H Hunt
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Yael L Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Riann N Christian
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2000, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, 2131, South Africa.
| |
Collapse
|
31
|
Ondeto BM, Nyundo C, Kamau L, Muriu SM, Mwangangi JM, Njagi K, Mathenge EM, Ochanda H, Mbogo CM. Current status of insecticide resistance among malaria vectors in Kenya. Parasit Vectors 2017; 10:429. [PMID: 28927428 PMCID: PMC5606043 DOI: 10.1186/s13071-017-2361-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Insecticide resistance has emerged as one of the major challenges facing National Malaria Control Programmes in Africa. A well-coordinated national database on insecticide resistance (IRBase) can facilitate the development of effective strategies for managing insecticide resistance and sustaining the effectiveness of chemical-based vector control measures. The aim of this study was to assemble a database on the current status of insecticide resistance among malaria vectors in Kenya. METHODS Data was obtained from published literature through PubMed, HINARI and Google Scholar searches and unpublished literature from government reports, research institutions reports and malaria control programme reports. Each data source was assigned a unique identification code and entered into Microsoft Excel 2010 datasheets. Base maps on the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya were generated using ArcGIS Desktop 10.1 (ESRI, Redlands, CA, USA). RESULTS Insecticide resistance status among the major malaria vectors in Kenya was reported in all the four classes of insecticides including pyrethroids, carbamates, organochlorines and organophosphates. Resistance to pyrethroids has been detected in Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.) while resistance to carbamates was limited to An. gambiae (s.s.) and An. arabiensis. Resistance to the organochlorine was reported in An. gambiae (s.s.) and An. funestus (s.s.) while resistance to organophosphates was reported in An. gambiae (s.l.) only. The mechanisms of insecticide resistance among malaria vectors reported include the kdr mutations (L 1014S and L 1014F) and elevated activity in carboxylesterase, glutathione S-transferases (GST) and monooxygenases. The kdr mutations L 1014S and L 1014F were detected in An. gambiae (s.s.) and An. arabiensis populations. Elevated activity of monooxygenases has been detected in both An. arabiensis and An. gambiae (s.s.) populations while the elevated activity of carboxylesterase and GST has been detected only in An. arabiensis populations. CONCLUSIONS The geographical maps show the distribution of insecticide resistance and resistance mechanisms among malaria vectors in Kenya. The database generated will provide a guide to intervention policies and programmes in the fight against malaria.
Collapse
Affiliation(s)
- Benyl M. Ondeto
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Christopher Nyundo
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Luna Kamau
- KEMRI, Centre for Biotechnology Research and Development, Nairobi, Kenya
| | - Simon M. Muriu
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Joseph M. Mwangangi
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kiambo Njagi
- Ministry of Health, Malaria Control Unit, Nairobi, Kenya
| | - Evan M. Mathenge
- KEMRI, Eastern and Southern Africa Centre of International Parasite Control, Nairobi, Kenya
| | - Horace Ochanda
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Charles M. Mbogo
- KEMRI, Centre for Geographic Medicine Research, Coast & KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| |
Collapse
|
32
|
Yahouédo GA, Chandre F, Rossignol M, Ginibre C, Balabanidou V, Mendez NGA, Pigeon O, Vontas J, Cornelie S. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci Rep 2017; 7:11091. [PMID: 28894186 PMCID: PMC5593880 DOI: 10.1038/s41598-017-11357-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
To tackle the problem of insecticide resistance, all resistance mechanisms need to be studied. This study investigated the involvement of the cuticle in pyrethroid resistance in a strain of Anopheles gambiae, MRS, free of kdr mutations. Bioassays revealed MRS to be resistant to pyrethroids and DDT, indicated by increasing knockdown times and resistance ratios. Moreover, biochemical analysis indicated that metabolic resistance based on enhanced CYP450 activity may also play a role. Insecticide penetration assays showed that there were significantly lower amounts of insecticide in the MRS strain than in the susceptible control. Analysis of the levels of the selected transcripts by qPCR showed that CYP6M2, a major pyrethroid metaboliser, CYP4G16, a gene implicated in resistance via its contribution to the biosynthesis of elevated epicuticular hydrocarbons that delay insecticide uptake, and the cuticle genes CPAP3-E and CPLCX1 were upregulated after insecticide exposure. Other metabolic (CYP6P3, GSTe2) and cuticle (CPLCG3, CPRs) genes were also constitutively upregulated. Microscopic analysis showed that the cuticle layers of the MRS strain were significantly thicker than those of the susceptible strain. This study allowed us to assess the contribution made by the cuticle and metabolic mechanisms to pyrethroid resistance in Anopheles gambiae without target-site mutations.
Collapse
Affiliation(s)
- Gildas A Yahouédo
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France.
| | - Fabrice Chandre
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| | - Marie Rossignol
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| | - Carole Ginibre
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Natacha Garcia Albeniz Mendez
- Walloon Agricultural Research Centre (CRA-W), Agriculture and Natural Environment Department (D3), Plant Protection Products and Biocides, Physico-chemistry and Residues Unit (U10), B-5030, Gembloux, Belgium
| | - Olivier Pigeon
- Walloon Agricultural Research Centre (CRA-W), Agriculture and Natural Environment Department (D3), Plant Protection Products and Biocides, Physico-chemistry and Residues Unit (U10), B-5030, Gembloux, Belgium
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece
| | - Sylvie Cornelie
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR - IRD224, CNRS 5290, Montpellier, France
| |
Collapse
|
33
|
Cao X, Gulati M, Jiang H. Serine protease-related proteins in the malaria mosquito, Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 88:48-62. [PMID: 28780069 PMCID: PMC5586530 DOI: 10.1016/j.ibmb.2017.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 05/27/2023]
Abstract
Insect serine proteases (SPs) and serine protease homologs (SPHs) participate in digestion, defense, development, and other physiological processes. In mosquitoes, some clip-domain SPs and SPHs (i.e. CLIPs) have been investigated for possible roles in antiparasitic responses. In a recent test aimed at improving quality of gene models in the Anopheles gambiae genome using RNA-seq data, we observed various discrepancies between gene models in AgamP4.5 and corresponding sequences selected from those modeled by Cufflinks, Trinity and Bridger. Here we report a comparative analysis of the 337 SP-related proteins in A. gambiae by examining their domain structures, sequence diversity, chromosomal locations, and expression patterns. One hundred and ten CLIPs contain 1 to 5 clip domains in addition to their protease domains (PDs) or non-catalytic, protease-like domains (PLDs). They are divided into five subgroups: CLIPAs (22) are clip1-5-PLD; CLIPBs (29), CLIPCs (12) and CLIPDs (14) are mainly clip-PD; most CLIPEs (33) have a domain structure of PD/PLD-PLD-clip-PLD0-1. While expression of the CLIP genes in group-1 is generally low and detected in various tissue- and stage-specific RNA-seq libraries, some putative GPs/GPHs (i.e. single domain gut SPs/SPHs) in group-2 are highly expressed in midgut, whole larva or whole adult libraries. In comparison, 46 SPs, 26 SPHs, and 37 multi-domain SPs/SPHs (i.e. PD/PLD-PLD≥1) in group-3 do not seem to be specifically expressed in digestive tract. There are 16 SPs and 2 SPH containing other types of putative regulatory domains (e.g. LDLa, CUB, Gd). Of the 337 SP and SPH genes, 159 were sorted into 46 groups (2-8 members/group) based on similar phylogenetic tree position, chromosomal location, and expression profile. This information and analysis, including improved gene models and protein sequences, constitute a solid foundation for functional analysis of the SP-related proteins in A. gambiae.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mansi Gulati
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
34
|
Cuticle genes CpCPR63 and CpCPR47 may confer resistance to deltamethrin in Culex pipiens pallens. Parasitol Res 2017; 116:2175-2179. [PMID: 28608057 DOI: 10.1007/s00436-017-5521-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Cuticular proteins (CPs) are implicated in insecticide resistance in mosquito populations. Here, we investigated the role of cuticular genes in regulation of insecticide resistance in Culex pipiens pallens. We identified two CpCPRs (CpCPR63 and CpCPR47) that exhibited higher transcript levels in pyrethroid-resistant strains than in susceptible strains. Mosquito mortality was increased after knockdown of CpCPR genes by dsRNA injection. The RNA interference experiment suggested an interaction between CpCPR63 and CpCPR47, as silencing of one gene resulted in decreased expression of the other. These findings revealed that CpCPRs may regulate pyrethroid resistance and could be used as a potential genetic marker to monitor pyrethroid resistance in mosquitoes.
Collapse
|
35
|
Domingos A, Pinheiro-Silva R, Couto J, do Rosário V, de la Fuente J. The Anopheles gambiae transcriptome - a turning point for malaria control. INSECT MOLECULAR BIOLOGY 2017; 26:140-151. [PMID: 28067439 DOI: 10.1111/imb.12289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence.
Collapse
Affiliation(s)
- A Domingos
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
- Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - R Pinheiro-Silva
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - J Couto
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - V do Rosário
- Instituto de Higiene e Medicina Tropical (IHMT), Lisboa, Portugal
| | - J de la Fuente
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
36
|
Lu H, Xu Y, Cui F. Phylogenetic analysis of the ATP-binding cassette transporter family in three mosquito species. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 132:118-24. [PMID: 27521922 DOI: 10.1016/j.pestbp.2015.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/10/2015] [Accepted: 11/12/2015] [Indexed: 05/26/2023]
Abstract
The ATP-binding cassette (ABC) transporter family functions in the ATP-dependent transportation of various substrates across biological membranes. ABC proteins participate in various biological processes and insecticide resistance in insects, and are divided into eight subfamilies (A-H). Mosquitoes are important vectors of human diseases, but the mechanism by which the ABC transporter family evolves in mosquitoes is unknown. In this study, we classified and compared the ABC transporter families of three mosquitoes, namely, Anopheles gambiae, Aedes aegypti, and Culex pipiens quinquefasciatus. The three mosquitoes have 55, 69, and 70 ABC genes, respectively. The C. p. quinquefasciatus had approximately 40% and 65% expansion in the ABCG subfamily, mainly in ABCG1/G4, compared with the two other mosquito species. The ABCB, ABCD, ABCE, and ABCF subfamilies were conserved in the three mosquito species. The C. p. quinquefasciatus transcriptomes during development showed that the ABCG and ABCC genes were mainly highly expressed at the egg and pupal stages. The pigment-transport relative brown, white, and scarlet, as well as the ABCF subfamily, were highly expressed at the egg stage. The highly expressed genes in larvae included three ABCA3 genes. The majority of the highly expressed genes in adults were ABCG1/4 genes. These results provided insights into the evolution of the ABC transporter family in mosquitoes.
Collapse
Affiliation(s)
- Hong Lu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China; State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongyu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
37
|
He X, He ZB, Zhang YJ, Zhou Y, Xian PJ, Qiao L, Chen B. Genome-wide identification and characterization of odorant-binding protein (OBP) genes in the malaria vector Anopheles sinensis (Diptera: Culicidae). INSECT SCIENCE 2016; 23:366-376. [PMID: 26970073 DOI: 10.1111/1744-7917.12333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Anopheles sinensis is a major malaria vector. Insect odorant-binding proteins (OBPs) may function in the reception of odorants in the olfactory system. The classification and characterization of the An. sinensis OBP genes have not been systematically studied. In this study, 64 putative OBP genes were identified at the whole-genome level of An. sinensis based on the comparison between OBP conserved motifs, PBP_GOBP, and phylogenetic analysis with An. gambiae OBPs. The characterization of An. sinensis OBPs, including the motif's conservation, gene structure, genomic organization and classification, were investigated. A new gene, AsOBP73, belonging to the Plus-C subfamily, was identified with the support of transcript and conservative motifs. These An. sinensis OBP genes were classified into three subfamilies with 37, 15 and 12 genes in the subfamily Classic, Atypical and Plus-C, respectively. The genomic organization of An. sinensis OBPs suggests a clustered distribution across nine different scaffolds. Eight genes (OBP23-28, OBP63-64) might originate from a single gene through a series of historic duplication events at least before divergence of Anopheles, Culex and Aedes. The microsynteny analyses indicate a very high synteny between An. sinensis and An. gambiae OBPs. OBP70 and OBP71 earlier classified under Plus-C in An. gambiae are recognized as belonging to the group Obp59a of the Classic subfamily, and OBP69 earlier classified under Plus-C has been moved to the Atypical subfamily in this study. The study established a basic information frame for further study of the OBP genes in insects as well as in An. sinensis.
Collapse
Affiliation(s)
- Xiu He
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zheng-Bo He
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yu-Juan Zhang
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yong Zhou
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Peng-Jie Xian
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Liang Qiao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
38
|
Abstract
Almost 20 % of all infectious human diseases are vector borne and, together, are responsible for over one million deaths per annum. Over the past decade, the decreasing costs of massively parallel sequencing technologies have facilitated the agnostic interrogation of insect vector genomes, giving medical entomologists access to an ever-expanding volume of high-quality genomic and transcriptomic data. In this review, we highlight how genomics resources have provided new insights into the physiology, behavior, and evolution of human disease vectors within the context of the global health landscape.
Collapse
Affiliation(s)
- David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - R Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA. .,Department of Pharmacology, Vanderbilt Brain Institute, Program in Developmental Biology, and Institutes of Chemical Biology and Global Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
39
|
Identification of genes involved in pyrethroid-, propoxur-, and dichlorvos- insecticides resistance in the mosquitoes, Culex pipiens complex (Diptera: Culicidae). Acta Trop 2016; 157:84-95. [PMID: 26802491 DOI: 10.1016/j.actatropica.2016.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 01/25/2023]
Abstract
Culex pipiens pallens and Cx. p. quinquefasciatus are important vectors of many diseases, such as West Nile fever and lymphatic filariasis. The widespread use of insecticides to control these disease vectors and other insect pests has led to insecticide resistance becoming common in these species. In this study, high throughout Illumina sequencing was used to identify hundreds of Cx. p. pallens and Cx. p. quinquefasciatus genes that were differentially expressed in response to insecticide exposure. The identification of these genes is a vital first step for more detailed investigation of the molecular mechanisms involved in insecticide resistance in Culex mosquitoes.
Collapse
|
40
|
Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, Vilo J. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res 2016; 44:W83-9. [PMID: 27098042 PMCID: PMC4987867 DOI: 10.1093/nar/gkw199] [Citation(s) in RCA: 906] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022] Open
Abstract
Functional enrichment analysis is a key step in interpreting gene lists discovered in diverse high-throughput experiments. g:Profiler studies flat and ranked gene lists and finds statistically significant Gene Ontology terms, pathways and other gene function related terms. Translation of hundreds of gene identifiers is another core feature of g:Profiler. Since its first publication in 2007, our web server has become a popular tool of choice among basic and translational researchers. Timeliness is a major advantage of g:Profiler as genome and pathway information is synchronized with the Ensembl database in quarterly updates. g:Profiler supports 213 species including mammals and other vertebrates, plants, insects and fungi. The 2016 update of g:Profiler introduces several novel features. We have added further functional datasets to interpret gene lists, including transcription factor binding site predictions, Mendelian disease annotations, information about protein expression and complexes and gene mappings of human genetic polymorphisms. Besides the interactive web interface, g:Profiler can be accessed in computational pipelines using our R package, Python interface and BioJS component. g:Profiler is freely available at http://biit.cs.ut.ee/gprofiler/.
Collapse
Affiliation(s)
- Jüri Reimand
- Ontario Institute for Cancer Research, 661 University Avenue, Toronto, ON M5G 0A3, Canada Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tambet Arak
- Institute of Computer Science, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Priit Adler
- Institute of Computer Science, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Liis Kolberg
- Institute of Computer Science, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Sulev Reisberg
- Institute of Computer Science, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Hedi Peterson
- Institute of Computer Science, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
41
|
Gunawardena S, Karunaweera ND. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals. Pathog Glob Health 2016; 109:123-41. [PMID: 25943157 DOI: 10.1179/2047773215y.0000000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.
Collapse
|
42
|
Wanjala CL, Zhou G, Mbugi J, Simbauni J, Afrane YA, Ototo E, Gesuge M, Atieli H, Githeko AK, Yan G. Insecticidal decay effects of long-lasting insecticide nets and indoor residual spraying on Anopheles gambiae and Anopheles arabiensis in Western Kenya. Parasit Vectors 2015; 8:588. [PMID: 26567915 PMCID: PMC4644290 DOI: 10.1186/s13071-015-1194-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/31/2015] [Indexed: 11/13/2022] Open
Abstract
Background Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the first-line tools for malaria prevention and control in Africa. Vector resistance to insecticides has been extensively studied, however the insecticidal effects of the nets and sprayed walls on pyrethroid resistant mosquitoes has not been studied thoroughly. We evaluated the bioefficacy of LLINs of different ages and lambda-cyhalothrin (ICON 10cs) on the sprayed mud walls for a period of time on malaria vector survivorship. Methods WHO tube bioassay was performed using diagnostic doses of lambda-cyhalothrin (0.05 %), permethrin (0.75 %) and deltamethrin (0.05 %). Cone bioassays were conducted on netting materials from 0 to 3 years old long-lasting insecticide-impregnated nets. Wall bioassays were performed monthly on mud slabs sprayed with lambdacyhalothrin over a period of seven months. All bioassays used An. gambiae mosquitoes collected from the field and the laboratory susceptible reference Kisumu strain. Concentration of the insecticides on the netting materials was examined using the gas chromatography method. Mosquitoes were identified to species level using PCR and genotyped for the kdr gene mutation frequencies. Results WHO bioassays results showed that populations from five sites were highly resistant to the pyrethroids (mortalities ranged from 52.5 to 75.3 %), and two sites were moderately resistant to these insecticides (80.4 – 87.2 %). Homozygote kdr mutations of L1014S ranged from 73 to 88 % in An. gambiae s.s. dominant populations whereas L1014S mutation frequencies were relatively low (7–31 %) in An. arabiensis dominant populations. There was a significant decrease (P < 0.05) in mosquito mortality with time after the spray with both lambda-cyhalothrin (75 % mortality after six months) and with the age of LLINs (60 % mortality after 24 month). Field collected mosquitoes were able to survive exposure to both IRS and LLINs even with newly sprayed walls (86.6–93.5 % mortality) and new LLINs (77.5–85.0 % mortality), Wild mosquitoes collected from the field had significantly lower mortality rates to LLINs (59.6–85.0 %) than laboratory reared susceptible strain (100 %). Insecticide concentration decreased significantly from 0.14 μg/ml in the new nets to 0.077 μg/ml in nets older than 18 months (P < 0.05). Conclusion This study confirms that insecticide decay and developing levels of resistance have a negative contribution to reduced efficacy of ITN and IRS in western Kenya. These factors contribute to decreased efficacy of pyrethroid insectides in ongoing malaria control programs. In order to mitigate against the impact of insecticide resistance and decay it is important to follow the WHO policy to provide the residents with new LLINs every three years of use while maintaining a high level of LLINs coverage and usage. There is also need for urgent development and deployment of non-pyrethroid based vector control tools.
Collapse
Affiliation(s)
- Christine L Wanjala
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya. .,Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya. .,Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| | - Jernard Mbugi
- Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
| | - Jemimah Simbauni
- Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
| | - Yaw A Afrane
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Ednah Ototo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya. .,Departments of Zoological Sciences, Kenyatta University, Nairobi, Kenya.
| | - Maxwell Gesuge
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Harrysone Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
43
|
Constructing a Genome-Wide LD Map of Wild A. gambiae Using Next-Generation Sequencing. BIOMED RESEARCH INTERNATIONAL 2015; 2015:238139. [PMID: 26421280 PMCID: PMC4573223 DOI: 10.1155/2015/238139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/24/2015] [Indexed: 12/16/2022]
Abstract
Anopheles gambiae is the major malaria vector in Africa. Examining the molecular basis of A. gambiae traits requires knowledge of both genetic variation and genome-wide linkage disequilibrium (LD) map of wild A. gambiae populations from malaria-endemic areas. We sequenced the genomes of nine wild A. gambiae mosquitoes individually using next-generation sequencing technologies and detected 2,219,815 common single nucleotide polymorphisms (SNPs), 88% of which are novel. SNPs are not evenly distributed across A. gambiae chromosomes. The low SNP-frequency regions overlay heterochromatin and chromosome inversion domains, consistent with the lower recombinant rates at these regions. Nearly one million SNPs that were genotyped correctly in all individual mosquitoes with 99.6% confidence were extracted from these high-throughput sequencing data. Based on these SNP genotypes, we constructed a genome-wide LD map for wild A. gambiae from malaria-endemic areas in Kenya and made it available through a public Website. The average size of LD blocks is less than 40 bp, and several large LD blocks were also discovered clustered around the para gene, which is consistent with the effect of insecticide selective sweeps. The SNPs and the LD map will be valuable resources for scientific communities to dissect the A. gambiae genome.
Collapse
|
44
|
Pinheiro-Silva R, Borges L, Coelho LP, Cabezas-Cruz A, Valdés JJ, do Rosário V, de la Fuente J, Domingos A. Gene expression changes in the salivary glands of Anopheles coluzzii elicited by Plasmodium berghei infection. Parasit Vectors 2015; 8:485. [PMID: 26395987 PMCID: PMC4580310 DOI: 10.1186/s13071-015-1079-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a devastating infectious disease caused by Plasmodium parasites transmitted through the bites of infected Anopheles mosquitoes. Salivary glands are the only mosquito tissue invaded by Plasmodium sporozoites, being a key stage for the effective parasite transmission, making the study of Anopheles sialome highly relevant. Methods RNA-sequencing was used to compare differential gene expression in salivary glands of uninfected and Plasmodium berghei-infected Anopheles coluzzii mosquitoes. RNA-seq results were validated by quantitative RT-PCR. The transmembrane glucose transporter gene AGAP007752 was selected for functional analysis by RNA interference. The effect of gene silencing on infection level was evaluated. The putative function and tertiary structure of the protein was assessed. Results RNA-seq data showed that 2588 genes were differentially expressed in mosquitoes salivary glands in response to P. berghei infection, being 1578 upregulated and 1010 downregulated. Metabolism, Immunity, Replication/Transcription/Translation, Proteolysis and Transport were the mosquito gene functional classes more affected by parasite infection. Endopeptidase coding genes were the most abundant within the differentially expressed genes in infected salivary glands (P < 0.001). Based on its putative function and expression level, the transmembrane glucose transporter gene, AGAP007752, was selected for functional analysis by RNA interference. The results demonstrated that the number of sporozoites was 44.3 % lower in mosquitoes fed on infected mice after AGAPP007752 gene knockdown when compared to control (P < 0.01). Conclusions Our hypothesis is that the protein encoded by the gene AGAPP007752 may play a role on An. coluzzii salivary glands infection by Plasmodium parasite, working as a sporozoite receptor and/or promoting a favorable environment for the capacity of sporozoites. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1079-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lara Borges
- Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal. .,Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal.
| | - Luís Pedro Coelho
- Unidade de Biofísica e Expressão Genética, Instituto de Medicina Molecular (IMM), Lisbon, Portugal.
| | - Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Lille, France. .,SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.
| | - James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| | | | - José de la Fuente
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain. .,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, USA.
| | - Ana Domingos
- Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal. .,Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal.
| |
Collapse
|
45
|
Bonizzoni M, Ochomo E, Dunn WA, Britton M, Afrane Y, Zhou G, Hartsel J, Lee MC, Xu J, Githeko A, Fass J, Yan G. RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs. Parasit Vectors 2015; 8:474. [PMID: 26381877 PMCID: PMC4574070 DOI: 10.1186/s13071-015-1083-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/10/2015] [Indexed: 11/30/2022] Open
Abstract
Background The extensive use of pyrethroids for control of malaria vectors, driven by their cost, efficacy and safety, has led to widespread resistance. To favor their sustainable use, the World Health Organization (WHO) formulated an insecticide resistance management plan, which includes the identification of the mechanisms of resistance and resistance surveillance. Recognized physiological mechanisms of resistance include target site mutations in the para voltage-gated sodium channel, metabolic detoxification and penetration resistance. Such understanding of resistance mechanisms has allowed the development of resistance monitoring tools, including genotyping of the kdr mutation L1014F/S in the para gene. Methods The sequence-based technique RNA-seq was applied to study changes in the transcriptome of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from the Western Province of Kenya. The resulting gene expression profiles were compared to data in the most recent literature to derive a list of candidate resistance genes. RNA-seq data were analyzed also to identify sequence polymorphisms linked to resistance. Results A total of five candidate-resistance genes (AGAP04177, AGAP004572, AGAP008840, AGAP007530 and AGAP013036) were identified with altered expression between resistant and susceptible mosquitoes from West and East Africa. A change from G to C at position 36043997 of chromosome 3R resulting in A101G of the sulfotransferase gene AGAP009551 was significantly associated with the resistance phenotype (odds ratio: 5.10). The kdr L1014S mutation was detected at similar frequencies in both phenotypically resistant and susceptible mosquitoes, suggesting it is no longer fully predictive of the resistant phenotype. Conclusions Overall, these results support the conclusion that resistance to pyrethroids is a complex and evolving phenotype, dependent on multiple gene functions including, but not limited to, metabolic detoxification. Functional convergence among metabolic detoxification genes may exist, with the role of each gene being modulated by the life history and selection pressure on mosquito populations. As a consequence, biochemical assays that quantify overall enzyme activity may be a more suitable method for predicting metabolic resistance than gene-based assays. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1083-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariangela Bonizzoni
- Program in Public Health, University of California, Irvine, CA, USA. .,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | - Eric Ochomo
- Centre for Global health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | | | - Monica Britton
- Bioinformatics Core of the UC Davis Genome Center, University of California, Davis, CA, 95616, USA.
| | - Yaw Afrane
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya.
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, USA.
| | | | - Ming-Chieh Lee
- Program in Public Health, University of California, Irvine, CA, USA.
| | - Jiabao Xu
- Program in Public Health, University of California, Irvine, CA, USA.
| | - Andrew Githeko
- Centre for Global health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Joseph Fass
- Bioinformatics Core of the UC Davis Genome Center, University of California, Davis, CA, 95616, USA.
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, USA.
| |
Collapse
|
46
|
Lv Y, Wang W, Hong S, Lei Z, Fang F, Guo Q, Hu S, Tian M, Liu B, Zhang D, Sun Y, Ma L, Shen B, Zhou D, Zhu C. Comparative transcriptome analyses of deltamethrin-susceptible and -resistant Culex pipiens pallens by RNA-seq. Mol Genet Genomics 2015; 291:309-21. [PMID: 26377942 DOI: 10.1007/s00438-015-1109-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/21/2015] [Indexed: 11/26/2022]
Abstract
The widespread and improper use of pyrethroid insecticides, such as deltamethrin, has resulted in the evolution of resistance in many mosquito species, including Culex pipiens pallens. With the development of high-throughput sequencing, it is possible to massively screen pyrethroid resistance-associated gene. In this study, we used Illumina-Solexa transcriptome sequencing to identify genes that are expressed differently in deltamethrin-susceptible and -resistant strains of Culex pipiens pallens as a critical knowledge base for further studies. A total of 4,961,197,620 base pairs and 55,124,418 reads were sequenced, mapped to the Culex quinquefasciatus genome and assembled into 17,679 known genes. We recorded 1826 significantly differentially expressed genes (DEGs). Among them, 1078 genes were up-regulated and 748 genes were down-regulated in the deltamethrin-resistant strain compared to -susceptible strain. These DEGs contained cytochrome P450 s, cuticle proteins, UDP-glucuronosyltransferases, lipases, serine proteases, heat shock proteins, esterases and others. Among the 1826 DEGs, we found that the transcriptional levels of CYP6AA9 in the laboratory populations was elevated as the levels of deltamethrin resistance increased. Moreover, the expression levels of the CYP6AA9 were significantly higher in the resistant strains than the susceptible strains in three different field populations. We further confirmed the association between the CYP6AA9 gene and deltamethrin resistance in mosquitoes by RNA interfering (RNAi). Altogether, we explored massive potential pyrethroid resistance-associated genes and demonstrated that CYP6AA9 participated in the pyrethroid resistance in mosquitoes.
Collapse
Affiliation(s)
- Yuan Lv
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weijie Wang
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Shanchao Hong
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Zhentao Lei
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Fujin Fang
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Qin Guo
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Shengli Hu
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Mengmeng Tian
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Bingqian Liu
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China.
| |
Collapse
|
47
|
Fang F, Wang W, Zhang D, Lv Y, Zhou D, Ma L, Shen B, Sun Y, Zhu C. The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens. Parasitol Res 2015; 114:4421-9. [PMID: 26337265 DOI: 10.1007/s00436-015-4683-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022]
Abstract
Insecticide resistance has been a major public health challenge. It is impendent to study the mechanism on insecticide resistance. In our previous study, 14 differentially accumulated insect cuticle proteins (ICPs) based on insecticide resistance proteomes and transcriptomes were found in the deltamethrin-resistant (DR) and -susceptible (DS) strains of Culex pipiens pallens. To investigate if these ICPs are associated with deltamethrin resistance, different transcriptional levels of the 14 ICPs were detected in the DS and DR strains from laboratory and field populations by using quantitative real-time polymerase chain reaction (qRT-PCR). The expression levels of the 14 ICPs were also measured after short-term exposure of the DS strain to deltamethrin. The full-length complementary DNA (cDNA) of CpCPLCG5 gene, which encodes one of the 14 ICPs, was cloned from Cx. pipiens pallens. Homology analysis and phylogenetic analysis were carried out with some other insects. Furthermore, small interfering RNA (siRNA) was used to knockdown the expression level of CpCPLCG5 gene for characterizing its contribution to deltamethrin resistance. The results showed that the expression level of CpCPLCG5 gene was higher in DR strain than in DS strain both in laboratory and field populations while the other 13 ICPs were downregulated. The full-length cDNA of CpCPLCG5 gene was 732 bp, with the ORF of 390 bp and deduced 129 amino acids (GenBank/KF723314,2013). Knockdown of CpCPLCG5 gene increased the susceptibility of the DR strain while the expression level of the other 13 ICPs elevated. Our findings indicate that the cuticle proteins are associated with deltamethrin resistance in Cx. pipiens pallens.
Collapse
Affiliation(s)
- Fujin Fang
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
- Clinical Laboratory, The Third People's Hospital of Bengbu, 38 Middle Shengli Road, Bengbu, Anhui, 233000, China
| | - Weijie Wang
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
- Department of Pathogen Biology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yuan Lv
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
48
|
Transcriptome and MassARRAY analysis for identification of transcripts and SNPs for growth traits of the swimming crab Portunus trituberculatus. Gene 2015; 566:229-35. [DOI: 10.1016/j.gene.2015.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 11/21/2022]
|
49
|
Lv Y, Lei Z, Hong S, Wang W, Zhang D, Zhou D, Sun Y, Ma L, Shen B, Zhu C. Venom allergen 5 is Associated With Deltamethrin Resistance in Culex pipiens pallens (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:672-82. [PMID: 26335474 PMCID: PMC4592351 DOI: 10.1093/jme/tjv059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/28/2015] [Indexed: 05/20/2023]
Abstract
The mosquito, Culex pipiens pallens (L.), is an important vector of encephalitis and filariasis in northern China. The control of these mosquitoes occurs primarily via the use of pyrethroid insecticides, such as deltamethrin. The widespread and improper application of pyrethroid has resulted in the evolution of pyrethroid resistance amongst many mosquito populations, including Cx. pipiens pallens. Previous studies using high-throughput transcriptome sequencing have identified that the venom allergen 5 gene is differentially expressed between deltamethrin-susceptible and deltamethrin-resistant Cx. pipiens pallens. In this study, quantitative real-time polymerase chain reaction analyses revealed that venom allergen 5 was significantly overexpressed in adult females of both deltamethrin-resistant laboratory populations and two field populations. The transcriptional level of venom allergen 5 in the laboratory populations was elevated as the levels of deltamethrin resistance increased. Full-length cDNAs of the venom allergen 5 gene were cloned from Cx. pipiens pallens, and contained an open reading frame of 765 bp, encoding a protein with 254 amino acids. The deduced amino acid sequence shared 100% identity with the ortholog in Culex quinquefasciatus Say. The overexpression of venom allergen 5 decreased the susceptibility of mosquito cells to deltamethrin, while knockdown of this gene by RNAi increased the susceptibility of mosquitoes to deltamethrin. This study provides the first evidence of the association between the venom allergen 5 gene and deltamethrin resistance in mosquitoes.
Collapse
Affiliation(s)
- Yuan Lv
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Zhentao Lei
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Shanchao Hong
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Weijie Wang
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China.
| |
Collapse
|
50
|
Wang W, Lv Y, Fang F, Hong S, Guo Q, Hu S, Zou F, Shi L, Lei Z, Ma K, Zhou D, Zhang D, Sun Y, Ma L, Shen B, Zhu C. Identification of proteins associated with pyrethroid resistance by iTRAQ-based quantitative proteomic analysis in Culex pipiens pallens. Parasit Vectors 2015; 8:95. [PMID: 25880395 PMCID: PMC4337324 DOI: 10.1186/s13071-015-0709-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/31/2015] [Indexed: 12/30/2022] Open
Abstract
Background Mosquito control based on chemical insecticides is considered as an important element in the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of pyrethroid resistance in important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. To date, the mechanisms of pyrethroid resistance are still unclear. Recent advances in proteomic techniques can facilitate to identify pyrethroid resistance-associated proteins at a large-scale for improving our understanding of resistance mechanisms, and more importantly, for seeking some genetic markers used for monitoring and predicting the development of resistance. Methods We performed a quantitative proteomic analysis between a deltamethrin-susceptible strain and a deltamethrin-resistant strain of laboratory population of Culex pipiens pallens using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Gene Ontology (GO) analysis was used to find the relative processes that these differentially expressed proteins were involved in. One differentially expressed protein was chosen to confirm by Western blot in the laboratory and field populations of Cx. pipiens pallens. Results We identified 30 differentially expressed proteins assigned into 10 different categories, including oxidoreductase activity, transporter activity, catalytic activity, structural constituent of cuticle and hypothetical proteins. GO analysis revealed that 25 proteins were sub-categorized into 35 hierarchically-structured GO classifications. Western blot results showed that CYP6AA9 as one of the up-regulated proteins was confirmed to be overexpressed in the deltamethrin-resistant strains compared with the deltamethrin-susceptible strains both in the laboratory and field populations. Conclusions This is the first study to use modern proteomic tools for identifying pyrethroid resistance-related proteins in Cx. pipiens. The present study brought to light many proteins that were not previously thought to be associated with pyrethroid resistance, which further expands our understanding of pyrethroid resistance mechanisms. CYP6AA9 was overexpressed in the deltamethrin-resistant strains, indicating that CYP6AA9 may be involved in pyrethroid resistance and may be used as a potential genetic marker to monitor and predict the pyrethroid resistance level of field populations. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0709-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.
| | - Yuan Lv
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Fujin Fang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Shanchao Hong
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Qin Guo
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Shengli Hu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Feifei Zou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Linna Shi
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Zhentao Lei
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Kai Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China. .,Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|