1
|
Suzuki S, Mashiko T, Tsukamoto Y, Oya M, Kotani Y, Okawara S, Matsumoto T, Mizue Y, Takeuchi H, Okajima T, Itoh M. The N-acetylglucosaminyltransferase Radical fringe contributes to defects in JAG1-dependent turnover and signaling of NOTCH3 CADASIL mutants. J Biol Chem 2024; 300:107787. [PMID: 39303912 PMCID: PMC11525139 DOI: 10.1016/j.jbc.2024.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic vascular dementia characterized by age-related degeneration of vascular mural cells and accumulation of a NOTCH3 mutant protein. NOTCH3 functions as a signaling receptor, activating downstream gene expression in response to ligands like JAG1 and DLL4, which regulate the development and survival of mural cells. This signal transduction process is thought to be connected with NOTCH3 endocytic degradation. However, the specific cellular circumstances that modulate turnover and signaling efficacy of NOTCH3 mutant protein remain largely unknown. Here, we found elevated NOTCH3 and Radical fringe (RFNG) expression in senescent human pericyte cells. We then investigated impacts of RFNG on glycosylation, degradation, and signal activity of three NOTCH3 CADASIL mutants (R90C, R141C, and C185R) in EGF-like repeat-2, 3, and 4, respectively. Liquid chromatography with tandem mass spectrometry analysis showed that RFNG modified NOTCH3 WT and C185R to different degrees. Additionally, coculture experiments demonstrated that RFNG significantly promoted JAG1-dependent degradation of NOTCH3 WT but not that of R141C and C185R mutants. Furthermore, RFNG exhibited a greater inhibitory effect on JAG1-mediated activity of NOTCH3 R141C and C185R compared to that of NOTCH3 WT and R90C. In summary, our findings suggest that NOTCH3 R141C and C185R mutant proteins are relatively susceptible to accumulation and signaling impairment under cellular conditions of RFNG and JAG1 coexistence.
Collapse
Affiliation(s)
- Shodai Suzuki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Taiki Mashiko
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Miyu Oya
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Kotani
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Saki Okawara
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Takemi Matsumoto
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Mizue
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan; Institute for Glyco-core Research (iGCORE), Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
2
|
Xiao L, Pi X, Goss AC, El-Baba T, Ehrmann JF, Grinkevich E, Bazua-Valenti S, Padovano V, Alper SL, Carey D, Udeshi ND, Carr SA, Pablo JL, Robinson CV, Greka A, Wu H. Molecular basis of TMED9 oligomerization and entrapment of misfolded protein cargo in the early secretory pathway. SCIENCE ADVANCES 2024; 10:eadp2221. [PMID: 39303030 PMCID: PMC11414720 DOI: 10.1126/sciadv.adp2221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Intracellular accumulation of misfolded proteins causes serious human proteinopathies. The transmembrane emp24 domain 9 (TMED9) cargo receptor promotes a general mechanism of cytotoxicity by entrapping misfolded protein cargos in the early secretory pathway. However, the molecular basis for this TMED9-mediated cargo retention remains elusive. Here, we report cryo-electron microscopy structures of TMED9, which reveal its unexpected self-oligomerization into octamers, dodecamers, and, by extension, even higher-order oligomers. The TMED9 oligomerization is driven by an intrinsic symmetry mismatch between the trimeric coiled coil domain and the tetrameric transmembrane domain. Using frameshifted Mucin 1 as an example of aggregated disease-related protein cargo, we implicate a mode of direct interaction with the TMED9 luminal Golgi-dynamics domain. The structures suggest and we confirm that TMED9 oligomerization favors the recruitment of coat protein I (COPI), but not COPII coatomers, facilitating retrograde transport and explaining the observed cargo entrapment. Our work thus reveals a molecular basis for TMED9-mediated misfolded protein retention in the early secretory pathway.
Collapse
Affiliation(s)
- Le Xiao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Xiong Pi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alissa C. Goss
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tarick El-Baba
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Julian F. Ehrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Elizabeth Grinkevich
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Silvana Bazua-Valenti
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Seth L. Alper
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Nephrology, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Dominique Carey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Juan Lorenzo Pablo
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Anna Greka
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Chen MN, Fang ZX, Wu Z, Bai JW, Li RH, Wen XF, Zhang GJ, Liu J. Notch3 restricts metastasis of breast cancers through regulation of the JAK/STAT5A signaling pathway. BMC Cancer 2023; 23:1257. [PMID: 38124049 PMCID: PMC10734157 DOI: 10.1186/s12885-023-11746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE To explore the potential role of signal transducer and activator of transcription 5A (STAT5A) in the metastasis of breast cancer, and its mechanism of regulation underlying. METHODS AND RESULTS TCGA datasets were used to evaluate the expression of STAT5A in normal and different cancerous tissues through TIMER2.0, indicating that STAT5A level was decreased in breast cancer tissues compared with normal ones. Gene Set Enrichment Analysis predicted that STAT5A was associated with the activation of immune cells and cell cycle process. We further demonstrated that the infiltration of immune cells was positively associated with STAT5A level. Influorescence staining revealed the expression and distribution of F-actin was regulated by STAT5A, while colony formation assay, wound healing and transwell assays predicted the inhibitory role of STAT5A in the colony formation, migratory and invasive abilities in breast cancer cells. In addition, overexpression of the Notch3 intracellular domain (N3ICD), the active form of Notch3, resulted in the increased expression of STAT5A. Conversely, silencing of Notch3 expression by siNotch3 decreased STAT5A expression, supporting that STAT5A expression is positively associated with Notch3 in human breast cancer cell lines and breast cancer tissues. Mechanistically, chromatin immunoprecipitation showed that Notch3 was directly bound to the STAT5A promoter and induced the expression of STAT5A. Moreover, overexpressing STAT5A partially reversed the enhanced mobility of breast cancer cells following Notch3 silencing. Low expression of Notch3 and STAT5A predicted poorer prognosis of patients with breast cancer. CONCLUSION The present study demonstrates that Notch3 inhibits metastasis in breast cancer through inducing transcriptionally STAT5A, which was associated with tumor-infiltrating immune cells, providing a novel strategy to treat breast cancer.
Collapse
Affiliation(s)
- Min-Na Chen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jing-Wen Bai
- Department of Medical Oncology/Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiamen University Medical School, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Rong-Hui Li
- Department of Medical Oncology/Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiamen University Medical School, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Xiao-Fen Wen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Guo-Jun Zhang
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine/Department of Breast and Thyroid Surgery, Xiamen University Medical School, Xiang'an Hospital of Xiamen University, Xiamen, China.
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
4
|
Szymanowicz O, Korczowska-Łącka I, Słowikowski B, Wiszniewska M, Piotrowska A, Goutor U, Jagodziński PP, Kozubski W, Dorszewska J. Headache and NOTCH3 Gene Variants in Patients with CADASIL. Neurol Int 2023; 15:1238-1252. [PMID: 37873835 PMCID: PMC10594416 DOI: 10.3390/neurolint15040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Autosomal dominant cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited vascular disease characterized by recurrent strokes, cognitive impairment, psychiatric symptoms, apathy, and migraine. Approximately 40% of patients with CADASIL experience migraine with aura (MA). In addition to MA, CADASIL patients are described in the literature as having migraine without aura (MO) and other types of headaches. Mutations in the NOTCH3 gene cause CADASIL. This study investigated NOTCH3 genetic variants in CADASIL patients and their potential association with headache types. Genetic tests were performed on 30 patients with CADASIL (20 women aged 43.6 ± 11.5 and 10 men aged 39.6 ± 15.8). PCR-HRM and sequencing methods were used in the genetic study. We described three variants as pathogenic/likely pathogenic (p.Tyr189Cys, p.Arg153Cys, p.Cys144Arg) and two benign variants (p.Ala202=, p.Thr101=) in the NOTCH3 gene and also presented the NOTCH3 gene variant (chr19:15192258 G>T), which has not been previously described in the literature. Patients with pathogenic/likely pathogenic variants had similar headache courses. People with benign variants showed a more diverse clinical picture. It seems that different NOTCH3 variants may contribute to the differential presentation of a CADASIL headache, highlighting the diagnostic and prognostic value of headache characteristics in this disease.
Collapse
Affiliation(s)
- Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| | - Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Małgorzata Wiszniewska
- Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, 64-920 Pila, Poland;
- Department of Neurology, Specialistic Hospital in Pila, 64-920 Pila, Poland
| | - Ada Piotrowska
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.P.); (W.K.)
| | - Ulyana Goutor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.P.); (W.K.)
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (I.K.-Ł.); (U.G.)
| |
Collapse
|
5
|
Yamamoto Y, Liao YC, Lee YC, Ihara M, Choi JC. Update on the Epidemiology, Pathogenesis, and Biomarkers of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. J Clin Neurol 2023; 19:12-27. [PMID: 36606642 PMCID: PMC9833879 DOI: 10.3988/jcn.2023.19.1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic disorder of the cerebral small blood vessels. It is caused by mutations in the NOTCH3 gene on chromosome 19, and more than 280 distinct pathogenic mutations have been reported to date. CADASIL was once considered a very rare disease with an estimated prevalence of 1.3-4.1 per 100,000 adults. However, recent large-scale genomic studies have revealed a high prevalence of pathogenic NOTCH3 variants among the general population, with the highest risk being among Asians. The disease severity and age at onset vary significantly even among individuals who carry the same NOTCH3 mutations. It is still unclear whether a significant genotype-phenotype correlation is present in CADASIL. The accumulation of granular osmiophilic material in the vasculature is a characteristic feature of CADASIL. However, the exact pathogenesis of CADASIL remains largely unclear despite various laboratory and clinical observations being made. Major hypotheses proposed so far have included aberrant NOTCH3 signaling, toxic aggregation, and abnormal matrisomes. Several characteristic features have been observed in the brain magnetic resonance images of patients with CADASIL, including subcortical lacunar lesions and white matter hyperintensities in the anterior temporal lobe or external capsule, which were useful in differentiating CADASIL from sporadic stroke in patients. The number of lacunes and the degree of brain atrophy were useful in predicting the clinical outcomes of patients with CADASIL. Several promising blood biomarkers have also recently been discovered for CADASIL, which require further research for validation.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jay Chol Choi
- Department of Neurology, Jeju National University, Jeju, Korea.,Institute for Medical Science, Jeju National University, Jeju, Korea
| |
Collapse
|
6
|
Zhang A, Tsukamoto Y, Takeuchi H, Nishiwaki K, Tashima Y, Okajima T. Secretory expression of mammalian NOTCH tandem epidermal growth factor-like repeats based on increased O-glycosylation. Anal Biochem 2022; 656:114881. [PMID: 36067866 DOI: 10.1016/j.ab.2022.114881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/01/2022]
Abstract
The Notch pathway represents evolutionarily conserved intercellular signaling essential for cell-to-cell communication during development. Dysregulation of Notch signaling has been implicated in various diseases, and its control represents a potential cancer treatment strategy. Notch signaling is initiated by the interaction of NOTCH receptors with their ligands on neighboring cells. Therefore, the truncated NOTCH ectodomain, composed mainly of tandem repeats of epidermal growth factor-like (EGF) domains, serves as a decoy molecule that competes for ligand binding and thus inhibits ligand-dependent Notch signaling. Although full-length NOTCH EGF repeats exhibited potent Notch inhibitory activity, they were poorly produced in the transfected cells. This study evaluated the effect of EGF domain-modifying glycosyltransferases on the secretion of NOTCH EGF repeats. Our results in HEK293T cells revealed that, unlike the effect on endogenous NOTCH receptors, overexpressed EGF domain-specific O-GlcNAc transferase (EOGT) markedly enhanced the secretion of NOTCH1 EGF repeats in an enzyme activity-dependent manner. The co-expression of protein O-glucosyltransferase 1 further manifested the effect of EOGT. The resultant changes in O-glycosylation of NOTCH3 were evaluated by label-free glycopeptide quantification. This study provides an experimental strategy to efficiently generate NOTCH EGF repeats by manipulating the expression of glycosyltransferases that alter the O-glycosylation of EGF domains.
Collapse
Affiliation(s)
- Ailing Zhang
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Kimitoshi Nishiwaki
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
| |
Collapse
|
7
|
Young KZ, Rojas Ramírez C, Keep SG, Gatti JR, Lee SJ, Zhang X, Ivanova MI, Ruotolo BT, Wang MM. Oligomerization, trans-reduction, and instability of mutant NOTCH3 in inherited vascular dementia. Commun Biol 2022; 5:331. [PMID: 35393494 PMCID: PMC8991201 DOI: 10.1038/s42003-022-03259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/11/2022] [Indexed: 11/11/2022] Open
Abstract
Cerebral small vessel disease (SVD) is a prevalent disease of aging and a major contributor to stroke and dementia. The most commonly inherited SVD, CADASIL, is caused by dominantly acting cysteine-altering mutations in NOTCH3. These mutations change the number of cysteines from an even to an odd number, but the impact of these alterations on NOTCH3 protein structure remain unclear. Here, we prepared wildtype and four mutant recombinant NOTCH3 protein fragments to analyze the impact of CADASIL mutations on oligomerization, thiol status, and protein stability. Using gel electrophoresis, tandem MS/MS, and collision-induced unfolding, we find that NOTCH3 mutant proteins feature increased amounts of inappropriate disulfide bridges, reduced cysteines, and structural instability. Presence of a second protein factor, an N-terminal fragment of NOTCH3 (NTF), is capable of further altering disulfide statuses of both wildtype and mutant proteins, leading to increased numbers of reduced cysteines and further destabilization of NOTCH3 structure. In sum, these studies identify specific cysteine residues alterations and quaternary structure induced by CADASIL mutations in NOTCH3; further, we validate that reductive factors alter the structure and stability of this small vessel disease protein.
Collapse
Affiliation(s)
- Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | | | - Simon G Keep
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - John R Gatti
- The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Soo Jung Lee
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Xiaojie Zhang
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Magdalena I Ivanova
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA.
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA.
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
8
|
Cartee NMP, Lee SJ, Young KZ, Zhang X, Wang MM. Trans-Reduction of Cerebral Small Vessel Disease Proteins by Notch-Derived EGF-like Sequences. Int J Mol Sci 2022; 23:ijms23073671. [PMID: 35409031 PMCID: PMC9115637 DOI: 10.3390/ijms23073671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cysteine oxidation states of extracellular proteins participate in functional regulation and in disease pathophysiology. In the most common inherited dementia, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), mutations in NOTCH3 that alter extracellular cysteine number have implicated NOTCH3 cysteine states as potential triggers of cerebral vascular smooth muscle cytopathology. In this report, we describe a novel property of the second EGF-like domain of NOTCH3: its capacity to alter the cysteine redox state of the NOTCH3 ectodomain. Synthetic peptides corresponding to this sequence (NOTCH3 N-terminal fragment 2, NTF2) readily reduce NOTCH3 N-terminal ectodomain polypeptides in a dose- and time-dependent fashion. Furthermore, NTF2 preferentially reduces regional domains of NOTCH3 with the highest intensity against EGF-like domains 12–15. This process requires cysteine residues of NTF2 and is also capable of targeting selected extracellular proteins that include TSP2 and CTSH. CADASIL mutations in NOTCH3 increase susceptibility to NTF2-facilitated reduction and to trans-reduction by NOTCH3 produced in cells. Moreover, NTF2 forms complexes with the NOTCH3 ectodomain, and cleaved NOTCH3 co-localizes with the NOTCH3 ectodomain in cerebral arteries of CADASIL patients. The potential for NTF2 to reduce vascular proteins and the enhanced preference for it to trans-reduce mutant NOTCH3 implicate a role for protein trans-reduction in cerebrovascular pathological states such as CADASIL.
Collapse
Affiliation(s)
- Naw May Pearl Cartee
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (N.M.P.C.); (S.J.L.); (K.Z.Y.); (X.Z.)
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (N.M.P.C.); (S.J.L.); (K.Z.Y.); (X.Z.)
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Kelly Z. Young
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (N.M.P.C.); (S.J.L.); (K.Z.Y.); (X.Z.)
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (N.M.P.C.); (S.J.L.); (K.Z.Y.); (X.Z.)
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Michael M. Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (N.M.P.C.); (S.J.L.); (K.Z.Y.); (X.Z.)
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-9075; Fax: +1-734-936-8813
| |
Collapse
|
9
|
Schoemaker D, Arboleda-Velasquez JF. Notch3 Signaling and Aggregation as Targets for the Treatment of CADASIL and Other NOTCH3-Associated Small-Vessel Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1856-1870. [PMID: 33895122 PMCID: PMC8647433 DOI: 10.1016/j.ajpath.2021.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Mutations in the NOTCH3 gene can lead to small-vessel disease in humans, including the well-characterized cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a condition caused by NOTCH3 mutations altering the number of cysteine residues in the extracellular domain of Notch3. Growing evidence indicates that other types of mutations in NOTCH3, including cysteine-sparing missense mutations or frameshift and premature stop codons, can lead to small-vessel disease phenotypes of variable severity or penetrance. There are currently no disease-modifying therapies for small-vessel disease, including those associated with NOTCH3 mutations. A deeper understanding of underlying molecular mechanisms and clearly defined targets are needed to promote the development of therapies. This review discusses two key pathophysiological mechanisms believed to contribute to the emergence and progression of small-vessel disease associated with NOTCH3 mutations: abnormal Notch3 aggregation and aberrant Notch3 signaling. This review offers a summary of the literature supporting and challenging the relevance of these mechanisms, together with an overview of available preclinical experiments derived from these mechanisms. It highlights knowledge gaps and future research directions. In view of recent evidence demonstrating the relatively high frequency of NOTCH3 mutations in the population, and their potential role in promoting small-vessel disease, progress in the development of therapies for NOTCH3-associated small-vessel disease is urgently needed.
Collapse
Affiliation(s)
- Dorothee Schoemaker
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Schepens Eye Research Institute of the Mass Eye and Ear and Department of Ophthalmology of Harvard Medical School, Boston, Massachusetts.
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of the Mass Eye and Ear and Department of Ophthalmology of Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
Liu J, Zhang Q, Wang Q, Luan S, Dong X, Cao H, Tao D, Dong H, Ji X. A case of CADASIL caused by NOTCH3 c.512_605delinsA heterozygous mutation. J Clin Lab Anal 2021; 35:e24027. [PMID: 34558736 PMCID: PMC8605158 DOI: 10.1002/jcla.24027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebrovascular disease closely related to the NOTCH3 gene. More than 200 mutations in this gene have been reported to be associated with this disease. METHODS The NOTCH3 gene from CADASIL patient was screened for mutations by whole-exome sequencing (WES). PCR amplification and direct Sanger sequencing were used to verify the suspicious gene mutation sites detected by WES. RESULTS We performed second-generation sequencing on a sample of the patient's genome and found a heterozygous deletion-insertion mutation c.512_605delinsA in exon 4 of NOTCH3, which resulted in amino acid changes p.G171_A202delinsE. This variation was confirmed by the direct Sanger sequencing. It may be rated as a CADASIL clinical variation. CONCLUSION Discovery of this mutation site provides an important theoretical basis for specific gene-based diagnosis and treatment of CADASIL.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiaoyu Zhang
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Siyu Luan
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiang Dong
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hua Cao
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dingbo Tao
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huijie Dong
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaofei Ji
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Zhang X, Lee SJ, Wang MM. Hydrolysis of a second Asp-Pro site at the N-terminus of NOTCH3 in inherited vascular dementia. Sci Rep 2021; 11:17246. [PMID: 34446744 PMCID: PMC8390697 DOI: 10.1038/s41598-021-96679-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebrovascular pathology at the biochemical level has been informed by the study of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a vascular disorder caused by NOTCH3 mutations. Previous work in CADASIL described N-terminal proteolysis of NOTCH3 generated by specific non-enzymatic cleavage of the first Asp-Pro sequence of the protein. Here, we investigated whether the second Asp-Pro peptide bond (residues 121–122) of NOTCH3 is cleaved in CADASIL. Monospecific antibodies were generated that recognize the neo-epitope predicted to be generated by cleavage after Asp121. These antibodies were used to localize cleavage events at Asp121 in post-mortem CADASIL and control brain tissue and to investigate factors that regulate cleavage at Asp121. We report that cleavage at Asp121 occurs at a high level in the arterial media of CADASIL cerebral arteries. Leptomeningeal arteries demonstrated substantially more cleavage product than penetrating arteries in the white matter, and control vessels harbored only a small amount of cleaved NOTCH3. Proteolysis at Asp121 occurred in purified preparations of NOTCH3 ectodomain, was increased by acidic pH and reductive conditions, and required native protein conformation for cleavage. Increasing the concentration of NOTCH3 EGF-like domain protein elevated the level of proteolysis. On the other hand, several polyanionic chemicals potently blocked cleavage at Asp121. These studies demonstrate that the NOTCH3 protein in CADASIL is cleaved in multiple locations at labile Asp-Pro peptide bonds. As such, chronic brain vascular disease, like other neurodegenerative conditions, features proteolysis of pathological proteins at multiple sites which may generate small pathological peptides.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Neurology, University of Michigan, 7725 Medical Science Building II Box 5622, 1137 Catherine St., Ann Arbor, MI, 48109-5622, USA.,Neurology Service, Department of Veterans Affairs, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, 7725 Medical Science Building II Box 5622, 1137 Catherine St., Ann Arbor, MI, 48109-5622, USA.,Neurology Service, Department of Veterans Affairs, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, 7725 Medical Science Building II Box 5622, 1137 Catherine St., Ann Arbor, MI, 48109-5622, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA. .,Neurology Service, Department of Veterans Affairs, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
12
|
Muiño E, Fernández-Cadenas I, Arboix A. Contribution of "Omic" Studies to the Understanding of Cadasil. A Systematic Review. Int J Mol Sci 2021; 22:7357. [PMID: 34298974 PMCID: PMC8304933 DOI: 10.3390/ijms22147357] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a small vessel disease caused by mutations in NOTCH3 that lead to an odd number of cysteines in the epidermal growth factor (EGF)-like repeat domain, causing protein misfolding and aggregation. The main symptoms are migraines, psychiatric disorders, recurrent strokes, and dementia. Omic technologies allow the massive study of different molecules for understanding diseases in a non-biased manner or even for discovering targets and their possible treatments. We analyzed the progress in understanding CADASIL that has been made possible by omics sciences. For this purpose, we included studies that focused on CADASIL and used omics techniques, searching bibliographic resources, such as PubMed. We excluded studies with other phenotypes, such as migraine or leukodystrophies. A total of 18 articles were reviewed. Due to the high prevalence of NOTCH3 mutations considered pathogenic to date in genomic repositories, one can ask whether all of them produce CADASIL, different degrees of the disease, or whether they are just a risk factor for small vessel disease. Besides, proteomics and transcriptomics studies found that the molecules that are significantly altered in CADASIL are mainly related to cell adhesion, the cytoskeleton or extracellular matrix components, misfolding control, autophagia, angiogenesis, or the transforming growth factor β (TGFβ) signaling pathway. The omics studies performed on CADASIL have been useful for understanding the biological mechanisms and could be key factors for finding potential drug targets.
Collapse
Affiliation(s)
- Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Adrià Arboix
- Cerebrovascular Division, Department of Neurology, Hospital Universitari del Sagrat Cor, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
13
|
Suzuki S, Hiura S, Mashiko T, Matsumoto T, Itoh M. Lunatic fringe promotes the aggregation of CADASIL NOTCH3 mutant proteins. Biochem Biophys Res Commun 2021; 557:302-308. [PMID: 33894418 DOI: 10.1016/j.bbrc.2021.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic small vessel disease characterized by NOTCH3 mutation and abnormal aggregation of NOTCH3 mutant proteins around vessel walls. NOTCH3 is a transmembrane receptor that is degraded by JAGGED1 (JAG1) through a process called trans-endocytosis. There are two types of CADASIL-associated NOTCH3 mutations: signal-active (SA) and signal-deficient (SD) mutations. However, the conditions that lead to abnormal aggregation of NOTCH3 mutant proteins remain poorly understood. Performing a coculture assay, we found that the SA NOTCH3 mutants (C49Y, R90C, R141C, and C185R) were degraded and trans-endocytosed by JAG1 similar to wild-type (WT) NOTCH3, but the SD NOTCH3 mutant (C428S) was not degraded or endocytosed by JAG1, suggesting that other environmental factors may be necessary for the aggregation of SA NOTCH3 mutants. Lunatic fringe (LFNG) is a glycosyltransferase of NOTCH3, but whether LFNG affects the aggregation of NOTCH3 mutants remains unknown. Performing a sucrose gradient ultracentrifugation assay, we found that LFNG might decrease the aggregation propensity of WT NOTCH3 but increase that of C185R NOTCH3. In conclusion, the SD NOTCH3 mutant may be more likely to accumulate than the SA NOTCH3 mutants upon interaction with JAG1. Moreover, LFNG may play an important role in promoting the aggregation of SA NOTCH3 mutants.
Collapse
Affiliation(s)
- Shodai Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Satoshi Hiura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Taiki Mashiko
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Takemi Matsumoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
14
|
Muiño E, Maisterra O, Jiménez-Balado J, Cullell N, Carrera C, Torres-Aguila NP, Cárcel-Márquez J, Gallego-Fabrega C, Lledós M, González-Sánchez J, Olmos-Alpiste F, Espejo E, March Á, Pujol R, Rodríguez-Campello A, Romeral G, Krupinski J, Martí-Fàbregas J, Montaner J, Roquer J, Fernández-Cadenas I. Genome-wide transcriptome study in skin biopsies reveals an association of E2F4 with cadasil and cognitive impairment. Sci Rep 2021; 11:6846. [PMID: 33767277 PMCID: PMC7994794 DOI: 10.1038/s41598-021-86349-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/11/2021] [Indexed: 01/31/2023] Open
Abstract
CADASIL is a small vessel disease caused by mutations in NOTCH3 that lead to an odd number of cysteines in the EGF-like repeat domain, causing protein misfolding and aggregation. The main symptoms are migraine, psychiatric disturbances, recurrent strokes and dementia, being executive function characteristically impaired. The molecular pathways altered by this receptor aggregation need to be studied further. A genome-wide transcriptome study (four cases paired with three healthy siblings) was carried out, in addition to a qRT-PCR for validation purposes (ten new cases and eight new controls). To study the expression profile by cell type of the significant mRNAs found, we performed an in situ hybridization (ISH) (nine cases and eight controls) and a research in the Single-nuclei Brain RNA-seq expression browser (SNBREB). Pathway analysis enrichment was carried out with Gene Ontology and Reactome. Neuropsychological tests were performed in five of the qRT-PCR cases. The two most significant differentially expressed mRNAs (BANP, p-value = 7.23 × 10-4 and PDCD6IP, p-value = 8.36 × 10-4) were selected for the validation study by qRT-PCR. Additionally, we selected two more mRNAs (CAMK2G, p-value = 4.52 × 10-3 and E2F4, p-value = 4.77 × 10-3) due to their association with ischemic neuronal death. E2F4 showed differential expression in the genome-wide transcriptome study and in the qRT-PCR (p = 1.23 × 10-3), and it was upregulated in CADASIL cases. Furthermore, higher E2F4 expression was associated with worse executive function (p = 2.04 × 10-2) and attention and information processing speed (IPS) (p = 8.73 × 10-2). In situ hibridization showed E2F4 expression in endothelial and vascular smooth vessel cells. In silico studies indicated that E2F4 is also expressed in brain endothelial cells. Among the most significant pathways analyzed, there was an enrichment of vascular development, cell adhesion and vesicular machinery terms and autophagy process. E2F4 is more highly expressed in the skin biopsy of CADASIL patients compared to controls, and its expression is present in endothelial cells and VSMCs. Further studies are needed to understand whether E2F4 could be useful as a biomarker, to monitor the disease or be used as a therapeutic target.
Collapse
Affiliation(s)
- Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l`Hospital de la Santa Creu i Sant Pau, C/Sant Antoni María Claret 167, Barcelona, Spain
| | - Olga Maisterra
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Jiménez-Balado
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l`Hospital de la Santa Creu i Sant Pau, C/Sant Antoni María Claret 167, Barcelona, Spain
- Stroke Pharmacogenomics and Genetics, Fundació MútuaTerrassa per la Docència i la Recerca, Terrassa, Spain
| | - Caty Carrera
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l`Hospital de la Santa Creu i Sant Pau, C/Sant Antoni María Claret 167, Barcelona, Spain
| | - Nuria P Torres-Aguila
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l`Hospital de la Santa Creu i Sant Pau, C/Sant Antoni María Claret 167, Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l`Hospital de la Santa Creu i Sant Pau, C/Sant Antoni María Claret 167, Barcelona, Spain
| | - Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l`Hospital de la Santa Creu i Sant Pau, C/Sant Antoni María Claret 167, Barcelona, Spain
- Stroke Pharmacogenomics and Genetics, Fundació MútuaTerrassa per la Docència i la Recerca, Terrassa, Spain
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l`Hospital de la Santa Creu i Sant Pau, C/Sant Antoni María Claret 167, Barcelona, Spain
| | - Jonathan González-Sánchez
- Stroke Pharmacogenomics and Genetics, Fundació MútuaTerrassa per la Docència i la Recerca, Terrassa, Spain
- The Manchester Metropolitan University of All Saints, Manchester, UK
| | | | - Eva Espejo
- Dermatology Department, Hospital del Mar-Parc de Salut Mar, Barcelona, Spain
| | - Álvaro March
- Dermatology Department, Hospital del Mar-Parc de Salut Mar, Barcelona, Spain
| | - Ramón Pujol
- Dermatology Department, Hospital del Mar-Parc de Salut Mar, Barcelona, Spain
| | | | - Gemma Romeral
- Neurology Department, IMIM-Hospital del Mar, Barcelona, Spain
| | - Jurek Krupinski
- Neurology Department, Hospital Mútua Terrassa, Terrassa, Spain
| | - Joan Martí-Fàbregas
- Neurology Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Joan Montaner
- The Manchester Metropolitan University of All Saints, Manchester, UK
- Biomedicine Institute of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Jaume Roquer
- Neurology Department, IMIM-Hospital del Mar, Barcelona, Spain
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l`Hospital de la Santa Creu i Sant Pau, C/Sant Antoni María Claret 167, Barcelona, Spain.
| |
Collapse
|
15
|
Ungaro C, Sprovieri T. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). Rare Dis 2020. [DOI: 10.5772/intechopen.87248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Hosseini-Alghaderi S, Baron M. Notch3 in Development, Health and Disease. Biomolecules 2020; 10:biom10030485. [PMID: 32210034 PMCID: PMC7175233 DOI: 10.3390/biom10030485] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Notch3 is one of four mammalian Notch proteins, which act as signalling receptors to control cell fate in many developmental and adult tissue contexts. Notch signalling continues to be important in the adult organism for tissue maintenance and renewal and mis-regulation of Notch is involved in many diseases. Genetic studies have shown that Notch3 gene knockouts are viable and have limited developmental defects, focussed mostly on defects in the arterial smooth muscle cell lineage. Additional studies have revealed overlapping roles for Notch3 with other Notch proteins, which widen the range of developmental functions. In the adult, Notch3, in collaboration with other Notch proteins, is involved in stem cell regulation in different tissues in stem cell regulation in different tissues, and it also controls the plasticity of the vascular smooth muscle phenotype involved in arterial vessel remodelling. Overexpression, gene amplification and mis-activation of Notch3 are associated with different cancers, in particular triple negative breast cancer and ovarian cancer. Mutations of Notch3 are associated with a dominantly inherited disease CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy), and there is further evidence linking Notch3 misregulation to hypertensive disease. Here we discuss the distinctive roles of Notch3 in development, health and disease, different views as to the underlying mechanisms of its activation and misregulation in different contexts and potential for therapeutic intervention.
Collapse
|
17
|
Young KZ, Cartee NMP, Ivanova MI, Wang MM. Thiol-mediated and catecholamine-enhanced multimerization of a cerebrovascular disease enriched fragment of NOTCH3. Exp Neurol 2020; 328:113261. [PMID: 32119934 DOI: 10.1016/j.expneurol.2020.113261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Cerebral small vessel disease is a common condition linked to dementia and stroke. As an age-dependent brain pathology, cerebral SVD may share molecular processes with core neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Many neurodegenerative diseases feature abnormal protein accumulation and aberrant protein folding, resulting in multimerization of specific proteins. We investigated if a small NOTCH3 N-terminal fragment (NTF) that co-registers with pathologically affected cells in the inherited SVD, CADASIL, is capable of multimerization. We also characterized endogenous small molecule vascular enhancers and inhibitors of multimerization. NTF multimerizes spontaneously and also forms conjugates with vascular catecholamines, including dopamine and norepinephrine, which avidly promote multimerization of the protein. Inhibition of catecholamine-dependent multimerization by vitamin C and reversal by reducing agents implicate an essential role of oxidation in NTF multimerization. Antibodies that react with degenerating arteries in CADASIL tissue preferentially bind to multimerized forms of NTF. These studies suggest that multimerization of proteins in the aging brain is not restricted to neuronal molecules and may participate in age-dependent vascular pathology.
Collapse
Affiliation(s)
- Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA; Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Naw May P Cartee
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Magdalena I Ivanova
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA; Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.
| |
Collapse
|
18
|
NOTCH3 Gene Mutation in a Chilean Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy Family. J Stroke Cerebrovasc Dis 2020; 29:104530. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.104530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023] Open
|
19
|
Young KZ, Lee SJ, Zhang X, Cartee NMP, Torres M, Keep SG, Gabbireddy SR, Fontana JL, Qi L, Wang MM. NOTCH3 is non-enzymatically fragmented in inherited cerebral small-vessel disease. J Biol Chem 2020; 295:1960-1972. [PMID: 31901894 DOI: 10.1074/jbc.ra119.007724] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
The small-vessel disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) arises from mutations in the human gene encoding NOTCH3 and results in vascular smooth muscle cell degeneration, stroke, and dementia. However, the structural changes in NOTCH3 involved in CADASIL etiology are unclear. Here, we discovered site-specific fragmentation of NOTCH3 protein in pathologically affected vessels of human CADASIL-affected brains. EM-based experiments to pinpoint NOTCH3 localization in these brains indicated accumulation of NOTCH3 fragmentation products in the basement membrane, collagen fibers, and granular osmiophilic material within the cerebrovasculature. Using antibodies generated against a disease-linked neo-epitope found in degenerating vascular medium of CADASIL brains, we mapped the site of fragmentation to the NOTCH3 N terminus at the peptide bond joining Asp80 and Pro81 Cleavage at this site was predicted to separate the first epidermal growth factor (EGF)-like domain from the remainder of the protein. We found that the cleavage product from this fragmentation event is released into the conditioned medium of cells expressing recombinant NOTCH3 fragments. Mutagenesis of Pro81 abolished the fragmentation, and low pH and reducing conditions enhanced NOTCH3 proteolysis. Furthermore, substitution of multiple cysteine residues of the NOTCH3 N terminus activated proteolytic release of the first EGF-like repeat, suggesting that the elimination of multiple disulfide bonds in NOTCH3 accelerates its fragmentation. These characteristics link the signature molecular genetic alterations present in individuals with CADASIL to a post-translational protein alteration in degenerating brain arteries. The cellular consequences of these pathological NOTCH3 fragments are an important area for future investigation.
Collapse
Affiliation(s)
- Kelly Z Young
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | | | - Mauricio Torres
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Simon G Keep
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | | | - Julia L Fontana
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622; Neurology Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan 48105.
| |
Collapse
|
20
|
Rainero I, Vacca A, Govone F, Gai A, Pinessi L, Rubino E. Migraine: Genetic Variants and Clinical Phenotypes. Curr Med Chem 2019; 26:6207-6221. [DOI: 10.2174/0929867325666180719120215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Migraine is a common, chronic neurovascular disorder caused by a complex interaction
between genetic and environmental risk factors. In the last two decades, molecular genetics
of migraine have been intensively investigated. In a few cases, migraine is transmitted as a
monogenic disorder, and the disease phenotype cosegregates with mutations in different genes
like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine,
candidate genes as well as genome-wide association studies have shown that a large number of
genetic variants may increase the risk of developing migraine. At present, few studies investigated
the genotype-phenotype correlation in patients with migraine. The purpose of this review
was to discuss recent studies investigating the relationship between different genetic variants
and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in
migraineurs is complicated by several confounding factors and, to date, only polymorphisms
of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional
genomic studies and network analyses are needed to clarify the complex pathways underlying
migraine and its clinical phenotypes.
Collapse
Affiliation(s)
- Innocenzo Rainero
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Alessandro Vacca
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Flora Govone
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Annalisa Gai
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Lorenzo Pinessi
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| | - Elisa Rubino
- Headache Center, Neurology I, Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino, Italy
| |
Collapse
|
21
|
Huang L, Li W, Li Y, Song C, Wang P, Wang H, Sun X. A novel cysteine-sparing G73A mutation of NOTCH3 in a Chinese CADASIL family. Neurogenetics 2019; 21:39-49. [PMID: 31720972 DOI: 10.1007/s10048-019-00592-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic disease leading to stroke and vascular dementia. CADASIL is an inherited small blood vessel disease caused by mutations in the gene encoding the neurogenic locus notch homolog protein 3 (NOTCH3). NOTCH3 is large type I membrane receptor mainly expressed in vascular smooth muscle cells and pericytes. Most identified mutations result in insert or deletion of a cysteine residue within the EGF-like repeats. To date, some cases with a cysteine-sparing mutant have been described. Genetic analysis revealed a novel mutation in NOTCH3 in a CADASIL family. Molecular analysis revealed its potential pathogenic mechanism in causing CADASIL. In this paper, we present a Chinese family with a novel cysteine-sparing mutation in exon 3 (c.218G>C, p.G73A) of the NOTCH3 gene. Family carriers of the same mutation presented with symptoms and imaging abnormalities characteristic of CADASIL. The location of glycine 73 in between C5-C6 disulfide bond of EGF-like domain 1 shows high conservation from humans to zebra fish. It has previously been suggested that the aggregate-prone property of mutant NOTCH3 contributes to a cytotoxic effect in the pathogenic mechanism underlying CADASIL. Here, we investigated the pathogenic mechanism of the new mutation in vitro using HEK293 cells transfected with either a wild-type (WT) or c.218G>C (p.G73A) NOTCH3ECD plasmids, and we found p.G73A NOTCH3ECD was more prone to form aggregation and resistant to degradation. Moreover, the p.G73A NOTCH3ECD compromised cell viability by promoting apoptosis. Two known CADASIL mutants R133C and R75P showed similar results with G73A mutants. Our study here identified G73A as a new mutation in NOTCH3 to cause CADASIL and revealed that the G73A mutation and two known mutants R75P and R133C decreased NOTCH3 protein turnover and induced cell death.
Collapse
Affiliation(s)
- Liyan Huang
- Department of Neurology, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Wei Li
- Department of Neurology, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
- Department of Neurology, Qingdao Municipal Hospital, No.1 Jiaozhou Rd, Qingdao, 266011, Shandong Province, China
| | - Yi Li
- Department of Neurology, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Chaoyuan Song
- Department of Neurology, Secondary Hospital of Shandong University, No. 247 Beiyuanda St, Jinan, 250010, Shandong Province, China
| | - Pin Wang
- Otolarygology Key Lab of National Health Committee, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
22
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
23
|
Chavoshi Tarzjani SP, Shahzadeh Fazeli SA, Sanati MH, Mirzayee Z. Genetic study of the NOTCH3 gene in CADASIL patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
24
|
Notch3 protein expression in skin fibroblasts from CADASIL patients. J Neurol Sci 2018; 390:121-128. [PMID: 29801872 DOI: 10.1016/j.jns.2018.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 11/22/2022]
Abstract
AIM CADASIL is an inherited cerebrovascular disease caused by mutations in the NOTCH3 gene. Notch signaling is involved in a broad spectrum of function, from the cell proliferation to apoptosis. Thus far, because the molecular mechanism underlying the pathological alterations remains unclear and taking into account that fibroblasts contribute to the integrity of the vasculature, our aims was to establish whether fibroblasts, in subjects carrying different NOTCH3 mutations, show abnormalities in the protein expression. METHODS We performed the investigation on skin fibroblasts in culture obtained from three CADASIL patients and normal subjects. The patients were genetically characterized, and carried a p.R61W, a p.C174T, and p.R103X, mutation respectively. Notch3 expression was first evaluated on fibroblasts by immunofluorescence analysis, then western blot on cellular extract was utilized to validate the immunofluorescence results. RESULTS The Notch3 immunoreactivity was clearly detected along the cellular body and in the cellular nuclei of the control fibroblasts. We observed a marked, statistically significant, reduction of the fluorescence immunoreactivity in the fibroblasts from patient with the classical C174T cysteine mutation and a less pronounced reduction in the other two subject's samples with respect to the normal controls. These data were confirmed by the immunoblot analysis. CONCLUSIONS Our results show that the investigated three NOTCH3 mutations are associated with a reduction of the levels of Notch3 expression in vitro. Because the smooth muscle cells appear to be predominantly involved in this cerebrovascular disease, our result, despite the limitation of the sample size examinated, clearly suggest that also fibroblasts, directly involved in making the vascular basal lamina and in maintaining the vascular integrity, may play an important role in the mechanism responsible for the disease.
Collapse
|
25
|
Abstract
Cerebral small-vessel disease is a prevalent condition that is strongly associated with ischemic stroke and dementia. The most prevalent inherited cause of cerebral small-vessel disease is CADASIL, cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy, a disorder linked to mutations in NOTCH3. The most common symptoms of CADASIL are small ischemic strokes and/or transient ischemic attacks and cognitive impairment, appearing in middle age, that may progress to frank vascular dementia. However, it is increasingly recognized that individual symptom types, onset, and disease severity span a wide spectrum, even among individuals in the same family. Magnetic resonance imaging in CADASIL reveals severe white-matter hyperintensities, evidence of prior subcortical strokes, and, in some cases, microhemorrhages. Several hundred mutations in NOTCH3 have been described worldwide in CADASIL, and virtually all of these mutations alter the cysteine content of the extracellular NOTCH3 gene product. This molecular genetic signature of CADASIL has led to the hypothesis that structural abnormalities in the vascular smooth-muscle protein NOTCH3 trigger arterial degeneration, vascular protein accumulation, and cerebrovascular failure.
Collapse
|
26
|
Muiño E, Gallego-Fabrega C, Cullell N, Carrera C, Torres N, Krupinski J, Roquer J, Montaner J, Fernández-Cadenas I. Systematic Review of Cysteine-Sparing NOTCH3 Missense Mutations in Patients with Clinical Suspicion of CADASIL. Int J Mol Sci 2017; 18:E1964. [PMID: 28902129 PMCID: PMC5618613 DOI: 10.3390/ijms18091964] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 11/25/2022] Open
Abstract
CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is caused by mutations in the NOTCH3 gene, affecting the number of cysteines in the extracellular domain of the receptor, causing protein misfolding and receptor aggregation. The pathogenic role of cysteine-sparing NOTCH3 missense mutations in patients with typical clinical CADASIL syndrome is unknown. The aim of this article is to describe these mutations to clarify if any could be potentially pathogenic. Articles on cysteine-sparing NOTCH3 missense mutations in patients with clinical suspicion of CADASIL were reviewed. Mutations were considered potentially pathogenic if patients had: (a) typical clinical CADASIL syndrome; (b) diffuse white matter hyperintensities; (c) the 33 NOTCH3 exons analyzed; (d) mutations that were not polymorphisms; and (e) Granular osmiophilic material (GOM) deposits in the skin biopsy. Twenty-five different mutations were listed. Four fulfill the above criteria: p.R61W; p.R75P; p.D80G; and p.R213K. Patients carrying these mutations had typical clinical CADASIL syndrome and diffuse white matter hyperintensities, mostly without anterior temporal pole involvement. Cysteine-sparing NOTCH3 missense mutations are associated with typical clinical CADASIL syndrome and typical magnetic resonance imaging (MRI) findings, although with less involvement of the anterior temporal lobe. Hence, these mutations should be further studied to confirm their pathological role in CADASIL.
Collapse
Affiliation(s)
- Elena Muiño
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Mútua de Terrassa, 08221 Terrassa, Spain.
| | - Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Mútua de Terrassa, 08221 Terrassa, Spain.
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Mútua de Terrassa, 08221 Terrassa, Spain.
| | - Caty Carrera
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Hospital Vall d'Hebron, 08035 Barcelona, Spain; (C.C.).
| | - Nuria Torres
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Mútua de Terrassa, 08221 Terrassa, Spain.
| | - Jurek Krupinski
- Neurology Service, Hospital Mútua de Terrassa, 08221 Terrassa, Spain.
| | - Jaume Roquer
- Neurology Service, Institut Hospital del Mar d'investigacions Mèdiques, IMIM-Hospital del Mar, 08003 Barcelona, Spain.
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Hospital Vall d'Hebron, 08035 Barcelona, Spain; (C.C.).
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Mútua de Terrassa, 08221 Terrassa, Spain.
| |
Collapse
|
27
|
Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci (Lond) 2017; 131:2257-2274. [PMID: 28798076 DOI: 10.1042/cs20160381] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 01/12/2023]
Abstract
Cerebral small vessel diseases (SVDs) range broadly in etiology but share remarkably overlapping pathology. Features of SVD including enlarged perivascular spaces (EPVS) and formation of abluminal protein deposits cannot be completely explained by the putative pathophysiology. The recently discovered glymphatic system provides a new perspective to potentially address these gaps. This work provides a comprehensive review of the known factors that regulate glymphatic function and the disease mechanisms underlying glymphatic impairment emphasizing the role that aquaporin-4 (AQP4)-lined perivascular spaces (PVSs), cerebrovascular pulsatility, and metabolite clearance play in normal CNS physiology. This review also discusses the implications that glymphatic impairment may have on SVD inception and progression with the aim of exploring novel therapeutic targets and highlighting the key questions that remain to be answered.
Collapse
|
28
|
Tang M, Shi C, Song B, Yang J, Yang T, Mao C, Li Y, Liu X, Zhang S, Wang H, Luo H, Xu Y. CADASIL mutant NOTCH3(R90C) decreases the viability of HS683 oligodendrocytes via apoptosis. Mol Biol Rep 2017; 44:273-280. [PMID: 28601945 DOI: 10.1007/s11033-017-4107-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease caused by mutations in NOTCH3. Prevailing models suggest that demyelination occurs secondary to vascular pathology. However, in zebrafish, NOTCH3 is also expressed in mature oligodendrocytes. Thus, we hypothesized that in addition to vascular defects, mutant NOTCH3 may alter glial function in individuals with CADASIL. The aim of this study was to characterize the direct effects of a mutant NOTCH3 protein in HS683 oligodendrocytes. HS683 oligodendrocytes transfected with wild-type NOTCH3, mutant NOTCH3(R90C), and empty control vector were used to study the impact of the NOTCH3(R90C) mutant on its protein hydrolytic processing, cell viability, apoptosis, autophagy, oxidative stress, and the related upstream events using immunoblotting, immunofluorescence, RT-PCR, and flow cytometry. We determined that HS683 oligodendrocytes transfected with mutant NOTCH3(R90C), which is the hotspot mutation site-associated with CADASIL, exhibited aberrant NOTCH3 proteolytic processing. Compared to cells overexpressing wild-type NOTCH3, cells overexpressing NOTCH3(R90C) were less viable and had a higher rate of apoptosis. Immunoblotting revealed that cells transfected with NOTCH3(R90C) had higher levels of intrinsic mitochondrial apoptosis, extrinsic death receptor path-related apoptosis, and autophagy compared with cells transfected with wild-type NOTCH3. This study suggests that in patients with CADASIL, early defects in glia influenced by NOTCH3(R90C) may directly contribute to white matter pathology in addition to secondary vascular defects. This study provides a potential therapeutic target for the future treatment of CADASIL.
Collapse
Affiliation(s)
- Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ting Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yusheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xinjing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hui Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
29
|
Tsai EA, Gilbert MA, Grochowski CM, Underkoffler LA, Meng H, Zhang X, Wang MM, Shitaye H, Hankenson KD, Piccoli D, Lin H, Kamath BM, Devoto M, Spinner NB, Loomes KM. THBS2 Is a Candidate Modifier of Liver Disease Severity in Alagille Syndrome. Cell Mol Gastroenterol Hepatol 2016; 2:663-675.e2. [PMID: 28090565 PMCID: PMC5042888 DOI: 10.1016/j.jcmgh.2016.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/17/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Alagille syndrome is an autosomal-dominant, multisystem disorder caused primarily by mutations in JAG1, resulting in bile duct paucity, cholestasis, cardiac disease, and other features. Liver disease severity in Alagille syndrome is highly variable, however, factors influencing the hepatic phenotype are unknown. We hypothesized that genetic modifiers may contribute to the variable expressivity of this disorder. METHODS We performed a genome-wide association study in a cohort of Caucasian subjects with known pathogenic JAG1 mutations, comparing patients with mild vs severe liver disease, followed by functional characterization of a candidate locus. RESULTS We identified a locus that reached suggestive genome-level significance upstream of the thrombospondin 2 (THBS2) gene. THBS2 codes for a secreted matricellular protein that regulates cell proliferation, apoptosis, and angiogenesis, and has been shown to affect Notch signaling. By using a reporter mouse line, we detected thrombospondin 2 expression in bile ducts and periportal regions of the mouse liver. Examination of Thbs2-null mouse livers showed increased microvessels in the portal regions of adult mice. We also showed that thrombospondin 2 interacts with NOTCH1 and NOTCH2 and can inhibit JAG1-NOTCH2 interactions. CONCLUSIONS Based on the genome-wide association study results, thrombospondin 2 localization within bile ducts, and demonstration of interactions of thrombospondin 2 with JAG1 and NOTCH2, we propose that changes in thrombospondin 2 expression may further perturb JAG1-NOTCH2 signaling in patients harboring a JAG1 mutation and lead to a more severe liver phenotype. These results implicate THBS2 as a plausible candidate genetic modifier of liver disease severity in Alagille syndrome.
Collapse
Key Words
- ALGS, Alagille syndrome
- BSA, bovine serum albumin
- CK19, cytokeratin 19
- ChiLDReN, Childhood Liver Disease Research Network
- Cholestasis
- GFP, green fluorescent protein
- GWAS, genome-wide association study
- Gene Modifier
- Genome-Wide Association Study
- JAG1
- NOTCH2
- PCR, polymerase chain reaction
- SNP, single-nucleotide polymorphism
- THBS2, thrombospondin 2
- cDNA, complementary DNA
- ddPCR, droplet digital polymerase chain reaction
Collapse
Affiliation(s)
- Ellen A Tsai
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melissa A Gilbert
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher M Grochowski
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lara A Underkoffler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - He Meng
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan; Department of Physiology, University of Michigan, Ann Arbor, Michigan; VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Hailu Shitaye
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan
| | - Kurt D Hankenson
- Department of Physiology, Department of Small Animal Clinical Sciences, Colleges of Natural Science, Osteopathic Medicine, and Veterinary Medicine, Michigan State University, East Lansing, Michigan; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Piccoli
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Henry Lin
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Marcella Devoto
- Division of Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Nancy B Spinner
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathleen M Loomes
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Furuya Y, Denda M, Sakane K, Ogusu T, Takahashi S, Magari M, Kanayama N, Morishita R, Tokumitsu H. Identification of striated muscle activator of Rho signaling (STARS) as a novel calmodulin target by a newly developed genome-wide screen. Cell Calcium 2016; 60:32-40. [PMID: 27132186 DOI: 10.1016/j.ceca.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023]
Abstract
To search for novel target(s) of the Ca(2+)-signaling transducer, calmodulin (CaM), we performed a newly developed genome-wide CaM interaction screening of 19,676 GST-fused proteins expressed in human. We identified striated muscle activator of Rho signaling (STARS) as a novel CaM target and characterized its CaM binding ability and found that the Ca(2+)/CaM complex interacted stoichiometrically with the N-terminal region (Ala13-Gln35) of STARS in vitro as well as in living cells. Mutagenesis studies identified Ile20 and Trp33 as the essential hydrophobic residues in CaM anchoring. Furthermore, the CaM binding deficient mutant (Ile20Ala, Trp33Ala) of STARS further enhanced its stimulatory effect on SRF-dependent transcriptional activation. These results suggest a connection between Ca(2+)-signaling via excitation-contraction coupling and the regulation of STARS-mediated gene expression in muscles.
Collapse
Affiliation(s)
- Yusui Furuya
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Miwako Denda
- CellFree Sciences Co., Ltd., Matsuyama, 790-8577, Japan
| | - Kyohei Sakane
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tomoko Ogusu
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Sumio Takahashi
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Masaki Magari
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Naoki Kanayama
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Matsuyama, 790-8577, Japan
| | - Hiroshi Tokumitsu
- Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
31
|
The small leucine-rich proteoglycan BGN accumulates in CADASIL and binds to NOTCH3. Transl Stroke Res 2015; 6:148-55. [PMID: 25578324 DOI: 10.1007/s12975-014-0379-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/09/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited form of cerebral small vessel disease caused by mutations in conserved residues of NOTCH3. Affected arteries of CADASIL feature fibrosis and accumulation of NOTCH3. A variety of collagen subtypes (types I, III, IV, and VI) have been identified in fibrotic CADASIL vessels. Biglycan (BGN) and decorin (DCN) are class I members of the small leucine-rich proteoglycan (SLRP) family that regulate collagen fibril size. Because DCN has been shown to deposit in arteries in cerebral small vessel disease, we tested whether BGN accumulates in arteries of CADASIL brains. BGN was strongly expressed in both small penetrating and leptomeningeal arteries of CADASIL brain. BGN protein was localized to all three layers of arteries (intima, media, and adventitia). Substantially, more immunoreactivity was observed in CADASIL brains compared to controls. Immunoblotting of brain lysates showed a fourfold increase in CADASIL brains (compared to controls). Messenger RNA encoding BGN was also increased in CADASIL and was localized by in situ hybridization to all three vascular layers in CADASIL. Human cerebrovascular smooth muscle cells exposed to purified NOTCH3 ectodomain upregulated BGN, DCN, and COL4A1 through mechanisms that are sensitive to rapamycin, a potent mTOR inhibitor. In addition, BGN protein interacted directly with NOTCH3 protein in cell culture and in direct protein interaction assays. In conclusion, BGN is a CADASIL-enriched protein that potentially accumulates in vessels by mTOR-mediated transcriptional activation and/or post-translational accumulation via protein interactions with NOTCH3 and collagen.
Collapse
|
32
|
Zhang X, Lee SJ, Young KZ, Josephson DA, Geschwind MD, Wang MM. Latent NOTCH3 epitopes unmasked in CADASIL and regulated by protein redox state. Brain Res 2014; 1583:230-6. [PMID: 25150590 PMCID: PMC4206828 DOI: 10.1016/j.brainres.2014.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/07/2014] [Indexed: 12/29/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy CADASIL is caused by more than a hundred NOTCH3 mutations. Virtually all encoded mutant proteins contain an odd number of cysteines. As such, structural changes in NOTCH3 may be the primary molecular abnormality in CADASIL. Thus, we sought evidence for structurally altered NOTCH3 protein in CADASIL tissue. Four antibodies were raised in rabbits against two non-overlapping N-terminal NOTCH3 sequences. These reagents were used in immunohistochemical experiments to detect epitopes in post-mortem CADASIL brains (n=8), control brains, and cells overexpressing NOTCH3. To determine the biochemical nature of NOTCH3 epitopes, we used these antibodies to probe pure NOTCH3-Fc fusion proteins treated with acid, urea, guanidinium, ionic detergents, acrylamide, and thiol- and phosphorus-based reductants. All antibodies avidly stained arteries in 8 of 8 CADASIL brain samples. The most prominent staining was in degenerating media of leptomeningeal arteries and sclerotic penetrating vessels. Normal appearing vessels from control brains were not reactive. Antibodies did not react with cultured cells overexpressing NOTCH3 or with purified NOTCH3-Fc protein. Furthermore, treatment of pure protein with acid, chaotropic denaturants, alkylators, and detergents failed to unmask N-terminal NOTCH3 epitopes. Antibodies, however, recognized novel N-terminal epitopes in purified NOTCH3-Fc protein treated with three different reductants (DTT, beta-mercaptoethanol, and TCEP). We conclude that CADASIL arteries feature latent N-terminal NOTCH3 epitopes, suggesting the first evidence in vivo of NOTCH3 structural alterations.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Soo Jung Lee
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - David A Josephson
- Josephson-Wallack-Munshower Neurology, Indianapolis, IN 46260, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46260, USA
| | - Michael D Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94143, USA
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA; Molecular and Integrative Physiology, University of Michigan, 7725 Med Sci II 5622, 1137 Catherine Street, Ann Arbor, MI 48109-5622, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.
| |
Collapse
|
33
|
Agoulnik SI, Kawano S, Taylor N, Oestreicher J, Matsui J, Chow J, Oda Y, Funahashi Y. Eribulin mesylate exerts specific gene expression changes in pericytes and shortens pericyte-driven capillary network in vitro. Vasc Cell 2014; 6:3. [PMID: 24581301 PMCID: PMC4016419 DOI: 10.1186/2045-824x-6-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/24/2014] [Indexed: 02/06/2023] Open
Abstract
Background Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. Eribulin is a tubulin-binding drug and approved in many countries worldwide for treatment of certain patients with advanced breast cancer. Here we investigated antiproliferative and antiangiogenic effects of eribulin on vascular cells, human umbilical vein endothelial cells (HUVECs) and human brain vascular pericytes (HBVPs), in vitro in comparison with another tubulin-binding drug, paclitaxel. Methods HUVECs and HBVPs were treated with either eribulin or paclitaxel and their antiproliferative effects were evaluated. Global gene expression profiling changes caused by drug treatments were studied using Affymetrix microarray platform and custom TaqMan Low Density Cards. To examine effects of the drugs on pericyte-driven in vitro angiogenesis, we compared lengths of capillary networks in co-cultures of HUVECs with HBVPs. Results Both eribulin and paclitaxel showed potent activities in in vitro proliferation of HUVECs and HBVPs, with the half-maximal inhibitory concentrations (IC50) in low- to sub-nmol/L concentrations. When gene expression changes were assessed in HUVECs, the majority of affected genes overlapped for both treatments (59%), while in HBVPs, altered gene signatures were drug-dependent and the overlap was limited to just 12%. In HBVPs, eribulin selectively affected 11 pathways (p < 0.01) such as Cell Cycle Control of Chromosomal Replication. In contrast, paclitaxel was tended to regulate 27 pathways such as PI3K/AKT. Only 5 pathways were commonly affected by both treatments. In in vitro pericyte-driven angiogenesis model, paclitaxel showed limited activity while eribulin shortened the formed capillary networks of HUVECs driven by HBVPs at low nmol/L concentrations starting at day 3 after treatments. Conclusions Our findings suggest that pericytes, but not endothelial cells, responded differently, to two mechanistically-distinct tubulin-binding drugs, eribulin and paclitaxel. While eribulin and paclitaxel induced similar changes in gene expression in endothelial cells, in pericytes their altered gene expression was unique and drug-specific. In the functional endothelial-pericyte co-culture assay, eribulin, but not paclitaxel showed strong efficacy not only as a cytotoxic drug but also as a potent antivascular agent that affected pericyte-driven in vitro angiogenesis.
Collapse
Affiliation(s)
| | - Satoshi Kawano
- Eisai Co., Ltd, Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan
| | - Noel Taylor
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA
| | - Judith Oestreicher
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA.,Present address: Infinity Pharmaceuticals, 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Junji Matsui
- Eisai Co., Ltd, Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan
| | - Jesse Chow
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA
| | - Yoshiya Oda
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA
| | | |
Collapse
|
34
|
Abnormal Expression Pattern of Notch Receptors, Ligands, and Downstream Effectors in the Dorsolateral Prefrontal Cortex and Amygdala of Suicidal Victims. Mol Neurobiol 2013; 49:957-65. [DOI: 10.1007/s12035-013-8570-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/10/2013] [Indexed: 02/03/2023]
|
35
|
Meng H, Zhang X, Lee SJ, Wang MM. Von Willebrand factor inhibits mature smooth muscle gene expression through impairment of Notch signaling. PLoS One 2013; 8:e75808. [PMID: 24086636 PMCID: PMC3781053 DOI: 10.1371/journal.pone.0075808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 08/20/2013] [Indexed: 12/30/2022] Open
Abstract
Von Willebrand factor (vWF), a hemostatic protein normally synthesized and stored by endothelial cells and platelets, has been localized beyond the endothelium in vascular disease states. Previous studies have implicated potential non-hemostatic functions of vWF, but signaling mechanisms underlying its effects are currently undefined. We present evidence that vWF breaches the endothelium and is expressed in a transmural distribution pattern in cerebral small vessel disease (SVD). To determine the potential molecular consequences of vWF permeation into the vessel wall, we also tested whether vWF impairs Notch regulation of key smooth muscle marker genes. In a co-culture system using Notch ligand expressing cells to stimulate Notch in A7R5 cells, vWF strongly inhibited both the Notch pathway and the activation of mature smooth muscle gene promoters. Similar repressive effects were observed in primary human cerebral vascular smooth muscle cells. Expression of the intracellular domain of NOTCH3 allowed cells to bypass the inhibitory effects of vWF. Moreover, vWF forms molecular complexes with all four mammalian Notch ectodomains, suggesting a novel function of vWF as an extracellular inhibitor of Notch signaling. In sum, these studies demonstrate vWF in the vessel wall as a common feature of cerebral SVD; furthermore, we provide a plausible mechanism by which non-hemostatic vWF may play a novel role in the promotion of vascular disease.
Collapse
Affiliation(s)
- He Meng
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael M. Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
36
|
Zhang X, Meng H, Wang MM. Collagen represses canonical Notch signaling and binds to Notch ectodomain. Int J Biochem Cell Biol 2013; 45:1274-80. [PMID: 23579095 PMCID: PMC3683383 DOI: 10.1016/j.biocel.2013.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/16/2013] [Accepted: 03/29/2013] [Indexed: 12/27/2022]
Abstract
The Notch signaling system features a growing number of modulators that include extracellular proteins that bind to the Notch ectodomain. Collagens are a complex, heterogeneous family of secreted proteins that serve both structural and signaling functions, most prominently through binding to integrins and DDR. The shared widespread tissue distribution of Notch and collagen prompted us to investigate the effects of collagen on Notch signaling. In a cell co-culture signaling assay, we found that type IV collagen inhibited Notch signaling in H460 and A7R5 cell lines. Moreover, Notch-stimulated expression of mature smooth muscle genes SMA, MHC, SM22, and calponin, which define the physiologic phenotype of normal vascular smooth muscle, was inhibited by type IV collagen in A7R5 cells. Cloned promoters of three of these genes were also inhibited by exposure to collagen. Collagen-dependent repression of Notch signaling required an RBP-jK site within the SM22 promoter. Moreover, repression by collagen required extracellular stimulation of the Notch signaling pathway. Type IV collagen bound to both Notch3 and Jagged1 proteins in purified protein binding assays. In addition, type I collagen also inhibited Notch signaling and bound to Notch and Jagged. We conclude that type IV and type I collagen repress canonical Notch signaling to alter expression of Notch target genes.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | | | | |
Collapse
|